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Abstract

The concept of apparent susceptibility can be extended to bodies with arbitrary geometry by considering the integrated

magnetization or dipole moment associated with the body. This unique characteristic can be easily computed numerically for

features of arbitrary shape and susceptibility. Numerical studies reveal that the thin-walled steel drum displays an anisotropic

apparent susceptibility with distinct longitudinal and transverse values. While the apparent susceptibility is independent of drum

size, it varies with the susceptibility, the wall thickness and with the dimension ratio of the drum. Exact numerical modelling of

total field magnetic profiles over a buried steel drum allows the evaluation of a range of approximate modelling techniques.

While all reasonably match the form of the measured profile, only the response computed for an equivalent magnetic shell and

that using an equivalent magnetic dipole with moment computed from the true drum susceptibilities allow the profile amplitude

to be predicted with any accuracy. Of these, the latter technique is the more successful. It also provides a discernable

improvement in the shape of the modelled profile.
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1. Introduction

The magnetic method is now well established in

environmental and engineering investigations for the

detection of ferromagnetic constructions. Common

targets of these investigations are disposal sites where

waste materials are buried in steel containers. Geo-

physics is often required to locate these receptacles and

to estimate their quantity. Magnetic surveys for this

purpose must therefore be designed and the resulting

data interpreted.

In order to achieve this, it is necessary to model the

magnetic fields produced by thin-walled ferromag-

netic containers (typically steel drums). Unfortunately,

this has not been easily achieved, and two reasons for

the lack of progress are easily identified.

Firstly, there is little information in the geophysical

literature on the basic magnetic parameters relevant to

steel containers (i.e. the susceptibility and magnetic

remanence). Initial attempts at measuring susceptibil-

ities of small samples taken from steel drums using

conventional laboratory techniques by Emerson et al.

(1992) and Ravat (1996) were not successful due to the

effect of demagnetization. More recently, however,

Eskola et al. (1999) describe a technique using a flux

gate magnetometer that is suitable for the measurement

of both susceptibility and remanent magnetization of

thin ferromagnetic material. Unfortunately, the proper-
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ties of only 13 samples measured by this technique are

available in the literature.

It should be mentioned in this connection that some

relevant information on the magnetic characteristics of

steel drums has also been achieved by field measure-

ments (Emerson et al., 1992; Ravat, 1996). By observ-

ing the magnetic responses of drums in several

orientations, the effects of induced magnetization and

remanence can be discriminated. These two compo-

nents of themagnetization can then be found in terms of

equivalent dipoles by inversion of the field data. Use of

the volume of ferromagnetic material and the ambient

H field then allows calculation of magnetizations and

susceptibilities. However, while these data are useful

for equivalent source modelling of the magnetic fields

produced by steel drums, they do not represent the true

or intrinsic parameters of the ferromagnetic material

used in their construction.

The second and perhaps more significant reason for

lack of progress towards a practical magnetic model

for steel containers concerns the difficulty of model-

ling magnetic fields due to thin sheets with extreme

susceptibilities. Eskola et al. (1993) have demonstrated

the unsuitability of standard modelling algorithms for

this purpose.

This modelling problem has prompted the use of a

range of approximations for the magnetic response of

steel drums. Field measurements made by Emerson et

al. (1992) and Ravat (1996) have been explained in

terms of equivalent dipoles or bodies of simple shape

magnetized in the direction of the earth’s field. How-

ever, while these techniques have been useful for

predicting the shape of magnetic profiles located

sufficiently remote from the drum, they fail badly to

predict the amplitude.

Application of exact numerical (surface integral

equation) models has similarly been less than helpful.

The problem is related to the numerical instability

demonstrated by many such models when applied to

very thin and intensely magnetic sheets (Eskola et al.,

1993; Traynin and Hansen, 1993). However, one

general surface integral equation technique has been

shown to be relatively robust in this regard. Recently,

Furness (1999) demonstrated the ability of a general

surface integral equation formulation to accommodate

thin-walled ferromagnetic bodies. The technique was

originally described in an electrostatic context by

Phillips (1934).

It is relevant to note that two other options exist in

the geophysical literature for the exact numerical

modelling of drum responses. The specialized integral

equation technique described by Nabigian et al.

