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Abstract

A new simplified approach is developed for the channel flow dynamics under woody debris transport. A continuous carpet of

debris is considered, covering a uniform stationary current. Due to the floating debris the shear stresses in the fluid domain are

affected. As a result, the velocity profile is different from the free surface flow. The simple model proposed here is able to

capture the essential features of flow response to woody debris transport. Velocity and stress profiles are analytically derived for

laminar flow and compared with the zero debris condition. More realistic turbulent currents are simulated with the Reynolds

equations where turbulent stresses are modeled by the simple mixing length concept. Validation is carried out by comparison

with experimental velocity profiles and with direct numerical simulation of the Navier Stokes Equations. Synthetic diagrams are

proposed for the calculation of the flow velocity and the bed shear stresses in terms of the relevant non-dimensional parameters.

q 2002 Published by Elsevier Science B.V.
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1. Introduction

The study of floating debris, or drift, is a far

reaching matter, with several implications in river

basin evolution and management. Floating debris

transport is mainly woody debris (Keller and

Swanson, 1979; Andrus et al., 1988), showing to

be one of the major issues in the dynamics of the

fluvial environment (Abbe and Montgomery, 1996).

Any obstruction in a river, say a bend or a narrow

section, can trigger the progressive growth of

floating vegetation hips, giving rise in a relatively

short time to debris dike, producing considerable

backwater effect and altering the local channel

hydraulics (Young, 1991). During relevant flood

events, the flooding risk, i.e. the risk that the water

depth exceeds a given level, could be significantly

increased by the presence of stagnating debris. The

sudden breakdown of these dikes can induce peak

discharges down-stream, higher than those expected

in ordinary conditions. With their linear momentum

logs and trunks represent a risk in case of collision

with a solid structure, say dam walls or bridge piles

(Diehl, 1997), also leading to relevant economic

damages. Both natural and anthropic transport of

wooden trunks, moving large amounts of bulk

debris, interact with the fluvial environment on a

short term, by altering the dynamics of flow as well

as on a long term, by changing the erosion and

sedimentation pattern of the river. Several studies

have been directed to assess the yielding capacity

of river basins in term of woody debris (for a

discussion on the origin of woody debris, see e.g.
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Lienkaemper and Swanson (1987)). Relations are

also available for estimating the size of the trunks

conveyable by the river, depending on its geometry

(Harmon et al., 1986; Bilby and Ward, 1989).

Several devices have also been tested in order to

capture moving debris (Perham, 1987, 1988;

Ginanni et al., 2000). The design of these devices

requires deep knowledge about the debris

dynamics. The bed erosion, which depends on the

shear and velocity field (Shields, 1936; Egiazaroff,

1965; Yalin, 1982), is also altered by the effect of

woody debris transport, stagnation and eventually

removal (Murgatroyd and Ternan, 1983; Shields

and Gippel, 1995). Not at last, woody jams are

strictly connected with the development of fluvial

wildlife (see e.g. Bryant (1983) about the influence

of woody debris on fishery). The issue of woody

debris formation and conveyance is therefore of

utmost interest, for several reasons and by several

points of view. With reference to river hydraulics,

some literature is devoted to understand the

transportation patterns of logs or trunks (Braudrick

et al., 1997; Braudrick and Grant, 2000; Manga and

Kirchner, 2000) and changes in hydraulic proper-

ties, due to local disturbance of the current, such as

trunks, or logs jams (Young, 1991; Shields and

Gippel, 1995; Abbe and Montgomery, 1996;

Ginanni et al., 2000). The paper presented here is

devoted to a general, simple framework of analysis

of hydraulic conditions in presence of the external

Nomenclature

A p Van Driest’s near wall dampening constant, no unit

d water depth in presence of debris (m)

dp ¼ d=h0 dimensionless water depth, related to h0, no unit

h0 uniform flow depth, no debris (m)

hd debris thickness (m)

hp
d ¼ hd=d dimensionless debris thickness, related to d, no unit

hp ¼ rdhd=ðrh0Þ dimensionless debris thickness, related to h0, no unit

i channel slope (mm21)

K Von Karman’s constant

Q discharge per unit width (m2 s21)

