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Abstract

Magma mixing structures from three different lava flows (Salina, Vulcano and Lesbos) are studied in order to assess the

possible chaotic origin of magma mixing processes. Structures are analysed using a new technique based on image analysis

procedures that extract time series that are representative of the relative change in composition through the structures. These

time series are then used to reconstruct the attractors underlying the magma mixing process and to calculate the fractal

dimension of the attractors. Results show that attractors exist and possess fractional dimensions. This evidence suggests that the

mixing of magmas is a chaotic process governed by a low number of degrees of freedom. In addition, fractal dimension

analyses allows us to discriminate between different regimes of mixing in the three lava flows. In particular our analyses suggest

that the lava flow of Salina underwent more turbulent mixing than the lava flows of Lesbos and Vulcano.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The past three decades have seen an increasing

research on chaotic dynamics and many applications

have appeared in recent years (e.g. Turcotte, 1992;

Abarbanel, 1996). Chaotic dynamics have been

observed and analysed in a wide variety of experi-

mental and natural contexts (e.g. Cvitanovic, 1984;

Crilly et al., 1993), but the application of concepts and

methods of chaos theory to igneous processes is

scarce (e.g. Flinders and Clemens, 1996; Hoskin,

2000; Perugini and Poli, 2000).

In this paper, we use principles of chaos theory to

study the processes of mixing in magmas. In partic-

ular we show that structures produced by magma

mixing in some lava flows outcropping on the islands

of Lesbos (Greece), Salina and Vulcano (Italy) can be

regarded as produced by chaotic dynamics. The

approach that is used to reach this result is based on

the analysis of time series extracted from images of

magma mixing structures. In particular, time series are

used to reconstruct the strange attractors underlying

the process of magma mixing and to quantify the

attractors by calculating their fractal dimension.

2. General features of magma mixing structures

Magma mixing structures occurring in lava flows

are studied because they provide an instantaneous

picture of the ongoing magma mixing process thanks

to the rapid cooling of magmatic masses. Macroscopic
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observations (Fig. 1) show that in the three lava flows

magmas underwent mixing processes that produced

intimate dispersion of magmas and generated struc-

tures evidencing the pattern of the flow fields inside

the magmatic masses. Since the host magma is always

more acidic than the ‘‘dispersed’’ magma, we refer to

the former as ‘‘A’’ (acid) magma and to the ‘‘dis-

persed’’ magma as ‘‘B’’ (basic) magma (Table 1).

Both magmas have a glassy structure with percentages

of crystals less than 4%.

Fig. 1. Magma mixing structures in lavas from the island of Lesbos (A–D), Salina (E) and Vulcano (F). The darker flow structures consist of B

magmas dispersed through light coloured A magmas.
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Although a wide variety of structures can be

recognized in Fig. 1, they can be grouped into two

main categories: (i) filament-like regions of B mag-

mas inside A magmas (Active Regions; Fig. 1), and

(ii) Coherent Regions of B magmas that did not

disperse through A magmas showing a globular shape

and occurring between filament-like regions (Fig. 1).

It is interesting to note that such structures propagate

inside the magmatic masses over a large range of

scales showing self-similarity and suggesting a fractal

nature of the process (Fig. 1A–C).

The occurrence of coherent and filament-like

regions coupled with the occurrence of fractal struc-

tures during fluid mixing has been widely docu-

mented in the literature in both real and simulated

systems and it has been demonstrated that they are

produced by chaotic dynamics (e.g. Ottino et al.,

1992; Liu et al., 1994; Aref and El Naschie, 1995;

Bresler et al., 1997). The similarities between the

structures produced by chaotic fluid mixing reported

in literature (Fig. 2) and the mixing structures of Fig. 1

suggests a chaotic origin of magma mixing structures

in lava flows.

