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Abstract

The paper faces the problem of the resistance due to vegetation in a river characterized by fully submerged vegetation formed

by concentrated colonies of bushes. The flow presents strong spatial variations between plants that make unreliable the

traditional approach based on time averaging of turbulent fluctuations. A more useful model, based on time and spatial

averaging is proposed. In the paper the necessary closure hypotheses are also discussed. The vertical distribution of mean

velocity and turbulence stress have been measured with laser Doppler anemometry techniques, by means of spatial and time-

averaging rules. Based on the double-averaged velocity and Reynolds stress profiles, an analytical two-layer model is proposed,

in order to describe uniform flow conditions in the whole flow depth. Theoretical results are compared with the results of a

series of experimental tests carried out in a laboratory flume.
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1. Introduction

The vegetation along the bed and banks of rivers

plays an important role on the hydrodynamic

behavior, on the ecological equilibrium and on the

characteristics of the river. Hydraulic aspects of the

vegetation, hereafter investigated, concern some

general features of the flow, and in particular

turbulence, mixing and resistance to the flow.

As far as flow resistance is concerned, the vegetation

can be roughly classified into two different categories:

† plants having height hv markedly lower than the flow

depth h, like in grassed channels. In this case, the

equivalent resistance due to vegetation can be

described as a wall shear stress and the related

roughness coefficient can be expressed as a function

of vegetation height and of some biomechanical

vegetation characteristics (Kouwen et al., 1969;

Kouwen, 1988);

† plants, the height of which is of same order of

magnitude of the flow depth or higher, like bushes or

trees. In this case, the equivalent resistance can be

evaluated as the combined effect of the hydrodyn-

amic drag of the single plants. (Petryk and

Bosmanjian, 1975).

Following this approach (Petryk and Bosmanjian,

1975), in case of partially submerged plants, the

pressure unbalance due to vegetation pP (drag force

per bed surface) can be expressed as:

pP ¼ nDpi ¼ nCDApir
U2

2
ð1Þ
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where n is the number of plants per bed surface, Dpi is

the force exerted by the flow on the single ith plant;

Api is the area of the ith plant projected in streamwise

direction, r is the water density and CD is the drag

coefficient of a single plant, U is the mean flow

velocity. In this case the momentum balance in

streamwise direction, applied to a control volume of

length L, allows one to estimate the global flow

resistance coefficient, here expressed in terms of

Strickler coefficient:

Keq ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
4=3
h

CD

P
Api

2gAcL
þ

1

K2
b R

4=3
h

 !vuut
ð2Þ

where Rh is the hydraulic radius, Ac, the cross-section

area of the flow, Kb, the Strickler coefficient due to

bed roughness, g, the gravity acceleration, and Keq is

the equivalent Strickler coefficient. The summation

index
P

is extended to the N number of plants that are

present in the reach having length L.

Eq. (2) has been validated in different situations

(Ming and Shen, 1973; Petryk and Bosmanjian,

1975).

In Eq. (2), however, the drag coefficient CD is

probably the most uncertain parameter: its value

depends on many factors and on the reference velocity

U used in its definition. Differently from the case of an

isolated cylinder, here U is not an undisturbed

velocity but is the mean velocity, the value of which

is determined by the plant itself. Other important

parameters, influencing the value of the drag coeffi-

cient, are the relative position of the plants and their

density.

The influence of the Reynolds number Rep ¼

Udp=n; where dp is the diameter of the cylinders used

to simulate the plants and n the cinematic viscosity, on

the drag coefficient has also been widely analyzed

(Nepf, 1999). One of the most important conclusions

is that the presence of upstream plants affects the

wakes dynamics of downstream plants, because of

the sheltering effect that diminishes the drag of the

downstream elements. The strength of the sheltering

depends on the plants mutual position: staggered or

randomly distributed plants configurations experience

higher drag rather than the aligned ones (Ming and

Shen, 1973). Vegetation density is however one of the

most important parameters for drag control: an

increase of the vegetation density leads to an increase

of the flow resistance and to a reduction of the drag

coefficient (Ming and Shen, 1973; Petryk and

Bosmanjian, 1975; Armanini and Righetti, 1998;

Nepf, 1999).

