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S U M M A R Y
The time-domain surface electric fields produced by a step current in collocated grounded
sources can be represented by an apparent resistivity tensor defined by the relationship between
the measured (time-varying) electric field and a reference field equal to the steady-state current
density in a uniform half-space. A magnetic field response tensor is similarly defined for the
horizontal components of the magnetic field. The ‘magnetic field apparent resistivity tensor’ is
derived from a linear combination of the contractions of the outer product of the magnetic field
response tensor. Frequency-domain apparent resistivity tensors are derived from the Laplace
transforms of the corresponding time-domain electric and magnetic field response tensors. Both
the frequency and time-domain tensors are independent of the source orientation where the
sources can be approximated as (infinitesimal) dipoles. A simple combination of the frequency-
domain (impulse response) tensors can be used to derive the controlled source magnetotelluric
(CSMT) impedance tensor.

The magnetic field apparent resistivity tensor is a useful representation of the conductivity
structure only where the source–receiver offset is much less than the diffusion or skin depth
and behaves in a similar way to the ‘early-time’ apparent resistivity traditionally used to
represent time-domain electromagnetic data. Numerical modelling results demonstrate that the
(horizontal) magnetic field apparent resistivity is insensitive to the localized 3-D conductivity
structures that are typically the target of exploration surveys. In contrast, the electric field
apparent resistivity tensor depends sensitively upon the conductivity structure and is well
behaved over the entire time or frequency range used in long-offset transient electromagnetic
or CSMT measurements. By using the electric field apparent resistivity tensor, ‘source effects’
that hinder a conventional impedance tensor analysis of CSMT data can be avoided. Images of
simple 3-D structures created from the invariants of the electric field apparent resistivity tensor
(in either the time or frequency domain) provide a useful representation of the subsurface
conductivity structure despite the simplicity of this imaging procedure. These images are
independent of the coordinate system used to express the data and are, to a good approximation,
independent of the current source orientations.
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I N T RO D U C T I O N

Historically, the first step towards determining the conductivity
structure in electromagnetic (EM) exploration surveys has been to
transform measurements of the surface electric or magnetic fields
into an apparent resistivity. Ideally, the apparent resistivity will pro-
vide a qualitative picture of the subsurface resistivity distribution
that can be interpreted with a fair degree of confidence. It may also
be regarded as a primitive, first attempt at inversion, which can be
used as the starting point for a more sophisticated inversion. A good
example of the use of apparent resistivity is provided by DC re-
sistivity measurements. In the DC case, the apparent resistivity is

defined by extending the laboratory definition of the resistivity of a
homogenous material to situations where the applied current density
is non-uniform (Keller & Frischknecht 1966; Bibby 1977; Zohdy
1978). In essence, the apparent resistivity involves a normalization
procedure, which, for DC resistivity and active source EM methods,
attempts to compensate for the effects of source–receiver geometry
and source strength (Spies & Eggers 1986).

For frequency or time-domain EM (TDEM) techniques, the fields
measured at the surface of a uniform half-space are non-linear func-
tions of time (or frequency) and resistivity. Different choices of nor-
malization for these techniques are possible. The approach usually
taken in TDEM methods is to define the apparent resistivity from
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the asymptotic early- and late-time behaviour of the homogenous
half-space response for a particular component of the EM field (e.g.
Spies & Frischknecht 1991). However, definitions of apparent resis-
tivity that are based on the behaviour of a single EM field component
perform poorly in 3-D situations as they depend on the polarization
of the EM field.

The dependence of the apparent resistivity on polarization also
occurs in DC resistivity surveys. This led Bibby (1977, 1986) to
introduce the concept of an ‘apparent resistivity tensor’ to represent
the electric field data produced in ‘multiple-source bipole–dipole’
surveys (e.g. Bibby et al. 1984; Risk et al. 1993). The DC appar-
ent resistivity tensor provides a compact representation for the data
produced by collocated grounded sources and a simple way of visu-
alizing the surface electric field in 3-D situations (Bibby & Hohmann
1993). At large source–receiver offsets, where the current sources
(grounded bipoles) can be approximated as (infinitesimal) dipoles,
the apparent resistivity tensor is independent of source orientation
(Bibby 1994; Li & Pedersen 1994). By using coordinate-invariant
apparent resistivities derived from the tensor components, data anal-
ysis and interpretation can be conducted in a way that is independent
of source orientation and the coordinate system used to express the
data.

The same approach can be applied in the time domain where the
electric fields produced by collocated grounded sources with differ-
ent orientations can be represented by a time-varying or ‘instanta-
neous apparent resistivity tensor’ (Caldwell & Bibby 1998). In con-
trast to the early- and late-time apparent resistivities that have been
used to represent TDEM or long-offset transient EM (LOTEM) data
(e.g. Spies & Frischknecht 1991; Strack 1992; Hördt et al. 1992), the
instantaneous apparent resistivity tensor is a well-behaved function
of time. The instantaneous apparent resistivity differs from the early-
and late-time representations in two essential ways. First, the instan-
taneous apparent resistivity is defined in terms of the total electric
field vector rather than the transient part of the signal and, secondly,
the analysis requires data from sources with different orientations.

By analysing the total electric field vector in a TDEM survey
we are able to reintroduce the mathematical device used in DC re-
sistivity methods of normalizing the measured electric field data
with respect to the DC (or steady-state) current density in a uni-
form half-space. In the ‘late-time’ limit the instantaneous apparent
resistivity tensor is equal to the DC apparent resistivity tensor. Time-
dependent coordinate-invariant apparent resistivities derived from
the tensor have a number of useful properties and can be used to
create (distance–time) images of simple 3-D structures that show
the main features of the subsurface resistivity structure despite the
simplicity of this procedure (Caldwell & Bibby 1998).

In this paper, we will extend this method of analysis to the hori-
zontal components of the magnetic field and show how a magnetic
field apparent resistivity tensor can be derived from what we will call
the ‘magnetic field response tensor’. By introducing corresponding
frequency-domain tensors, we are then able to analyse the relation-
ship between the grounded source tensors and the magnetotelluric
impedance tensor.

T I M E D O M A I N T E N S O R S

The instantaneous apparent resistivity tensor

A detailed discussion of the instantaneous apparent resistivity tensor
is given in Caldwell & Bibby (1998). We will briefly outline the key
results from this paper below.
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Figure 1. (a) Source and receiver configuration used in ‘scalar’ CSMT and
LOTEM surveys where AB is the grounded source bipole. The electric field is
measured at the point P using a pair of short orthogonal dipoles (typically 50–
100 m long) as illustrated. The components of the magnetic field are normally
measured using sensitive induction coils. (b) Source–receiver configuration
for a multiple-source DC resistivity or ‘tensor’ LOTEM survey where three
grounded bipoles (AB, BC and CA) arranged in a triangle are used as current
sources. The instantaneous apparent resistivity tensor, represented by the
ellipse, is determined from measurements of the electric field vectors arising
from each source, the geometry of the array, and the magnitude of the current
flowing in each source. The ‘total field apparent resistivities’ (ρAB, ρBC and
ρCA) given by the ratio of |E|/|J| (Zohdy 1978) arising from each source are
plotted (schematically) as vectors in the direction of the measured electric
field produced by the corresponding source bipole.