2.1. Extraction of time series from magma mixing

structures

Different methods and algorithms can be used to

determine quantitatively whether a dynamical system

exhibits chaotic behaviour (e.g. Strogatz, 1994; Abar-

banel, 1996; Addison, 1997). However, in our case

most of the techniques cannot be applied because they

require detailed knowledge of initial conditions of the

systems that cannot be known from the observations

Table 1

Rheological properties of the A and B magmas belonging to the three lava flows studied

Salina Vulcano Lesbos

Magma A Magma B Magma A Magma B Magma A Magma B

Rock Latite Andesite Trachyte Basalt Rhyolite Qz-Trachyte

l (log Pa s) 5.94 4.42 5.01 4.39 7.19 5.97

q (g/cm3) 2.62 2.85 2.70 2.82 2.36 2.46

Calculation of viscosity and density are based on the geochemical composition of glasses (Shaw, 1972) measured by an electron probe micro-

analyser.

Fig. 2. Example of chaotic fluid mixing experiment from Bresler et al. (1997) evidencing the same structures observed in natural magma mixing

structures (Fig. 1).
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Fig. 3. Method used to extract times series from the magma mixing structures; grey scale image (A) from which the time series have been

extracted; (B) schematic illustration of the toroidal approximation used to obtain a single time series from each magma mixing structure;

examples of time series extracted from three structures belonging to the lava flow of Vulcano (C), Salina (D) and Lesbos (E).
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of magma mixing structures. In fact, such structures

represent the final state of dynamical systems and it is

not possible to reconstruct their history from the

beginning. This limits the number of techniques that

can be utilised to determine whether magmatic inter-

action processes are chaotic or not.

To circumvent such difficulties, the most used and

powerful techniques to detect chaotic behaviour

within a system are based on the analysis of time

series associated with the variations in time and space

of a given variable of the system (e.g. Strogatz, 1994;

Abarbanel, 1996; Addison, 1997).

In order to extract time series from magma mixing

structures the following procedure was adopted. A

number of structures from the lava flows (five for

Salina, five for Vulcano and six for Lesbos) were

selected. Selection has been done considering well

exposed two-dimensional sections of fresh unaltered

samples. Colour pictures of the magma mixing struc-

tures were processed to produce grey scale images in

which the lowest colour (black) and the highest (white)

are represented by the colour codes 0 and 255, respec-

tively (Fig. 3A). It follows that all the shades of greys

constituting the images range between 0 and 255 and

can be considered representative of the relative changes

of concentrations of A and B magmas in the rocks.

In order to extract time series data from the

structures, a number of transverses passing through

the grey scale images were traced (Fig. 3A). Consid-

ering that the size of images is 25� 15 cm (corre-

sponding to 600� 400 pixels) and that the distance

between transverses has been taken to be equal to 2.5

cm (corresponding to 60 pixels), over each image

were traced 10 transverses that produced an equal

number of time series whose values range between 0

and 255 in grey intensity values.

Then, assuming spatial continuity of the structures,

each time series has been connected to the successive

to obtain a single time series for each image. This

assumption is supported by the fact that each image is

a portion of the entire outcrop where the same

structures propagate widely in all directions. Thus

the connection of time series can be thought as a

toroidal approximation of images (Fig. 3B) to have a

representative sampling of each image incorporating

information about its spatial variability.

Fig. 3C, D and E gives three representative time

series extracted from three magma mixing structures

of the lava flows of Lesbos, Salina and Vulcano,

respectively.

3. The fingerprint of chaos in magma mixing

structures

There are several ways how to detect chaotic

patterns in time series. In this study the correlation

dimension method (Grassberger and Procaccia,

1983a,b) is used because it has been extensively tested

and is computationally efficient and relatively fast

when implemented for attractor dimension estimation

(e.g. Addison, 1997). The method is based on the

reconstruction of the phase space of the dynamical

system under consideration. A phase space can be

defined as the space in which each direction corre-

sponds to a variable, also called a degree of freedom,

of the system (e.g. Strogatz, 1994; Abarbanel, 1996;

