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S U M M A R Y
The publication of an earthquake catalogue by Kárnı́k in 1996 (a continuation and revision
of an earlier one (1969)) makes important data available covering one century of the seismic
history of Central and Southern Europe. It allows us to study in detail empirical relations
between the magnitude and other focal parameters. In this study well-known relations com-
bining two or three focal parameters, M = A + B I0 + C log(H ), Ms = D + E I0 + F log(H ),
ML = G + O I0 + P log(H ), ML = Q + RMs + S log(H ), are investigated (M, Kárnı́k’s mag-
nitude; ML, local magnitude; Ms , surface wave magnitude; I0, epicentral intensity; H, focal
depth in kilometres). The data show a considerable scatter with respect to the relations above.
The relations are considered useful, if the following significance criteria are fulfilled. (1) The
data sets comprise a minimum of 20 entries. (2) The partial correlation between the two most
important parameters is greater than 70 per cent. (3) The parameter of least importance still
influences the correlation of the others by more than 5 per cent. The partial correlation co-
efficients help to decide whether the data are to be rejected as insufficient for the regression
analysis or to determine the level beyond which it is useful to perform a regression analy-
sis excluding the parameter of lowest importance. Two kinds of regression are carried out:
(1) standard linear regression assumes that only M or ML, respectively, are in error, while
the remaining two parameters are error-free. (2) Orthogonal regression assumes that all three
parameters have errors. This is the case for the data in the catalogue used here.

The orthogonal regression M = −1.682 + 0.654I0 + 1.868 log(H ), with a standard devia-
tion of ±0.284, differs considerably from Kárnı́k’s empirical relation M = 0.5I0 + log(H ) +
0.35 for shallow foci, but agrees well with the results of earlier studies by the authors for
earthquakes in SE Europe. The data set M, I0, H (for H < 50 km) fails criterion (3). The
orthogonal least-squares fit without log(H ) has been found as follows: Ms = 0.550I0 + 1.260,
with a standard deviation of ±0.412. We observe systematic regional deviations from this rela-
tionship, which need further investigation. The correlation analysis shows that ML and Ms are
weakly linked with log(H ), but the correlation between ML and Ms is very high (93 per cent).
Therefore, the orthogonal relation between ML and Ms without the log(H ) term was chosen:
ML = 0.664 + 0.893Ms , with a standard deviation of ±0.163. The correlations between ML,
I0 and log(H ) do not fulfil the significance criteria.

For the purpose of earthquake hazard analysis the orthogonal regression visualizes simul-
taneously the errors of all input data, i.e. δMLi , δMi and δ log(Hi ). Our new relationships
result from orthogonal regression analysis using a large high-quality data set. They should be
applicable in Central and Southern Europe unless there are regional relationships available that
fit the data better.
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1 M O T I V A T I O N

Richter (1935) introduced the magnitude ML as a measure of the
strength, power or effect of an earthquake. He had in mind mainly the
derivation of a simple parameter, which can be determined quickly
and easily in seismological observatory practice and which meets
the needs for public announcements.

Yet, this concept becomes complicated as many definitions of
magnitude are in use, which rely on simple measurements of seis-
mic amplitudes as well. The local magnitude ML mentioned above
is based on the measurement of the maximum amplitude of a stan-
dard Wood–Anderson seismograph. The surface wave magnitude
Ms is derived from the amplitude of surface waves with a period
of 20 s. Similar definitions are used for the body wave magnitudes
mb, m B or Kárnı́k’s magnitude M. In general, ML, Ms , M, m B or
mb give different values for the same earthquake, but they are re-
lated by empirical relations. This is caused by the use of amplitudes
of different wave types at different frequency ranges on different
components from seismograms recorded at different stations, ap-
plying different calibration functions. Sometimes, the magnitude of
an earthquake is given together with some kind of error, usually the
standard deviation of individual station magnitudes.

The greatest European earthquakes occurred before the installa-
tion of seismographs in 1900; we have narrative sources of them
since approximately 1000 AD. Thus, their magnitudes cannot be
measured but only estimated from macroseismic intensity data (e.g.
Ambraseys 1985; Albarello et al. 1995; Scotti et al. 1999; López
Casado et al. 2000). All kinds of possible uncertainties in the histor-
ical messages have to be taken into account. Many of them do not fit
into the conception of error analysis generally used in seismology.
It is necessary to calibrate the magnitudes of these historical earth-
quakes using comparable events for which we have both reliable
instrumental and high-quality macroseismic data.

In these cases we may ask how reliable such a magnitude estimate
is and whether a principal minimum limit of error exists that never
can be passed below. This question is not only academic. It touches
the responsibility of seismologists to public authorities and is of
high importance when the seismic hazard at a site is investigated.

The author’s opinion is, that beyond an estimation of the magni-
tude of the design earthquake, an estimate should also be provided
on how reliable this estimation is. Errors of the design earthquake
magnitude should be considered in any seismic hazard analysis.

2 A I M O F T H I S S T U D Y

The aim of this study is to gain an indirect estimate of the magni-
tude from macroseismic data and other focal parameters by using
empirical relations. In contrast to earlier studies we want to apply
both the conventional 1-D regression and the orthogonal regression
as a least-squares fit approximation. The comparison will shed light
on the differences between the different types of error information
as well as the practical importance of the orthogonal errors.