Where the resistivity distribution is 3-D, more than one EM field
polarization is required to completely characterize the response.
This can be achieved by using collocated grounded sources with
different orientations as illustrated in Fig. 1. The time-varying elec-
tric fields produced by such an arrangement can then be compactly
represented by a time-dependent apparent resistivity tensor defined
by the relationship

E(t) = ρa(t)J (1)

between the electric field E(t) measured at a time t and the DC cur-
rent density J in a uniform half-space corresponding to each current

C© 2002 RAS, GJI, 151, 755–770



Controlled source resistivity tensors 757

source. The vector field J provides a time-independent method of
normalizing the measured electric fields for the effect of source
strength and geometry. For the situation shown in Fig. 1, the DC
current density or ‘source field’ caused by the grounded bipole AB
is given by

JAB = I
(
rA

/
r 3

A − rB

/
r 3

B

)/
2π. (2)

If the source–receiver offset is much greater than the bipole length
(r = |r | � |rA − rB|) the source can be approximated by an in-
finitesimal dipole, which is characterized by its dipole moment I ds,
where I is the current and the dipole is oriented in the direction of the
vector ds. Note that J contains an implicit time dependence since
the current is turned on at t = 0. This dependence can be made
explicit by writing

J(t) = U (t)J, (3)

where U (t) is the unit (or Heaviside) step function.
Two different source orientations are required to determine the

components of the apparent resistivity tensor. In the 3-D case, the
tensor is non-symmetric and has three coordinate invariants. These
invariants, along with a fourth parameter that depends on the co-
ordinate system, express the information contained in this second-
rank 2-D tensor. At any given instant the tensor can be represented
graphically as an ellipse. This ellipse shows the locus of the tip of
the electric field vector as a unit magnitude DC current density ro-
tates through 360◦. Thus, at each observation point and at each time
instant we can represent our measurements by the ‘apparent resis-
tivity ellipse’ as illustrated in Fig. 1. The properties of the apparent
resistivity tensor ellipses are discussed in detail in Bibby (1986).

The lengths of the major (ρmax) and minor (ρmin) axes of the ap-
parent resistivity ellipse correspond to two of the three coordinate
invariants and define the ‘principal’ axes and values of the tensor.
The third invariant corresponds to the angle between the current
density J and the electric field when the electric field lies in the di-
rection of the principal axes. The orientation of the ellipse major axis
corresponds to the single coordinate-dependent parameter needed
to complete the definition of the tensor. Functions of the invariants
are also coordinate invariant. In particular, the coordinate-invariant
apparent resistivity

P2(t) = {[ρmax(t)ρmin(t)]}1/2 = {det[ρa(t)]}1/2 (4)

is the radius of the circle that has the same area as the ellipse. This
parameter has a number of useful properties that gives it a special
role in the analysis.

In a uniform half-space of resistivityρ, the instantaneous apparent
resistivity tensor is symmetric and is most naturally represented in
a polar coordinate system centred on the sources. In this system of
coordinates the tensor takes the simple form

ρa(t) =
[
ρrr ρrθ

ρθr ρθθ

]
= ρ

[
1 − f (r/δ)/2 0

0 1 + f (r/δ)

]
, (5)

where the subscripts denote the radial (r ) and tangential (θ ) compo-
nents, r is the source–receiver separation and f (r/δ) is a function
that expresses the time dependence of the electric field (Caldwell &
Bibby 1998). For a step current switched on at t = 0 the function
f (r/δ) is given by

f (r/δ) = erf(r/δ) − (4/π )1/2(r/δ) exp[−(r/δ)2], (6)

where δ has the dimensions of distance and is given by

δ = (4ρt/µ0)1/2, (7)

t is the time (or ‘delay’) after the current is switched on and µo is the
free space magnetic permeability (e.g. Spies & Frischknecht 1991).

The time behaviour of the coordinate-invariant apparent resistiv-
ities in a half-space is shown in Fig. 2. Note that the value of P2(t)
remains almost constant over the entire time interval, the maximum
difference between the half-space resistivity and P2(t) being ∼6 per
cent. It is this nearly ideal time behaviour that gives P2 its special
role.

In a half-space of resistivity ρ, the ‘diffusion depth’

δTD = δ/
√

2 =
√

2ρt

µ0
(8)

provides a measure of the depth to which a surface change in the EM
field will propagate in a time t. In heterogeneous earth the diffusion
depth can be used as a measure of the depth of detection by replacing
ρ in eq. (8) with an apparent resistivity (Raiche & Gallagher 1985).
This measure of the detection depth can be refined by integrating
the ‘diffusion velocity’ (∂δTD/∂t) to give an ‘apparent depth’

da(t) =
∫ t

0

∂δTD

∂t
dt (9)

(Caldwell & Bibby 1998). An example of the application of this
methodology is described in Caldwell et al. (1999).

Magnetic field response tensor

For a current source turned on abruptly at t = 0, the relationship
between the observed (time-varying) horizontal magnetic field com-
ponents and the current sources can also be written in terms of a
tensor relationship between the measured horizontal magnetic field
and the uniform half-space DC current density J at the same point.
That is, we can write

H(t) = ξ(t)J, (10)

where H(t) is the measured horizontal magnetic field and ξ(t) is the
‘magnetic field response tensor’. For (infinitesimal) dipole sources,
ξ(t) is independent of the source orientation.

The magnetic field response tensor for a dipole source on the
surface of a uniform resistivity half-space can be derived from ex-
pressions given in Ward & Hohmann (1988). In a polar coordinate
system (centred on the source dipoles)

ξ(t) = (r/4)

[
0 2(I0 + 3I1)

−(I0 + I1) 0

]
exp[−r 2/(2δ2)], (11)

where I0(r 2/2δ2) and I1(r 2/2δ2) are modified Bessel functions of
the second kind. The magnetic field response tensor has the dimen-
sions of distance and has an implicit dependence upon the resistivity
through the parameter δ (eq. 7). At early times (t → 0+), or equiv-
alently where the source–receiver offset is much greater than the
diffusion depth (r/δTD � 1), the magnetic field response tensor is
linearly proportional to δ and has the simple antidiagonal form

ξ(t → 0+) = (δ/
√

π )

[
0 2

− 1
2 0

]
, (12)

reflecting the orthogonality of the electric and magnetic fields in
a uniform half-space. This tensor may also be represented by an
ellipse that has its major axis oriented radially with respect to the
source dipoles.

In the DC limit (t → ∞) or equivalently where the source–
receiver offset is much less than the diffusion depth (r/δTD � 1),
the horizontal components of the magnetic field measured on the
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Figure 2. Coordinate-invariant apparent resistivities derived from the instantaneous apparent resistivity tensor (after Caldwell & Bibby 1998). The solid lines
show the ρmax, ρmin and P2 invariants. The early- and late-time apparent resistivities (ρearly and ρlate) derived from the ‘transient part’ of the electric field are
shown as grey dashed lines. The magnetic field determinant apparent resistivity ρdet ξ (t) is also shown as dashed line. In a uniform half-space ρdet ξ (t) is equal
to the P2 apparent resistivity invariant of ρH(t).

surface of a homogenous half-space are independent of the resistiv-
ity (e.g. Edwards & Nabighan 1991). In this limit the magnetic field
response tensor

ξ(t → ∞) = (r/2)

[
0 1

− 1
2 0

]
(13)

only depends on the distance between the (dipole) sources and the
receiver.