Addison, 1997). Once the phase space is defined, the

evolution of the system is described by a point in this

space whose coordinates give the different values of

the physical variables at the time of interest. With the

passing of time, the point in the phase space moves on

and gives a curve which describes the dynamical

evolution of the system. In the limit of long time one

expects the dynamics to settle to a dynamical sta-

tionary state, and the subspace on which the motion of

the point remains is called the attractor of the dynamics

(e.g. Strogatz, 1994; Abarbanel, 1996; Addison,

1997). For instance, if the motion is periodic, the

attractor will be a simple closed curve. It is noteworthy

that the number of degrees of freedom needed to

characterize a system increases as the system dynamics

become more and more random, that is as the behav-

iour of the system becomes progressively less predict-

able. In general, the motion of the point may describe

very complex curves that mix producing attractors that

propagate inside the phase space at many scales gen-

erating self-similar domains having a fractional dimen-

sion. In this case, the attractor is called ‘‘strange’’ and

the process is chaotic. Besides, the fractal dimension of

the attractor corresponds to the number of degrees of

freedom needed to characterize completely the system

dynamics (e.g. Strogatz, 1994; Abarbanel, 1996; Addi-

son, 1997).

Starting from time series it is possible to recon-

struct an approximate phase space of a given system
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using the method developed by Packard et al. (1980;

see Appendix A). This methods allows the construc-

tion of a phase space of the system possessing the

same topological properties of the true phase space.

This does not mean that the attractor obtained in the

construction is identical to that in the original phase

space, but that the new representation of the attractor

retains the same topological properties. The mathe-

matical justification of this scheme has been proven

by Takens (1981).

Using the time series extracted from the magma

mixing structures occurring in the studied lava flows

we reconstructed the attractors of the magma mixing

system. For comparison, we also reconstructed the

Lorenz attractor (Lorenz, 1963) using a time series

obtained iterating the Lorenz system and monitoring

the displacement of the x variable.

Fig. 4 reports the reconstructed attractors for the

Lorenz time series and the three series of Fig. 3 in

three dimensions. The coordinates of the three dimen-

sional space are defined by x = x(t), y = x(t+ s) and

z = x(t + 2s) where s is the delay (e.g. Abarbanel,

1996; Addison, 1997; see Appendix B). The graph

of the Lorenz series shows the classical shape of the

Lorenz attractor evidencing the good quality of the

techniques in capturing the essential dynamics of the

system (Fig. 4A). The graph of time series of magma

mixing structures show attractors having structures

Fig. 4. Three-dimensional graphs of the reconstructed strange attractors for the chaotic time series (A) and the three time series of Lesbos (B),

Salina (C) and Vulcano (D) shown in Fig. 3.
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resembling the wings of the Lorenz attractor on which

a great number of orbits recur. However, the attractors

of magma mixing structures display some differences

among them that are worth discussing. In particular,

the structure of the attractor of the Lesbos series

exhibits, at first sight, a pattern in which orbits are

more dense in the lower corner of the graph (Fig. 4B)

with respect to the attractors of Vulcano and Salina

where the highest density of orbits is progressively

displaced to the centre of the graph (Fig. 4C and D).

The same features are observed in all the attractors

reconstructed for all the analysed magma mixing

structures. These observations show that different

dynamics may have governed the evolution of the

three magma mixing systems in Lesbos, Vulcano and

Salina lava flows.

4. Quantification of chaos in magma mixing

structures

As introduced above, the existence of an attractor

does not imply that the system is chaotic. In fact, in

order to define a system as chaotic the attractor must

be ‘‘strange’’ and this means that it must have a fractal

dimension.

We can determine if an attractor is strange or not,

determining its so-called ‘‘correlation dimension’’ D

as a function of the embedding dimension d (e.g.

Strogatz, 1994; Abarbanel, 1996; Addison, 1997; see

Appendix B). If D increases with increasing d, this

implies that the time series is random, the attractor

cannot be reconstructed and more and more degrees of

freedom are taken into account by increasing the

embedding dimension d. On the contrary, if D satu-

rates to some fractional value Dmax as d increases, the

attractor can be reconstructed in the phase space of the

embedding dimension d, and if its dimension (Dmax)

is not an integer, it is ‘‘strange’’ and hence the system

is chaotic.

This method has been applied to all time series

extracted from the magma mixing structures in order

to calculate the dimension (Dmax) of the reconstructed

attractors. For comparison we also calculate the

dimension of the Lorenz attractor using the same

method.