(1984) and the integrodifferential equation approach

of Eskola et al. (1989) were both designed specifically

to accommodate the type of thin, highly susceptible

bodies of interest here.

Notwithstanding the present work employs Phillips’

integral equation technique to investigate the magnetic

response of a single steel drum in a nonmagnetic

environment. However, since implementation of the

method is quite demanding in terms of computing time

and facilities, an additional emphasis in the present

investigation concerns the evaluation of several

approximate magnetic models for steel drums. Towards

this end, advantage will take of the similarity in

magnetic behaviour that exists between steel drums

and spherical magnetic shells. The problem of a spher-

ical shell exposed to a uniform magnetic field can be

easily solved analytically, and the solution is readily

available in the literature (e.g. Jackson, 1975). In spite

of this, it apparently has not yet been used for the

present purpose of modelling the magnetic fields due to

thin-walled ferromagnetic containers.

2. A generalized apparent susceptibility

Previous workers in this area (e.g. Emerson et al.,

1992; Ravat, 1996) have used a variety of parameters

to define the magnetic characteristics of steel drums.

None of these are suitable for the present study.

Rather, it is convenient here to generalize the well-

known concept of apparent susceptibility.

It is recalled that the apparent susceptibility is only

defined for ellipsoidal bodies influenced by uniform

primary fields. In this case, the magnetization is uni-

form and can be expressed by

M ¼ kH

where k is the volume susceptibility and H is the local

magnetic field acting inside the body. It can be

expressed as the sum of the primary field and the

secondary or depolarizing component due to the body

itself, i.e.

H ¼ Hpþ Hs
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The apparent susceptibility is defined so as to

relate the magnetization to an axially directed primary

field in the manner

M ¼ kaHp

so that

ka ¼ M

Hp

ð1Þ

However, since the magnetization is uniform, it can be

expressed as

M ¼ m

V

where V is the volume of the ellipsoid andm is the total

dipole moment. Using this result, the apparent suscept-

ibility of Eq. (1) can be alternatively expressed as

ka ¼ m

HpV
ð2Þ

Eq. (1) is the conventional definition of apparent

susceptibility but is clearly restricted to the case of

uniform magnetization associated with ellipsoidal

bodies. The more general form of Eq. (2) also accom-

modates non-uniform magnetization associated with a

body of arbitrary shape influenced by a uniform pri-

mary field. The resulting apparent susceptibility is

similar to the susceptibility derived from drum rotation

experiments by Emerson et al. (1992). However, there

is one significant difference. These authors appear to

have deduced the dipole moment by a data fitting

technique from the measured magnetic response of a

drum. Consequently, the dipole moment is an equiv-

alent dipole moment and includes the effect of higher

multipoles in the body’s response. It is not the unique

intrinsic dipole moment associated with the body. In

theory, this is only derivable from the drum’s observed

response when measurements are made at an infinitely

remote location where the influence of higher multi-

poles is negligible.

3. The spherical shell

The spherical shell influenced by a uniform mag-

netic field provides a convenient analytical model for

the behaviour of thin-walled ferromagnetic containers

with approximately equidimensional form. Fig. 1

shows a sectional view of a spherical shell with

internal and external radii a and b, respectively. The

shell with susceptibility k and thickness t is enclosed in

free space and is influenced by a uniform primary

magnetic field Hp.

Jackson (1975) shows that the effect of the shell in

the external region is equivalent to that of a dipole

with moment

m ¼ 4pðb3 � a3Þkð2k þ 3Þ
ð2k þ 3Þðk þ 3Þ � 2k2ða=bÞ3

Hp ð3Þ

located at the center of the sphere. Internally, the shell

produces a uniform magnetic field parallel to the

primary field, but this is of no significance to the

present discussion. An analysis of the last equation

shows that for significantly thin and susceptible shells,

where kH1 and tbb, the dipole moment behaves in

the manner

m ! 2ktAHp=3

where A is the surface area. In this case, therefore, the

magnetic field produced by a thin spherical shell can

be expected to depend on the product of the wall

thickness, the susceptibility, the surface area and, of

course, the primary field.