Magnetic field apparent resistivity tensor

The half-space behaviour of the magnetic field in the DC limit means
that a definition of apparent resistivity based on the magnetic field
response tensor is only possible at early times. The relationship be-
tween ξ(t → 0+) and the half-space resistivity (eq. 12) is quadratic
and different definitions of apparent resistivity are possible accord-
ing to the quadratic function chosen. For example, the determinant
of ξ in a uniform half-space at early times

det[ξ(t → 0+)] = δ2/π = 4ρt/(µ0π ) (14)

is linearly proportional to the half-space resistivity and can be used
to define a coordinate-invariant magnetic field apparent resistivity:

ρdet ξ (t) = (µ0π/4t) det[ξ(t)], (15)

which is plotted in Fig. 2. Note that ρdet ξ is only an accurate mea-
sure of the half-space resistivity in the early-time region, i.e. where
r/δTD � 1.

Apparent resistivities can also be derived directly from the squares
of the individual components of ξ(t) in the same way that apparent
resistivities are formed from the individual components of the MT
impedance tensor. However, the matrix of the component apparent
resistivities derived in this way does not behave as a tensor when the
coordinate system is transformed. To develop an apparent resistivity
tensor for the magnetic field we must find a quadratic function of
ξ(t) that transforms as a second-rank tensor and, by analogy with
the electric field apparent resistivity, has a determinant invariant that
gives the resistivity tensor of a uniform half-space at early times.
As we show in Appendix A, the tensor given by

ρH(t) = −(µ0π/4t)[tr(ξ)ξ − ξtξ], (16)

(in matrix notation) has these properties. We will call ρH the ‘mag-
netic field apparent resistivity tensor’. This tensor form is (by con-
struction) non-symmetric and has been chosen so that

P2(t) = {det[ρH(t)]}1/2 = ρdet ξ (t) (17)

in the 3-D case.
The properties of ρH can also be described using the concept

of an apparent resistivity ellipse. For example, in a polar coordi-
nate system, the early-time form of ρH in a uniform half-space of
resistivity ρ

ρH(t → 0+) =
[
ρrr ρrθ

ρθr ρθθ

]
= ρ

[
1
4 0

0 4

]
(18)
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Figure 3. (a) Time-domain magnetic field apparent resistivity sounding
curves calculated for a layered half-space at four different locations (source–
receiver offsets labelled in km). (b) The same four curves plotted as functions
of apparent depth. The dashed line in (b) shows the resistivity depth structure
of the layered half-space consisting of 100 and 10 � m layers, 0.8 and 0.7 km
thick (respectively) overlying a 1000 � m substratum.

is similar to the electric field apparent resistivity tensor (eq. 5), the
major axis of the apparent resistivity being aligned tangentially with
respect to the source dipoles.

Measurements of the magnetic field are usually made with induc-
tion coils so that the quantity measured is −∂B/∂t rather than H.
However, since J is independent of time, the same argument used
to derive the expressions for the apparent resistivity in eqs (15) and
(16) can also be used to express the apparent resistivity directly in
terms of the measured quantities ∂B/∂t . The only differences in-
troduced into eqs (15) and (16) are that the scaling factor changes
from (µ0π/4t) to (µ0π t) and that the response tensor ξ is replaced
by its time derivative ∂ξ/∂t .

Examples of magnetic field apparent resistivity (P2) sounding
curves (computed from calculations of ∂B/∂t) in a layered half-
space are shown in Fig. 3. In contrast to the electric field apparent
resistivity P2, the corresponding magnetic field apparent resistivity
reflects the resistivity depth structure only in the early-time region
where r � δTO, i.e. in the time interval before the influence of the
source has had time to diffuse outward to reach the measurement
site. At late times the apparent resistivity falls to very small values
as the induction or ‘eddy’ currents present at early times decay to
insignificant levels. This is reflected in the apparent depth curves
(Fig. 3) computed using the P2 invariant of ρH as the measure of
resistivity in eq. (9). As can be seen in Fig. 3(b), the apparent depth
is effectively limited by the rapid decrease in the apparent resistivity

outside the early-time region. This limit depends upon the source–
receiver offset and the (unknown) conductivity structure, which will
usually be 3-D.

F R E Q U E N C Y D O M A I N T E N S O R S

The grounded source electric and magnetic field (step function)
responses in the time domain are usually derived from inverse
Laplace transforms of the corresponding frequency-domain impulse
response functions (e.g. Wait 1961; Ward & Hohmann 1988). Con-
versely, the frequency-domain tensors (or transfer functions) corre-
sponding to ρa(t) and ξ(t) may be derived from the Laplace trans-
form relationships

L[E(t)] = Ê(s)/s (19)

and

L[H(t)] = Ĥ(s)/s, (20)

between the time-domain step function responses E(t) and H(t) and
the frequency-domain impulse responses Ê(s) and Ĥ(s), where s
is the ‘complex frequency’ and L is the Laplace transform oper-
ator (e.g. Spiegel 1968). Defining the frequency-domain (impulse
response) tensors ρ̂a(s) and ξ̂(s) by the relations

Ê(s) = ρ̂a(s)J (21)

and

Ĥ(s) = ξ̂(s)J, (22)

where J is equal to the DC current density, ρ̂a(s) and ξ̂(s) are ob-
tained by Laplace transforming the time derivative of the corre-
sponding step function response; i.e.

Ê(s) = sL[E(t)] = sL[ρa(t)J]

= L[∂ρa(t)/∂t]J + ρa(t → 0+)J (23)

and

Ĥ(s) = sL[H(t)] = sL[ξ(t)J]

= L[∂ξ(t)/∂t]J + ξ(t → 0+)J, (24)

where the integration constants ρa(t → 0+) and ξ(t → 0+) repre-
sent the effect of the impulse in the time derivative at t = 0 (e.g.
Spiegel 1968). Thus

ρ̂a(s) = L[∂ρa(t)/∂t] + ρa(t → 0+) (25)

and

ξ̂(s) = L[∂ξ(t)/∂t] + ξ(t → 0+). (26)

The integration constant ρa(t → 0+)J on the right-hand side of
eq. (23) has a simple physical interpretation. This term represents the
electric field produced by the current induced at the Earth’s surface
by the abrupt change in the time derivative of the magnetic field in
the insulating half-space above the Earth. Thus, on the timescales
used in TDEM (where we can neglect displacement currents), the
electric field or corresponding apparent resistivity is discontinuous
at the instant t = 0 when the current is turned on (or off) at the source.
In contrast, the corresponding term ξ(t → 0+)J for the horizontal
magnetic field response (eq. 24) is zero and the horizontal magnetic
field will be continuous at t = 0. However, ∂H(t)/∂t , and hence
∂ξ(t)/∂t , will be discontinuous at this point.

For a harmonic excitation (i.e. where J = JDCeiωt ) we can make
the substitution s = iω, where ω = 2π/T is the angular frequency
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and T is the period, and write the frequency-domain impulse re-
sponse tensors in terms of the frequency ω. Hereafter we will drop
the circumflex (ˆ), which we have used to distinguish the impulse
response from that of the step response.