Qp ¼ Q=n dimensionless discharge per unit width, no unit

Rp ¼ ufd=n Reynolds number of friction in presence of debris, no unit

Tp ¼ tf=t0 shear stress ratio in presence of debris, no unit

u time averaged local velocity (m s21)

uf ¼
ffiffiffiffiffiffi
tf=r

p
friction velocity at channel bottom (m s21)

up ¼ u=uf dimensionless time averaged local velocity, no unit

W channel width (m)

y wall distance (m)

yp ¼ yuf=n dimensionless wall distance, no unit

g fluid specific weight (N m23)

gd debris specific weight (N m23)

r fluid density (kg m23)

rd debris density (kg m23)

rpd ¼ rd=r dimensionless debris density, no unit

t0 ¼ h0gi shear stress at the channel bottom, no debris (Pa)

ti ¼ hdgdi shear stress at the debris–water interface (Pa)

tf ¼ dgi þ hdgdi shear stress at the channel bottom, debris (Pa)

x ¼ ti=tf shear stress ratio, no unit

n fluid cinematic viscosity (m2 s21)

D. Bocchiola et al. / Journal of Hydrology 269 (2002) 65–7866



forcing due to floating debris. The issue of a

uniform, stationary flow, covered by floating

material is analyzed. The simplifying hypothesis

of a continuous, inflexible carpet of debris is

introduced. Under such assumption, the water flow

is subjected to an additional drag force, due to the

debris carpet. The bottom shear stress associated

with a given discharge changes from the value

under uniform flow conditions, thus affecting the

bed load. The channel conveyance also changes,

affecting the velocity field and water depth. The

problem is first approached by considering low

Reynolds number flows, which allows a closed

form solution. Even though different from real

channel flows, this approach enlightens the mech-

anics of the water flow. When turbulent flow is

considered, no strictly analytic approach is possible.

The momentum equation is rewritten in its time-

averaged form, or Reynolds equation. The turbulent

terms are modeled by a simple approach, allowing

a straightforward numerical solution of the flow

field. The model is validated through experimental

measurements for Couette (air) flow (El Telbany

and Reynolds, 1980) and an experiment according

to direct numerical simulation (DNS). The turbu-

lence model is used to assess differences in the

rating curves and the shear stress patterns due to

the presence of floating debris. Synthetic diagrams

are shown and simple formulas proposed, which

summarize the main results and also give a first

picture of the complex dynamics in channels with

floating debris.

2. Proposed approach

2.1. Simplified scheme

The problem is sketched in Fig. 1, where a

continuous carpet of debris is floating over a uniform,

stationary flow. The geometry of the channel is shown

in Fig. 1; a very wide channel is considered and a

quasi two-dimensional (2D) flow is assumed. This

approximation is valid when the channel has a width

much larger than its depth ðW . 5–6dÞ; and the

motion is approximately 2D (Knight and Patel, 1985;

Rhodes and Knight, 1994). This frequently happens

during intense flood events, when the stream carries a

large amount of debris, or when logs and trunks are

conveyed for human activities. The carpet structure is

continuous, i.e. no ‘porosity’ is considered and water

entrapment into the debris structure is neglected, as

well. It is also assumed that no other forces act over

the debris, apart from its weight and the stresses at the

interface with the underlying water. Other external

forcing like wind stresses and side shears are not

considered in this case, according to the local scale of

the analysis and the 2D approach. The linear

momentum equation in the flow direction gives the

tangential stress acting on the interface between the

wood carpet and the water layer

ti ¼ hdgdi ð1Þ

where hd is the debris carpet height, gd the debris

specific weight and i the channel slope.

Generally speaking, the composition of woody

debris carried by creeks and rivers is variable. The

specific weight of the logs depends on wood type, age

and moisture content (Braudrick et al., 1997), and is

generally observed to range from about 3 to

6 kN m21. The debris height or diameter is even

more variable and depends on the type of debris.

Indeed, it can range from short logs, with a diameter

of few centimeters, to the size of whole trees, dropped

or eradicated by wind during storms, with several

meters length and up to 1 or 2 m in diameter, also

considering the size of canopy and roots (Braudrick

et al., 1997; Diehl, 1997). Also, the motion patterns of

woods are different (Braudrick and Grant, 2000).

Trees with huge roots can actually ‘dredge’ the

bottom and therefore move very slowly and bend their

tracks (Abbe and Montgomery, 1996), while light,

Fig. 1. Simplified scheme of floating debris carpet.
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buoyant logs can follow the main current, also

depending on the presence of river bends and

meanders (for an experimental study, see, e.g.

Ginanni et al. (2000)). The simplifying hypothesis

that the current is straight is made; hence the motion is

uniform in space and the debris follows the channel

track. The shear stress in Eq. (1) is the upper boundary

condition for the flow problem. This is different from

the free-surface uniform flow. Applying the linear

momentum equation on unit length fluid volume in the

flow direction, the shear stress on channel’s bed, tf is

easily obtained

tf ¼ dgi þ hdgdi ¼ dgri þ hdgrdi; ð2Þ

where g is the fluid specific weight and r its density. In

order to cast the problem in non-dimensional form,

some reference parameters have to be introduced.