The ratio between the vegetation drag and the bed

shear resistance has not been directly measured yet.

The numerical simulations of Lopez and Garcia

(1998) show that, increasing the plants density, the

intensity of the uncovered bed shear stress is reduced.

This corroborates the usual approximation where, if

the density of the plants is sufficiently high, the global

resistance of a water course is determined only by the

plants resistance (Temple, 1987).

Also the flexibility of the plants exerts a significant

influence on the hydraulic resistance, increasing the

complexity of the problem. The bending of the plants

under the effects of the flow let the plants assume a

more streamlined configuration, this can lead to a

significant reduction of the drag coefficient (Tsuji-

moto et al., 1995; Kouwen and Fathi-Moghadam,

2000; Oplatka, 1998).

The above described method cannot be applied

when the vegetation is fully submerged by the flow. In

this case, a two-layer flow takes place: the lower one

characterized by the flow through the vegetation and

the upper one by the flow above the vegetation. In

general, the portion of the flow passing through the

vegetation is not negligible, if compared with that

flowing above, even if the mean velocity in the

vegetated region is much lower than that in the

surface-flow layer. The turbulent structure through

and above the vegetation has not been fully under-

stood yet; the extensive studies of unconfined canopy

flow in meteorology and agricultural engineering can

be helpful to understand it (Finnigan, 2000), even

though differences exist in the turbulence structure of

the upper layer between canopies and confined free

surface flows (Nepf and Vivoni, 1999).

Several types of two-layer turbulence models exist,

trying to describe the vertical flow velocity profile and

the hydraulic roughness of submerged vegetation

(Tsujimoto and Kitamura, 1990; Tsujimoto et al.,

1992; El-Hakim and Salama, 1992; Klopstra et al.,

1997; Armanini and Righetti, 1998; Meijer and Van

Velzen, 1999). Most of them are based on simple

turbulence closure schemes. However, these schemes

have often been validated based just on local

M. Righetti, A. Armanini / Journal of Hydrology 269 (2002) 55–6456



measurements of mean velocities and turbulence

mean characteristics. This implies that these local

measurements have been implicitly considered as

representative of the entire flow field.

Fully submerged vegetation acts on the flow

field as a low relative submergence roughness,

characterized by spatial variability of the length

scales of the same order of magnitude of the

upper layer depth. In this case, a proper approach

derives from a double averaging procedure on the

classical Navier – Stokes equations, where the

classical time-averaged Reynolds equations should

be supplemented by spatial area averaging pro-

cedure in the plane parallel to the average bed. A

similar procedure has been firstly applied to

canopies problems (Wilson and Shaw, 1977; see

Finnigan, 2000 for references) and also to rough

bed, open-channel flows with small relative

submergence (Nikora et al., 2001).

The present paper proposes an analytical two-

layer model, able to describe the characteristics of

open channel flows with sparsely distributed

bushes on the bed. The present method is based

on a generalized mixing length closure that takes

into account the spatial heterogeneities of the flow

field, due to presence of plants. The model was

validated on the basis of laboratory experiments;

data were treated following the above-mentioned

double-averaging technique.

2. Mathematical framework

The concepts of spatial and temporal averaging,

used to build up the mathematical frame to set the

analytical model, are hereafter briefly summarized.

Fully submerged vegetation is considered as a 2D,

steady flow in the x–z plane (see Fig. 1). Applying the

double averaging technique (in time and in the space)

to the Navier– Stokes equation, and neglecting

viscous terms, two sets of differential equations are

obtained:

† upper layer:

gib 2
›ku0w0l
›z

2
›k~u ~wl
›z

¼ 0 ð3Þ

g 2
1

r

›k�pl
›z

þ
›kw02l
›z

þ
›k ~w2l
›z

¼ 0 ð4Þ

† vegetated layer:

gib 2
›~p

›x

� 	
2

1

A

›Aku0w0l
›z

2
1

A

›Ak~u ~wl
›z

¼ 0 ð5Þ

g þ
1

r

›k�pl
›z

þ
1

r

›~p

›z

� 	
þ

1

A

›Akw02l
›z

þ
1

A

�
›Ak ~w2l
›z

¼ 0 ð6Þ

where the brackets ðkXlÞ and the linear overbar

ð �XÞ refer respectively to the spatial averaging

along ðx; yÞ plane and to time-averaging, ib the

bed slope, A is the ratio between the area

occupied by fluid and the total area of the

averaging region in the xy plane at level z: it’s

values ranges between 0 and 1 in the vegetated

region. Wavy overbars denote the difference

between time-averaged and double-averaged

values ð ~X ¼ �X 2 k �XlÞ and represent the disper-

sive stresses due to spatial averaging of the

Navier Stokes equations.

Eqs. (3) and (5) represent the momentum balances

in the longitudinal direction, while Eqs. (4) and (6) the

balances in the vertical one. The integration of Eqs.

(3) and (5) from the free surface flow to the generic

level z, leads to the following relationships for the

total stress distribution:

† upper layer:

th i

r
¼ gib h 2 z½ 
 ¼ 2ku0w0l2 k~u ~wl ð7Þ

Fig. 1. Sketch of coordinate axes and two-layer structure.
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† vegetated layer:

ktl
r

¼ gib h 2 hv þ
ðhv

z
AðzÞdz

� �

¼ 2Aku0w0l2 Ak~u ~wlþ
ðhv

z

AðzÞ

r

›~p

›x

� 	
 �
dz

ð8Þ

According to Nikora et al. (2001) the last term in Eq.

(7), which is usually negligible in uniform flow

condition, becomes important in the region near to the

bed surface in case of rough wall with low

submergence. In the present situation, bushes act as

roughness elements, so we would expect a certain

influence of this term near to vegetation crests.

In Eq. (8) the gravity forces are balanced by the

two turbulence terms (first and second terms right

hand side of Eq. (8)) incremented by an additional tem

(third term on the right hand) which is due to the

normal stresses acting on the plants, the same terms

responsible of the drag resistance.

3. The simplified analytical turbulence model

Starting from Eqs. (7) and (8) a generalized two-

layer mixing length model has been established: the

generalized mixing length, kll; can be considered as a

horizontally averaged length scale, characterizing the

turbulent momentum exchange between adjacent

horizontal fluid layers; kll is in general a function of

the distance z from the bed surface.

The hypothesis on the vertical distributions of

shear stresses ktl and on the vertical distribution of the

mixing length kll in the two layers are the crucial point

of this model. These hypotheses are assumed as

follows (Fig. 1):

† in the upper layer: a linear profile for shear stresses

is assumed, as a consequence of the momentum

balance in uniform flow conditions:

ktl ¼ tt½1 2 ðz 2 hvÞ=hu
 ø 2rku0w0lðzÞ ð9Þ

where tt is the shear stress at layers interface, i.e.

from Eq. (7): tt ¼ rghuib; and for the mixing

length the following profile:

kll ¼ ½l0 þ kðz 2 hvÞ

ffiffiffiffiffiffiffi
ktl=tt

q

¼ ½l0 þ kðz 2 hvÞ


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 ðz 2 hvÞ=hu

q
ð10Þ

where l0 is the value of the mixing length at the

interface level and k ¼ 0:41 is the von Kàrmàn

constant;

† in the vegetated layer: the simpler possible

distribution, a linear profile for shear stress is

also assumed:

ktl ¼ ttðz=hvÞ ð11Þ

and a constant value for the mixing length is

assumed:

kll ¼ constant ¼ l0 ð12Þ

Applying the boundary conditions to these equations,

the following mean velocity profiles are obtained:

† upper layer:

k�ul
upt

¼
1

k
ln 1 þ

kðz 2 hvÞ

l0


 �
þ

2

3

hv

l0
ð13Þ

† vegetated layer:

k�ul
upt

¼
2

3

hv

l0

z

hv

� �3=2

ð14Þ

where upt ¼
ffiffiffiffiffiffi
tt=r

p
is the shear velocity at the top of

the vegetated layer. The integration of Eqs. (13)

and (14) through the flow depth allows one to

obtain the ratio ðaÞ between the averaged velocity

in the vegetated layer, Uv, and the averaged flow

velocity, U:

a ¼
Uv

U
¼

4

15

"
2

3
2

l0

khv

þ
hv

h

 
l0
khv

2
2

5

!