Substitution of Eq. (3) in Eq. (2) yields the appa-

rent susceptibility

ka ¼ 3kð2k þ 3Þ
ð2k þ 3Þðk þ 3Þ � 2k2ða=bÞ3

ð4Þ

Fig. 1. Spherical shell with susceptibility k located in free space and

influenced by a uniform primary magnetic field Hp.
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which is clearly independent of the size of the body. It

depends on the wall thickness in terms of the ratio of

radii a/b, however, for kH1 and tbb, it can be

shown to behave as

ka ! 2k=3

Fig. 2 shows the variation of the apparent suscept-

ibility with intrinsic susceptibility for the complete

range of shell thickness from t = 0 (spherical lamina)

to t= b (solid sphere). The figure demonstrates that for

thick shells, the magnetization is strongly reduced by

the influence of a large demagnetizing field. The effect

of the demagnetization is seen to diminish with

decreasing wall thickness. For very thin shells, this

influence is greatly reduced until in the limit as t! 0;

the apparent susceptibility behaves as 2k/3 for kH1.

This reflects a dramatic improvement in the thin-walled

sphere’s ability to produce magnetization compared to

that of thicker shells. Put differently, for most shells, the

apparent susceptibility is determined by the geometry

of the body through the influence of the depolarizing

field. For very thin shells, however, it is largely

determined by the susceptibility.

4. Modelling drum responses

The present investigation employs an integral

equation model described in a magnetic context by

Furness (1999). The physical situation is illustrated in

Fig. 3. It shows a magnetic body with uniform

susceptibility k located in free space and influenced

by a primary magnetic field Hp.

The secondary potential in the region outside the

body can be expressed by

/sðrÞ ¼ � k

4p
D
S

/ðrVÞn̂ �jV
1

Ar � rVA
dsV ð5Þ

and the secondary magnetic H field by

HsðrÞ ¼
k

4p
jD

S

/ðrVÞn̂ �jV
1

Ar � rVA
dsV ð6Þ

Fig. 2. Apparent susceptibility of a spherical shell with variable wall thickness as a function of susceptibility.
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where / is the potential on the surface of the body

found by solving the integral equation

/ðrÞ ¼ 2

k þ 2
/pðrÞ �

k

2pðk þ 2ÞD
SV

/ðrVÞn̂

�jV
1

Ar � rVA
dsV ð7Þ

Here, SV denotes the surface of the body minus the

singular point at r.

This formulation can be easily used to find the total

dipole moment associated with the body (Van Bladel,

1985). This is achieved by noting that in the limit as

jr� rVj!l; Eq. (5) expressing the secondary

potential in the external region may be written in the

form

/sðrÞ ¼ � k

4p
D
S

/ðrVÞn̂dsV�jV
1

Ar � rVA
or

/sðrÞ ¼
1

4p
mðrVÞ �jV

1

Ar � rVA

where m is the total dipole moment associated with

the body given by

m ¼ �kD
S

/ðrVÞn̂dsV ð8Þ

The appearance of this equation can be made more

familiar by the application of a well-known corollary

of the divergence theorem to yield

m ¼ �k

Z Z
V

Z
j/ðrVÞdvV

or

m ¼
Z Z

V

Z
MðrVÞdvV

The above discussion has not mentioned remanent

magnetization in the body. However, Eskola (1992) has

noted that the influence of a uniform remanent magnet-

izationR in a body of constant susceptibility k enclosed

in free space is equivalent to the effect of a primary field

given by R/k acting in the absence of remanence. It

follows from the linearity of the magnetic problem in

terms of the primary field that the effect of remanence

in the present model can be found by employing a

modified primary magnetic field given by

HpV¼ Hp þ R=k

in the above equations.

5. The standard steel drum

A survey of industrial containers currently manu-

factured in Australia suggests that a typical 205-l

closed head drum has an internal diameter of 571.5

mm, an internal height of 847 mm and a wall thick-

ness of between 0.7 and 1.4 mm. Internal dimensions

are quoted here since they do not include the effect of

irregularities such as welds, seams, etc., and so more

faithfully reflect the geometry of the drum walls.