Electric field apparent resistivity tensor

In a half-space with uniform resistivity ρ the frequency-domain
apparent resistivity tensor in polar coordinates is given by

ρa(ω) = ρ

[
1 − g(ikr )/2 0

0 1 + g(ikr )

]
, (27)

where

k = (−iµ0ω/ρ)1/2 (28)

is the wavenumber in a uniform half-space and

g(ikr ) = [1 − (ikr + 1)e−ikr ] (29)

is the frequency-domain impulse response function equivalent to
the step function response f (r/δ) in the time domain, i.e.

f (r/δ) = L−1[g(s)/s] (30)

(e.g. Kaufman & Keller 1983; Ward & Hohmann 1988). The short-
period (T → 0 or ω → ∞) and long period (T → ∞ or ω → 0)
limits are given by

ρa(ω → ∞) = ρ

[
1
2 0

0 2

]
(31)

and

ρa(ω → 0) = ρ

[
1 0

0 1

]
, (32)

which have the same forms as the corresponding time-domain limits
(Caldwell & Bibby 1998). Although ρa(ω) is complex in the general
case, in these two limits ρa(ω) is real and the measured electric field
is in phase with the source current.

Coordinate invariants of complex tensors

Like the MT impedance tensor the frequency-domain apparent re-
sistivity tensor is complex. This makes its representation in terms
of coordinate invariants more complicated than in the time domain.
In general, ρa(ω) will have four independent complex components
that express the magnitude and phase relationship between the mea-
sured electric field vector and the uniform half-space current density
J representing the current source. Physically, this is an expression of
the elliptically polarized electric field that is produced by a grounded
source when the conductivity distribution is 3-D.

The real and imaginary parts of ρa(ω) are non-symmetric tensors
in their own right (although related by a Hilbert transform) with each
part of the tensor having three coordinate invariants, which may each
be represented by an ellipse. Thus any complex frequency second-
rank tensor may be represented graphically as a pair of ellipses. A
seventh ‘mixed’ invariant links the two parts of the tensor as Szarka
& Menvielle (1997) have pointed out for the MT impedance tensor.
This invariant has a simple geometrical interpretation in terms of
the ellipse pair representing the complex tensor and is most easily
thought of as the angle between the major axes of the ellipses. The
ellipse axes will be parallel only in situations with a high degree of
symmetry, e.g. where the conductivity structure is 1-D. The single

coordinate-dependent parameter needed to complete the description
of the complex tensor can be taken to be the orientation of the major
axis of one of the ellipses.

Transforming from the time-domain to the frequency-domain im-
plicitly includes information concerning the rate of change of the
time-domain tensor. It is this information that gives rise to the ‘extra’
four invariants found in the frequency-domain form of the tensor.

Although other graphical representations of the invariants of com-
plex (frequency-domain) tensors are possible (Szarka & Menvielle
1997; Weaver et al. 2000), we will describe the coordinate invariants
of the apparent resistivity tensor in terms of properties of the ellipses
representing the real or ‘in-phase’ and the imaginary or ‘quadrature’
parts of the tensor with two exceptions discussed later. Using this
representation we are able to visualize the apparent resistivity ten-
sor in a way that reflects the underlying conductivity distribution
and apply the techniques developed for the time-domain apparent
resistivity tensor (Caldwell & Bibby 1998).

In the discussion that follows we will specify which part of the
tensor we are dealing with in the subscript of the invariant concerned.
For example, we will write the invariants of the real and imaginary
tensors corresponding to P2 as

P�2 = det(�[ρa(ω)])1/2 (33)

and

P�2 = det(�[ρa(ω)])1/2. (34)

We will also use the ‘mixed’ invariant given by the magnitude of the
determinant of the complex tensor

ρdet = |det[ρa(ω)]|1/2, (35)

which is a function of all seven invariant parameters described above.
Various coordinate-invariant ‘phases’ can also be defined from ratios
of the real and imaginary tensor invariants. In particular, we will
show examples of the phases given by the ratios of the determinant
invariants

�0 = 1

2
arctan{�(det[ρa(ω)])/�(det[ρa(ω)])} (36)

(another mixed invariant) and

�2 = 1

2
arctan{det(�[ρa(ω)])/ det(�[ρa(ω)])}, (37)

the latter being a measure of the relative areas of the ellipses repre-
senting the in-phase and quadrature tensors.

Electric field apparent resistivity tensor invariants

Apparent resistivity and phase invariants for a uniform half-space
are shown in Fig. 4. At short periods (ω → ∞), ρ� min and ρ� max are
radial and tangential to the source dipoles, respectively, and have the
same values (ρ/2 and 2ρ) as their time-domain equivalents (Fig. 2).
At long periods (ω → 0), ρ� min and ρ� max converge to the half-space
resistivity. The invariants P�2 and ρdet are well behaved, deviating
from the half-space value by no more than 6 and 12 per cent, respec-
tively. The coordinate-invariant phases (�2 and �0) corresponding
to P�2 and ρdet are also well behaved, deviating from zero by less
than 4◦ and 6◦, respectively. The corresponding invariants for the
quadrature tensor (Fig. 4b) vanish at short and long periods, where
the electric field is in phase with the source current and are signif-
icant only in the region where the source–receiver offset becomes
comparable to the ‘skin depth’,

δ̂ = [2ρ/(µ0ω)]1/2. (38)
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Figure 4. Frequency-domain apparent resistivities and phase invariants for the electric field apparent resistivity tensor in a uniform 100 � m half-space. The
source–receiver offset is 10 km. (a) Log–log plots of the P�2, ρ� min and ρ� max apparent resistivity invariants. The determinant apparent resistivity ρdet is also
shown, although it is virtually indistinguishable from P�2. (b) The corresponding imaginary (or quadrature) tensor invariants |P�2|, ρ� min and ρ� max (note that
the apparent resistivity scale is linear). (c) Coordinate-invariant phases �0 (dashed line) and �2.

Since the apparent resistivity tensor is symmetric in a uniform (or
indeed in a 1-D) half-space it is characterized by the lengths of
the two sets of ellipse axes and by the orientations of the ellipse
axes with respect to the source dipoles. For a uniform half-space
the ellipse representing the in-phase part of the tensor is oriented
tangentially at early times and becomes circular in the DC limit. The
behaviour of the quadrature tensor (Fig. 4b) is more complicated, the
tensor ellipse changing from a radial to a tangential orientation at
∼0.3 s, where ρ� min and the quadrature tensor determinant become
negative.

While it is not surprising that the quadrature part of the appar-
ent resistivity tensor may have a negative determinant we would
not normally expect the in-phase part of the electric field appar-
ent resistivity tensor to have a negative determinant except in cases
where the conductivity distribution is very unusual. Thus, it should
not be assumed that either the electric or magnetic field appar-
ent resistivity tensors are necessarily ‘positive definite’, especially
where the conductivity structure is 3-D. However, a measurement
that produces a negative value of det[�(ρa)] should be treated with
caution as in most (though not all) cases it will be a sign of a
problem with the measurement rather than an unusual conductivity
distribution.

Examples of the frequency-domain apparent resistivity (P�2) and
phase (�0) sounding curves for a horizontally layered half-space
are shown in Fig. 5. The in-phase sounding curves are similar to
the corresponding time-domain soundings discussed in (Caldwell
& Bibby 1998) and reflect the resistivity depth structure until the
DC limit is approached. The phase �0 is also well behaved and
reflects (imperfectly) the negative gradient of the sounding curve.
Using P�2(ω) as the measure of resistivity, it is possible to derive
the frequency domain equivalent to the time-domain apparent depth
(eq. 9) by integrating ∂δ̂/∂T as a function of period. We define the
frequency-domain apparent depth as

da(ω) = 1√
2

∫ T

0

∂δ̂

∂T
dT, (39)

where the 1/
√

2 scaling factor has been chosen so that the apparent
resistivity of a layered half-space first begins to fall or rise at an ap-
parent depth approximately equal to the thickness of the uppermost
layer in a similar way to the time-domain case. The apparent depth
curves (Fig. 5c) allow us to compare frequency-domain apparent
resistivity sounding curves with the resistivity depth structure in the
same way as is possible for time-domain or DC resistivity sounding.