Considering the friction velocity at the channel bottom

uf ¼
ffiffiffiffiffiffi
tf=r

q
; ð3Þ

it is possible to show (Yalin, 1971) that the averaged

velocity profile, i.e. u ¼ uðyÞ; into the channel can be

properly described in terms of the following parameters

up ¼
u

uf

; yp ¼
yuf

n
; Rp ¼

ufd

n
;

rpd ¼
rd

r
; hp

d ¼
hd

d

ð4Þ

where Reynolds scaling has been applied.

2.2. Laminar flow

For a steady laminar flow, the projection of the

momentum equation in the flow direction is:

›2up

›yp2
¼ 2

1

Rp

1

ð1 þ rpdhp
dÞ
: ð5Þ

After the first integration one obtains

›up

›yp
¼ 2

1

Rp

1

ð1 þ rpdhp
dÞ

yp þ C1; ð6Þ

in which the boundary condition at the interface gives

the constant C1

yp ¼
upd

n
;

›up

›yp
¼

ti

tf

¼
rpdhp

d

ð1 þ rpdhp
dÞ
;

C1 ¼ 1:

ð7Þ

The equation for the velocity derivative then reads:

›up

›yp
¼ 1 2

1

Rp

1

ð1 þ rpdhp
dÞ

yp: ð8Þ

The tangential stress is a linear function of the y p co-

ordinate, as for free surface flows, but not vanishing at

the upper layer. A further integration yields the non-

dimensional velocity profile

up ¼ yp 2
1

Rp

1

ð1 þ rpdhp
dÞ

yp2

2
þ C2 ð9Þ

Fig. 2. Modified velocity profiles for laminar flow.

D. Bocchiola et al. / Journal of Hydrology 269 (2002) 65–7868



which has to be coupled with the no-slip condition

yp ¼ 0; up ¼ 0; C2 ¼ 0: ð10Þ

The cross averaged velocity in the channel, U p is

Up ¼
Rp

2
2

1

ð1 þ rpdhp
dÞ

Rp

6
: ð11Þ

For a given water depth, the vertically averaged

velocity increases with the non-dimensional debris

weight, i.e. rpdhp
d: The dimensionless discharge is

Qp ¼
Q

n
¼ UpRp ¼

Rp2

2
2

1

ð1 þ rpdhp
dÞ

R2p

6
; ð12Þ

where Q is the discharge per unit width. For a certain

Q p it is clear that a lower weight of debris requires a

greater value of R p hence a higher water depth. In Fig.

2 some velocity profiles are plotted, parameterized by

rpdhp
d: Increasing the debris weight the velocity profile

becomes steeper, with a larger average velocity and a

lower water depth. The debris velocity and its kinetic

energy are related to the maximum value of u p:

up
m ¼ 2

1

ð1 þ rpdhp
dÞ

Rp

2
þ Rp;

Ep ¼ 1
2

up2
m rpdhp

d:

ð13Þ

2.3. Turbulent flow

As in real river channels the flow is turbulent, the

momentum equation must be rewritten. Denoting with

upðypÞ the time-averaged non-dimensional stream-

wise velocity, the Reynolds momentum conservation

equation states

›2up

›yp2
2

›ðu0v0Þp

›yp
¼ 2

1

ð1 þ rpdhp
dÞ

1

Rp
; ð14Þ

where

u0v0

u2
f

¼ u0v0þ: ð15Þ

To solve Eq. (14) the second term on the LHS, i.e. the

derivative of the turbulent stress, needs to be modeled.

Several closures have been proposed for the Reynolds

equations (see e.g. Wilcox (1993), for a review). In

this context the authors were concerned in finding a

simple model, able to capture the main features of the

field, i.e. the velocity and stress profile. One of the

firsts is the mixing length theory (Prandtl, 1925). The

non-dimensional turbulent shear stress tpt is expressed

by

tpt ¼ lp2 ›up

›yp

� �2

ð16Þ

where l p is an appropriate length, modeling the

turbulence at a given distance from the solid

boundary. The parameter is usually assumed to

depend upon the distance from the wall, through

some relations (Schlichting, 1960; Shermann, 1990).