þ
l0
khv

 
1 þ

hv

h

 
l0

khv

2 1

!!

£ ln

 
1 þ

kh

l0

2
khv

l0

!#21

, 1 ð15Þ

Some consideration about the assumptions on the
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mixing length formulation and the shear stress

distribution in the vegetated layer are worth of note.

In particular the problem of closure of the proposed

turbulent model now concerns the evaluation of l0; the

mixing length in the vegetated layer.

The mixing length represents an integral scale of

the turbulent diffusion–dispersion process, deriving

from the temporal and spatial integration of Navier–

Stokes equations; it has to be validated on the basis of

the experimental data, as it is usually done for this

kind of semi-empirical algebraic turbulence models.

In particular, as far as concerns the vegetated layer, l0
can be reasonably related to the two integral length-

scales that are the responsible of the turbulence

production:

† the characteristics dimension of the plants, that is

the plants height hv, and

† the characteristic distance between plants, that can

be represented by means of the dimensionless

parameter vegetation density Vd ¼ h2
v=ðaxayÞ;

where ax;ay are the longitudinal and transversal

distances between adjacent plants respectively.

Therefore the following formulation is proposed

for l0 :

l0

hv

¼ C1ð1 2 e2C2Þ ð16Þ

Concerning the values assumed by the parameter C1;
it is expected that they should increase with the

vegetation density Vd, taking reason to the expected

reduction of the ratio a ¼ Uv=U with vegetation

density (cf. Eq. (15)).

This formulation for the mixing length l0 presents

some analogies to the exponential mixing-length

formulae proposed for rough boundary-layer flows

(Cecebi and Chang, 1978; see also Hinze, 1975; Nezu

and Nakagawa, 1993), except for the dependence of l0
also on the vegetation density through C1:

The relationship between the parameters C1 and C2

and the vegetation density have to be experimentally

evaluated.

The assumptions on the shear stress profile in the

vegetated layer affects the velocity profile distribution

all along the flow depth. The shear stress distribution

proposed in Eq. (11) is very simple and it is consistent

with the hypothesis of constant value for the mixing

length l in the vegetated layer (Eq. 12). From Eq. (11)

it follows that the bed shear stress vanishes; this

hypothesis is already used by other authors (Tsuji-

moto and Kitamura, 1990; El-Hakim and Salama,

1992) and restricts the application of the model to

sufficiently dense vegetation, for which the bed shear

stress is negligible compared to plants hydrodynamic

resistance.

The proposed two-layer model allows one to

extend the evaluation of hydrodynamic resistance to

situations in which the plants are completely sub-

merged, as proposed in Eqs. (1) and (2). In this case,

the vegetation drag can be evaluated as a function of

the averaged vegetated layer velocity Uv instead of

the overall averaged velocity U. The result of the

modification of the Eqs. (1) and (2) is the following:

pP ¼ nCDApi
r

U2
v

2
¼ anCDApi

r
U2

2
ð17Þ

and

Keq ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
4=3
h a2

CD

P
Api

2gAcL
þ

1

K2
b R

4=3
h

 !vuut
ð18Þ

Moreover, neglecting the bed shear stress, Eq. (18)

can be further simplified:

Keq ¼
1

r
2=3
h a

ffiffiffiffiffiffiffiffiffiffiffiffi
2gAcL

CD

P
Api

s
ð19Þ

A series of laboratory experiments were carried out, in

order to test the assumptions about turbulent shear

stress and mixing length hypothesis on which the

proposed model is based.

4. Experimental set-up

The experiments were carried out in a rectangular

0.31 m wide and 12 m long tilting flume. All the

experiments were performed in uniform flow con-

ditions, in the test area of the flume.

The bottom of the flume was covered by a plastic

flat plate, over which sparsely distributed bushes were

reproduced. The bushes were simulated by means of

plastic wools with nearly spherical shape with 4 cm

diameter. The simulated vegetation was set in two
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different staggered configurations (sparse and dense),

where the relative distances, ax; ay were varied (Fig.

