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Abstract

Haktanir originally introduced the method of self-determined probability weighted moments as an extension of the traditional

method of probability weighted moments for parameter estimation. While this method possesses many advantages, his

algorithms introduced certain mathematical manipulations for numerical convenience or based upon special knowledge of the

behavior of a data sample. Also, some of these algorithms relied upon inputs from numerical tables that are not widely

accessible. To improve the usefulness of this method, new algorithms have been developed that directly implement the relevant

equations and do not rely upon external results. In this paper, we show that these features extend the applicability of self-

determined probability weighted moments without loss of accuracy in the parameter estimates. Examples from flood peak

analysis and extreme wind speed estimation are presented. q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Self-determined probability weighted moments; Parameter estimation; Numerical methods; Flood peak analysis; Extreme wind

speed estimation

1. Introduction

The problem of estimating the parameters of a

probability distribution from a sample is crucial to

many fields of science and engineering, particularly

for predicting future behavior of a phenomenon from

previously observed behavior. A wide variety of

methods have been developed to perform parameter

estimation; see, e.g. Rao and Hamed, 2000 for a

discussion of some commonly used methods. Despite

the efforts of many researchers, there is an on-going

need to create a method that is easily used, has the

flexibility to accommodate many different distri-

butions, and can produce accurate and robust

parameter estimates from (frequently limited) sets of

data.

The method of self-determined probability

weighted moments (Haktanir, 1997) was originally

introduced as an extension of the traditional method of

probability weighted moments (Greenwood et al.,

1979) for parameter estimation. One goal of the self-

determined probability weighted moment (SD-PWM)

method was to enhance the accuracy of the probability

weighted moment (PWM) method by more fully

utilizing the mathematical properties of the under-

lying probability distribution. (This could also

provide an informal ‘test’ of the appropriateness of

the assumed distribution in describing the data, as

explained more fully in Section 2.) In addition, the

SD-PWM method could more accurately account for
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variations in the data sample, thus improving the

parameter estimation. Haktanir (1997) documented

the improved performance of the SD-PWM method

over the PWM method and the maximum likelihood

method by estimating parameters from five distri-

butions (generalized extreme-value (GEV), log-logis-

tic (LL), three parameter lognormal (LN3), and

Pearson type three (P3), and Gumbel) using annual

flood data from a location in Turkey.

Because of the general complexity of the SD-PWM

equations to be solved, Haktanir introduced numerical

algorithms to determine the SD-PWM parameter

estimates. While these algorithms are for the most

part direct implementations of the SD-PWM

equations, certain mathematical manipulations were

introduced for numerical convenience or based upon

special knowledge of the behavior of a data sample.

Moreover, some of these algorithms relied upon

multiple inputs from numerical tables that are

published in journals that are not widely accessible.

While not detracting from the accuracy of his results,

all of these features make the algorithms harder to use

and potentially susceptible to problems when applied

to other types of data.

In an attempt to simplify and unify the enforcement

of the definition of SD-PWMs across the various

distributions, new SD-PWM algorithms have been

developed for each distribution. These new algor-

ithms are entirely self-contained and directly

implement the theoretical equations for the SD-

PWM method with no modifications. They rely

upon powerful and efficient numerical techniques

for integration and root finding implemented in the

software package MATLAB
w (1999), thus assuring

accuracy and wide accessibility. These new algor-

ithms have been tested both on Haktanir’s original

flood data and on extreme wind speed data, and their

performance is assessed below. In general, the new

algorithms perform as well as Haktanir’s original

ones, and they are shown to eliminate certain

problems that were found in the Haktanir’s implemen-

tation. Thus, these new algorithms should be more

appropriate for general use in parameter estimation

while not sacrificing the quality of Haktanir’s

approach.

The organization of the paper is as follows. In

Section 2, we describe the theory of both probability

weighted moments and self-determined probability

weighted moments, highlighting the advantages that

the latter method should have over the former. Section

3 gives implementation details for three of the

distributions and points out differences with Hakta-

nir’s approach. In Section 4, results of testing of the

new algorithms are reported. Finally, conclusions and

future directions of the research are discussed in

Section 5.

2. Theory

2.1. Probability weighted moments

For a given probability distribution, its probability

weighted moments Mp,r,s are defined as

Mp;r;s ¼ E½XpFrð1 2 FÞs� ¼
ð1

0
½xðFÞ�pFrð1 2 FÞsdF

ð1Þ

where F ¼ Fðx;f1;f2;…;fkÞ ¼ PðX # xÞ is the

cumulative distribution function having f1,f2,…,fk

as parameters, x(F ) is the inverse cumulative

distribution function, and p, r, and s are integers.

Two particular sets of PWMs, as and br, are usually

considered:

as ; M1;0;s ¼
ð1

0
xðFÞð1 2 FÞsdF ¼

ð
xð1 2 FÞsf ðxÞdx

ð2aÞ

and

br ; M1;r;0 ¼
ð1

0
xðFÞFrdF ¼

ð
xFrf ðxÞdx ð2bÞ

where f ðxÞ ¼ f ðx;f1;f2;…;fkÞ is the probability

density function and the upper and lower bounds on

x in the second integrals are such that FðxÞ ¼ 1 and

FðxÞ ¼ 0; respectively. In general, as and br are

nonlinear functions of the distribution parameters

f1,f2,…fk. It can be shown that the sets {as : s ¼

0; 1; 2;…;N} and {br : r ¼ 0; 1; 2;…;N} are linearly

dependent, implying that either definition of PWM

may be used for parameter estimation without loss of

generality (Hosking, 1986).