According to Van Driest (1956), this can take into

account the ‘damping’ effect on the turbulent stresses

due to the proximity of the solid boundaries, and the

mixing length exponentially decrease towards the

wall:

lp ¼ Kyp 1 2 exp 2
yp

Ap

� �� �
: ð17Þ

The parameter K is the well known Von Karman’s

constant ðK ¼ 0:41Þ and A p is a parameter, to be

calibrated with experimental data. For an undisturbed

flow, Ap ¼ 26 has been found (Van Driest, 1956;

Chapman and Kuhn, 1986). The exponential

expression on the RHS takes into account the damping

effect near the wall and is usually valid inside the

‘buffer’ zone of the turbulent layer, where both

viscosity and density are important in shear stress

production. For this reason it has been used outside of

the ‘viscous sub layer’ (y p . 5) (Van Driest, 1956;

Spalding, 1961). The velocity distribution in a

turbulent layer is obtained after substituting the Van

Driest approach in Eq. (14):

›2up

›yp2
þ

› K2yp2 1 2 exp
2yp

Ap

� �� �2
›up

›yp

� �2
" #

›yp

¼ 2
1

ð1 þ rpdhp
dÞ

1

Rp
: ð18Þ

The velocity profile is easily obtained from Eq. (18),

after imposing the proper stress condition on the upper

boundary. For this purpose we state that, however the

turbulent stress is modeled, it must vanish at the upper
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boundary. Eq. (18) is integrated as follows:

›up

›yp
þ K2yp2 1 2 exp

2yp

Ap

� �� �2
›up

›yp

� �2

¼ 2
1

ð1 þ rpdhp
dÞ

1

Rp
yp þ C3: ð19Þ

To find the constant C3 a further assumption has to be

introduced. The development of turbulent stresses is

affected by the limiting action of the wall. It is

reasonable to assume that very close to the debris

surface the motion is dominated by viscosity. For this

reason we express the mixing length as a function of a

variable ypn defined as

ypn ¼ ypð1 2 yp=RpÞ: ð20Þ

This variable allows the dampening to behave

symmetrically inside the domain, and goes to zero at

the solid boundaries. The momentum equation then

becomes:

›up

›yp
þ K2yp2

n 1 2 exp
2ypn
Ap

� �� �2
›up

›yp

� �2

¼ 2
1

ð1 þ rpdhp
dÞ

1

Rp
yp þ C3: ð21Þ

Eq. (21) is integrated and constant C3 derived from the

dynamical condition:

ypn ¼ 0;

tpt ¼ K2yp2
n 1 2 exp

2ypn
Ap

� �� �2
›up

›yp

� �2

¼ 0

ð22Þ

›up

›yp
¼

ti

tf

¼
rpdhp

d

ð1 þ rpdhp
dÞ
; C3 ¼ C1 ¼ 1: ð23Þ

Leading to

K2yp2
n 1 2 exp

2ypn
Ap

� �� �2
›up

›yp

� �2

þ
›up

›yp

¼ 2
1

ð1 þ rpdhp
dÞ

1

Rp
yp þ 1: ð24Þ

Eq. (18) is indeed the turbulent counterpart of Eq. (5)

and only differs from it in the turbulent stress term. It

states that the total (non-dimensional) shear stress, i.e.

the sum of laminar (viscous) and turbulent stress,

varies linearly from the maximum (one) value at the

bottom to the minimum value at the interface with the

debris. This is a quadratic equation in the derivative of

the velocity

a
›up

›yp

� �2

þb
›up

›yp
¼ c ð25Þ

where the coefficients a, b, c do not depend on the

velocity derivative itself. The derivative is obtained

by

›up

›yp
¼

2b ^
ffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4ac

p

2a
ð26Þ

and the velocity profile admits the solution (Van

Driest, 1956)

together with the boundary condition:

yp ¼ 0; up ¼ 0; C4 ¼ 0: ð28Þ

Eq. (27) requires numerical integration and provides

the non-dimensional velocity profile inside the

domain. When no debris is present, the term contain-

ing rpdhp
d under the square root tends to one, being

smaller otherwise. This means that, given uf and the

integral scale R p, the velocity derivative tends to

increase, compared with respect to the ‘free’ surface

flow. The velocity profile for given values of uf and

R p is steeper with debris than without it, i.e. the flow

is faster in the former than in the latter case. The main

difference with the laminar flow is the inflection in the

up ¼
ðyp

0

21 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4K2yp2

n 1 2 exp
2ypn
Ap

� �� �2

2
1

ð1 þ rpdhp
dÞ

1

Rp
yp þ 1

 !vuut
2K2yp2

n 1 2 exp
2ypn
Ap

� �� �2
dyp þ C4 ð27Þ
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velocity profile while the second velocity derivative

for laminar flow (Eq. (5)) is always negative. The

same derivative for turbulent flow in Eq. (18) has a

zero value where:

› K2yp2 1 2 exp
2yp

Ap

� �� �2
›up

›yp

� �2
" #

›yp

¼ 2
1

ð1 þ rpdhp
dÞ

1

Rp
: ð29Þ

This equation requires the numerical calculation of

the first derivative of velocity, thus not allowing a

direct solution. Nevertheless, it is to expect that the

velocity profile changes its concavity to a positive

value at some point into the fluid domain, i.e. possess

an inflexion point. This feature is indeed observed in

velocity profiles related to flow conditions similar to

the one here concerned, as will be shown in the

following.

