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Abstract Sedimentary deposits are often characterized
by various distinct facies, with facies structure relating to
the depositional and post-depositional environments.
Permeability (k) varies within each facies, and mean val-
ues in one facies may be several orders of magnitude
larger or smaller than those in another facies. Empirical
probability density functions (PDFs) of log(k) incre-
ments from multi-facies structures often exhibit proper-
ties well modeled by the Levy PDF, which appears unre-
alistic physically. It is probable that the statistical proper-
ties of log(k) variations within a facies are very different
from those between facies. Thus, it may not make sense
to perform a single statistical analysis on permeability
values taken from a mix of distinct facies. As an alterna-
tive, we employed an indicator simulation approach to
generate large-scale facies distributions, and a mono-
fractal model, fractional Brownian motion (fBm), to gen-
erate the log(k) increments within facies. Analyses show
that the simulated log(k) distributions for the entire
multi-facies domain produce apparent non-Gaussian
log(k) increment distributions similar to those observed
in field measurements. An important implication is that
Levy-like behavior is not real in a statistical sense and
that rigorous statistical measures of the log(k) incre-
ments will have to be extracted from within each indi-
vidual facies.

Résumé Les dépôts sédimentaires sont souvent caracté-
risés par des faciès variés, avec une structure de faciès

associée aux environnements de sédimentation et post-
sédimentaires. La perméabilité (k) varie dans chaque fa-
ciès et la valeur moyenne d’un faciès peut être de plu-
sieurs ordres de grandeur supérieure ou inférieure à celle
d’un autre faciès. Des fonctions empiriques de densité de
probabilité (FDP) des incréments log(k) de structures
multi-faciès présentent souvent des propriétés bien mo-
délisées par la FDP de Lévy, qui apparaît physiquement
non réaliste. Il est probable que les propriétés des varia-
tions de log(k) dans un même faciès sont très différentes
de celles entre les faciès. Ainsi, cela n’a pas de sens de
réaliser une analyse statistique des valeurs de perméabi-
lité provenant d’un mélange de faciès distincts. Nous
avons utilisé, comme alternative, une approche d’indica-
teur de simulation pour générer des distributions de fa-
ciès à grande échelle, et un modèle mono-fractal, le
mouvement brownien fractionnaire (mBf), pour générer
des incréments log(k) à l’intérieur des faciès. Les analy-
ses montrent que les distributions simulées de log(k)
pour l’ensemble du domaine multi-faciès produit des dis-
tributions apparentes non gaussiennes des incréments
log(k) semblables à celles observées dans les mesures de
terrain. Une implication importante est que ce comporte-
ment semblable à celui de Lévy n’est pas réel au sens
statistique et que des mesures statistiques rigoureuses
des incréments log(k) devront être extraites de chacun
des faciès individuels.

Resumen Los depósitos sedimentarios se caracterizan a
menudo por varias facies distintas, cuya estructura está
relacionada con ambientes deposicionales y post-deposi-
cionales. La permeabilidad (k) varía dentro de cada fa-
cies, y los valores medios en una de ellas pueden ser ór-
denes de magnitud superiores o inferiores que los corres-
pondientes a otra. En estructuras multi-facies, las funcio-
nes de densidad de probabilidad (FDP) empíricas de los
incrementos del logaritmo de la permeabilidad, log(k),
exhiben a menudo propiedades que pueden ser modela-
das mediante la FDP de Levy, la cual carece de un signi-
ficado físico evidente. Es probable que las propiedades
estadísticas de las variaciones del log(k) dentro de una
misma facies sean muy diferentes a las existentes entre
facies. Así, puede no tener sentido efectuar un análisis
estadístico sencillo de los valores de permeabilidad obte-
nidos a partir de una mezcla de facies diferentes. Como
alternativa, se ha utilizado un enfoque de simulación in-
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dicadora para generar distribuciones de facies a gran es-
cala, y el modelo mono-fractal del movimiento fraccio-
nal Browniano (mfB) para generar los incrementos de
log(k) dentro de las facies. Los análisis indican que las
distribuciones simuladas de log(k) para todo el dominio
multi-facies producen distribuciones de los incrementos
de log(k) aparentemente no Gaussianas, de forma análo-
ga a lo que se observa en medidas de campo. Una impli-
cación importante es que el comportamiento tipo-Levy
no es real en el sentido estadístico y que hay que efectuar
medidas estadísticas rigurosas de los incrementos de
log(k) dentro de cada facies.