The magnetic field response tensor

In polar coordinates, the frequency-domain magnetic field response
tensor in a uniform half-space is given by

ξ(ω) = r/2

[
0 ikr (I0 K1 − K0 I1) − 6I1 K1

I1 K1 0

]
, (40)

where K0(ikr/2), K1(ikr/2), I0(ikr/2) and I1(ikr/2) are modified
Bessel functions of the first and second kind. At short periods (i.e.
ω → ∞ or r/δ̂ � 1), equivalent to the early-time region in the time
domain,

ξ(ω → ∞) = (1 − i)δ̂/2

[
0 2

− 1
2 0

]
. (41)

Thus, if the source–receiver offset is much greater than the skin-
depth (r/δ̂ � 1), ξ(ω) has a ±45◦ phase difference with respect
to J and has the same square root time and resistivity dependence
as its time-domain counterpart. The off-diagonal form of ξ(ω) in
a uniform half-space reflects the orthogonality of the horizontal
electric and magnetic field. We can also represent the complex tensor
ξ as a pair of ellipses. However, in contrast to the electric field
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Figure 5. Frequency-domain electric field sounding curves for the same
layer model and source–receiver offsets as used in Fig. 3: (a) in-phase appar-
ent resistivity, (b) coordinate-invariant phase and (c) the in-phase apparent
resistivity plotted as a function of apparent depth. The dashed line in (c)
shows the resistivity depth structure of the layer model.

apparent resistivity, the major axes of the ellipses representing ξ
are oriented radially with respect to the source dipoles rather than
tangentially.

At long periods (i.e. as ω → 0 or as r/δ̂ � 1) the magnetic field
is in phase with the source current and ξ(ω) has the same form as
the DC (or late-time) limit of ξ(t) (eq. 13); i.e. ξ(ω) is independent
of period and resistivity but linearly proportional to distance.

The magnetic field apparent resistivity tensor

Scalar apparent resistivities can be formed from quadratic functions
of ξ(ω) in the same way as in the time domain. Taking the deter-

minant of ξ(ω) in eq. (41), we can see that the (complex) apparent
resistivity

ρdet ξ (ω) = iωµ0 det[ξ(ω)] (42)

has the value of the half-space resistivity as T → 0 (i.e. ω → ∞). A
frequency-domain ‘magnetic field apparent resistivity tensor’ρH(ω)
may be defined in the same way as for the time domain (Appendix A),
i.e.

ρH(ω) = −iωµ0[tr(ξ)ξ − ξtξ]. (43)

In the short-period limitρH(ω) takes the form of the resistivity tensor
of the half-space as we require.

Fig. 6 shows the frequency-domain magnetic field apparent re-
sistivity and phases corresponding to those shown in Fig. 4 for the
electric field response. Note that the uniform half-space proper-
ties of ρdet ξ in the frequency domain (Fig. 6) are similar to those
of ρdet ξ in the time domain (Fig. 2), the major difference being
the small ‘overshoot’ present in the frequency-domain response be-
fore the apparent resistivity ‘rolls off ’ at long periods. Compared
with the corresponding invariants for the electric field (Fig. 4) the
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magnetic field response is more complicated. In particular, ρ� min

and the determinant of ρH become negative for periods greater than
∼4.5 s. The magnitudes of the corresponding apparent resistivities
are plotted in Fig. 6.

At short periods the major axis of the in-phase ellipse (ρ� max) is
oriented tangentially. As the response begins to roll off with increas-
ing period, the major axis of the ellipse shrinks more rapidly than
the minor axis and the ellipse becomes circular at the point where all
three invariants plotted in Fig. 6(a) intersect. As the period continues
to increase, the major axes flips into the radial direction while the
minor axes (now oriented tangentially) decrease even more rapidly,
eventually becoming zero at which point the area of the ellipse and
thus P�2 are also zero. At this point the in-phase horizontal mag-
netic field is linearly polarized in the radial direction. At still longer
periods the minor axes redevelops, increasing until the ellipse be-
comes circular again whereupon the major axis flips back into the
tangential direction and takes on its DC form, with the major axis
being four times the length of the minor axes.

Fig. 7 shows the magnetic field apparent resistivity, phase and
apparent depth curves corresponding to those shown in Fig. 5 for
the electric field. As expected the depth structure of the resistiv-
ity is only reflected in the magnetic field response at short periods
(i.e. r � δ̂). This will also be true in a 3-D situation. However, in a
3-D situation the period range over which ρH will be representative
of the subsurface resistivity will depend on the conductivity struc-
ture in a complicated way. Thus, as is the case in a CSMT survey,
the magnetic field apparent resistivity may be misleading at longer
periods where the source effects begin to become important.

The CSMT impedance tensor

Where the source–receiver distance is much greater than the skin
depth, the EM field at the surface can be considered to be a vertically
incident plane wave and the ‘magnetotelluric approximation’ will
apply. In this situation (i.e. as T → 0 or as r � δ̂), the subsurface
conductivity structure can be inferred from local measurements of
the electric and magnetic fields as a function of frequency without
reference to the source. At a given measurement location this infor-
mation is expressed in the impedance tensor Z(ω), which is defined
by the tensor relation

E(ω) = Z(ω)H(ω). (44)

For CSMT this relationship (eq. 44) may also be expressed in terms
of the frequency-domain response tensors corresponding to E and
H (eqs 21 and 22), i.e.

E(ω) = ρa(ω)J = Z(ω)ξ(ω)J. (45)

Eliminating J, which represents the source information in eq. (45),
the CSMT impedance tensor is given by

Z(ω) = ρa(ω)[ξ(ω)]−1, (46)

which has a similar form to an expression given by Li & Pedersen
(1991). In the short-period limit (ω → ∞ or r � δ̂) the CSMT
impedance tensor in a uniform half-space can be derived directly
from the corresponding forms of ρa(ω) and ξ(ω) (eqs 35 and 45) in
a polar coordinate system and

Z(ω → ∞) = ρaξ
−1 = (iµ0ωρ)1/2

[
0 −1

1 0

]
. (47)

The CSMT impedance tensor in the DC limit (also given in Li &
Pedersen 1991)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

|Pℜ2

ρ H
  (

Ω
m

)

10
-3

10
-2

10
-1

10
0

10
1

10
2

-90

-45

0

45

90
Φ

0

Period (s)

P
ha

se
 (

°)

|

|Pℜ2|

15 km106.54.2

15
10

6.5
4.2

Period (s)

(a)

(b)

(c)

10
-1

10
0

10
1

10
0

10
1

10
2

10
3

Apparent Depth (km)

ρ H
  (

Ω
m

)

4.2 6.5 10 15 km

Figure 7. Magnetic field sounding curves for the same layered model and
source–receiver offsets as used in Figs 3 and 5: (a) in-phase apparent resis-
tivity, (b) coordinate-invariant phase and (c) the in-phase apparent resistivity
plotted as a function of apparent depth. For comparison, the corresponding
electric field apparent resistivity (a) and phase (b) at a source–receiver offset
of 15 km are shown as grey dashed lines. The dashed line in (c) shows the
resistivity depth structure of the layer model.