3. Model validation

3.1. Model validation with direct numerical

simulation

A DNS has been carried out for the same fluid

domain sketched in Fig. 1 This consists in numerically

solving the full set of equations (i.e. Navier Stokes

equations) describing the flow dynamics in its direct

form. Due to the computational requirements,

numerical simulation can only be carried out for low

Reynolds numbers. While it is expected that most of

the applications for the proposed research are related

to fully turbulent flow conditions, where the Reynolds

equations are expected to hold, it is nevertheless

interesting to determine the main features of the flow

field for an intermediate range of Reynolds numbers.

The numerical simulation, which requires a notable

effort and whose accurate description would possibly

require a paper by itself, is here only shown in its main

results (for a description of the numerical method, the

reader is referred to Alfonsi et al. (1998) and Passoni

et al. (1999)). The 3D computational domain was

designed in order to capture most of the features of the

turbulent flow, adopting the frame of reference in Fig.

1 The domain’s dimension were set Lx ¼ 2p; Ly ¼ 2;
Lz ¼ p in the stream-wise, vertical and a span-wise

direction, respectively. The grid parameters were set

to Nx ¼ 72; Ny ¼ 129; Nz ¼ 48 modes/nodes adopt-

ing a hyperbolic tangent node stretching along the

inhomogeneous (y ) direction. Periodicity in the

stream-wise and span-wise directions has been

assumed via horizontal Fourier expansions. When

compared, these figures are close, for similar Couette

flows, to those reported by Lundbladh and Johansson

(1991), apart from the additional gravity forcing

considered in this specific case. The simulation has

Fig. 3. (a) DNS, velocity profile; (b) DNS, shear stress profile.
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been started from a laminar stream-wise velocity

profile on which random phase disturbances have

been superimposed to reach a turbulent statistical

steady state. The main flow characteristics (mean

velocity and stress profile) have been computed after

averaging over more than four integral time scale,

after steady turbulent state was reached. After the

statistically steady state was reached the friction

Reynolds number R p asymptotically resulted 310.

The mean stream-wise velocity profile is shown in

Fig. 3a while the companion Fig. 3b shows the shear

stress inside the fluid domain. Together with the

simulated field, the solution obtained by acting a

tuning procedure of the turbulence model is reported

here. In deeper detail, the A p parameter in Eq. (17) is

changed so that the (non-dimensional) velocity

profiles obtained by the model has the minimum

square error related to the DNS. The value of K in the

turbulence model is not found to influence consider-

ably the velocity distribution given by the model. The

K parameter is therefore kept at its value 0.41. The

value of A p giving the best fitting is 136, which yields

the maximum value of determination coefficient R,

over the simulated values, 0.98. Also, a good

determination coefficient, 0.99, is reached, related to

non-dimensional stress into the field of motion. There

is indeed a good fitting between the values obtained

with the numerical simulation and with the K–y

model. As already stated, the required change in the

turbulent model parameter is likely due to the friction

number involved in the simulation, too low to fit well

the K–y model. Also, we will show in the following

that the velocity profile developed in the simulation is

not representative of a fully turbulent flow. The

adopted value of A p acts in a way to diminish the

characteristic mixing length into the domain, so as to

amount into a lower shear stress and a ‘steeper’

velocity profile, which is typical of viscous motion.

3.2. Model validation with experimental velocity

profiles

Due to the non-dimensional form of Eq. (27) it is

expected that it can describe any velocity profile,

properly scaled. In order to test such features, the

authors compared some observed profiles, obtained by

El Telbany and Reynolds (1980), for fully turbulent

flow motion. Those profiles are actually related to a

blown air flow into a duct, equipped with sliding

walls, thus resulting into a non-symmetric stress field,

similar to the one the paper deals with. Therefore, we

show here how the proposed model adapts to the

observed velocity profiles. In Fig. 4 the experimental

velocity profiles are shown. For the sake of clearness,

only six cases are shown, each other different in the

ratio between the upper and lower shear stress, ti

and tf:

x ¼
ti

tf

¼
hp

dr
p
d

hp
dr

p
d þ 1

: ð30Þ

It is seen from Eq. (27) that, once rpdhp
d and R p are

known, the dimensionless velocity profile is known as

well. The experimental values of R p have been

therefore calculated. The obtained profiles are shown

in Fig. 4 with solid lines. The main properties of the

profiles are in Table 1 (see El Telbany and Reynolds

Fig. 4. Experimental profiles for non-symmetric Couette flow, in El

Telbany and Reynolds (1980) and their fitting by turbulence model.