To estimate the parameters of a distribution, PWM

estimators of the ordered sample x ¼ {x1 # x2 #

· · · # xn21 # xn} are defined as follows, using
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Haktanir’s notation (1997):

a0
s ¼

1

n

Xn

i¼1

ð1 2 Pnex;iÞ
sxi for s ¼ 0; 1; 2;…; n 2 1

ð3aÞ

and

b0
r ¼

1

n

Xn

i¼1

Pr
nex;ixi for r ¼ 0; 1; 2;…; n 2 1 ð3bÞ

where Pnex;i is an estimate for the non-exceedance

probability of the ith event. Using the unbiased

estimators suggested by Landwehr et al. (1979), Pnex;i

is taken as

P
j
nex;i ¼

i 2 1

j

 !
n 2 1

j

 ! j ¼ 0; 1; 2;…; n 2 1: ð4Þ

(Eq. (3a) requires that the polynomial in Pnex;i be

expanded prior to use of Eq. (4)). Various authors (e.g.

Greenwood et al., 1979; Hosking, 1986) have

suggested using a biased estimator employing a

plotting position formula for Pnex;i, which sometimes

yields better estimates for both distribution par-

ameters and quantiles (Hosking, 1991). However,

the unbiased PWM estimators obtained using Eq. (4)

are employed here. The PWM parameter estimates

f0
1;f

0
2;…;f0

k are defined as those values that make the

first k PWMs equal to the first k PWM estimators; i.e.

f0
1;f

0
2;…;f0

k are those values such that

a0
s ¼ asðf

0
1;f

0
2;…;f0

kÞ for s ¼ 0; 1;…; k 2 1; ð5aÞ

or

b0
r ¼ brðf

0
1;f

0
2;…;f0

kÞ for r ¼ 0; 1;…; k 2 1: ð5bÞ

Estimates that satisfy Eq. (5a) must also satisfy Eq.

(5b), and vice versa (Savage, 2001).

2.2. Self-determined probability weighted moments

When estimating the parameters for a probability

distribution, it is assumed that the observations in a

sample X follow this distribution and thus that X

displays some relevant behavior of the distribution.

The relevant behavior of X used in the method of

PWMs is simply that the PWM estimators obtained

from X are equal to the PWMs of the given

distribution; the assumed applicability of the prob-

ability distribution to the sample is not exploited any

further. In particular, the non-exceedance probability

Pnex;i is not assigned to xi according to the assumed

distribution, but based solely on the position of xi

within the ordered sample X. The method of self-

determined probability weighted moments attempts to

improve estimation performance by using the

assumed distribution more fully.

The method of SD-PWMs assumes that the non-

exceedance probabilities of the observations can be

assigned via the cumulative distribution function of

the assumed distribution. Thus, the linearly related

SD-PWM estimators a00
s and b00

r are

a00
s ¼

1

n

Xn

i¼1

½1 2 Fðxi;f1;f2;…;fkÞ�
sxi

for s ¼ 0; 1; 2;…

ð6aÞ

and

b00
r ¼

1

n

Xn

i¼1

Frðxi;f1;f2;…;fkÞxi for r ¼ 0; 1; 2;…:

ð6bÞ

Unlike the scalar PWM estimators, the SD-PWM

estimators are nonlinear functions, in general, of the

distribution parameters. For a given sample X and a

given k-parameter probability distribution, the SD-

PWM parameter estimates f00
1;f

00
2;…;f00

k are defined

as those values that the first k PWMs equal the first k

SD-PWM estimators:

a00
s ðf

00
1;f

00
2;…;f00

kÞ ¼ asðf
00
1;f

00
2;…;f00

kÞ

for s ¼ 0; 1;…; k 2 1;

ð7aÞ

or

b00
r ðf

00
1;f

00
2;…;f00

kÞ ¼ brðf
00
1;f

00
2;…;f00

kÞ

for r ¼ 0; 1;…; k 2 1:

ð7bÞ

As with the PWM estimates from Eqs. (5a) and (5b), it

can be shown that any set of SD-PWM estimates that

satisfies Eq. (7a) also satisfies Eq. (7b), and vice versa

(Savage, 2001).

Although the complexity of the resulting set of k

equations to be solved increases when moving from
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PWMs to SD-PWMs, Haktanir (1997) suggests two

advantages that the assignment of non-exceedance

probabilities directly from the cumulative distribution

function has over the position-based assignment of

traditional PWMs. First, because the method of

PWMs assigns non-exceedance probabilities only

according to rank order in the sample, the relative

distance between two sample points does not affect

these probabilities. Such a feature can be problematic

if a sample contains one or more outliers, although

methods do exist for circumventing this problem (e.g.

using PWMs developed for censored samples or based

on historical information). However, computing non-

exceedance probabilities directly from the cumulative

distribution function permits direct influence of the

values by the sample points. Thus, a more informed

estimate of the distribution parameters is possible via

the method of SD-PWMs. Also, Haktanir suggests

that calculating the non-exceedance probability via

the assumed distribution permits the corresponding

results to reflect the strength or weakness of the

selected distribution in describing the sample. If a

distribution is appropriate for describing a sample,

errors generated by the method of SD-PWMs should

be less than errors generated by other methods since

more information about the distribution itself is used.

Larger errors, conversely, should reflect an inap-

propriate choice of distribution.

3. SD-PWM algorithms

In this section, the basic ideas and equations for the

new SD-PWM algorithms are presented. To simplify

the discussions of the algorithm development, a

uniform set of variables is used for the distribution

parameters: a, the shape parameter; b, the scale

parameter; and c, the location parameter. The only

deviation from this standardized set is seen in the

three-parameter log–normal distribution (LN3). For

LN3, the location parameter c is maintained, but the

traditional LN3 variables my and sy are used to

designate the mean and standard deviation of y, where

y ¼ lnðx 2 cÞ:

For the first three distributions considered—the

Gumbel, the general extreme value, and the log–

logistic distributions—the SD-PWM equations and

algorithms generally follow the equations and algor-

ithms given by Haktanir (1997), although deviations

from Haktanir’s algorithms for the Gumbel distri-

bution are explicitly noted. Alternatively, for the

three-parameter log–normal and Pearson type three

distributions, the algorithms presented deviate sig-

nificantly from those presented by Haktanir. Unlike

Haktanir’s methods, the recommended algorithms

presented here parallel the algorithms developed for

the first three distributions.