Z(ω → 0) = (2ρ/r )

[
0 −2

1 0

]
(48)

can be derived directly from the corresponding DC limits of ρa

and ξ (eqs 32 and 13). In this limit the CSMT impedance tensor is
explicitly source dependent since the tensor is inversely proportional
to the source–receiver offset. Note that the source dependence enters
through the magnetic field response tensor ξ.

In CSMT, the plane wave approximation breaks down in the re-
gion where the source–receiver distance becomes comparable to
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the skin depth (i.e. r → δ̂) and the magnetic field starts to become
independent of the conductivity. This effect causes the MT appar-
ent resistivity to rise unrealistically as the magnitude of ξ falls
to very small values. The EM field observations still contain in-
formation concerning the conductivity structure but the informa-
tion is contained in the electric field (i.e. in ρa) rather than in the
horizontal magnetic field components (Routh & Oldenburg 1999)
or ξ. The frequency range over which the MT approximation is
valid depends upon the resistivity structure under investigation (e.g.
Wannamaker 1997), something that is unknown a priori. This intro-
duces a degree of ambiguity into the interpretation of CSMT data
that can only be avoided by including source information into the
analysis.
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Figure 8. (a) Electric field apparent resistivity (P�2) sounding curves in the frequency domain for the three layer model depicted to the right of the sounding
curves. The model consists a 10 � m cube (0.253 km3) embedded in the top (100 � m) layer. The upper surface of the cube is 25 m below the surface. The
black dashed line shows the apparent resistivity at a point located above the centre of the cube where the source–receiver offset is 10 km. The grey dashed
line shows the same sounding curve displaced vertically upwards so that the apparent resistivity at T = 100 s matches the DC apparent resistivity of a layered
half-space at the same source–receiver offset (i.e. in the absence of the cube). (b) Corresponding coordinate-invariant phase (�0) sounding curves. (c) Electric
field apparent resistivity (P�2) pseudo-section (computed at sites 50 m apart) along a line crossing over the centre of the cube. The vertical columns of white
dots on the pseudo-section show the locations of the sounding curves shown in (a) and (b).

3-D EFFECTS

A coordinate-invariant approach to EM data analysis is most useful
when the conductivity distribution is 3-D. In this situation there is
no preferred or natural frame of reference and the response will
depend upon the polarization of the EM field in a way that depends
on the conductivity structure. We will illustrate the properties of
the electric and magnetic field apparent resistivity tensors using two
of the models that we used in our study of the time-domain electric
field apparent resistivity tensor (Caldwell & Bibby 1998). The model
results discussed in the following sections were all calculated using
the 3-D integral equation modelling code described in Xiong (1992)
and in Xiong & Tripp (1995).
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Static effects

After an initial period, during which time the eddy currents induced
within and around a small near-surface heterogeneity are significant,
the ‘anomalous’ electric field produced by galvanic effects (charges)
at the boundaries of the heterogeneity reaches a steady state and is
virtually independent of time. Equivalently, in the frequency do-
main, the phase of the anomalous electric field is independent of
the source frequency at long periods. The effects of the boundary
charges, known as ‘static effects’ in MT surveys (see Jiracek 1990
for a review), have been discussed by Zonge & Hughes (1991) and
Qian & Pedersen (1992) for CSMT measurements. The correspond-
ing effect on the time-domain apparent resistivity tensor was dis-
cussed in Caldwell & Bibby (1998) and has also been discussed by
Newman (1989) and Strack (1992) for deep transient EM soundings
using single sources.

If the ‘underlying’ electric field (i.e. the electric field in the ab-
sence of the heterogeneity) does not change significantly over the
extent of the heterogeneity, the ‘scattered’ or ‘anomalous’ electric
field is (to a good approximation) linearly dependent on the un-
derlying electric field (e.g. Chave & Smith 1994). In this case the
total electric field is well approximated by the sum of the scattered
and underlying fields. Thus from eq. (1), for a time t > tstatic or pe-
riod T > Tstatic, the observed or ‘distorted’ (electric field) apparent
resistivity tensor ρ̃a is given by

ρ̃a = (I + D)ρa, (49)

where I is the identity matrix, D is the distortion matrix (a 2 × 2 real
matrix that is independent of time or frequency) and ρa is the matrix
representing the underlying apparent resistivity tensor, i.e. the tensor
that would be measured in the absence of the heterogeneity.

Since the determinant of a matrix product is the product of the
individual matrix determinants

det(ρ̃a) = det[(I + D)ρa] = det(I + D) det(ρa) (50)

the observed invariant P̃2 in either the time or frequency domain
will be scaled by a constant factor with respect to the underlying
value of P2.

In the time domain, an apparent resistivity sounding curve (i.e.
log–log plots of P2 versus time) measured near a localized het-
erogeneity will be offset along the apparent resistivity axis with
respect to an undistorted sounding curve in the same way as a MT
apparent resistivity sounding curve, which is said to be ‘statically
shifted’. However, the gradient of the time-domain sounding curve,
∂ log(P2)/∂ log(t) will be virtually unaffected by the heterogeneity
(Caldwell & Bibby 1998).

In the frequency domain, the effect of the heterogeneity as ex-
pressed by eq. (49) is the same on the real and imaginary parts of the
tensor. Thus P�2(ω) and P�2(ω) are scaled in the same way as the
corresponding time-domain invariant and the ratio of the in-phase
and quadrature ellipse areas is unchanged, i.e.

tan(2�2) = det(�[ρ̃a])/ det(�[ρ̃a])

= det(�[ρa])/ det(�[ρa]) (51)

and the phase �2 will be unaffected by the heterogeneity. The rela-
tionship given in eq. (50) also applies to a complex tensor and thus
we also expect the phase �0 to be unaffected.

In general, the heterogeneity will distort the underlying apparent
resistivity tensor into a 3-D form in a way that will depend on the
geometry of heterogeneity and the position of the receiver. With-
out other information or assumptions concerning the nature of the
underlying apparent resistivity tensor the magnitude of the scale-

factor det([I + D]) and the structure of the distortion matrix are not
determinable, as is the case in MT.

Static shift model

The effects produced in frequency-domain electric field apparent
resistivity sounding curves by a small conductive cube embedded
in the surface layer of a layered half-space are shown in Fig. 8.
For the site located immediately above the conductive cube (at a
source–receiver offset of 10 km (Fig. 8a) the apparent resistivity
(P�2) sounding curve is shifted as expected. As can be seen in the
apparent resistivity pseudo-section (Fig. 8c) and the apparent resis-
tivity ellipse map (Fig. 9) the effects of the heterogeneity on the
P�2 invariant are confined to a small area in the immediate vicinity
of the cube. The 3-D nature of the distortion is shown in Fig. 9 by
the variation of the ellipse axes directions near the cube. At periods
less than ∼1 s, the invariant phases, Fig. 8(b), from the undistorted
sites surrounding the conductive cube are essentially the same. In
this period range, the phase from the distorted site above the cube
is shifted by a small amount with respect to the undistorted curves,
the phase shift decreasing slowly as the period increases.