Table 1

Main properties of the experimental profiles. All variables are

dimensionless

Exp. x R p Re exp. Re K–y

1 0.0057 2600 58 £ 103 60 £ 103

2 0.036 1400 38 £ 103 30 £ 103

3 0.116 1700 57 £ 103 37 £ 103

4 0.25 1600 57 £ 103 36 £ 103

5 0.5 1400 57 £ 103 32 £ 103

6 1 1300 57 £ 103 29 £ 103

DNS 0.65 300 8 £ 103 8 £ 103
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(1980) for a deeper insight). The integral Reynolds

number is reported, Re ¼ dU=n; related to the

development of turbulence. A part from some scatter

at the very edges of the flow field, where indeed a few

measurements are available, it is seen that the

proposed model fits well the velocity profiles. No

numerical analysis was performed, due to the low

number of measurements, but it is the opinion of the

authors that the described model is sufficiently

accurate to describe with good approximation the

main features of the flow field.

It has to be noticed that the measured profiles

actually show an inflexion point. Qualitatively, it can

be stated that the greater the upper stress amount is,

the closer is the flex to the middle point. When the

shear stress is the same at both boundaries, the flex

exactly matches the line of half field. When the

inflexion point is reached, the first velocity derivative

reaches a minimum, also spotted on the proposed

graphs. Then, it starts growing, leading to a steeper

velocity profile, i.e. increasing the amount of

discharge conveyed by the fluid. The closer the flex

is to the line of half field, i.e. the heavier the debris, the

greater is the increase in velocity. In Fig. 4 the DNS

velocity profile is also shown, having x equal to 0.65.

Such profile looks steeper than the other ones, i.e. the

velocity derivative, directly linked to viscous shear

stresses, is indeed greater than ones expects, by

looking at the other profiles. As formerly introduced,

this behavior is probably due to the low velocity, and

Reynolds number, into the simulated channel. The

someway higher values of the Reynolds number

related to the experiments by El Telbany and

Reynolds (1980) allows a more complete develop-

ment of turbulence and they are therefore well

described by the turbulence model. Although it is

known that more complex turbulence models exist,

able to explain not only first order statistics of motion,

such as velocity and stress, but also higher order ones,

it is their opinion that the use of the simple model

yields results accurate enough at the hydrologic scale

of the phenomena. On the basis of the observed

results, the proposed model is reliable, for the

evaluation of the velocity profile for turbulent flows

in presence of floating debris. Furthermore, one has to

notice that the Reynolds equations (14)–(29), are cast

in a dimensionless form. The proposed turbulence

model was also written in dimensionless form, hence

suitable for more general applications. The model

here proposed can be applied to any similar case,

provided that the Reynolds number Re is high enough

(Re . ,104) and its agreement with experimental

data does fit better as Re increases. This possibly

includes real channel flows, where Re up to 106–107

are expected.

Based on these findings, the model has been

adapted to assess the influence of floating debris on

the rating curves and the shear stress distribution for

several conditions, some of which are similar to those

in river channels.

4. Rating curves and bed shear

4.1. Laminar flow

In this section, we will show the influence of

floating debris over the rating curves and the bed

shear. We introduce the following non-dimensional

variables

hp ¼
rdhd

rh0

; dp ¼
d

h0

; Tp ¼
tf

t0

ð31Þ

where h0 is the free surface water depth for

uniform flow and t0 is the bed shear. The h p

parameter is the ratio between the weight of the

fluid in case of free surface flow and the super-

imposed debris weight. The d p parameter in turn

represents the ratio between the depth of the flow

in presence of debris and the corresponding depth

under free surface conditions. The T p variable

accounts for the variation of shear stress, when the

debris is superimposed to the flow. The issue of

determining the modified rating curves is reduced

to the calculation of d p, once Q p and h p are

known. Roughly speaking, when the discharge in a

channel and the related amount of debris are

known, one wants to determine what the necessary

water depth is to convey the fluid. By equating the

dimensionless discharge in presence of debris to its

counterpart for free surface conditions, modified

rating curves i.e. d p are obtained. For the case of

laminar flow, an analytical form can be deduced to

evaluate d p. First, one calculates the discharge as a

function of water depth for no debris and debris
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features. From Eqs. (11) and (31):