Since the development process proceeds similarly

for all five algorithms, we will provide details only for

those algorithms that are dealt with in Section 4. A

summary of the relevant SD-PWM equations to be

solved, as well as the appropriate initial estimates for

the parameters, is given for the GEV and LL

distributions in Table 1. Note that, for all five

distributions considered, a00
0 ¼ b00

0 ¼ �x; the sample

mean of the data. This fact is used to simplify the SD-

PWM equations.

3.1. General algorithm development issues

Because of its robust numerical procedures and

wide usage within the engineering and scientific

communities, the algorithms have been developed

into a set of MATLAB
w scripts utilizing MATLAB’sw

iterative root-finding scheme fsolve. By default, fsolve

employs its ‘large scale’ solution process to solve for

the zeros of the relevant equations. This process is a

subspace trust region method based upon a version of

Newton’s method. (See Coleman and Li, 1996 as well

as the MATLAB
w help menu for fsolve.) To improve

performance, constraint settings on the solution

process were determined and implemented to provide

reasonable results for each script. In general, this

entailed setting the bandwidth of the initial precondi-

tioner to Inf (i.e. using full bandwidth) for the

preconditioned conjugate gradient iterations as well

as requiring a very tight tolerance on the termination

value. See Savage (2001) for further information on

these scripts.1

Since the SD-PWM parameter estimates are deter-

mined using iterative techniques, initial guesses on the

parameters are required. Because the SD-PWM method

follows from the method of PWMs, Haktanir (1997)

1 The MATLAB
w scripts can be obtained upon request from the

authors.
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proposed that PWM parameter estimates are reasonable

initial guesses for the SD-PWM parameter estimates.

However, for some distributions, the method of PWMs

itself requires an iterative solution process. In such

instances, approximations for the PWM parameter

estimates are used to establish reasonable initial guesses

for the SD-PWMs algorithms.

As mentioned previously, the SD-PWM parameter

estimate equations are generally nonlinear functions

of the parameters. However, it was discovered during

the development process that it was always possible to

solve one equation explicitly for a parameter in terms

of the other parameters and the sample mean. This

implies that the number of parameter equations to be

solved iteratively could always be reduced by one—

the remaining parameter is determined by a simple

function evaluation. This reduction in dimension

helps both the speed and accuracy of the algorithm,

since higher dimensional root finding is generally a

more demanding numerical procedure.

3.2. Gumbel distribution

For the Gumbel distribution, the cumulative

distribution function is

FðxÞ ¼ exp{ 2 exp½2bðx 2 cÞ�} ð8Þ

where 21 , x , 1: Applying PWMs to the Gumbel

distribution, Greenwood et al. (1979) considered the

set as and found

a0 ¼ c þ
g

b
ð9aÞ

and

a1 ¼
c

2
þ

g2 ln2

2b
ð9bÞ

where Euler’s constant g < 0:5772157: Enforcing Eq.

(7a) with the SD-PWM estimators and solving for b

and c gives

b ¼
ln 2

�x 2 2a00
1

ð10aÞ

and

c ¼ �x 2
g

b
ð10bÞ

From Eq. (10b), the location parameter c is a function

of the scale parameter b and the sample mean �x:

Table 1

Summary of SD-PWM equations and initial estimates for GEV and LL distributions

Distribution and CDF Parameter equations Initial estimates

Generalized extreme value 3b00
2 2 �x

2b00
1 2 �x

¼
1 2 32a

1 2 22a
;

a0 ¼ 7:8590r þ 2:9554r2
;

FðxÞ ¼ exp 2 1 2
aðx 2 cÞ

b

� �1=a� �
; b ¼

að2b00
1 2 �xÞ

Gð1 þ aÞð1 2 22aÞ
b0 ¼

a0ð2b
0
1 2 �xÞ

Gð1 þ a0Þð1 2 22a0 Þ
;

a – 0:
c ¼ �x 2

b½1 2 Gð1 þ aÞ�

a
r ¼

2b0
1 2 �x

3b0
2 2 �x

2
ln 2

ln 3
:

Log–Logistic a ¼ 3 2
2ð�x 2 3a00

2Þ

�x 2 2a00
1

; a0 ¼ 3 2
2ð�x 2 3a0

2Þ

�x 2 2a0
1

;

FðxÞ ¼ 1 þ
x 2 c

b

	 
1=2a
" #

21

b ¼
�x 2 2a00

1

a Gð1 þ aÞ Gð1 2 aÞ
b0 ¼

x 2 2a0
1

a0 Gð1 þ a0Þ Gð1 2 a0Þ

c ¼ �x 2 b Gð1 þ aÞ Gð1 2 aÞ
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Substituting Eq. (10b) into the definition of a00
1 (Eq.

(6a)) yields one equation to be solved for the scale

parameter b:

b ¼
ln 2

�x 2
2

n

Xn

i¼1

½1 2 exp{ 2 exp½2bðxi 2 �xÞ2 g�}�xi

 !

ð11Þ

The value of b which satisfies Eq. (11) is the SD-

PWM scale parameter estimate for the Gumbel

distribution and sample x. A reasonable initial guess

b0 is the PWM estimate for b:

b0 ¼
ln 2

�x 2 2a0
1

ð12Þ

Once b is found from Eq. (11), determination of c via

Eq. (10b) is trivial.

To ensure that the scale parameter b is always non-

negative, Haktanir (1997) suggests the following

equation in place of Eq. (10a):

b ¼
ln 2

�x 2 2a00
1

  ð13Þ

In the most general case, however, the absolute value

should not be included in the Gumbel PWM functions.

Thus, the absolute value function has been excluded

from the SD-PWMs algorithm presented above. The

consequences and validity of Eq. (13) are discussed in

Section 4.