The effect of the localized near-surface heterogeneity on the hor-
izontal magnetic field is much smaller than the corresponding effect
on the electric field as shown in Fig. 10. Although the effect of the
eddy currents ‘trapped’ within the conductive cube can be seen at
short periods in the area above the cube, the magnitude of the mag-
netic field apparent resistivity reflects the underlying layered struc-
ture and is almost totally insensitive to the presence of the cube.
At still longer periods, where the source–receiver offset becomes
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Figure 9. Frequency-domain (electric field) apparent resistivity ellipse map
at T = 0.2 s for the conductivity model shown in Fig. 8. The outline of the
right-hand half of the conductive (10 � m) cube is shown by the dashed line.
The current sources (not shown) lie 10 km to the right of the centre of the
cube along the x-axis. The apparent resistivity ellipses represent the in-phase
part of the apparent resistivity tensor i.e. �[ρ(ω)]. The contours show the
value of the coordinate-invariant apparent resistivity P�2 (contour interval
of 5 � m). The lengths of the ellipse axes have been normalized so that the
lengths of the major axis (ρ� max) are proportional to log(ρ� max). For the
locations shown in the figure the P�2 apparent resistivity of the (background)
layered half-space at T = 0.2 s is approximately 50 � m.
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Figure 10. (a) Frequency-domain magnetic field apparent resistivity (P�2) sounding curves for the 3-D resistivity model shown in Fig. 8. The dashed line
shows the apparent resistivity at a point located above the centre of the conductive cube where the source–receiver offset is 10 km. (b) Corresponding coordinate-
invariant phase (�0) sounding curves. (c) Magnetic field apparent resistivity (P�2) pseudo-section (computed at sites 50 m apart) along a line crossing over
the centre of the cube. The vertical columns of white dots on the pseudo-section show the locations of the sounding curves in (a) and (b). Apparent resistivity
values <7 � m are not shown on the pseudo-section.

comparable to the skin depth, the magnetic field apparent resistivity
becomes unrealistically small. A small phase shift is also present in
the magnetic field phase response for periods less than ∼1 s.

Model geothermal system

Fig. 11 shows an idealized model of the conductivity structure
typical of the high-temperature geothermal systems found in New
Zealand. The deeper, conductive parts of these systems lie beneath a
more highly conducting superficial layer produced by the combined
effects of hydrothermal alteration, slightly acidic saline pore fluids
and elevated temperatures. In the model, we have extended the near-
surface conductor laterally to simulate the presence of a subsurface
out-flow of geothermal fluid that occurs in geothermal systems both

in New Zealand and elsewhere (e.g. Bibby et al. 1984). Although
the near-surface high-conductivity region can be easily delineated
by many different electrical exploration techniques, identifying the
deeper conductor (which represents the ‘target’ high-temperature
fluid reservoir useful for electric power production) is much more
difficult. Pellerin et al. (1996) in their study of this problem con-
cluded that the information concerning the location of the reser-
voir area would be contained in the electric field. The behaviour of
the instantaneous apparent resistivity tensor, representing the time-
domain electric field, supports this conclusion (Caldwell & Bibby
1998).

Fig. 12 shows maps of the in-phase electric field apparent re-
sistivity tensor ellipses at three different periods. These maps have
been chosen so that the apparent depth is approximately the same
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Figure 11. (a) A perspective view of the resistivity model used to compute
the tensor ellipse maps shown in Figs 12–14. (b) A map view showing the
position of the grounded source bipoles (AB and CD) used for this compu-
tation. The grey area shows the region covered by each of the ellipse maps
in the following figures. The white line shows the outline of the conductive
body, the top part of which is Loom below the surface.

as that of the corresponding time-domain apparent resistivity maps
shown in Caldwell & Bibby (1998), which show essentially the same
features. At short periods (T = 0.13 s) the major axes of the ten-
sor ellipses are aligned tangentially with respect to the source (the
location of which is shown in Fig. 11). This tangential alignment
of the ellipses reflects the dominantly inductive regime where the
skin depth is much less than the source–receiver offset and the sur-
face EM field may be approximated as a plane wave. Where the
source–receiver offset is comparable to the skin depth, the galvanic
influence of the source becomes more dominant. This can be seen in
the lower right-hand corner of the T = 1.3 s maps where the ellipse
shapes are more nearly circular. At longer periods the effect of the
boundary charges become important and the in-phase ellipse align-
ments change so that the major axes of the ellipses near the edges

of the conductive body ‘point’ towards the body in the same way
as the TDEM ellipses do at late times (Caldwell & Bibby 1998).
As is also the case in the time domain, the area underlain by the
conductive block representing the reservoir is more clearly distin-
guishable in the minimum apparent resistivity (ρ� min) than in the
P�2 invariant maps. The behaviour of the quadrature electric field
apparent resistivity tensor (Fig. 13) is not as easily interpretable and
the invariant phases �0 and �2 (contours shown in Fig. 13) are more
useful parameters. Although the upper part of the conductive body
can be seen in both cases, only the �0 map clearly shows the deeper
part of the conductive body.

Examples of the in-phase and quadrature magnetic field apparent
resistivity ellipses are shown in Fig. 14. As can be seen in the left-
hand half of Fig. 14, the conductive body produces only small effects
in the in-phase P�2 apparent resistivity. At longer periods the effect
of the source is marked by the rapid decrease in P�2 and by a change
in the ellipse orientation from tangential to radial as can be seen in
the lower right-hand corner of the T = 0.6 s in-phase ellipse map.
Although the in-phase tensor hardly senses the conductive body at
all, there is a small but distinct response in the quadrature part of
the tensor ellipses (right-hand side of Fig. 14) at T = 0.06 s. This
response is shown more clearly by the coordinate-invariant phase
�0 shown as contours. The small phase shift seen is a measure of the
eddy currents induced into the upper part of the conductor, which is
also reflected in the alignment of the quadrature tensor ellipse major
axes at T = 0.06 s. At longer periods or when the source–receiver
offset is comparable to the skin depth the phase rises towards 90◦

as can be seen in the lower right-hand corner of the T = 0.06 and
0.6 s quadrature tensor maps (Fig. 14).

D I S C U S S I O N

Initial analysis of CSMT data using the impedance tensor ignores
information concerning the source. It seems to us that it is a ret-
rograde step to take two independent data sets (E and H), each of
which will contain noise, in order to derive the impedance tensor
in a situation where the source information is readily available. The
apparent resistivity tensor is a simple way of including this informa-
tion in the data analysis. Compared with the MT apparent resistivity
based on the impedance tensor, the electric apparent resistivity ten-
sor is well behaved over the entire frequency range used for CSMT
surveys. Thus, using the electric field apparent resistivity tensor, the
problems that arise from the ambiguity in the range of validity of
the MT approximation can be avoided. A preliminary image of the
(3-D) conductivity structure can also be constructed directly from
the field data with little computational effort. This image will be
independent of the coordinate system used to represent the data.