There is relatively little reliable information avail-

able in the geophysical literature on the magnetic

properties of the metal sheet used in the fabrication of

steel drums. However, recently, Eskola et al. (1999)

measured susceptibilities in the range 200–500 SI ac-

companying remanent magnetizations of 1000–20000

A/m for 13 samples with thicknesses from 0.5 to 1.0

mm taken from steel sheets and drums.

On the basis of the above information, a standard

drum is defined for the present investigation to have an

external radius of 286.75 mm and an external height of

849 mm. The walls are assumed to be 1.0 mm thick and

of material with an intrinsic susceptibility of 350 SI.

Remanent magnetization is assumed to be of negligible

significance compared to induced magnetization.

In the following discussion, reference to a standard

drum will imply use of the above parameters. How-

ever, it will also be necessary to consider steel drums

in which one or more of the parameters are different

Fig. 3. Body with susceptibility k located in free space and

influenced by a uniform primary magnetic field Hp.
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from their standard values. These containers will also

be referred to as standard drums but with an appro-

priate indication of the nonstandard parameter values.

The neglect of remanence in the definition of the

standard drum requires some comment. There is pres-

ently no clear consensus on the importance of remanent

magnetization in steel drums. Emerson et al. (1992)

noted a relatively minor contribution of remanence to

the observed magnetic responses in their experiments

with steel drums. They argue for the likelihood of

destructive interference of the magnetic fields due to

remanent magnetization in the individual parts of

containers fabricated from discrete components. Ravat

(1996) also concluded that remanence was of signifi-

cantly less importance than induced magnetization in

samples taken from eight drums. On the other hand,

Barrows and Rocchio (1990) reported a comparable

contribution from remanent and induced magnetiza-

tions in two steel drums tested. In addition, the results

of Eskola et al. (1999) show significant remanence

albeit in a minority of the steel samples tested.

It is relevant to mention that the above results

probably include the contribution of viscous remanent

magnetization in the remanence measurements. In the

present application, where interest focuses on the

magnetic response of steel containers that have long

been undisturbed, the influence of viscous remanence

is probably best accommodated in the susceptibility

parameter. This would have the result of increasing

the magnitude of the susceptibilities at the expense of

the measured remanent magnetizations.

Finally, it must be conceded that the neglect of

remanent magnetization in the present study is as much

prompted by practicality as by any other consideration.

Since it is likely that remanent magnetization is

acquired prior to the fabrication of steel drums, there

is no simple formula for its distribution in a completed

drum. While the accommodation of an arbitrary dis-

tribution of remanence in the numerical model of steel

drums offers no serious challenge, a more practical

technique may be to model the net remanent magnet-

ization in the drum as a whole by the use of a modified

primary magnetic field as described above.

The numerical technique described in the previous

section has been used to compute the apparent sus-

ceptibility of a standard steel drum with susceptibilities

in the range from 0 to 1000 units SI influenced by a

uniform magnetic field in the longitudinal and trans-

verse directions. For this purpose, the drum was repre-

sented by a polyhedron in the form of a hollow circular

prism with 1440 quadrilateral faces having a maxi-

mum dimension of approximately 60 mm. Fig. 4

shows a perspective view of the outer surface of the

body comprising 720 facets. The inner surface is simi-

larly represented by 720 faces.

The results of these calculations are shown in Fig. 5

plotted against the susceptibility of the wall material.

The computed apparent susceptibilities are plotted as

crosses and are shown to be well fitted by an equation

(shown as a continuous line) of the form

ka ¼ ak

1þ bk
ð9Þ

where a = 0.740176, b = 0.00157453 for the longitudi-

nal apparent susceptibility and a = 0.627583,

Fig. 4. Perspective view of a standard drum modelled by 720 ex-

ternal and 720 internal planar quadrilateral surface elements.
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b = 0.00205086 for the transverse case. The form of this

relationship is prompted by the behaviour of the

apparent susceptibility in ellipsoidal bodies and has

been used previously by Eskola et al. (1999).