3.3. Three-parameter log–normal distribution

Unlike the Gumbel distribution, the three-par-

ameter log–normal distribution (LN3) must be

considered explicitly for both positively and nega-

tively skewed forms of the distribution. The govern-

ing SD-PWM equations for both cases are provided

below. To determine which case is appropriate for a

given sample x, Haktanir uses the skew measure R as

defined by Ding et al. (1989b):

R ¼
b0

2 2 �x=3

b0
1 2 �x=2

ð14Þ

When R . 1; the parameters are estimated for the

positively skewed LN3 distribution. Alternatively,

the negatively skewed LN3 distribution is used

when R , 1:

3.3.1. Positively skewed LN3

For the positively skewed LN3 distribution, the

cumulative distribution function is

FðxÞ ¼
ðx

c
f ðtÞdt ¼

1

2
1 þ erf

lnðx 2 cÞ2 my

sy

ffiffi
2

p

 !" #

ð15Þ

where c # x , 1: Applying PWMs to the LN3

distribution, Song and Hou (1988) considered the set

br. However, the resulting expressions obtained by

Song and Hou contain integrals that cannot be

evaluated analytically. Therefore, Song and Hou

developed a numerical table using approximate

integration useful for relating PWM estimators and

functions of the distribution parameters.

For his LN3 SD-PWM algorithm, Haktanir (1997)

follows Song and Hou and presents a complex

algorithm dependent upon their numerical table. The

resulting algorithm is undesirable for two reasons.

First, user input is required at various intermediate

steps within the algorithm based upon interpolation

from Song and Hou’s table, which may not be readily

obtained by the user. Second, instead of requiring

direct equality of the SD-PWM estimators and

moments, Haktanir’s algorithm requires the solving

of polynomials based on the functions of distribution

parameters for which Song and Hou developed the

aforementioned table. Therefore, it is not immediately

evident that the LN3 SD-PWMs algorithm suggested

by Haktanir directly enforces the definition of SD-

PWMs as set forth in Eqs. (7a) and (7b). Thus, to

provide a closed algorithm (i.e. no intermediate input

required) that both explicitly enforces the definition of

SD-PWMs and eliminates the need for Song and

Hou’s numerical table, an algorithm substantially

different from Haktanir’s is presented below.

As was done by Song and Hou (1988), the set br of

PWMs for the LN3 distribution is considered here.

Additionally, Hosking (1986, 1991) considered the L-

moments for the LN3 distribution (see Hosking

(1991) for the definition of L-moments), which are

linearly related to the PWMs of a distribution.

Hosking’s results were used to obtain the necessary

PWMs:

b0 ¼ c þ expðmy þ s2
y =2Þ ð16aÞ
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b1 ¼
c

2
þ 1

2
expðmy þ s2

y =2Þ½1 þ erfðsy=2Þ� ð16bÞ

and

b2 ¼
c

3
þ 1

2
expðmy þ s2

y =2Þ 2SðsyÞ þ erfðsy=2Þ þ
2
3

h i
ð16cÞ

where

SðsyÞ ¼
1ffiffi
p

p
ðsy=2

0
erfðt=

ffiffi
3

p
Þ expð2t2Þdt ð16dÞ

See Savage (2001) for the details of these derivations.

For the method of SD-PWMs, substituting b00
r for br

and solving for my, sy, and c gives

3b00
2 2 2b00

1

2b00
1 2 �x

¼
3SðsyÞ

erfðsy=2Þ
þ

1

2
ð17aÞ

my ¼ ln
2b00

1 2 �x

erfðsy=2Þ

 !
2

s2
y

2
ð17bÞ

and

c ¼ �x 2 expðmy þ s2
y =2Þ ð17cÞ

Substitution of Eq. (17c) into the expressions for b00
1

and b00
2 yields two equations (Eqs. (17a) and (17b)) for

the two unknowns my and sy. Because Eq. (16d) must

be evaluated numerically, S(sy) is computed with

MATLAB’sw quad8 numerical integration routine

during the iterative solution process. Following the

solution of my and sy, the SD-PWM estimate for c is

determined from Eq. (17c).

For initial parameter guesses, the PWM parameter

estimates require an iterative solution. Therefore, an

alternative is preferred. Making use of the PWM LN3

approximation given by Hosking (1986) and the

approximation to the inverse cdf for the normal

distribution given by Abramowitz and Stegun (1965),

initial guesses my0 and sy0 are computed as follows:

sy0 ¼ 0:999281z 2 0:00618z3 þ 0:000127z5 ð18aÞ

my0 ¼ ln
2b0

1 2 �x

erfðsy0=2Þ

 !
2

s2
y0

2
ð18bÞ

where

z ¼

ffiffiffi
8

3

r
F21 3b0

2 2 2b0
1

2b0
1 2 �x

 !
ð18cÞ

F21ðFÞ

¼ W 2
2:515517 þ 0:802853W þ 0:010328W2

1 þ 1:432788W þ 0:189269W2 þ 0:001308W3

þ eðFÞ

ð18dÞ

W ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
22 lnðFÞ

p
F # 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22 lnð1 2 FÞ
p

F $ 0:5

8<
: ð18eÞ

and the error e(F ) is less than 4.4 £ 1024.

3.3.2. Negatively skewed LN3

For the negatively skewed LN3 distribution, the

cumulative distribution function becomes

FðxÞ ¼
ðx

21
f ðtÞdt ¼

1

2
1 2 erf

lnðc 2 xÞ2 my

sy

ffiffi
2

p

 !" #

ð19Þ

where 21 # x , c: Considering the PWM set br, it

can be shown that

b0 ¼ c 2 expðmy þ s2
y =2Þ ð20aÞ

b1 ¼
c

2
2 1

2
expðmy þ s2

y =2Þ½1 2 erfðsy=2Þ� ð20bÞ

and

b2 ¼
c

3
2 1

2
expðmy þ s2

y=2Þ 2SðsyÞ2 erfðsy=2Þ þ
2
3

h i
ð20cÞ

For the method of SD-PWMs, substituting b00
r for br

and solving for my; sy, and c gives

3 2
3b00

2 2 2b00
1

2b00
1 2 �x

¼
3SðsyÞ

erfðsy=2Þ
þ

1

2
ð21aÞ

my ¼ ln
2b00

1 2 �x

erfðsy=2Þ

 !
2

s2
y

2
ð21bÞ

and

c ¼ �x 2 expðmy þ s2
y =2Þ ð21cÞ

Solution of these three equations proceeds similarly to

that of the positively skewed case. Because of their

similar forms, the approximation given by Eqs.