Keywords Facies model · Fractal model · Heterogeneity ·
Hydraulic conductivity · Sedimentary rock

Introduction

Modern statistically-based studies of heterogeneity in
hydraulic conductivity (K) or intrinsic permeability (k)
recognize that K or (natural) log(K) distributions are typ-
ically non-stationary, which means that statistical param-
eters such as the mean and variance depend on position.
This has led to the study of non-stationary processes
with stationary increments (Feller 1968), wherein the in-
crements of log(k) (i.e., differences between log(K) val-
ues measured with a separation, ∆x, are assumed to be
stationary (i.e., for each ∆x chosen, the statistical proper-
ties of the log(K) increments (increments ≡∆log(K)=
log[K(x+∆x)]–log[K(x)]) are independent of position in
the medium). If the probability density functions (PDFs)
of the increments for any given lag are Gaussian, then
the resulting distribution of the log(K) increments over
all lags is given by the Gaussian stochastic fractal known
as fractional Brownian motion (fBm; Mandelbrot and
Van Ness 1968; Hewett 1986; Molz and Boman 1993,
1995; Liu and Molz 1996, 1997a). The so-called scaling
properties of fBm result from the implications of the
classical central limit theorem (Feller 1968). Scaling re-
fers to how the variance of the increments [variance of
∆log(K)] varies with ∆x, with fBm yielding a power-law
variogram of ∆log(K) (Molz et al. 1997).

Numerous studies of log(K) field data have supported
stationarity of the increments (Painter and Paterson
1994; Painter 1995, 1996a,1996b, 2001; Liu and Molz
1997b). However, the calculated PDFs of the ∆log(K)
have typically shown non-Gaussian behavior as charac-
terized by increased peaking around the mean of zero
and more heavy (slowly-decaying) non-Gaussian PDF
tails (Painter and Paterson 1994; Painter 1995, 1996a,
1996b; Liu and Molz 1997b). This and other lines of evi-
dence led Painter and Paterson (1994) to propose the
Levy PDF as a candidate distribution for log(K) incre-
ments. The Levy PDF is a generalization of the Gaussian
distribution, but includes the Gaussian PDF as a special
case (Fig. 1). Moreover, a generalized central limit theo-
rem applies to the Levy family of PDFs, which results in
a class of non-Gaussian stochastic fractals known as

fractional Levy motions (fLm) (Feller 1968; Painter and
Paterson 1994; Samorodnitsky and Taqqu 1994). How-
ever, the Levy PDF has an infinite variance, which leads
to the divergence of all statistical moments of the result-
ing fLm when it is exponentiated to get K itself (efLm).
Many researchers view this behavior as unrealistic phys-
ically (Liu and Molz 1997b). The problem was noted by
Painter and solved in a practical sense by truncating the
Levy PDF being used to generate the fLm. Further recent
study by Lu and Molz (2001) confirms that log(K) incre-
ment PDFs resemble Levy distributions, but after a cer-
tain distance above the mean, have tails that decay too
quickly to maintain Levy behavior. Herein we refer to
such distributions as Levy-like.

Geologists have observed that sedimentary deposits
are often characterized by various distinct facies that
may change abruptly in both the vertical and horizontal
directions, with facies structure relating to the deposi-
tional and post-depositional environments (Davis et al.
1993; Allen-King et al. 1998). Hydraulic conductivity
varies within each facies, and mean values in one facies
may be several orders of magnitude larger or smaller
than those in another facies. In many situations it is pos-
sible that, and perhaps even probable, the statistical
properties of permeability variations within one facies
are very different from those in another facies. In such a
situation it will not make sense to perform a single statis-
tical analysis on permeability values taken from a mix of
distinct facies because the statistical parameters are like-
ly tied to the underlying depositional processes that may
vary greatly between facies. Similar concerns have been
expressed recently by other researchers (Davis et al.
1993, 1997; Allen-King et al. 1998). As an alternative,
we employed the transition probability, Markov ap-
proach with indicator Kriging (Carle and Fogg 1996,
1997; Carle et al. 1998), to simulate large-scale facies
distributions in which a single mean permeability value
was assigned to each facies. To further represent the nat-
ural heterogeneity of sedimentary deposits on an intrafa-
cies scale, we use a mono-fractal model, fractional
Brownian motion (fBm) to represent the log(K) varia-
tions inside each facies with a single Hurst coefficient,
H=0.3, and different means and variances estimated
from the measured log(K) data. Analyses show that the
simulated log(K) distributions for the entire multi-facies
domain produce non-Gaussian log(K) increment distri-