Also included in the figure is the analytically

derived curve for a thin spherical shell with equal

surface area and wall thickness to the standard drum

(amounting to an equal volume of ferromagnetic ma-

terial). The behaviour of the longitudinal and trans-

verse susceptibilities of the drum is seen to show the

same general trend as the apparent susceptibility of the

equivalent spherical shell. Interestingly, the suscepti-

bility of the spherical shell takes on a median value

between those of the drum in its two principal orien-

tations.

The main feature of Fig. 5 is the significantly

anisotropic nature of the apparent susceptibility dis-

played by steel drums as compared to the isotropic

behaviour displayed by the highly symmetric spherical

shell. Not surprisingly, in view of the increased pro-

portion of the walls exposed to a parallel inducing field

in its longitudinal orientation, the longitudinal apparent

susceptibilities dominate the transverse values.

It is recalled that the standard drum has been

chosen to have average parameter values. Since var-

iations in these parameters are not uncommon in

practice, it is useful to explore the individual influence

of each on the apparent susceptibility. The spherical

shell is useful in this connection since the effect of all

parameters has been exposed in the above equations.

However, the spherical shell is significantly more

symmetrical than the drum, and so its use is somewhat

limited for this reason.

It should first be noted that the apparent suscepti-

bility as defined here depends only on the geometry of

the body and is quite independent of scale. This

behaviour has been noted previously in connection

with the spherical shell. Consequently, if all dimen-

sions of the drum (i.e. the radius r, height h and wall

thickness t) are scaled by the same factor, the apparent

susceptibilities remain exactly as shown in Fig. 5. In

view of this behaviour, the only geometrical parame-

Fig. 5. Apparent susceptibility as a function of susceptibility for a standard drum influenced by a longitudinal magnetic field, a standard drum

influenced by a transverse magnetic field and an equivalent spherical shell.
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ters influencing the apparent susceptibility are the wall

thickness ratio defined by t/h and the dimension ratio

defined by r/h.

The effect of wall thickness can be easily antici-

pated. It is well known that the magnetic fields

associated with thin, highly susceptible bodies depend

on the susceptibility-thickness product (again, this

behaviour has been noted in connection with the

spherical shell). Fig. 6 confirms this in the case of a

standard drum with wall thicknesses that span the

expected range associated with these constructions.

The continuous curves show the variation of the

dipole moment with susceptibility-thickness product

for the standard drum with a wall thickness of 1.0 mm

in its two principal orientations. The data plotted with

triangles are relevant to a drum with a wall thickness

of 0.5 mm, while the crosses result from a signifi-

cantly larger wall thickness of 2.0 mm. The agreement

between the data is seen to be quite acceptable.

In view of this behaviour, it is a simple matter to

extend the results for the standard drum as exposed in

Fig. 5 (and expressed by Eq. (9)) to different wall

thicknesses. Consider therefore the problem of finding

the apparent susceptibilities of a drum with standard

external dimensions, but with a wall thickness tV and a
susceptibility kV. According to Fig. 6, this drum will

produce the same dipole moment as a standard drum

with wall thickness t and susceptibility k where

k ¼ kVtV=t

If Eq. (9) expressing the apparent susceptibility of a

standard drum is denoted by

ka ¼ f ðkÞ

this dipole moment is given by

m ¼ f ðkVtV=tÞVHp

Fig. 6. Dipole moment as a function of susceptibility-thickness product for standard drums with wall thicknesses of 1.0 mm (continuous line),

0.5 mm (triangles) and 2.0 mm (crosses).
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where V is the metal volume of the standard drum. It

follows that the required apparent susceptibility is

given by

ka ¼ f ðkVtV=tÞV=VV ð10Þ

where VVis the metal volume of the drum in question.

Recalling that the external dimensions of the two

drums are the same, it follows that for sufficiently

thin walls, the metal volume of the drums can be

expressed approximately as

V ¼ At

and

VV¼ AtV

where A is the surface area of the standard drum.

Consequently, Eq. (10) can be more simply expressed

in the form

ka ¼ f ðkVtV=tÞt=tV

The influence of the dimension ratio is not so easily

accommodated. Because of its symmetry, the spherical

shell has no analogous parameter and so provides no

insight in this regard. It is recalled that the dimension

ratio describes the shape of the drum, and this is one of

the basic factors influencing the apparent suscepti-

bility.