(18a)–(18e) can be used with slight modification to

obtain the necessary initial guesses. Eq. (18c) must be
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replaced with

z ¼

ffiffiffi
8

3

r
F21 3 2

3b0
2 2 2b0

1

2b0
1 2 �x

 !
ð22Þ

With this change, Eqs. (18a)–(18e) provides suitable

initial parameter guesses my0 and sy0 for the

negatively skewed LN3 algorithm.

3.4. Pearson type three distribution

As with the LN3, the Pearson type three distri-

bution (P3) must be considered for both positively

skewed and negatively skewed cases explicitly.

Again, the skewness measure R (Eq. 14) for a sample

x is used to determined whether parameters are

calculated for the positively skewed P3 or the

negatively skewed P3.

3.4.1. Positively skewed P3

For the positively skewed P3, the cumulative

distribution function is

FðxÞ ¼
ðx

c
f ðtÞdt ¼ Gðbðx 2 cÞ; aÞ ð23Þ

where c # x , 1 and Gðz; kÞ is the normalized

incomplete gamma function. Following the example

of Song and Ding (1988) and Ding et al. (1989a,b), the

set br was used for developing the SD-PWM

equations. Substituting b00
r for br and solving for a,

b, and c gives

b00
2 2 �x=3

b00
1 2 �x=2

¼
S1

2ðaÞ2 a=3

S1
1ðaÞ2 a=2

ð24aÞ

b ¼
S1

1ðaÞ2 a=2

b00
1 2 �x=2

ð24bÞ

and

c ¼ �x 2
a

b
ð24cÞ

where

S1
1ðaÞ ¼

ð1

0

ðt

0

1

GðaÞ
ua21expð2uÞdu

� �
1

GðaÞ
taexpð2tÞdt

ð24dÞ

and

S1
2ðaÞ ¼

ð1

0

ðt

0

1

GðaÞ
ua21expð2uÞdu

� �2 1

GðaÞ
taexpð2tÞdt

ð24eÞ

No closed-form solution is known for either S1
1ðaÞ or

S1
2ðaÞ: Therefore, as with LN3, Song and Ding (1988)

and Ding et al. (1989a) provide numerical tables

based on approximate integration to relate PWM

estimators and functions of the distribution par-

ameters. As was the case for LN3, Haktanir presents

a complex P3 SD-PWM algorithm that is heavily

dependent upon the aforementioned numerical tables.

Again, it is not immediately evident that the P3 SD-

PWMs algorithm suggested by Haktanir strictly

enforces the definition of SD-PWMs (Eqs. (7a) and

(7b)). Therefore, to provide a closed algorithm that

both explicitly follows the definition of SD-PWMs

and eliminates the need for numerical tables, a new

algorithm is created that deviates from the P3 SD-

PWM algorithm suggested by Haktanir (1997).

Although no simple closed-form solutions are

known to exist for either S1
1ðaÞ or S1

2ðaÞ; Jakubowski

(1992) presents alternative expressions in terms of the

beta and incomplete beta functions that simplify the

right-hand sides of Eqs. (24a) and (24b):

S1
1ðaÞ2 a=2 ¼

1

2Bða; 1=2Þ
ð25aÞ

and

S1
2ðaÞ2 a=3

S1
1ðaÞ2 a=2

¼ 2I1=3ða; 2aÞ ð25bÞ

Substitution of these results into Eqs. (24a) and (24b)

gives

b00
2 2 �x=3

b00
1 2 �x=2

¼ 2I1=3ða; 2aÞ ð26aÞ

and

b ¼
1

2Bða; 1=2Þ

1

ðb00
1 2 �x=2Þ

ð26bÞ

Substitution of Eq. (24c) in the expressions for b00
1 and

b00
2 yields two equations (Eqs. (26a) and (26b)) to be

solved for a and b, with Eq. (24c) used to determine c.

Again for initial parameter guesses, the PWM

parameter estimates require an iterative solution, thus
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creating a need for an alternative. Hosking (1986)

considered the L-moments of the positively skewed

P3 distribution, and Hosking (1991) suggests an

approximation for these L-moment expressions. Due

to the relationship between L-moments and PWMs,

Savage (2001) shows that Hosking’s approximation

can be used to obtain the following initial guesses a0

and b0:

For Q $ 1=3; let tm ¼ 1 2 Q and

a0 ¼
0:36067tm 2 0:5967t2

m þ 0:25361t3
m

1 2 2:78861tm þ 2:56096t2
m 2 0:77045t3

m

ð27aÞ

for Q , 1/3, let tm ¼ 3pQ2 and

a0 ¼
1 þ 0:2906tm

tm þ 0:1882t2
m þ 0:0442t3

m

ð27bÞ

and for all Q

b0 ¼
1

2Bða0; 1=2Þ

1

ðb0
1 2 �x=2Þ

ð27cÞ

where

Q ¼ 3
b0

2 2 x=3

b0
1 2 �x=2

2 1

 !
ð27dÞ

3.4.2. Negative skewness

For the negatively skewed P3, the cumulative

distribution function is

FðxÞ ¼
ðx

21
f ðtÞdt ¼ 1 2 Gðbðc 2 xÞ; aÞ ð28Þ

where 21 , x , c: The first three PWMs are for the

set br are

b0 ¼ c 2
a

b
ð29aÞ

b1 ¼
c

2
þ

S1
1ðaÞ

b
2

a

b
ð29bÞ

and

b2 ¼
c

3
þ

2S1
1ðaÞ

b
2

S1
2ðaÞ

b
2

a

b
ð29cÞ

For the method of SD-PWMs, substituting b00
r for br,

solving for a, b, and c, and making use of

Jabukowski’s simplifications (Eqs. (25a) and (25b))