476

Hydrogeology Journal (2002) 10:475–482 DOI 10.1007/s10040-002-0212-x

Fig. 1 An example of Levy probability density distributions, in-
cluding the Gaussian (α=2) limiting case



butions similar to those measured in the field, i.e., they
are Levy-like. Thus, the main objectives of the present
paper are to (1) present new data and data analyses sup-
porting the Gaussian behavior of log(K) increments in
single facies, and (2) show how the superposition of fa-
cies exhibiting Gaussian behavior leads to overall Levy-
like behavior, thus suggesting that the underlying statisti-
cal behavior is not Levy-based after all. Overall, the
study may be viewed as a synergistic union of facies ge-
ology with stochastic hydrology, possibly leading to im-
proved concepts and methodology for simulating trans-
port processes in natural porous media.

As implied by the extensive review of Koltermann
and Gorelick (1996), classifying heterogeneity in sedi-
mentary deposits is not a simple task. In their terminolo-
gy, we are combining “spatial statistical methods” to
generate fractal structure within facies and “sedimenta-
tion pattern imitation methods” to generate facies geom-
etry itself. All of this fits under their category of “struc-
ture imitating methods” for creating maps of heterogene-
ity. However, if the facies geometry were created deter-
ministically based directly on field data and observa-
tions, then we would be combining their categories of
structure–imitating and descriptive methods.

Motivation for Combining Stochastic Facies
and Fractal Models

We conceive of facies in a manner similar to that used by
Allen-King et al. (1998), i.e., “facies commonly are de-
fined on the basis of distinct textural, structural, and/or
lithologic features that reflect changes in transport or de-
positional mechanisms, including changes in flow com-
petence, capacity, and/or variability.” The key property
from our perspective is that a facies reflect the unique
combination of processes through which it was created.
Thus, permeability may be conceived as exhibiting two
gross components of variation: variation between facies
and variation within facies (Goggin 1988).

Previous studies have presented evidence that log(k)
increments (k = intrinsic permeability) within multifa-
cies structure often follow non-Gaussian distributions
that are Levy-like (Painter and Paterson 1994; Painter
1995, 1996a, 1996b; Liu and Molz 1997b). For example,
a k data set from a vertical core of the Page Sandstone
was obtained in the laboratory using a surface gas mini-
permeameter (Goggin 1988). It consists of 2,884 consec-
utive k measurements with half-inch (1.27-cm) spacings.
Recently, Lu and Molz (2001) have concluded that both
the k increments and log(k) increments have non-Gaussian
distributions with heavy, non-Gaussian tails when the en-
tire data set is used for the analysis. (By “heavy tails” we
mean anomalously slow PDF decay towards zero as one
moves away from the mean.) However, under the as-
sumption that permeability is related to at least three of
the primary facies types found in eolian sequences (that
is, grain-flow, wind-ripple, and inter-dune), Goggin
(1988) provided evidence that k in each facies is log-nor-

mally distributed. Therefore, the log(k) increments for
each facies should be approximately normally distribut-
ed. We checked for this behavior using Goggin’s (1988)
data. Shown in Fig. 2 are results for the inter-dune data,
indicating that the cumulative distribution of log(k) in-
crements are well approximated by a Gaussian cumula-
tive distribution function. Rescaled range (R/S) analysis
of log(k) (Fig. 3) also shows that long-range correlated
log(k) structure is found with a Hurst coefficient H=0.39
(Liu and Molz 1996). (“Long-range” means correlation
of ∆log(k) over the entire length of the domain of mea-
surements, which was a 1.4-m length of sandstone core.) 