3 M A G N I T U D E E S T I M A T I O N S

We want to find out whether or not the following relations between
magnitudes and macroseismic parameters can be established for a
given earthquake region:

M = A + B I0 + C log(H ) (1)

Ms = D + E I0 + F log(H ), (2)

ML = G + O I0 + P log(H ), (3)

ML = Q + R Ms + S log(H ), (4)

with best-fitting coefficients A, B, C, D, E, F, G, O, P, Q, R and
S. This path is promising, if the data ML, Ms , I0, log(H ) and I0

correlate significantly.
If not enough events in the earthquake region are available, well-

known empirical relations between Ms and other focal parameters
can be used. For instance, if catalogue entries of I0 and H only are
available the formulae suggested by Kárnı́k (1969, in the following
referred to as KA69),

M = 0.35 + 0.5I0 + log(H ), (5)

where M ∼= Ms for H < 60 km and M ∼= m B for H ≥ 60 km with
medium-period body wave magnitude m B as defined by Gutenberg
(1945) may be used. If ML is available only, then

ML = 0.71Ms + 1.46 (Ambraseys & Bommer 1990), (6)

may be used. Note that coefficients in formulae (5) and (6) may
differ for different seismic regions. So we have to prove whether the
applied formulae are the appropriate ones.

4 T H E D A T A B A S E

We used entries from Kárnı́k’s earthquake catalogue. He published
the European Earthquake catalogue 1901–1955 (KA69) and pre-
pared its continuation up to 1990. After his death the work was
completed by K. Klı́ma, who compiled Kárnı́k’s material and pub-
lished it in the form of a catalogue for the period 1901–1990 Kárnı́k
(1996, in the following referred to as KA96). It contains rather brief
explanations of the tables only. Therefore, with regard to the method-
ology, we refer to the many explanations in KA69, while we use the
data of KA96.

We have to discuss KA69 first, as it provides the basic conception
of a unified magnitude M. It contains entries such as focal coordi-
nates, origin times, and several magnitude and epicentral or maxi-
mum intensity [MSK] entries. In this study we will call Kárnı́k’s
magnitude M as defined by Kárnı́k himself: ‘. . . the magnitudes
based on surface waves (ML H ) were taken as representative for
shallow earthquakes and those based on body waves MB = m for
intermediate and deep earthquakes, respectively. . . ’ (KA69, p. 41).

28 per cent of the magnitudes M in KA69 have been derived
from non-instrumental observations. Therefore, the M data are ba-
sically inhomogeneous. Nevertheless, they provide the basis of one
important result of KA69, the empirical equation of Kárnı́k’s mag-
nitude given in eq. (5), which is recommended for earthquakes in
Europe. The equation is based on data from approximately 1300
earthquakes with known M, I0 and H that occurred between 1901
and 1955 in Europe, the Mediterranean and Balkan countries. Eq. (5)
is frequently quoted and applied later for estimations of earthquake
magnitudes, if instrumental records are not available (Franke &
Gutdeutsch 1974; Meidow 1995 and many others).

The concept of Kárnı́k’s magnitude can be of great practical help
if eq. (5) can be proven as a reliable prediction formulae for Ms or
m B if only macroseismic data I0 and depth values H are available.
The extended KA96 provides much more earthquake data and, thus,
allows us to test the validity of eq. (5).

We regard KA96 as an important data base, useful for related
studies. However, after having worked with both versions, KA69 and
KA96, we have to make the following critical comment. In KA96 a
magnitude ‘M ’, slightly different from Kárnı́k’s original definition
of M (KA69, p. 41), is used. In columns 45 and 46 of the computer
file of KA96 M is defined as the ‘surface wave magnitude MS (LR or
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Sg waves), with the average value determined in a uniform way: a
standard for all events of h < 60 km’ . However, there are still some
M entries with h ≥ 60 km in this catalogue, sometimes different,
sometimes equal to m B with the reference to Kárnı́k’s unpublished
manuscript KVM 1968 (see KA96, p. 18). The given assignment
poses questions to investigators who want to use or to prove the
empirical formulae (5).

5 M E T H O D S

5.1 Significance criteria for earthquake data distributions

The question of whether the scatter of data justifies relations with
a 3-D distribution according to eqs (1), (2), (3) or (4), can only be
answered if we define an allowable uncertainty of the data base used
in predicting M, Ms or ML, respectively. In other words, we have to
find quantitative significance criteria. These criteria have to be for-
mulated in such a way that the above question can be answered with
either ‘yes’ or ‘no’. As an example, we may call eq. (1) as being ‘not
valid’ if the basic data set M, I0, H does not agree with these criteria.
Then eq. (1) has to be rejected. In this case, either another simpler
model has to be used, or, if no simpler model can be found, the
problem has to remain unsolved. Naturally, the significance criteria
depend on the practical aim of the investigation and, thus, on the
personal decision of the investigator. It might be expected that
the rms error of the derived magnitude is an appropriate measure of
the significance of an empirical relation. Yet, it will be shown in the
next section, that this choice is questionable here. The large scat-
ter and the inhomogeneous origin of data in time and space cause
complicated error distributions. Under these circumstances it may
be difficult to interpret the mean square error. Therefore, we use the
following significance criteria:

Input of N data: 
MS, I0, log(H) 

N > 20? 

rIo Ms. log(H) > 0.7 ? 