gives

b00
2 2 �x=3

b00
1 2 �x=2

¼ 2 2 2I1=3ða; 2aÞ ð30aÞ

b ¼
1

2Bða; 1=2Þ

1

ðb00
1 2 �x=2Þ

ð30bÞ

and

c ¼ �x þ
a

b
ð30cÞ

Solution of these equations proceeds as before. As

with the positively skewed form of the P3 distribution,

use of the PWM parameter estimates for initial

guesses requires an iterative solution. However with

slight modification, Eqs. (27a)–(27d) can be used

with the negatively skewed P3 as well (see Savage,

2001 for details). Specifically, if Eq. (27d) is replaced

with

Q ¼ 3 1 2
b0

2 2 �x=3

b0
1 2 �x=2

 !
ð31Þ

then Eqs. (27a) – (27d) provides suitable initial

parameter guesses a0 and b0 for the negatively skewed

P3 algorithm.

4. Algorithm analysis

As an example of parameter estimation by the

method of SD-PWMs, Haktanir (1997) determined

the SD-PWMs parameter estimates for all five

distributions mentioned in Section 3 using a 51-

element sample of annual flood peaks from the 902-

Beskonak station on the Kopru creek in southern

Turkey. The algorithms presented here were tested

with the 902-Beskonak data, and the resulting

estimates were compared to the estimates given by

Haktanir (1997). For the Gumbel, GEV, and LL

algorithms, the parameter estimates obtained with the

present algorithms agree with the values determined

by Haktanir, thus confirming that the present algor-

ithms can perform at least as well as Haktanir’s does

for these situations. However, the absolute value

function present in Eq. (13) can result in discrepancies

between Haktanir’s Gumbel algorithm and the

Gumbel algorithm presented here. These discrepan-

cies are explored below. Additionally, because the
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LN3 and P3 SD-PWM algorithms presented here

deviate significantly from the algorithms suggested by

Haktanir (1997), the parameter estimates obtained for

the 902-Beskonak data using the present algorithms

differ from the parameter estimates obtained by

Haktanir (1997). These variations are also discussed

below.

In addition to testing the SD-PWMs algorithms

using the 902-Beskonak data, daily fastest-mile wind

speed recordings and the Gumbel, GEV, and LL SD-

PWMs algorithms have been used to estimate

distribution parameters for extreme wind speeds (see

Savage, 2001; Whalen et al., 2002). The wind speed

data proves useful for analyzing the aforementioned

discrepancy in the Gumbel algorithm.

4.1. Gumbel distribution

For the Gumbel SD-PWM algorithm presented

above, Eq. (11) must be satisfied for the Gumbel scale

parameter estimate b. Rearranging slightly gives

0 ¼ ln 2 2 b

"
�x 2

2

n

£

 Xn

i¼1

½1 2 exp{ 2 exp½2bðxi 2 �xÞ2 g�}�xi

!#

ð32Þ

This equation defines a function f1(b ) whose roots are,

by definition, the SD-PWM Gumbel scale parameter

estimates for the sample X. Because f1(b ) is a non-

linear function of b, multiple roots and thus multiple

scale parameter estimates may exist for a given

sample.

Alternatively, Haktanir (1997) suggests the SD-

PWMs equation for the Gumbel scale parameter

estimate b should take the form of Eq. (13).

Expanding the SD-PWM estimator a00
1, substituting

Eq. (10b) for the location parameter c, rearranging

slightly, and defining a function f2(b ) gives

f2ðbÞ ¼ ln 2 2 b

�x
2

2

n

 Xn

i¼1

½1 2 exp{ 2 exp½2bðxi 2 �xÞ2 g�}�xi

! ¼ 0

ð33Þ

For Haktanir’s (1997) algorithm, the roots of f2(b ) are

the SD-PWM scale parameter estimates. More

specifically, Haktanir (1997) notes that the positive

root to this equation is the SD-PWM estimate of b. It

should be mentioned that the absolute value was

excluded from Haktanir’s equation (11) (the equival-

ent of Eq. (33) here). However, the equation for the

scale parameter (Eq. (8) in Haktanir (1997) and the

equivalent to Eq. (13) here) includes the absolute

value function, and Haktanir makes no suggestion that

it should be removed. Therefore, it is assumed that the

absolute value function should be present in Hakta-

nir’s equation (11) as given in Eq. (33) above.

To explore the differences between the functions

f1(b ) and f2ðbÞ and their impact on algorithm

behavior, f1(b ) and f2ðbÞ are plotted in Figs. 1 and 2

for different data sets. For the 902-Beskonak sample

(Fig. 1), observe that f1 has two roots, one negative

and one positive, while f2 has only one positive root

equal to the positive root of f1. Because the scale

parameter b is intended to be non-negative, the

presence of the absolute function in f2 seems

advantageous, as it removes the negative root

appearing in f1 and yields only one possible solution.

However, the absolute value function can present a

problem when considering other sample sets. Fig. 2

gives f1 and f2 for a filtered wind recording from

Albuquerque, NM with a threshold of 48 mph (see

Savage, 2001 for details regarding the filtering and

threshold). Comparison of Figs. 1 and 2 reveals that

the general shape of the SD-PWM equations is

extremely data dependent and that using f2 can create

an ‘extra’ root. Therefore, the absolute value function

may not always produce the desired results, and its use

should be avoided in a general-purpose algorithm.