At longer periods the information concerning the subsurface is
dominantly contained in the electric field. In situations where the tar-
get structure is 3-D, large numbers of measurement sites are needed
to image the structure. The expense and complexity of the equipment
needed to collect both electric and magnetic field data simultane-
ously and the insensitivity of the magnetic field to the conductivity
structure suggest that a more cost effective exploration strategy for
grounded source surveys might be to record only the electric field
data at a large number of sites and to dispense with the measure-
ments of the horizontal magnetic field. This approach would mirror
the practice in industrial MT surveys where the magnetic field is
recorded at only a small subset of sites, with the horizontal mag-
netic field measurements playing the role of the source field (J) in
our representation.
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The collection of early-time data in a TDEM survey is often dif-
ficult since it requires a wide bandwidth receiver and is ‘open’ to
noise from a wide variety of sources. A frequency-domain approach
to recording data in the equivalent time range would avoid this diffi-
culty. Thus, a combination of time and frequency-domain recording
techniques for grounded source surveys may prove to be easier in
practice. The method of data analysis developed here provides a sin-
gle mathematically consistent way of analysing the results of such
surveys.

C O N C L U S I O N S

To fully characterize the electromagnetic field responses in a 3-D
situation, the EM field must be recorded for at least two different
polarizations. For the grounded source surveys this requires the use
of two (or more) collocated source bipoles. We have shown that
where two (or more) sources are used it is possible to analyse the
horizontal magnetic and electric fields using a single mathematical
representation in either the frequency or the time domain. In each
case it is possible to derive a tensor apparent resistivity. To do this,
information concerning the geometry and moment of the current
sources must be incorporated into the analysis. A third vector field
J, the DC current density in a uniform half-space appropriate to
each source, is used to represent this information. Thus, in either
the frequency or the time domain, three vector fields: the electric
field E, the magnetic field H and J, represent the measurements.
The relationship between any two of these fields is expressed by a
tensor, the most familiar of which is the CSMT impedance tensor,
which relates E and H. In previous work, Caldwell & Bibby (1998)
demonstrated the utility of this approach for the analysis of time-
domain electric fields, where E and J are related by an instantaneous
apparent resistivity tensor ρa(t). In this paper we have introduced
the less intuitive concept of an apparent resistivity tensor based on
the horizontal magnetic field vector.

The tensor relationship between the source field J and the elec-
tric or horizontal magnetic fields provides a method of normalizing
controlled source EM data that allows coordinate-invariant param-
eters to be derived directly from the observations. In this way, the
horizontal components of the time or frequency-domain EM field
produced by multiple-sources can be visualized in a compact and
physically intuitive way. Our modelling results show that in sim-
ple 3-D situations the apparent resistivity images derived from the
coordinate invariants of the electric field apparent resistivity ten-
sor are remarkably good representations of the subsurface structure
despite the simplicity of the imaging procedure. To a good approx-
imation, these images will be independent of the current source
orientation. Our results also demonstrate that the horizontal mag-
netic field components are largely insensitive to the localized 3-D
conductivity structures that are usually the target of EM exploration
surveys.
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A P P E N D I X A

To develop an apparent resistivity tensor (ρH) from the components
of the magnetic field we must find a quadratic form of ξ that trans-
forms as a second-rank tensor. By analogy with the electric field
apparent resistivity, we also require the P2 invariant of the magnetic
field apparent resistivity tensor ρH to have the same value as the
resistivity of a uniform half-space where the source–receiver offset
is much greater than the corresponding diffusion or skin depth. In
particular, we will require the magnetic field apparent resistivity in
this limit to have the same form as the resistivity tensor of a half-
space made up of a uniformly anisotropic material with one of its
principal axis in the vertical direction. That is, in a Cartesian coordi-
nate system (x, y) aligned with the principal axes of the anisotropic
half-space, ρH must take the form

ρ =
[
ρxx 0

0 ρyy

]
. (A1)

Although the resistivity tensor of a homogenous material is sym-
metric for thermodynamic reasons (e.g. Nye 1957) these conditions
do not apply to the apparent resistivity tensor. In particular, ρH must
also be non-symmetric if it is to represent the asymmetries present
in the magnetic field in the general case, i.e. when the conductivity
distribution is 3-D.

The most general second-rank tensor quadratic form that can
be formed from ξ is a linear combination of the contractions or
inner products (second-rank tensors) of the tensor (or outer) product
ξ ⊗ ξ, which is a fourth-rank tensor (Mase 1970). In an orthogonal
coordinate system the tensor product Q = ξ ⊗ ξ can be written in
terms of its components as

Qi jkl = ξi jξkl , (A2)

where the subscripts or indices in (for example) a Cartesian coor-
dinate system denote the x and y coordinates. The inner product or
contraction of a tensor is obtained by summing over a pair of indices,
reducing the rank of the tensor by two. There are five independent
contractions of Q. In component form these can be written as
Q(1, 2) = ξkkξi j , Q(1, 3) = ξkiξk j , Q(1, 4) = ξkiξ jk, Q(2, 3) = ξikξk j

and Q(3, 4) = ξikξ jk ; where the repeated subscript (k) represents a
sum over the coordinate indices and the integer arguments denote the
indices included in the summation. Equivalently, in matrix notation:
Q(1, 2) = tr(ξ)ξ, Q(1, 3) = ξtξ, Q(1, 4) = (ξξ)t, Q(2, 3) = ξξ and
Q(2, 4) = ξξt; where ξt and tr(ξ) are the transpose and trace of the
tensor matrix, respectively.

Where r/δTD � 1 (or in the frequency domain r/δ̂ � 1) the hori-
zontal components of the EM field produced by a dipole source on
a uniformly anisotropic half-space are (locally) orthogonal and the
EM field can be considered to be linearly polarized over a small area.
In a Cartesian coordinate system oriented so that the axes directions
coincide locally with the principal axes of the anisotropic half-space,
ξ will have the same zero trace form at early times as it does in a
homogenous isotropic half-space (eq. 11). That is, the horizontal
electric and magnetic fields at the surface of an anisotropic half-
space in the ‘far field’ (r/δTD � 1 or r/δ̂ � 1) case are orthogonal
and

ξ(t → 0+) =
[

0 ξxy

ξyx 0

]
. (A3)

In this case ξyx and ξxy depend separately upon the resistivities ρxx

and ρyy , respectively. Thus ρH must be proportional to the tensor[
ξ 2

yx 0

0 ξ 2
xy

]
= Q(1, 3). (A4)

Since tr(ξ) = 0 in a uniform half-space we can add Q(1, 2) to
eq. (A4) without changing the tensor form. Thus the most general
form of ρH is a linear combination of Q(1, 2) and Q(1, 3), i.e.

ρH = κ[a tr(ξ)ξ + ξtξ], (A5)

where a is an unknown constant and κ is given by −(µ0π/4t) and
−iωµ0 in the time and frequency domains, respectively. Since ξtξ is
symmetric, ρH will be non-symmetric in the general 3-D case only
if a �= 0. Rewriting ρH as

ρH = κ[a tr(ξ)I + ξt]ξ, (A6)

where I is the identity matrix, we can see that the determinant (i.e.
P2

2 ) is given by

det(ρH) = κ2 det[a tr(ξ)I + ξt] det(ξ). (A7)

In the 3-D case where tr(ξ) �= 0, the requirement that the P2 invariant
of ρH is equal to ρdet ξ , i.e. P2 is linearly proportional to [det(ξ)]2

(eqs 17 or 46) implies

det[a tr(ξ)I + ξt] = det(ξ). (A8)

This condition reduces to the equation

a(a + 1) tr(ξ) = 0. (A9)

Since we require a �= 0 and tr(ξ) �= 0 in the 3-D case, this condition
is satisfied if a = −1 and

ρH = −κ[tr(ξ)ξ − ξtξ]. (A10)
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