No 

No 
Yes 

.log( )

. log( )

0.05 ?Io Ms H Io Ms

Io Ms H

r r

r

−
>  

No 

Yes 

Yes 

Regression: 
MS  = A + B I0 + C log(H) 

Regression: 
MS = A + B I0 

Data are rejected 

Figure 1. Flow chart of significance criteria and the choice of the equations.

(1) The simplest way to improve the basis is to increase the num-
ber of data. With a lack of better assumptions we decide that the
number of earthquakes of the data set must be greater than 20.

(2) The second criterion is defined as the tolerable minimum
partial correlation coefficient between focal parameters in eqs (1)–
(4). Let us regard the relation (1) between x = I0, y = log(H ) and
z = M as an example. Following the notation of Schönwiese (2000,
p. 182ff.) we write the 3-D partial correlation coefficient

rxz·y = rxz − rxyryz√(
1 − r 2

xy

) (
1 − r 2

yz

) ,

where rxy, rxz and ryz are the respective 2-D correlation coefficients.
rxz·y represents the correlation between M and I0, when the influence
of log(H ) is eliminated. rxz·y � rxz represents the case where the in-
fluence of log(H ) masks the correlation of M and I0. The respective
statements hold for rxy·z and ryz·x . Thus, the partial correlation co-
efficient provides the necessary information concerning the degree
of independent correlation between two parameters if a third pa-
rameter plays a role. With a lack of a better assumption we decide
that the partial correlation coefficient between the most important
parameters must be larger than 70 per cent.

(3) The parameter with the lowest influence diminishes the cor-
relation of the others by more than 5 per cent, i.e. in the present
example | rxz·y−rxz

rxz·y | > 0.05.

In the case where all criteria are satisfied a prediction eq. (1) is
established by regression methods.

If the significance criteria (1) and (2) are satisfied, but criterion
(3) is not, then a simpler regression model excluding the parameter
of lowest correlation has to be used.

If significance criteria (1) and (2) fail then the task has to remain
unsolved (see Fig. 1).
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5.2 Regression analysis

The next step consists in the determination of an empirical relation
by regression:

M = A + B I0 + C log(H ). (1)

All input parameters, Mi , I0i and Hi are in error. Nevertheless, most
investigators apply a least-squares fitting approximation that regards
M as subject to error, but log(H ) and I0 as error-free. Under this
incisive presumption a best-fitting approximation of M is carried
out. The sum of squared errors v2

i of observed Mi is minimized by
variation of A, B and C according to
∑

v2
i =

∑
[Mi − A − B I0i − C log(H )i )]

2 = min. (7)

We will call M when determined from eq. (1) with A, B and C
according to standard regression (7) as M (7).

The method (7) is incorrect for two reasons: As mentioned above,
the rms(7) of standard regression (7) communicates an incorrect
understanding of the true error as it ignores the errors of log(H )
and I0. Additionally, eq. (1) is not reversible. It does not hold for
calculation of I0 from M and log(H ) or calculation of log(H ) from
I0 and M after respective conversion of eq. (1). In this study the non-
reversibility is indicated by the arrow ‘←’ instead of the equality
symbol ‘=’ as follows:

M (7) ← A + B I0 + C log(H ). (8)

Naturally, the irreversibility of the standard regression eq. (7) holds
for data sets with more than two input parameters as well. Yet, most
of the earlier publications use standard regression and disregard its
fundamental disadvantage.

The presumption that all ‘input parameters’ Mi , I0i , log(Hi ) are
associated with errors is more realistic. The orthogonal regression
takes this into account. It minimizes the orthogonal distance hi of
the ith data point Mi , I0i , log(Hi ) from the ‘plane’ in the M, I0,
log(H ) ‘space’. In its simplest form it ignores different weighting
factors of the input data. Bormann & Khalturin (1975) and Bormann
(2000) emphasize a great advantage of the orthogonal regression:
it provides a reversible regression equation. This means that eq. (1)
with A, B and C determined by orthogonal regression may be used
for the calculation not only of M but also, after conversion of the
equation, of log(H ) or I0 as well.

The orthogonal error hi is found by the 3-D HESSE normal equa-
tion as follows:

P = nM M + nI0 I0 + nlog(H ) log(H ), (9)

hi = P − nM Mi − nI0 I0i − nlog(H ) log(H )i , (10)

where P is distance of the ‘plane’ P = constant from the origin,
(nM , nI0 , nlog(H )) is the normal ‘vector’ of length 1 of the ‘plane’ with

n2
M + n2

I0
+ n2

log(H ) = 1 (11)

Mi , I0i , log(Hi ) is the input data i = 1, . . . , N , hi is the normal
distance of the data point Mi , I0i , log(Hi ) to the plane P.