Recently, field k measurements have been made by
three of the present authors (Castle, Lu, and Molz) and
others using a newly designed drill-hole, gas, mini-
permeameter, with a 15-cm measurement spacing on 
a 6×21-m sandstone outcrop near Escalante, Utah 
(Dinwiddie et al. 2000; Lorinovich et al. 2000; Lu et al.
2000). About 500 k measurements were collected along
three horizontal transects and four vertical profiles.
Among them, two horizontal transects with 269 mea-
surements are located in a bioturbated, shallow-marine,
sandstone that is considered as a single facies. Analysis
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Fig. 2 a Permeability data collected from the inter-dune facies in
eolian sandstone. b The cumulative distribution of the increments
of log(k) indicates the distribution is well fit by a Gaussian distri-
bution

Fig. 3 Rescaled range analysis of log(k) collected from the inter-
dune facies in eolian sandstone. The Hurst coefficient (H) is given
by the slope of the best-fitting straight line



shows that the log(k) increments have a Hurst coefficient
of 0.34 and are also well fit by a Gaussian cumulative
distribution function as shown in Fig. 4. Therefore, we
conclude that there is field evidence for Gaussian behav-
ior of log(k) or log(K) increments, at least within some
individual facies. This is one of the main motivations for
proposing the fractal/facies model. However, more field
data are needed in order to better define the positive as-
pects as well as the probable limitations of this concept.
For example, we expect that post-depositional fracturing
of a particular facies would destroy potential Gaussian
behavior of a property such as the log(k) increments in
the original parent material.

Simulation of Log(K) Increments Using 
the Fractal/Facies Model

In order to illustrate the fractal/facies construction proce-
dure, and to show that an underlying Gaussian log(K) in-
crement structure can give rise to an overall Levy-like
increment structure, the alluvial fan deposits at the 
Lawrence Livermore National Laboratory (LLNL) in the
Livermore Valley of California was selected for study.
This aquifer–aquitard system has been sampled (cored)
and characterized extensively (Thorpe et al. 1990; Carle
1996; Carle et al. 1998; Fogg et al. 1998, 2000). The

system is composed primarily of four different facies:
channel, levee (proximal floodplain), floodplain, and de-
bris flow deposits, with volume fractions of 0.18, 0.19,
0.56, and 0.07, respectively. A facies realization devel-
oped previously and based on the transition probabili-
ty/Markov chain indicator approach (Carle and Fogg
1996, 1997) is presented in Fig. 5. This realization,
which was generated with the program TPROGS, is
comprised of four indicators that represent the four dif-
ferent facies present. Mean lengths of the facies are less
than 0.1 times the model dimensions. Based on field and
laboratory K data, as well as analysis of multiple-well
interference testing, it was shown that the multi-facies
domain has an overall multi-modal frequency distribu-
tion of log(K) as shown in Fig. 6 (Carle 1996; Fogg et al.
2000). The estimated mean values of K are 0.432 m/day
for debris flow deposits, 4.32×10–5 m/day for flood-
plain deposits, 0.173 m/day for levee deposits, and
5.184 m/day for channel deposits. The channel facies
represents the aquifer units, whereas the other facies are
primarily aquitards. Because the variances of log(K) in-
crements for each facies are needed as input in a fractal
generation model, they are roughly estimated from Fig. 6
first, that is, 0.50, 0.25, 0.1, 0.06 for floodplain, levee,
channel, and debris flow, respectively. In the following
fractal log(K) realization procedure, the variance for
each facies is adjusted so that the variance of the result-
ing log(K) simulation approximately matches that of the
log(K) frequency for each facies in Fig. 6. 

Given a mean and a roughly estimated variance for
the log(K) increments for each facies as input, and after
several trials, a 3-D fBm log(K) realization was generat-
ed for each facies by using the successive random addi-
tions algorithm found in Lu and Molz (in revision), and
available from the authors upon request. Each of these
realizations has a Hurst coefficient H=0.3 that is near the
center of reported H values for log(K) (Neuman 1990),
and a mean and variance of log(K) corresponding to
each individual facies. Thus, a total of four 3-D fBm re-
alizations, one for each facies, were generated. Each
fractal realization has the same resolution (nodes and
node spacing) as the facies realization. According to the
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Fig. 4 The cumulative distribution of the increments of log(k)
collected from a shallow marine sandstone in Utah. Once again
the CD is well fit by a Gaussian distribution

Fig. 5 Example of a facies dis-
tribution generated with the
transition probability, Markov
approach (from Carle et al.
1998)



spatial locations and facies types, K values selected from
the corresponding fractal realization are assigned within
each facies of the previously developed facies realiza-
tion. The resulting new fractal/facies K realization,
which preserves the facies structure, now has irregularity
and scaling within each facies that is characteristic of
exponentiated fBm, as illustrated in Fig. 7.