To further explore the impact of data-dependency

on the SD-PWM equations, consider Fig. 3, which

shows examples of f1 and f2 for two wind speed

samples: Albuquerque, NM/threshold ¼ 48 mph and

Greensboro, NC/threshold ¼ 25 mph. For the Albu-

querque sample, f1 has three points of particular

interest: two roots, b1 and b2, and a local minimum at

bv (at which the iterative solution could become

‘stuck’ and thus not generate a solution). The function

f2 has all of these features plus an additional root bH

(i.e. ‘Haktanir’s root’). However, because of the

vertical position of the local minimum, bH is the only

root present in the Greensboro sample, and it exists
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only for f2. Contrary to b1 and b2, bH is a

mathematically appropriate SD-PWM scale par-

ameter estimate only when the absolute value function

is included. Along with b1 and b2, the adequacy of bH,

based on the resulting Gumbel cdf, is considered

below.

Fig. 3 illustrates that at least two cases are possible

for real datasets: fv , 0 and fv . 0: As observed in

Fig. 3, when fv , 0; both b1 and b2 exist for f1, and all

three roots (b1, b2, and bH) exist for f2. Alternatively,

when fv . 0; no solution exists for f1, and bH is the

only possible solution for f2. From the 12 aforemen-

tioned stations, a total of 132 wind speed samples (i.e.

11 thresholds per station for 12 stations) were created

and analyzed. Of these 132 sets, 75 had fv , 0; and 57

had fv . 0: A summary of the algorithm behavior

when fv . 0 and when fv , 0 is given in Table 2.

Notice that, when using f1, the algorithm always

iterated to b2 when fv , 0; even though two solutions

were possible. Using f1 for the 57 cases in which fv .

0; the algorithm always stopped in the region of bv: In

contrast, when using f2, the algorithm iterated to bH on

a total of 20 occasions. Thus, we see that the presence

of the absolute value in f2 can change the results of the

algorithm significantly.

To analyze the performance of the three parameter

Fig. 1. SD-PWM Gumbel functions for the 902-Beskonak sample.

Fig. 2. SD-PWM Gumbel iterating functions for Albuquerque, NM data.
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estimates, b1, b2, and bH, the resulting cdfs are now

considered for the Albuquerque data. The three cdfs

corresponding to the three roots are plotted in Fig. 4.

For the data set, the probability of non-exceedance for

each point was calculated using Pnex;i ( j ¼ 1 in Eq.

(4)). The notations cdf1, cdf2, and cdfH correspond to

the cdfs generated with b1, b2, and bH, respectively.

Based on visual inspection of Fig. 4, b1 is clearly an

inaccurate scale parameter estimate, due to the

apparent lack of trend through the data points.

Alternatively, both b2 and bH seem to generate

reasonable fits. To quantify the performance of the

various roots, total errors in the form of sums of

squared errors are computed for each cdf. For a

particular set of parameter estimates corresponding to

a distribution with cdf F(x ), the sum of squared error e

is the sum of the square of the difference between

Pnex;i and the cdf evaluated at xi :

e ¼
Xn

i¼1

i 2 1

n 2 1
2 FðxiÞ

� �2

ð34Þ

For the three estimates of b corresponding to the

Albuquerque, NM/threshold ¼ 48 mph sample, errors

were computed based on Eq. (34). These errors were

as follows: e ¼ 1:65 for b1, e ¼ 0:12 for b2, and e ¼

0:55 for bH. For this sample, clearly b2 produces the

best fit to the data and is presumably the best

parameter estimate of the three. This demonstrates

that a direct implementation of the SD-PWM

equations can be better suited for handling situations

where sensitivity of the parameter estimates to the

form of the parameter estimation equations exists.

Since the presence such a condition is typically not

known a priori, the direct implementation of the SD-

PWM equations is recommended.

Fig. 3. Various Gumbel SD-PWM iterating functions and their corresponding roots.

Table 2

Gumbel roots found for f1 and f2—132 cases

Equation f1 f2

Root found b1 b2 bv
a b1 b2 bH bv

a

Case

fv , 0 0 75 0 0 58 17 0

fv . 0 0 0 57 0 0 3 54

a bv indicates algorithm stopped in the region of bv: Fig. 4. Gumbel cumulative distribution functions.
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4.2. Three parameter log–normal distribution

For the 902-Beskonak sample, the LN3 SD-PWM

parameter estimates are given in Table 3 for both the

present algorithm and Haktanir’s (1997) algorithm.

Haktanir (1997) provides parameter estimates to six

significant figures. Therefore in Table 3, the PWM

equations b0, b1, and b2 (Eqs. (16a)–(16d)) and the

SD-PWM estimators b00
0, b00

1, and b00
2 (Eq. (6b)) are

calculated based on the parameter estimates given to

six significant figures for both algorithms.

While the PWM equations and the SD-PWM

estimators are not identical for the present algorithm,

they are equal to five significant figures. However,

from Table 3, the same degree of accuracy is not

obtained from Haktanir’s SD-PWM parameter

estimates. Moreover, it is not directly obvious

that the LN3 SD-PWMs algorithm suggested by

Haktanir (1997) generally requires the SD-PWM

estimators and the PWM functions to be equal—

only functions of the parameters are equated.

Alternatively, the present algorithm is predicated

upon the parameter estimates yielding equivalent

PWM functions and SD-PWM estimators as set

forth by the definition of SD-PWM estimates (Eqs.

(7a) and (7b)).

To compare the accuracy of the parameter

estimates provided by each algorithm, two measures

of quality of fit were calculated. First, the sum of

squared errors e for each algorithm was determined

via Eq. (34). As shown in Table 3, these values are

nearly the same for the two methods—the slightly

smaller value for the present algorithm was deemed

not to be statistically significant. As an additional test,

each set of estimates was used to calculate a set of

transformed data

z ¼
x 2 c

syemy
ð35Þ

where x represents the original 902-Beskonak flood

data. According to the definition of the three-

parameter lognormal distribution, the random variable

z should have a normal distribution with a mean of

zero and a standard deviation of one. This hypothesis

was checked using a standard probability plot test in

which the probability plot correlation coefficient

(PPCC) x was computed for the transformed data

under the assumed normal distribution. The PPCC

values are also reported in Table 3, and once again,

the coefficient values for each algorithm are essen-

tially equal. These facts lead to the conclusion that the

present algorithm performs equally well in estimating

the LN3 parameters of this data as Haktanir’s

algorithm does. Considering the simplicity and

transparency in implementation that the present

algorithm possesses by directly enforcing the defi-

nition of SD-PWM estimates without recourse to

intermediate tables, we surmise that the present

approach is better suited for general use without loss

of accuracy in the estimates produced.