Lagrange’s method turns out to be very successful in finding the
extrema of a function with one side condition, in our case:
∑

h2
i =

∑ [
P − nM Mi − nI0 I0i − nlog(H ) log(H )i )

]2

− λ
(
n2

M + n2
I0

+ n2
log(H ) − 1

) = min. (12)

λ is the Lagrange parameter, which takes the side condition into
account. Eq. (12) has to be minimized by variation of P, nM , nI0

and nlog(H ). The method is well known in seismic signal analysis

(Robinson & Treitel 1980, and others). Its application to the present
task is described by Gutdeutsch et al. (2000a). rms(12) = σ refers to
hi and differs slightly from rms(7). In many cases we find rms(12) <

rms(7). This does not mean that the errors of M, I0 and log(H )
are smaller than that of the standard regression. This observation
explains our decision to use the correlation instead of the rms as
significance criterion. We can visualize this effect by the equivalent
errors δM (12), δ I (12)

0 and δ log(H )(12). The symbol ‘δ’ indicates that
it is not identical to rms(12). For example, δM (12) = σ/nM is the error
of M if δ log(H )(12) = 0 and δ I (12)

0 = 0. Therefore, we regard δM (12)

as an important informative measure of the error of M derived from
the orthogonal regression σ .

Shifting the coordinate system I0, log(H ), M to the centre of
gravity of the data set

I mean
o =

∑N
i=1 Io,i

N

log(H )mean =
∑N

i=1 log(H )i

N

Mmean =
∑N

i=1 Mi

N

removes A in eq. (1) and P in eq. (10), respectively. Both, standard
regression (7) and the orthogonal regression (12) form ‘planes’ that
cross the centre of gravity of the data set. From this the important
conclusion follows that the standard regression (7) and the orthog-
onal regression (12) coincide exactly at the centre of gravity of the
data and agree well in its neighbourhood.

In this study we carry out both, the standard regression (7) and
the orthogonal regression (12).

6 R E S U L T S

6.1 Discussion of M, I0, H data

KA96 includes N = 3362 earthquakes with M, I0, H entries and
1 ≤ H < 300 km. In view of the restriction discussed in chapter 4
we used Kárnı́k’s original definition of M = MS (columns 45 and 46
in computer file KA96 for H < 60 km) and M = m B , respectively,
mb (column 40 and 41 in computer file KA96 for H ≥ 60 km). Some
entries have been obtained by macroseismic (i.e. semi-quantitative)
methods. We expect that the significance of the instrumental magni-
tude exceeds that of the macroseismic magnitude. The significance
probably increases with the number of stations Nstat providing mag-
nitude estimates. Table 1 shows a comparison of correlation coeffi-
cients of four subsets of H, I0, M data sets.

The effect of the preselection is visualized in Figs 2(a)–(d) (data
distribution Table 1, line 3). From Table 1 we conclude that:

(a) the preselection of data with high I0 quality has reduced the
number of samples down to 66 per cent, but increases the partial
correlation coefficients of M and I0 by 30 per cent;

(b) the negative correlation of rI0 log(H )·M and the correlation
rM I0·log(H ) is enhanced when doubtful I0 are excluded;

(c) the correlations rM log(H )·I0 and rI0 log(H )·M appear as rather in-
dependent of the data quality, which increases from line 1 to line 4. A
possible explanation could be that the quality of H determinations of
the data sets is hardly improved by the selections according Table 1.

First, we attempted to retrieve Kárnı́k’s eq. (5) using data ma-
terial from the same time span 1901–1955 that he had used. The
results were not satisfying. In an earlier publication, a geographical
window was found that covers Central Europe and Italy where a
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Table 1. Partial correlation coefficients of four different M, I0, H data sets from KA96 with focal depths in the range 1 ≤ H < 300 km.
According to Kárnı́k’s definition, M = Ms for 1 ≤ H ≤ 60 km and M = m B for 60 < H ≤ 300 km. The criterion ‘doubtful I0’ is
provided in KA96.

Line number Specification Number of samples rM log(H )·I0 rI0 log(H )·M rM I0·log(H )

1 All data M, I0, H 3362 0.54 −0.47 0.60
2 Specification as line 1, but doubtful I0 excluded 2206 0.66 −0.60 0.79
3 Specification as line 2 but Nstat ≥ 4 527 0.51 −0.56 0.78
4 Specification as line 2 but Nstat ≥ 6 327 0.53 −0.62 0.81
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Figure 2. (a) Histogram showing the number of events per focal depth interval = 5 km, N = 527 events with Nstat ≥ 4, 1 ≤ H < 300 km, events with doubtful
I0 excluded (data set see Table 2). The difference in the structure of the data distribution of H below and above 60 km can be explained by Kárnı́k’s method of
M determination. In this figure one data point with H = 290 km has been omitted. (b) M–I0 [MSK] distribution, data see Fig. 2(a) and Table 2. (c) M–log(H )
distribution, data see Fig. 2(a) and Table 2. (d) I0 [MSK]–log(H ) distribution, data see Fig. 2(a) and Table 2.
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Table 2. Correlation coefficients of a data set with
doubtful I0 excluded and Nstat ≥ 4 (line 3 in Table 1)
from KA96 with focal depths in the range 1 ≤ H <