Analysis of the Simulated Multi-Facies Log(K) Data

Statistical Analysis
For the purpose of comparing properties of the simulated
K values with the measured values, a total of 40 sets 
of log(K) values along the vertical direction, i.e.,
40×81=4,050 simulated data points, are extracted from
the fractal/facies log(K) realization. The result of a fre-
quency analysis presented in Fig. 8 shows that the 4,050
simulated log(K) values have an overall multi-modal fre-
quency distribution similar to the measured values
shown in Fig. 6. Thus, the global properties of the mea-
sured data are reproduced quite easily by the simulation.

Further analysis shows that the log(K) increment PDF
for the entire simulated data set, as shown in Fig. 9,
takes on a distinctly non-Gaussian appearance with

peaking around the mean value of zero and heavy tails,
even though the underlying statistics are Gaussian. Qual-
itatively similar to the observations of Lu and Molz
(2001), the tails decay relatively quickly to small values
at a sufficient distance above and below the mean. Both
of these attributes are observed commonly in multi-
facies experimental data sets (Painter 2001). The best fit-
ting Gaussian PDF with a mean of 0 and a variance of
3.16 does not match the central part of the sample distri-
bution well, and the tails are too thin (Fig. 9). The over-
all distribution definitely takes on a Levy-like appear-
ance, with a Levy PDF having a scale parameter of 0.786
and a stable index of 1.35 (based on the Fama and Roll
(1971) estimator) fitting the entire central part of the
sample PDF rather well. However, examination of the
tail behavior of its cumulative distribution function
(CDF), as illustrated in Fig. 10, shows that the sample
CDF falls between the Gaussian and Levy cases, as one
would expect given the method of construction. 

To relate the Levy-like appearance more precisely to
the construction procedure, it is important to note that
most of the increments of the resulting log(K) simulation
are those random numbers that are generated from one of
the Gaussian generators representing a single facies in
the fractal generation model. Only a few of the incre-
ments resulted from the large log(K) variations associat-
ed with the facies interfaces. To understand why the
combination of these increments results in the Levy-like
PDF shown in Fig. 9, let us superimpose and re-normal-
ize four Gaussian distributions with four different vari-
ances (σ1=0.44, σ2=0.70, σ3=0.89, σ4=2.53), which re-
sults in the Levy-like distribution shown in Fig. 11. The
tails of the Levy-like distribution are dominated by the
Gaussian distribution with the largest variance, σ4=2.53
whereas the center part is mainly controlled by the
Gaussian distribution with the smallest variance. Mathe-
matically, the resulting PDF f=1/4 (f1+f2+f3+f4), where
f1, f2, f3, and f4 represent four different Gaussian distri-
butions. If the large jumps over the different facies inter-
faces are considered, the tails will be thicker. Therefore,
the magnitude of the difference of variances of the
Gaussian PDFs and the degree of the mixture of different
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Fig. 6 Frequency distributions derived from sample data [log(K)]
for four different facies of an alluvial fan: floodplain, levee, chan-
nel, and debris flow (from Fogg et al. 1998)

Fig. 7 Example of a log(K) re-
alization showing the facies
and hydraulic conductivity dis-
tribution generated with the
combined fractal/facies ap-
proach. Mean K values for the
four facies types are indicated
on the diagram



facies determine how long and thick the tails are. This
implies that the tail behavior may vary from site to site,
which is supported by two data sets studied in detail by
Lu and Molz (2001).

Scaling/Correlation Analysis
Previously published data analyses (Molz and Boman
1993, 1995; Liu and Molz 1997a, 1997b; Boufadel et al.
2000; Lu and Molz 2001; Painter 2001), and the present
analysis of Goggin’s (1988) data, show that log(K) or
log(k) measurements collected from a mix of various
types of facies often display a fractal-like structure. It is
interesting to see whether a mix of fBm, such as our
fractal/facies simulations, still preserves fractal-like

long-range correlation in the resulting log(K). Accord-
ingly, ten sets of data, each having 81 data points, were
extracted along the vertical direction from the log(K)
simulation shown in Fig. 7. Rescaled range (R/S) analy-
sis (Liu and Molz 1996) was then applied to each set of
data. The average of ten R/S analyses shown in Fig. 12
indicates approximate long-range correlation, with a
Hurst coefficient H=0.33 (based on least-squares fitting;
Bhattacharyya and Johnson 1977) that is slightly larger
than the value of 0.3 selected as input for the permeabili-
ty realizations of each facies. The R/S analysis trends
well along a straight line, with some of the smaller scale
noise probably caused by the mix of facies.
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Fig. 8 Synthetic frequency distribution of log(K) derived from the
hydraulic conductivity realization shown in Fig. 7. The results
compare well with those in Fig. 6