Fig. 5 shows that for the Lorenz time series D

values saturate as d increases according to its chaotic

Fig. 5. Variation of fractal dimension of the attractor (D) vs. the embedding dimension (d) for the chaotic time series (dashed line) and for the

three time series extracted from the mixing structures belonging to the lava flow of Lesbos, Vulcano and Salina of Fig. 3.
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nature. In particular the fractal dimension Dmax calcu-

lated for the attractor approaches a value of 2.06 that

is the estimated fractal dimension for the Lorenz

attractor (e.g. Addison, 1997).

The graph of Fig. 5 also shows the behaviour of D

as d increases for the three representative time series

extracted from the magma mixing structures shown in

Fig. 3. D approaches constant values as in the case of

the Lorenz time series showing that the series of

natural structures exhibit typical chaotic behaviour

and have few degrees of freedom governing their

evolution. It is noteworthy that the saturation of D

values has been observed for all sixteen natural time

series; Dmax values are reported in Table 2. The

remarkable point here is that all the attractors have a

fractional dimension indicating that these dynamical

systems can be regarded as chaotic.

Moreover, although Dmax varies within each lava

flow, considering the mean values of Dmax (Table 2) it

is suggested that the three lava flows underwent

different mixing dynamics. Remembering that Dmax

corresponds to the number of degrees of freedom, the

three dynamical systems need different numbers of

degrees of freedom to be completely characterized. In

particular the number of degrees of freedom increases

from Lesbos to Vulcano and Salina. Considering that

the number of degrees of freedom increases as the

system become more and more random, this implies

that the magma mixing process goes towards dynam-

ical states progressively more ‘‘random’’ passing from

Lesbos to Vulcano and Salina.

These results may be related to the degree of

turbulence of the magma mixing process. In fact,

Gollub and Swinney (1975) show that a strict relation-

ship between the fractal dimension of the attractor and

the Reynolds number (Re) in fluid dynamic systems

exists. In particular, it is demonstrated that the dimen-

sion of the attractor increases with the increasing

turbulence within the system (Gollub and Swinney,

1975). Turbulence implies a very large number of

degrees of freedom whose coupling and superimpo-

sition generate progressively more random dynamics.

Thus, the increase of Dmax in natural structures may

indicate increasing degrees of turbulence (‘‘random-

ness’’) in the different lava flows. In particular, the

lava flows of Salina and Vulcano underwent more

turbulent mixing than the lava flow of Lesbos.

However, it is worth noting that turbulence does

not necessarily imply good mixing as common sense

may indicate. In fact, Raynal and Gence (1995) have

shown, using numerical calculations based on mixing

time and energy dissipation in fluid mixing systems

governed by laminar and turbulent chaotic dynamical

regimes, that laminar mixing is generally more effi-

cient than turbulent mixing. From this point of view,

the degree of magmatic interaction suffered by the

magmas constituting the lava flows of Salina and

Vulcano has to be lower than that in the lava flow

of Lesbos. Recent results reported by Perugini et al.

(submitted), where quantitative analyses of the degree

of mixing have been reported on the same mixing

structures, evidence that the mixing process has been

much more efficient in the lava flow of Lesbos in

respect to Salina and Vulcano, corroborating the

results reported in this study.

5. Conclusions

The mixing of magmas has been studied in three

lava flows using a method that allows us to extract

time series form magma mixing structures. Time

series have been utilised to reconstruct the strange

attractors underlying the process of mixing of magmas

and to quantify attractor fractal dimension. In all

analysed structures, the dimension of the attractors

has a non-integer value. This is a remarkable result

since it allows us to state that the mixing of magmas is

a chaotic process governed by a low number of

degrees of freedom and is not a random process as

one would expect it to be. This is a crucial point since

Table 2

Values of the fractal dimension of attractors (Dmax) calculated for

the time series extracted from the structures of Lesbos, Salina and

Vulcano

Attractors dimension (Dmax)

Provenance Lesbos Salina Vulcano

Struct. n. 1 2.42 3.93 3.56

Struct. n. 2 2.44 4.36 4.35

Struct. n. 3 3.41 5.04 4.56

Struct. n. 4 4.27 5.28 4.77

Struct. n. 5 4.88 5.63 4.93

Struct. n. 6 5.42

Mean 3.81 4.85 4.43

Errors in the estimation of Dmax are better than 0.5%.
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it gives a theoretical framework for the simulation of

the magma mixing processes that, from this point of

view, has to be carried out using models based on

chaotic dynamical systems in order to take into

account the long term unpredictability of natural

systems.