300 km.

rI0 log(H ) = −0.32 rI0 H = −0.32
rI0 log(H )·M = −0.56 rI0 H ·M = −0.57
rI0 M = 0.70
rI0 M ·log(H ) = 0.78 rI0 M ·H = 0.79
rlog(H ) M = 0.12 rH M = 0.13
rlog(H ) M ·I0 = 0.51 rH M ·I0 = 0.52

better agreement with eq. (5) exists (Gutdeutsch et al. 2000b). The
authors conclude that the data set KA69 confirms eq. (5) by the
standard regression eq. (7) with a maximum error of 0.1 magnitude
units. Table 1 shows, that the unselected data set does not satisfy
the significance criteria. Hence, we use the preselected data set with
doubtful I0 excluded and Nstat ≥ 4 (line 3 in Table 1). Its frequency
distribution (Fig. 2a) shows the effect of Kárnı́k’s definition of M
very clearly. The frequency of shocks with H ≥ 60 km follows a
law that is different from that at H < 60 km (see Fig. 2a). The cor-
relation coefficients are presented in Table 2. In Table 2 as well as in
Tables 4–6 (see Sections 6.2 and 6.3), we added the respective cor-
relation coefficients with H as parameter in order to compare the
correlations of I0 or the magnitude with log(H ) and H to test
the presumption of eqs (1)–(4). Obviously the differences between
the correlations with log(H ) and H are small. The investigation of
H, instead of log(H ), or a combination of both will be the subject
of another study.

Figs 2(b)–(d) visualize the correlation. The high correlation coef-
ficient rI0 M ·log(H ) > rI0 M , |[rlog(H )M ·I0 − rlog(H )M ]/rlog(H )M ·I0 | > 0.05
and N > 20 satisfy the significance criteria. Regression formulae
have been established as follows:

M (7) ← 0.785 + 0.505 I0 + 0.737 log(H ),

� M (7) = ±0.468 (� M (Kárnı́k) = ±0.501), (13)

I (7)
0 ← 2.306 + 1.210 M − 1.275 log(H ),

�I (7)
0 = ±0.725, (14)

log(H )(7) ← 1.185 + 0.347 M − 0.250I0,

� log(H )(7) = ±0.321, (15)

M (12) = −1.682 + 0.654I0 + 1.868 log(H ) (16)

with P = 0.7584, nI0 = 0.2951, nlog(H ) = 0.8424, nM = −0.4509
and σ = ±0.285,

δM (12) = σ/nM = 0.631,

δ I (12)
0 = σ/nI0 = 0.965,

δ log(H )(12) = σ/nlog(H ) = 0.338.

The range of validity of eq. (16) is approximately 4 ≤ M ≤ 7 and
H = 300 km (see Figs 2a and b).

Eqs (13)–(15) are standard regression relations of M (7), I (7)
0

and log(H )(7) following eq. (7). M (12) is the result of the orthog-
onal regression according to eq. (12). The non-least-squares errors
�M (Kárnı́k) of Kárnı́k’s formulae (5) has been added in parentheses.

The one-sided relations (13)–(15) contradict each other consid-
erably. This can be shown when we interpret them as equations and
transform them into

Table 3. Comparison of magnitudes M(I0, log(H )) calculated using
eqs (16), (19), (13) and (5) for I0 = I mean

0 = 7.16 (mean value of the data set).
Note that M estimates of the orthogonal regression (16), the mean of stan-
dard regression (19) and the standard regression (13) coincide at the centre of
gravity of the data set I mean

0 = 7.16, H log mean = 17.36 km, Mmean = 5.31.
M calculated from Kárnı́k’s formulae (5) deviates slightly from the centre of
gravity.

M (12) from M (ave) from M (7) from M from
orthogonal mean standard Kárnı́ks
regression coefficients regression regression

H (km) eq. (16) eq. (19) eq. (13) eq. (5)

1 3.00 3.38 4.26 3.93
2 3.56 3.85 4.62 4.23
5 4.31 4.47 4.91 4.63
10 4.87 4.94 5.13 4.93
15 5.20 5.22 5.26 5.10
17.16 5.31 5.31 5.31 5.16
20 5.43 5.41 5.36 5.23
30 5.76 5.69 5.49 5.41
50 6.18 6.03 5.65 5.63
100 6.74 6.50 5.87 5.93

M = −1.905 + 0.826I (7)
0 + 1.053 log(H ), (17)

M = −3.421 + 0.722I0 + 2.886 log(H )(7). (18)

The average values of the coefficients in eqs (13), (17) and (18) give
rise to

M (ave) = −1.514 + 0.684I0 + 1.559 log(H ),

� M (ave) = ±0.571. (19)

The striking agreement between eqs (19) and (16) demonstrates
that the average values of coefficients gained from the standard
regression (7) provide a relation close to that of the orthogonal
regression (12).

Note, that M (7) in eq. (13), M (12) in eq. (16) and M (ave) in eq. (19)
agree exactly at the centre of gravity Mmean = 5.31, I mean

0 = 7.16,
log(H )mean = 1.23 with H log mean = 17.14 km = logarithmic mean
value of H. This statement can be of some help as a general infor-
mation with respect to the data set of KA96 (see Table 3).