Qp ¼ 2
1

ð1 þ rpdhp
dÞ

Rp2

6
þ

Rp2

2

¼ 2
dp

ðdp þ hpÞ

Rp2

6
þ

Rp2

2
: ð32Þ

Equating such discharge to its free surface

counterpart, one obtains, after minor algebra:

dp3

3
þ

dp2

2
hp 2

1

3
¼ 0: ð33Þ

This equation can be solved to obtain the proper

dimensionless flow depth. From a qualitative point

of view, it is seen that the greater the debris

weight, h p, the smaller the depth d p. Also, as h p is

non-negative by definition, d p is always lower

than, or at least equal to one, as it is expected. The

stress ratio is given by

Tp ¼ hp þ dp ¼ dp 1

3
þ

2

3

1

dp2
; ð34Þ

yielding T p once Eq. (33) is solved. As d p is

always smaller than or at least equal to one, it is

seen from Eq. (34) that T p is always greater than

or at least equal to one. Therefore, the bed shear

stress is always increased by the presence of

floating debris. This is shown here for the case of

laminar flow, but the same results will be found for

the turbulent flow later on in the paper. In a further

section, a graphic representation of Eqs. (33) and

(34) will be shown.

4.2. Turbulent flow

In case of turbulent flow, no analytical solution is

available for the velocity profile and hence for d p.

Using dimensional arguments (Yalin, 1982), how-

ever, this reduces to the solution of the following

Fig. 5. (a) d p vs. h p; (b) T p vs. h p.

D. Bocchiola et al. / Journal of Hydrology 269 (2002) 65–7874



expression:

dp ¼ dpðQp; hpÞ: ð35Þ

This means it is always possible to provide the proper

values of d p, once h p and the discharge Q p are

known. Eq. (35), properly stated, needs to be solved

by finding the dimensionless water depth d p, with

which the dimensionless discharge Q p is conveyed

under the external forcing h p. This is achieved

through numerical integration of Eq. (27) for increas-

ing water depths, until the correct value for d p is

found. Although the procedure is numerical, its results

are universal, i.e. they are valid for any case, once the

relevant physical variables are properly transformed

into non-dimensional ones. The results can be

summarized in a chart where the correct d p are

plotted vs. h p, having Q p as parameter. The

differences between water depth and bed shear for

free surface and Couette (with floating debris) flows

are calculated. Once d p is known, T p is easily found,

by the first equality in Eq. (34), which still holds for

turbulent motion. In Figs. 5a,b and 6 the resulting

charts are shown. For the sake of clearness, only four

different values of Q p are shown, spanning over four

orders of magnitude (i.e. from 104 to 107). Values

within this range are well representative for the

hydraulic conditions of a wide river having unit width

discharges ranging from 1022 to 10 m2 s21. Fig. 5a

shows the correct values of d p, for both turbulent and

laminar flow (Eq. (33)). The laminar flow curve is

indeed very similar to the turbulent ones. This

confirms the expected trend, analytically derived for

the laminar case. In fact, the chart clearly shows a

decrease in water depth, due to the additional shear on

the upper surface. The curves for turbulent flows are

slightly different from each other, depending on the

Q p value. From a theoretical point of view, different

curves should be adopted for different dimensionless

discharges. The greater the latter, the smaller the

decrease in the water depth, for the same dimension-

less debris weight, h p. From the application perspec-

tive, the results are almost equivalent and an average

curve can be used.

Fig. 5b shows the correct values of T p. Once again,

the analytical results for laminar flow are qualitatively

confirmed and the shear stress is larger, for a fixed

discharge, with respect to the analogous free surface

flow. It is evident that the different curves in Fig. 6

although different, are very close to each other. Also

in this case an average fitting curve can be used. As

stated before, the debris weight can be varied as well

as its thickness. Assuming, as an example, a specific

debris weight of 5 kN m21, some considerations can

be done. The range of the h p values in Fig. 5a and b is

Fig. 6. Ratio between maximum velocity umax, with debris and uniform velocity U0 in case of no debris.
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0.01–1. This corresponds to a layer of debris ranging

from approximately 0.5 to 200% of the free surface

water depth h0. Having h0 ¼ 1 m; the debris thickness

ranges from 5 to 2 m. The most likely values for such

thickness is of course expected to be somewhere in the

middle of this range, which however looks as a

reasonable one. Looking at Fig. 5a for a debris

thickness of 0.4 m, which corresponds to hp ¼ 0:2;
the water depth reduction is almost independent of the