Fig. 7 shows the variation of apparent susceptibil-

ity with susceptibility for two drums with dimension

ratios of 0.3 and 0.4. The dimension ratio of the

standard drum at 0.3378 lies between these two

extremes. Not surprisingly, the figure demonstrates a

decreasing anisotropy in apparent susceptibilities

associated with the more equidimensional drum. Also

obvious is the fact that the transverse apparent sus-

ceptibilities are significantly more affected by the

dimension ratio than the corresponding longitudinal

values.

6. Approximate modelling of drum responses

Due to the complexities of more exact modelling

procedures, it has become common to employ a

variety of equivalent source modelling techniques

Fig. 7. Apparent susceptibility as a function of susceptibility for drums with dimension ratios of 0.3 and 0.4.
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for steel drums (e.g. Emerson et al., 1992; Ravat,

1996). In these techniques, the source body is repre-

sented by conveniently simple forms, e.g. cylindrical

prisms and spheres magnetized in the direction of the

earth’s field. The results are found to predict the form

of measured anomaly profiles satisfactorily. However,

agreement with measured magnitudes is poor so that

an equivalent susceptibility estimated by matching the

measured and modelled responses is generally

employed.

It is informative to review the application of these

techniques in view of their computational efficiency

compared to the exact integral equation method.

Accordingly, Fig. 8 shows a north–south profile over

a vertical standard steel drum computed by a variety

of techniques. The figure shows the total field anom-

aly measured over a drum located 2 m below the

sensor at a location in the southern hemisphere where

the geomagnetic field has an amplitude of 50000 nT,

a declination of 0j and an inclination of � 50j.

Horizontal coordinates in the figure increase north-

wards.

Curve a shows the exact anomaly profile computed

by Phillip’s integral equation technique using 1440

planar surface elements. It displays a typical dipolar

response with a total amplitude in the vicinity of 160

nT.

The first set of approximate profiles (curves b and

c) result from approaches that recognize the true drum

geometry (i.e. a hollow cylindrical prism), but approx-

imate the magnetization by various simplifying

assumptions. The profiles have been computed by

specializing the general expression for the magnetic

field due to the drum, i.e.

HðrÞ ¼ HpðrÞ �
1

4p
j

Z Z
V

Z
MðrVÞ

�jV
1

Ar � rVA
dvV

Fig. 8. Total field magnetic profile over a vertical standard drum buried 2 m below the sensor height computed by (a) the exact integral equation

technique, (b) neglect of demagnetization effects, (c) use of local depolarizing factors, (d) use of the dipole moment due to an equivalent

spherical shell and (e) use of a dipole moment computed from the longitudinal and transverse apparent susceptibilities of a standard drum.
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to the case of an approximating N-sided plane poly-

hedral shell with wall thickness t. This results in

HðrÞ ¼ HpðrÞ �
t

4p

XN
i¼1

j

	 Mni

Z Z
DSi

n̂ �jV
1

Ar � rVA
dsV

�

þMli

XNi

j¼1

l
DCij

l̂ � m̂ij

Ar � rVA
dcV

�
ð11Þ

where DCij is the jth edge of the ith polygonal face

with median surface DSi. Mni and Mli are the normal

and longitudinal components of the magnetization in

the wall of the ith face (Eskola et al., 1993). Eq. (11) is

easily evaluated by identifying the first integral term

as the field due to a uniform double layer on the plane

polygonal surface DSI, and the second as the field due

to a uniform line source on the straight edge DCij.

Curve b is the result of assuming that the secondary

magnetic field is negligible compared to the primary

component so that the magnetization is given by

M ¼ kHp

While the form of this curve reasonably approximates

that of the true response, the true amplitude is seen to

be grossly overestimated. This is understandable bear-

ing in mind that the above assumption neglects

demagnetization completely. While this approach is

used here with a polyhedral shell model of the stand-

ard drum, it can also be implemented by differencing

the responses due to two solid cylindrical prisms with

dimensions equal to those of the inside and outside of

the drum (Ravat,1996).