Similar relations have been found for different regions, for in-
stance by Franke & Gutdeutsch (1974) for East Alpine earthquakes.

Eq. (16) differs slightly from the comparable relation for earth-
quakes in SE Europe (Kaiser & Gutdeutsch 2001; Kaiser et al.
2001):

M (12) = −1.62 + 0.65I0 + 1.90 log(H ),

σ = ±0.210, (Kaiser et al. 2001). (20)

Table 3 shows the distribution M(H ) for I0 = I mean
0 = 7.16 for data

1901–1990.
Kárnı́k’s empirical relation (5) differs considerably from eq. (16),

particularly for shallow focal depths. The most probable explanation
for these differences is that the focal depths used by KA69 to derive
his relationship are of ‘low accuracy’ (KA69, p. 28). We state that
the use of only high-quality data as input in the regression analysis
provides reliable relationships for the estimated magnitudes.

Eq. (16) is recommended according to its realistic presumption of
input errors. This conclusion is supported by similar results found
in different regions by the authors. However, the great range of the
equivalent error δM (12) = ±0.631 of the magnitude M (12) makes it
comparable to the result of equation M (7). An agreement between
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Table 4. Correlation coefficients of a data
set with doubtful I0 excluded, Nstat ≥ 4, fo-
cal depths in the range 1 ≤ H ≤ 50 km from
KA96 (469 events).

rI0 log(H ) = −0.18 rI0 H = −0.18
rI0log(H )·Ms = −0.31 rI0 H ·Ms = −0.26
rI0 Ms = 0.78
rI0 Ms ·log(H ) = 0.80 rI0 Ms ·H = 0.79
rlog(H ) Ms = 0.01 rH Ms = −0.24
rlog(H ) Ms ·I0 = 0.25 rH Ms ·I0 = 0.19

both eqs (13) and (16) within ±0.2 magnitude units is found for
focal depths between 5 and 50 km. This example makes clear that
the rms of the standard regression �M (7) = ±0.468 provides an
incorrect understanding of the total error of M, which actually is
much greater.

6.2 Relations of Ms , I0 and H in KA96

Can the use of a smaller set of selected data with better quality
increase the significance of relations between I0, M and log(H )?
Ambraseys (2001) points out that Kárnı́k’s magnitude M entries in
KA69 are significantly corrected for depths >50 km. This correction
is based on uncertain assessments of focal depths. Additionally, they
follow from the presumption that Ms is equivalent to the Gutenberg–
Richter magnitude. Here, the authors conclude that Kárnı́k’s Ms

estimates for subcrustal and intermediate focal depths are rather
uncertain. We assume the same to be true for the KA96 data and
thus we investigated a selected data set with focal depth H ≤ 50 km
(see Table 4).

The resulting correlation between I0 and Ms is increased relative
to the complete data set. It satisfies criterion (1) and (2). rI0 M ·log(H ) is
hardly influenced by log(H ). Therefore, criterion (3) is not satisfied.
Note that the correlation of log(H ) with I0 or Ms is worse relatively
to the complete data set. This result has to be seen in relation to
the frequency distribution of foci with depth H (see Fig. 3c). The
exaggerated cumulation of foci at H = 10, 20 and 30 km might be
explained by the decisions of the observers in view of the great un-
certainty of many H entries. In such cases they are artefacts. They
cause a considerable deviation from the true distribution and can
worsen a good correlation between M, I0 and log(H ). The inves-
tigation of this effect shall be left to later studies. Because of the
uncertainties in focal depth, we apply a least-squares fit without the
log(H ) term as follows:

M (7)
s ← 0.488I0 + 1.712,

�M (7)
s = 0.464, �I (7)

0 = 0, (21)

I (7)
0 ← 1.278Ms + 0.541,

� M (7)
s = 0, �I (7)

0 = 0.752, (22)

M (12)
s = 0.550I0 + 1.260,

σ = 0.412, δM (12)
s = 0.470, δ I (12)

0 = 0.855. (23)

The range of validity of eq. (23) is approximately 4 ≤ Ms ≤ 7, H <

50 km as visualized in Figs 3(b) and (c).
Schenk et al. (2000) use data of the Czech Republic, Poland,

Slovakia areas. They carry out standard regression analysis both of
I0(Ms) and Ms(I0) and recommend using the mean

Ms = (0.6725 ± 0.0818) I0 [MSK]

+ (0.3354 ± 0.2704) (Schenk et al. 2000). (24)

Their result agrees well with the orthogonal regression, because
the scatter of data is small enough. This can also be seen by the
relation tan(2ϕorth) = 2 tan(ϕI0 )/[1− tan(ϕI0 ) tan(ϕMs )], where ϕorth

is the incline angle of the orthogonal regression. ϕI0 and ϕMs are
the respective incline angles of the best-fitting lines of standard
regression with I0, respectively, Ms as input.