discharge Q p, thus giving a ratio of about 93% with

respect to the free surface value h0. Conversely the

bed shear results in about 110% of the corresponding

free surface t0. For a debris thickness of 1 m ðhp ¼

0:5Þ; the water depth and shear stress would reach 84

and 135%, respectively, of the corresponding values

when no debris is present. To give an idea about the

shape of the two curves, two equations are shown

here, for d p and T p vs. h p, in turbulent flows, obtained

by fitting the average values of d p for different Q p.

The dimensionless depth results given by

dp ¼ 1 2 0:29hp; ð36Þ

yielding an explained variance, R 2, of 0.98. As

expected, it tends to 1 for a zero debris weight. The

expression for the dimensionless shear stress is given

by

Tp ¼ 1 þ 0:71hp; ð37Þ

with R 2 practically equal to one (0.998).

It is seen that a quite linear dependence exists

between the increase in the debris weight and the

corresponding changes in channel depth and bed

shear. This result is particularly interesting especially

when looking at bed sediment stability and transport!

As far as the maximum flow velocity or debris

velocity is concerned, its increase is assessed after

introducing

Up
max ¼

umax

U0

; ð38Þ

which gives the ratio of maximum velocity to free

surface velocity. Its trend is shown in Fig. 6.

As seen in Fig. 6 Up
max is maximum for laminar

flows, as expected, because of the high value of the

velocity derivative in the field, not smoothed by

turbulence. Referring to the former example, for h p

equal to 0.2 and 0.5, and Qp ¼ 106; the maximum

velocity is ,1.7 and ,2 times the analogous free

surface velocity, respectively. If the given discharge

per width unit of 1 m2 s21 would be conveyed in a

river with a slope of, say, 1024, U0 would reach the

value of about 1.1 m s21. The maximum related

velocity under floating debris transport would raise to

1.85 and 2.2 m s21, respectively!

Generally speaking, the figures and trend enligh-

tened with this approach would require some

validation. Particularly, one is interested in under-

standing whether and, eventually under which con-

ditions, the proposed approach is applicable to fairly

describe the main flow features. This issue requires

indeed some experimental testing in channels, before

the results can be adopted. From a qualitative point of

view, it is however shown that the floating debris is

expected to someway alter the velocity distribution

and the bed shear as well. Also, the debris is expected

to move faster than the average current velocity, thus

possessing a greater amount of momentum. Such

findings should be taken into account in channels with

heavy yields of debris, either when designing dams,

bridges or decks or in controlling debris yield by

trapping nets or rakes.

5. Conclusions

Flood flows in rivers are influenced by the action of

floating bodies on the surface, exerting an additional

force in the flow direction. This issue has been

addressed here through a simplified approach for very

wide channels covered by a homogeneous solid carpet

of floating debris. Its effects have been investigated

for both theoretical laminar regime, enlightening the

main flow feature and the more likely turbulent

regimes. A turbulence model has been described,

which fits well the available experimental profiles.

Adopting such model, curves are drawn, in the proper

parameter space, assessing the dynamics of this kind

of Couette like flows. The velocity profiles exhibit a

non-negligible deviation from the free surface con-

dition. This also implies that the fluid discharge

increases, for a given water depth. Conversely, a fixed

fluid discharge is conveyed with different water

depths. Indeed, the more the debris weights, the

shallower the flow. Furthermore, the related bed shear

monotonically increases with the weight of debris.

The results are of some interest, since they show, at
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least from a qualitative point of view, the changes in

the flow characteristics, when governed by an external

forcing, i.e. the debris. This appears to be much more

important when dealing with the morphodynamics of

river channels under floating debris transport. In this

respect it is clear that 1D or 2D shallow water

approaches cannot give a reliable description of the

shear stress patterns inside the fluid domain and

ultimately a correct estimate of the sediment move-

ment. The results of this research are therefore of

utmost importance for a future deduction of more

synthetic parameters for shallow water models and for

movable bed models. As a drawback, the presented

approach only deals with smooth surface, i.e. channels

with very small roughness. In case some measure-

ments were available for floating debris transport, for

river channels and different roughness, the theory

could be extended and tested for a broader range of

cases and more comprehensive conclusions could be

drawn. It is the opinion of the authors that the

proposed method, although preliminary, yields some

clues about the fundamental features of the investi-

gated phenomenon and raises some interesting

questions for the development of the related research.
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