2). For each configuration, various runs were

performed, where the bed slope varied from 1% to

2% and, as a consequence, also the relative submerg-

ence of the bushes, h=hv: Mean velocities and

turbulence characteristics were measured by means

of a two-component laser Doppler anemometer for the

eight runs summarized in Table 1. A pattern of 11

vertical measurements was performed for each run

(Fig. 2). From 10 to 30 point measurements were

made at each vertical.

5. Results

In Fig. 3(a) and (b) the data relevant to shear stress

and longitudinal velocity profiles respectively for the

run 1 (h=hv ¼ 3:8; sparse configuration) are reported.

From the figures, the strong variability of the mean

flow and turbulence characteristics with the position

are evident. This circumstance reinforces the utility of

the double averaging procedure.

The shear velocity at the top of vegetated layer

used for the dimensionless data has been calculated by

linear interpolation of the double-averaged shear

stress profile, 2ku0w0lðzÞ; measured in the upper

layer by LDA; these values differ for less then 8%

to the corresponding values obtained by momentum

balance: upt
¼

ffiffiffiffiffiffi
tt=r

p
¼

ffiffiffiffiffiffiffi
ghuib

p
:

The comparison between the double averaged

shear stress profiles in Fig. 4 with the corresponding

dispersive stresses for sparse configuration in Fig. 5,

shows that the latter are almost negligible with respect

to the former in the outer part of the upper layer, as

assumed in Eq. (9). The dispersive stresses have their

maximum values near to the simulated vegetation

crests: these stresses become more important at lower

submergences; however, they never exceed 25% of

the corresponding double-averaged shear stress.

Moreover, the double averaged shear stress profiles

in the vegetated layer seem to be linear, as assumed in

Eq. (11).

In Figs. 6 and 7 the double-averaged velocity

profiles are plotted semilogaritmically for sparse and

dense configurations respectively. From the figures, it

is clear that the velocity profile follows the logarith-

mic law for the most part of the upper layer. The most

evident deviations from this distribution occur near

the top of the simulated vegetation, where the actual

velocity is higher than the log distribution and

deviations increase, diminishing the relative

submergence.

In Fig.8 the values of the relative interface mixing

length l0=hv are reported. The points represent the

mixing length values calculated on the basis of

Fig. 2. Top view of the bed, with position of measurements profiles.

Table 1

Hydraulic conditions for experiments where LDA measurements where performed

Run Q (m3/s £ 103) H (m) h/hv iF % Re Fr Vegetation configuration, ax £ ay, vegetation density: Vd ¼ h2
v=ðaxayÞ

1 47.8 0.153 3.8 2 77,600 0.82 Sparse configuration, 15 cm £ 10 cm, Vd ¼ 0.107

2 18.5 0.125 3.1 1 33,000 0.43

3 16 0.096 2.4 2 38,500 0.67

4 3.9 0.066 1.65 1 8830 0.24

5 19.6 12.5 3.1 1 63,250 0.46 Dense configuration, 10 cm £ 10 cm, Vd ¼ 0.16

6 11.2 10.2 2.5 1 36,130 0.35

7 5.7 8.04 2 1 18,400 0.26

8 2.3 0.062 1.5 1 7420 0.15
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Eq. (13), in which the experimental data of the

velocity profiles are best fitted for each run. The value

of the relative mixing length decreases with the

relative submergence and increases with the simulated

vegetation density. In the same figure, the lines

represent the best fit of the calculated mixing length

values, according to Eq. (16). The parameterC1

increases with the vegetation density (0.135 and

0.16 for sparse and dense configuration, respectively),

while C2 outcomes to be independent from the

simulated vegetation density and equal to 0.4.

The discharge can be calculated by integrating Eqs.

(13) and (14) by means of Eq. (16). The calculated

values are compared to the directly measured values

in Fig. 9.