Albarello et al. (1995) found a similar equation for earthquakes
in Italy using ‘standard regression analysis’:

Ms = 1.35 + 0.50 Imax [MCS] (Albarello et al. 1995). (25)

Fig. 3(b) shows graphs of eqs (21)–(25). Obviously eq. (25) for
Italian earthquakes predicts lower values of Ms for a given I0.

We recommend relationship (23) for application in Central and
Southern Europe unless there is a regional relationship available that
better fits the data. Note the large negative correlation between the
coefficients A and B of Ms = A + B I0 in eqs (23)–(25). The same
tendency appears as a general feature of data sets of Italian earth-
quakes. On the basis of synthetic data Mucciarelli (1998) suspects
there is a ‘pivotal phenomenon’. If this is the only reason, no hidden
influence of an additional physical parameter exists. We conclude
from our data that the influence of the focal depth H cannot be ruled
out, but it appears to be not significant enough.

6.3 Relations ML, I0 and Ms in KA96

The data set 1901–1990 provides 269 earthquakes with ML, I0, H
entries and 99 earthquakes with ML, M, H entries. The correlation
is given in Tables 5 and 6. The correlation coefficient rML I0·log(H ) is
less than 70 per cent. Therefore, the ML, I0, H-data do not satisfy
significance criterion (2) and are rejected. rMs ML·log(H ) = 0.933 is
nearly equal to rMs ML = 0.932. According to significance criterion
(3) we regard the influence of log(H ) as negligible and establish a
relation between ML and Ms only:

M (7)
L ← 0.941 + 0.838Ms,

�M (7)
L = ±0.216, �M (7)

s = 0, (26)

M (7)
s ← −0.304 + 1.035ML,

�M (7)
L = 0, �M (7)

s = ±0.240, (27)

M (12)
L = 0.664 + 0.893M (12)

s , σ = ±0.163,

δM (12)
s = ±0.219, δM (12)

L = ±0.245 (28)

for 4 < ML ≤ 7, 4 ≤ Ms ≤ 7 (see Fig. 4), Mmean
L = 5.18, Mmean

s =
5.05, log(H )mean = 1.16, H log mean = 11 km. Fig. 4 shows the distri-
bution ML, Ms and the best-fitting regression lines. We conclude that
the result shown in Fig. 4 is very stable and recommend eq. (28) for
applications. Ambraseys & Bommer (1990) used 301 earthquakes
with similar ranges of ML and Ms and found by orthogonal regres-
sion (using our notation):

M (12)
L = 0.71M (12)

s + 1.46, (6)

where σ = 0.21 (Ambraseys & Bommer 1990).
Their data have been taken from a time window 1966–1989. They

overlap our data in nine events only. In view of this fact the agreement
is good.
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Figure 3. (a) Geographical distribution of epicentres of 469 earthquakes from KA96 used in the regression analysis, with Ms , I0, H entries, doubtful I0

excluded, Nstat ≥ 4, 1 ≤ H ≤ 50 km. The diameter of circles is proportional to Ms . (b) Distribution Ms (I0), N = 469 events with Nstat ≥ 4, 1 ≤ H ≤ 50 km,
events with doubtful I0 excluded. The numbers in parentheses refer to the respective equation. Eq. (21), standard regression (7) Ms in error. Eq. (22), standard
regression (7) I0 in error. Eq. (23), orthogonal regression (12). Eq. (24), relation from Schenk et al. (2000). Eq. (25): relation of Albarello et al. (1995).
(c) Histogram showing the number of events per focal depth interval = 1 km for N = 469 earthquakes from KA96 used in the regression analysis, with Ms ,
I0, H entries, doubtful I0 excluded, Nstat ≥ 4, 1 ≤ H ≤ 50 km.
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Table 5. Correlation coefficients of the data
set with doubtful I0 excluded, Nstat ≥ 4, focal
depths in the range 1 ≤ H ≤ 300 km from
KA96 (269 ML, I0, H entries).

rI0 log(H ) = −0.02 rI0 H = −0.06
rI0 log(H )·ML = −0.34 rI0 H ·ML = −0.31
rI0 ML = 0.64
rI0 ML·log(H ) = 0.69 rI0 ML·H = 0.69
rlog(H ) ML = 0.35 rH ML = 0.28
rlog(H ) ML·I0 = 0.47 rH ML·I0 = 0.42

Table 6. Correlation coefficients of the data
set with doubtful I0 excluded, Nstat ≥ 4, fo-
cal depths in the range 1 ≤ H ≤ 60 km from
KA96 (99 ML, MS , H entries).

rM S log(H ) = −0.07 rM S H = −0.05
rM S log(H )·ML = −0.14 rM S H ·ML = −0.11
rM S ML = 0.93
rM S ML·log(H ) = 0.93 rM S ML·H = 0.93
rlog(H ) ML = −0.02 rH ML = −0.02
rlog(H ) ML·M S = 0.12 rH ML·M S = 0.09

7 R E G I O N A L V A R I A T I O N S
I N T H E R E L A T I O N Ms – I0

In this section we briefly discuss apparent regional variations in
the relation between Ms and I0. We also investigated regional dis-
tinctions in the relationship between Ms and ML, which could be
expected owing to different procedures used for the calculation of
ML, but did not observe any systematic pattern.