Fig. 9 Probability density distributions of the increments of
log(K) derived from the hydraulic conductivity realization shown
in Fig. 7. The best-fitting Levy probability density function and
the best-fitting Gaussian distribution are shown also

Fig. 10 Diagram showing the tail thickness of the simulated hy-
draulic conductivity increments and the best-fitting Gaussian and
Levy distributions

Fig. 11 Illustration of the superposition and re-normalization of
four different Gaussian distributions resulting in a Levy-like dis-
tribution

Fig. 12 Rescaled range analysis of data derived from the log(K)
realization shown in Fig. 7. The Hurst coefficient (H) is given by
the slope of the best-fitting straight line



Discussion and Conclusions

A model for natural heterogeneity, called herein the
fractal/facies model, is proposed. This model may be
viewed as a union of the geologic concept of facies with
stochastic hydrology based on the mathematics of non-
stationary stochastic processes that have stationary incre-
ments. In order to apply the model, one should deal with
a heterogeneous geologic property whose distribution
has a structure that can be subdivided into one or more
facies that each reflect a unique combination of forma-
tion (genetic) processes. Furthermore, the property incre-
ment PDF’s within each facies should approximate a
Gaussian distribution. When such conditions are met, we
have shown herein that simulated property distributions,
such as log(K) increment distributions, will produce non-
Gaussian, multi-peaked frequency distributions that are
similar to those observed in multi-facies data sets. In ad-
dition, increment distributions will tend to be Levy-like,
with peaking around the mean and tails more heavy than
Gaussian. Careful examination of the tail behavior, how-
ever, will show that it lies between the Gaussian and
Levy cases, similar to the results of the more abstract
analysis presented recently by Painter (2001). At the
same time, fractal-like structure, as reflected by variance
scaling and long-range correlation, is maintained in the
simulated data sets. This type of behavior was shown
previously to hold for the MADE data set (Lu and Molz
2001), which is a multi-facies type, although the facies
structure is not known in detail. Both the present analy-
sis and that of Painter (2001) are consistent with empiri-
cal ∆log(K) PDFs falling between the Gaussian and
Levy cases. A potentially important difference, however,
is the implication of our study, or at least the strong sug-
gestion, that Levy-like behavior is an artifact in a statisti-
cal sense and that rigorous statistical parameters will
have to be extracted from within each facies separately
in a multi-facies domain.

Although a stochastic facies model is used in this
study, a stochastic approach may not be necessary in
some cases if sufficient information about facies distri-
bution is available. In such a case, a deterministic fa-
cies model may be appropriate. Both stochastic and de-
terministic approaches to facies architecture provide a
way to reproduce large-scale structure distributions in
the heterogeneous property. Thus, the facies structure
serves as a way to condition the fractal so that large-
scale property variations are included in the overall
model.

Such conditioning may be very important from the
transport point of view, because multi-facies structures,
which contain various distinct facies commonly having
mean permeability values that differ by several orders of
magnitude, will play a primary role in solute migration
(LaBolle and Fogg 2001). However, it is important also
to have permeability variations within facies that exhibit
realistic variation and scaling because such variations
may play an important role in forming potential prefer-
ential flow pathways through facies.

The proposed fractal/facies model for simulation of K
or k distributions appears sufficiently realistic to justify
further study and testing. More field data sets are needed
to see if increment distributions within pure facies are
commonly Gaussian, and to further study the implica-
tions if they are not Gaussian. The advantage of using
the fBm model to generate log(k) or log(K) distributions
within each facies is that the fBm model is simple and
well understood, and is supported by the data studied
herein. A possible alternative would be to use a multi-
fractal model for intra-facies permeability distributions if
permeability data collected within facies were found to
exhibit multi-fractal properties (Boufadel et al. 2000).
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