Curve c results from an attempt to account for

demagnetization. It assumes that the local demagnet-

izing fields associated with a planar polygonal sheet

of the hollow polyhedron are equivalent to that of an

infinite sheet with zero depolarization factor in the

longitudinal direction and unit depolarization factor in

the normal direction. Accordingly, the components of

the magnetization in the directions normal and parallel

to the face are assumed to be given by

Mn ¼
k

1þ k
Hpn

and

Ml ¼ kHpl

where Hpn and Hpl are corresponding components of

the primary magnetic field. Again the form of the

resulting profile (curve c) is seen to provide a good

indication of the shape of the true profile but with the

amplitude remaining excessively large.

The next set of profiles (curves d and e) results

from representing the magnetic effect of the drum by

an equivalent dipole. Accordingly, the anomalous

magnetic field is simply given by

HðrÞ ¼ �j
1

4p
m �jV

1

Ar � rVA

� �

where rV is the position vector of the dipole with

moment m located at the centroid of the drum.

Curve d is the result of approximating the dipole

moment by that of a thin spherical shell with equal

surface area and wall thickness, i.e. a shell with an

equal metal volume to the drum. It is seen to provide a

much improved fit to the theoretical profile than

previous approximations albeit with a somewhat

reduced amplitude.

Concerning the magnitude of the anomaly as seen

on curve d, Fig. 5 shows that in a purely longitudinal

primary field, the dipole moment of a standard drum

is substantially larger than that produced by an equiv-

alent spherical shell. Conversely, in a purely trans-

verse field, the dipole moment of the drum is

correspondingly smaller than that produced by the

shell. It follows that the agreeable fit of curve d to the

true profile in the present case is the fortuitous result

of approximately equal longitudinal and transverse

components of the primary field. Indeed, the notice-

able underestimation of the anomaly magnitude of

curve d reflects the fact that in the present situation,

the drum is exposed to a somewhat larger component

of the primary field in the longitudinal direction than

in the transverse direction.

Finally, curve e is the result of using the longitu-

dinal and transverse apparent susceptibilities com-

puted for the standard drum in the last section. The

longitudinal and transverse components of the equiv-

alent dipole moment are therefore given by

ml ¼ k�lHplV
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and

mt ¼ katHptV

where V is the volume of metal. kal and kat are the

longitudinal and transverse apparent susceptibilities

whose values are taken from Fig. 5.

This last curve shows the best fit to the true

response profile of all the approximations in terms

of both the amplitude and the shape. However, the

amplitude is seen to be somewhat underestimated—a

result of higher multipoles in the response behaviour

that are not accommodated by the apparent suscepti-

bilities. Since the fields due to these multipoles

attenuate much more rapidly than the dipolar effect,

the present approximation can be expected to rapidly

approach the true profile with increasing separation of

the sensor and source body. This condition is clearly

evident on the southern and northern thirds of the

profile, where curves a and e show close agreement. It

is also worth noting that in contrast to the spherical

shell approximation, the agreeable correspondence

between curve e and the true profile can be expected

for all orientations of the drum and primary field.

7. Conclusions

While all the approximations considered in the

present discussion reasonably predict the form of the

total field magnetic profiles measured over a standard

steel drum, only those based on an equivalent spherical

shell and on the numerically computed apparent sus-

ceptibilities predict the amplitudes with any accuracy.

The general magnetic characteristics of a standard

drum are reasonably approximated by those of a thin

spherical shell with equal susceptibility, wall thickness

and metal content. For modelling applications, where

the drum orientation is unknown, this is probably the

most useful approximate model for drum responses.

However, the spherical shell fails to account for the

significant anisotropy in apparent susceptibility dis-

played by the standard drum. Where the orientation of

the drum is known, the use of the individual longi-

tudinal and transverse apparent susceptibilities results

in a significant improvement in the approximate

modelling of drum responses.

Finally, it should be noted that while the above

discussion specifically concerns 205-l steel drums, the

results are directly applicable to drums with different

capacity, provided the geometry, as defined by the

thickness and dimension ratios, remains the same as

those considered here. Typical 60- and 25-l closed

head drums currently manufactured in Australia qual-

ify in this regard. Drums of smaller capacity, however,

generally have significantly larger dimension ratios.
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