For each earthquake shown in Fig. 3(a) we calculated the dif-
ference between the instrumental Ms and M (12)

s calculated from I0
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Figure 4. Distribution of 99 ML, Ms entries of KA96 for 1 ≤ H ≤ 60 km.
Numbers in parentheses refer to the respective equation. Eq. (26), standard
regression (7) assuming ML is in error. Eq. (27), standard regression (7)
assuming Ms is in error. Eq. (28): orthogonal regression (12). Eq. (6), rela-
tionship from Ambraseys & Bommer (1990).

using eq. (23) and display the results in the map of Fig. 5. The resid-
ual values Ms − M (12)

s fall in the range from −1.3 to +1.3 magnitude
units (cf. Fig. 3b), which is equal to approximately 2.8 standard de-
viations. Fig. 5 clearly shows systematic regional variations with
predominantly higher values (stars) for M (12)

s calculated from I0 in
Central Europe, the Alps, Italy, Algeria, and lower values (circles)
especially in Greece, Bulgaria, Western Turkey, along the western
coast of the Adriatic Sea, and in the Caucasus.

There are several possible explanations for the observed regional
variations.

(1) Differences in the practice of intensity assignments and the
use of different intensity scales (MKS, MCS); see the discussion of
eqs (23)–(25).

(2) The consequence of a highly clustered data set to the parame-
ters of the linear least-squares fit approximation (Pivot phenomena)
as proposed by Mucciarelli (1998).

(3) Systematic variations of the stress drop. High stress drop
earthquakes radiate more high-frequency energy resulting in higher
macroseismic intensities for a given Ms .

(4) Variations of average focal depth. However, as we showed in
Section 6.2, the correlation between Ms and I0 is practically inde-
pendent of the focal depth for the present data set. So this explanation
can probably be disregarded.

(5) Systematic differences in crustal attenuation and/or local site
conditions.

Which and how these possible explanations contribute to the ob-
served variations is important to understand and will be investigated
in future work.

8 C O N C L U S I O N A N D O U T L O O K

In this study the development of empirical relations between the
earthquake magnitude and macroseismic parameters is investigated.

(1) We presume a tolerable level of significance, from which on
a least-squares fitting approximation of empirical relations between
magnitudes and macroseismic data is useful. This tolerable level
depends on the aim of the investigation and the personal decision
of the investigator. The significance level is defined by three criteria
taken from the correlation coefficients between the parameters used.
These significance criteria in three-parametric cases such as M, I0

and log(H ) help to decide from which level of significance is it
reasonable to perform a regression analysis excluding the parameter
of lowest importance.

(2) The differences between the standard regression eq. (7) and
the orthogonal regression eq. (12) are investigated. Empirical stan-
dard regression formulae are not equations in the mathematical sense
but rather a one-sided attribution. This means that they do not have
the property of reversibility as mathematical equations. In contrast
to this feature the orthogonal regression can be treated as a mathe-
matical equation. It is shown that standard and orthogonal regression
apply different concepts of the least-squares error. The ‘equivalent
error’, for instance δMs , represents a measure, which can be in-
terpreted from the viewpoint of standard regression analysis if the
orthogonal regression has been carried out.

(3) The results of the orthogonal and the standard regression
agree completely at the centre of gravity of the data set. With in-
creasing distance to the centre of gravity the discrepancy between
both increases.
The following conclusions follow from our experience with data
from KA96.
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Figure 5. Regional differences in the relation between Ms and I0 [MSK] for the 469 earthquakes shown in Fig. 3(a) used to derive eq. (23). Stars, Ms calculated
from I0 [MSK] using eq. (16) larger than the instrumental Ms , i.e. M (12)

s > Ms . Circles, M (12)
s < Ms . The size of the symbols is proportional to |Ms − M (12)

s |.

(4) The mean values of the coefficients gained by the standard
regression agree quite well with the coefficients of the orthogonal
regression. This has been shown for both the 2-D and the 3-D or-
thogonal regression.

(5) The orthogonal least-squares fit in general yields a greater
rms than the standard least-squares fit. The difference between both
relations increases with decreasing correlation coefficients. One can
regard this difference between both as a touchstone of the quality
of the formulae used. For questions of earthquake hazard analy-
sis the orthogonal regression is a considerable help as it visualizes
simultaneously the errors of all input data.

(6) Eqs (16) and (23) are derived by orthogonal regression from
a large high-quality data set. We recommend their application be-
cause they consider a realistic presumption of input errors and be-
cause they provide reversible equations. They should be applicable
in Central and Southern Europe. However, considering the equiva-
lent error δM = 0.63 and 0.47, respectively, and obvious regional
deviation variations, we deem it reasonable to derive regional re-
lationships that better fit the data. Thus, they are also important
for earthquake hazard assessments, especially in moderate or low
seismicity domains (intraplate regions).

The magnitude is a helpful but imprecisely defined physical pa-
rameter. This fact explains the well known and lamentable lack
of precision of magnitude values given in catalogues. Our study
shows that a greater data set does not necessarily provide a better

basis for magnitude conversions. There is a limit of precision which
the practitioner knows well. It corresponds to the order of 0.3–
0.5 magnitude units.
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