This comparison is particularly significant,

because it was made on the basis of the measurements

of more than forty runs, totally independent from the

eight runs reported in Table 1: bed slopes, discharges

and consequently flow depths were different from the

values of Table 1. Fig. 9 shows a good agreement

between the discharge predictions of the proposed

mixing length model and the experiments, especially

for the higher relative submergence values and the

higher simulated vegetation density, and so confirm

the validity of the procedure.

6. Conclusions

Open channel flows with fully submerged veg-

etation were analyzed. The double-averaged (in time

Fig. 3. Longitudinal velocity (a) and turbulent shear stress (b) profiles measured in points A, B, C, F, G, H for run 1.
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and in space) momentum equations were used as a

mathematical scheme. In order to solve the closure

problem of the double-averaged equations, a gener-

alized two-layer, mixing length model is proposed and

validated with velocity and turbulence flume measure-

ments. The assumptions for its formulation were

confirmed by the experiments. In particular, the

turbulent shear stress profiles in the vegetated layer

seem to be quasi-linear. Starting from these hypoth-

eses, a new formula for the evaluation of vegetation

resistance and uniform flow conditions (Eqs. 15, 16

and 17) was proposed, which is confirmed by

experimental data.

Fig. 4. Double averaged shear stress profiles for runs (sparse

configuration).

Fig. 5. Dispersive stress profiles for sparse configuration.

Fig. 6. Double averaged velocity profile for sparse configuration.

Fig. 7. Double averaged velocity profile for dense configuration.
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Some pending points still remain:

† the general formulation could be affected by the

mechanical characteristics of the bush simulation

material, which is not elastic and little permeable;

† the analysis has been validated on the basis of only

two simulated vegetation densities. The extension

of the experiments to different vegetation densities

and to plants with different characteristics is to be

hoped for. This circumstance could allow to have a

better insight on the scaling of l0 values with

vegetation density; for example, lower vegetation

densities might also require a modification of the

model, in order to allow a non-negligible shear

stress on the bed.
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Appendix A

Notation

The following symbols are used in this paper

A ratio between the area occupied by fluid and

the total area of the averaging region in the

ðx; yÞ plane at level z;

Ac cross-section area of the flow;

Api area of the ith plant projected in streamwise

direction;

ax distance between adjacent plants in longi-

tudinal direction;

ay distance between adjacent plants in transver-

sal direction;

C1 parameter;

C2 parameter;

CD drag coefficient of a single plant;

dp plant diameter;

Dpi force exerted by the flow on the single ith

plant;

G gravity acceleration;
�G temporal averaging of variable G;

kGl spatial averaging of variable G along ðx; yÞ

plane at level z;

Fig. 8. Mixing length l0 estimation by velocity profiles (dots) and by

interpolation with Eq. (16).

Fig. 9. Comparison between calculated and measured discharge.
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~G dispersive contribution of variable G; ~G ¼
�G 2 k �Gl;

H flow depth;

hu upper layer height;

hv plants height;

ib bed slope;

k von Kàrmàn constant ¼ 0.41;

Kb Strickler coefficient due to bed roughness;

Keq equivalent Strickler coefficient;

l mixing length;

kll generalized mixing length;

l0 value of the mixing length at the interface

level and in vegetated layer;

L length of the considered reach;

n number of plants per bed surface;

N number of plants that are present in the reach

having length L;

p pressure;

pP pressure unbalance due to vegetation;

Rep plants Reynolds number, Rep ¼ Ud=n;
Rh hydraulic radius;

u; v;w instantaneous components of fluid velocity

vector in x; y; z coordinate directions;

u’; v; 0w’ instantaneous fluctuations of the three

velocity components;

upt shear velocity at the top of the vegetated

layer, upt ¼
ffiffiffiffiffiffi
tt=r

p
;

U mean flow velocity;

Uv averaged velocity in the vegetated layer;

Vd vegetation density, Vd ¼ h2
v=ðaxayÞ;

x; y; z orthogonal coordinate system, attached to

the bed, with x longitudinal direction, y

transversal direction, z vertical direction;P
summation index;

a ratio between averaged velocity in the

vegetated layer and mean flow velocity, a ¼

Uv=U;

r water density;

tt shear stress at layers interface;

t shear stress;
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