4.3. Pearson type three distribution

To analyze the log–Pearson type three distri-

bution, Haktanir (1997) considers the natural logar-

ithm of the 902-Beskonak sample and applies the P3

algorithm to the log-transformed data set. The same

log-transformed data set is also considered for the

present algorithm. The log transformed 902-Beskonak

data has R , 1 (Eq. (14)), therefore the negatively

skewed form of the P3 distribution is considered. The

Table 3

Algorithm results for the LN3 distribution and 902-Beskonak sample

Parameter estimates PWM equations

(Eqs. (16a)–

(16d)

SD-PWM estimators

(Eq. (6b))

Sum of

squared errors

PPCC value

Present algorithm sy 0.462313 b0 888.615 888.618 e 0.02708 x 0.99525

my 6.74910 b1 565.971 565.974

c 260.9146 b2 426.922 426.924

Haktanir’s algorithm sy 0.458436 b0 889.549 888.618 e 0.02716 x 0.99518

my 6.76085 b1 566.662 565.253

c 269.4897 b2 427.399 426.006
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SD-PWM parameter estimates are given in Table

4. Once again, Haktanir (1997) provides six

significant figures for the parameter estimates.

Therefore, the PWM equations b0, b1, and b2 and

the SD-PWM estimators b00
0, b00

1, and b00
2 are

calculated based on the parameter estimates

given to six significant figures for both algorithms.

In this case, while Haktanir’s (1997) P3 algorithm

seems to give parameter estimates that yield

equivalent PWM equations and SD-PWM estima-

tors in most cases, some discrepancies exist,

particularly for b2.

As was done for the LN3 distribution, the sum of

squared errors and probability plot correlation coeffi-

cients were computed for both P3 algorithms, with the

results displayed in Table 4. In the case of the PPCC

value, the flood data was transformed according to

z ¼ bðc 2 ln xÞ ð36Þ

where it can be shown that z should obey a

gamma distribution with shape parameter a. Thus,

a probability plot test for the gamma distribution,

using an appropriate value of a, was performed for

each set of estimates. As was found for the LN3

distribution, no significant difference between the

two sets of estimates was indicated by either test,

leading to the conclusion that the two algorithms

performed equally well in determining the P3

parameter estimates for this data. From this, we

reach the same conclusion that the present

algorithm is expected to perform at least as

accurately as Haktanir’s algorithm while also

being easier to implement and use. As a result,

the present algorithm is a better candidate for

general use.

5. Conclusions

The method of self-determined probability

weighted moments holds much promise in enhancing

the ability to estimate distribution parameters, par-

ticularly for ‘extreme’ phenomena where data is often

limited. Haktanir’s work has demonstrated notable

improvements over the probability weighted moments

method and other methods. In order for the method to

become widely accepted, however, it should be

implemented in a clear and easily understood way,

rely as little as possible upon secondary sources of

information, and avoid special cases that limit its

applicability. We believe that the present algorithms

achieve these goals without sacrificing the benefits of

this method as proposed by Haktanir (1997).

In this paper, we have shown that certain features

of Haktanir’s algorithms can be eliminated without

loss of accuracy in the parameter estimates. First, the

absolute value function is not required for the SD-

PWM equation for the Gumbel scale parameter b.

Because Haktanir (1997) claims that the positive root

is the appropriate SD-PWM Gumbel scale parameter

estimate, from Fig. 1 it is evident that the absolute

value function is included for convenience rather than

mathematical necessity. However, this ‘convenience’

can create an inappropriate root for some samples.

Also, the numerical tables from Song and Ding (1988)

and Ding et al. (1989a) can be eliminated from

Haktanir’s algorithms for the LN3 and P3 distri-

butions. By directly requiring the SD-PWM functions

and estimators to be equivalent and utilizing very

precise numerical integration methods, we have

created a completely closed algorithm whose par-

ameter estimates are at least as good as those of

Haktanir (1997).

Table 4

Algorithm results for P3 distribution and log-transformed 902-Beskonak sample

Parameter esti-

mates

PWM equations

(Eqs. (29)–

(29c))

SD-PWM estimators

(Eq. (6b))

Sum of squared

errors

PPCC

Present Algorithm a 929.241 b0 6.66658 6.66660 e 0.02807 x 0.99535

b 60.7827 b1 3.47475 3.47482

c 21.9545 b2 2.36315 2.36322

Haktanir’s Algorithm a 854.259 b0 6.66662 6.66660 e 0.02786 x 0.99534

b 58.3786 b1 3.47450 3.47445

c 21.2997 b2 2.36312 2.36387
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Future research directions are aimed at expanding

the applicability of the SD-PWM method and testing

its performance in various applications of extreme

wind speed estimation. In a companion paper

(Savage et al., 2001), we demonstrated that the

self-determined probability weighted moments

method offers some advantages over other tech-

niques when applied to distributions of long return

period wind speeds, but questions regarding the

uniformity of the data prevented stronger con-

clusions from being drawn. Similar tests utilizing

more appropriate data are being pursued. In addition,

the robustness of the SD-PWM method versus the

PWM method needs to be examined via Monte Carlo

simulations of wind data generated from distri-

butions other than those explored in this work (e.g.

the Wakeby or Kappa distribution). A comparison of

biases and mean square errors in estimated extreme

winds will further expose the strengths and weak-

nesses of each approach. Also, efforts are being made

to implement a version of this method for the

generalized Pareto distribution, which is widely used

in extreme wind speed analysis. Finally, finding the

appropriate form of the SD-PWM equations from an

iterative solution viewpoint is an open question

needing investigation.
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