In addition, it is shown that different chaotic

systems having different numbers of degrees of

freedom may have been responsible for the genesis

of magma mixing structures occurring within each

studied lava flow. In particular, the Salina and

Vulcano lava flows exhibit higher numbers of

degrees of freedom with respect to Lesbos. Since

the number of degrees of freedom increases with the

increasing of the degree of turbulence inside the

systems, it is suggested that the lava flow of Salina

underwent more turbulent mixing than the lava flows

of Lesbos and Vulcano. However, turbulence is not a

synonym of good mixing because the higher the

turbulence, the lower magmas are mixed. It follows

that the Lesbo lava flow, being characterized by a

less turbulent regime, contains magma mixing struc-

tures exhibiting the highest degree of mixing with

respect to those occurring in the lava flows of Salina

and Vulcano.
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Appendix A. Phase space reconstruction

From the variation of the variable X(t) (the time

series), it is possible to reconstruct an approximate

phase space by the following procedure (Packard et

al., 1980; Froehling et al., 1981; Takens, 1981) where

a set d of new variables [Xj(t), j = 1� d] are defined by

Xj ¼ X ½t þ ðj� 1Þs� j ¼ 1� d

The phase space, of dimension d, where d is called

the ‘‘embedding dimension’’, is thus constructed with

these different variables: X1(t) =X(t), X2(t) =X(t+ s),
X3(t) = X(t + 2s), . . ., Xd(t) = X[t+(d� 1)s]. In this

scheme, the time series X(t) is considered to be

independent of the same time series at a later time

X(t+ s) where s is an arbitrary constant called the

delay. Different methods can be employed to estimate

Fig. 6. Variation of log[C(r)] vs. log(r) for different values of the embedding dimension (d) for the time series extracted from one sample of the

lava flow of Lesbo (Struct. n. 1; Table 2). In the graph is also reported the value of Dmax.
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s and among them the most used are the autocorrela-

tion and the mutual information function (e.g. Abar-

banel, 1996; Addison, 1997). In order to estimate the

value of s used for the reconstruction of attractors of

the magma mixing structures, in this paper both

methods have been employed. Results show that

autocorrelation and the mutual information function

give identical estimates of s for each time series

extracted from the analysed magma mixing structures.

Appendix B. Computation of the fractal dimension

of attractors

Once the attractor has been reconstructed, we can

quantify it determining the so-called ‘‘correlation

dimension’’ D as function of the embedding dimen-

sion d. D is the ‘‘correlation’’ fractal dimension of

the attractor (e.g. Strogatz, 1994; Abarbanel, 1996;

Addison, 1997), that is the set defined by all the

points of coordinates {X1(t) = X(t), X2(t) = X(t + s),
X3(t) =X(t + 2s), . . ., Xd(t) =X[t+(d� 1)s]}.

To compute D, the following method has been used

(e.g. Strogatz, 1994; Abarbanel, 1996; Addison,

1997), which consists of determining the following

correlation function C(r):

CðrÞ ¼ 1

N2

� �
fnumber of pairs ða; bÞ of points in

phase space whose distance Axa � xbA < rg

The correlation dimension D as a function of the

embedding space dimension d is then defined by the

following power law:

CðrÞfrD

Using logarithms the above expression can be written

as:

log½CðrÞ� ¼ DlogðrÞ þ q

D is the slope of the linear regression of the graph

log[C(r)] vs. log(r), where q is the intercept. As an

example the graph of Fig. 6 shows the variation of

log[C(r)] as a function of log(r) for a time series of the

Vulcano lava flow (Struct. n. 1; Table 2) for different

values of d. As d increases, the slope of the straight

part of the trend (i.e. D) approaches a constant value

(Dmax) that, in the case reported in the figure, is equal

to 3.56.
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