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S U M M A R Y
A 3-D finite-element scheme for direct current resistivity modelling is presented. The sin-
gularity is removed by formulating the problem in terms of the secondary potential, which
improves the accuracy considerably. The resulting system of linear equations is solved using
the conjugate gradient method. The incomplete Cholesky preconditioner with a scaled matrix
has been proved to be faster than the symmetric successive overrelaxation preconditioner. A
compact storage scheme fully utilizes the sparsity and symmetry of the system matrix.

The finite-element (FE) and a previously developed finite-difference (FD) scheme are com-
pared in detail. Generally, both schemes show good agreement, the relative error in apparent
resistivity for a vertical dike model presented in this paper is less than 0.5 per cent overall.
The FD scheme produces larger errors near the conductivity contrast, whereas the FE scheme
requires approximately 3.4 times as much storage as the FD scheme and is less robust with
respect to coarse grids.

As an improvement to the forward modelling scheme, a modified singularity removal tech-
nique is presented. A horizontally layered earth or a vertical contact is regarded as the normal
structure, the solution of which is the primary potential. The effect of this technique is demon-
strated by two examples: a cube in two-layered earth and a cube near a vertical contact.

Key words: 3-D resistivity modelling, DC geoelectrics, finite differences, finite elements,
preconditioning, singularity removal.

1 I N T R O D U C T I O N

A limited number of numerical solutions of the 3-D direct current
(DC) resistivity problem have been discussed in the geophysical lit-
erature. These solutions have been obtained using integral equation,
finite-difference or finite-element techniques. The integral equation
method is most efficient for modelling one or a few inhomoge-
neous bodies in a homogeneous earth. Finite-difference (FD) and
finite-element (FE) methods, however, are suitable for modelling an
arbitrarily complex 3-D earth. Dey & Morrison (1979) developed a
3-D FD algorithm to evaluate the potential for a point current source.
The equation of continuity is integrated over elemental volumes to
obtain a system of self-adjoint difference equations. A mixed bound-
ary condition was introduced, based on the asymptotic behaviour of
the potential field in a homogeneous medium. Lowry et al. (1989)
proposed a 3-D integrated FD scheme using a singularity removal
technique. This method actually models the anomalous potential
that is caused by conductivity contrasts. Spitzer (1995) reported a
FD algorithm using conjugate gradient methods. A compact stor-
age scheme was employed, which reduced the number of memory-
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resident coefficients and shortened the run time by avoiding un-
necessary computational operations. Zhang et al. (1995) introduced
a resistivity network formulation in conjunction with an inversion
scheme. Two modifications of the FD method were recently made
by Zhao & Yedlin (1996). The first is more accurate formulae for the
source singularity removal. The second is the analytic computation
of the source terms that arise from the decomposition of the poten-
tial into the primary and secondary potential. Spitzer et al. (1999)
presented a secondary potential 3-D DC and induced polarization
(IP) FD code, which offers grid-independent electrode positioning
and detaches both transmitters and receivers from grid nodes. The
application of the FE method to the 2-D resistivity problem was
discussed by Coggon (1971). A FE solution to the 3-D resistivity
problem was reported by Pridmore et al. (1981) and Xu (1994).
Sasaki (1994) developed a 3-D resistivity inversion algorithm using
the FE method. Recently, Zhou & Greenhalgh (2001) published a
FE solution to the 3-D DC problem, where mixed boundary condi-
tions and a compact storage scheme were incorporated. However,
they solved the governing equation of the total potential.

In this paper, we revisited the 3-D FE resistivity forward problem,
however, a modified method of singularity removal is presented to
improve the stability of the solution. First, the theoretical basis of the
FE solution for the secondary potential is developed. Furthermore,
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two different preconditioning methods, the incomplete Cholesky
(IC) and the symmetric successive overrelaxation method (SSOR),
are investigated. After that, the FE and FD schemes are compared
in terms of accuracy and memory requirements. Finally, the effect
of singularity removal is illustrated.

2 T H E B O U N D A R Y V A L U E P R O B L E M

We assume a 3-D conductivity model σ (x, y, z) in a Cartesian sys-
tem of coordinates (x, y, z) with the origin at the air–earth inter-
face and z positive downwards. The current source I is located at a
point (xq , yq , zq ). The governing equation for the electrical potential
v(x, y, z) is

∇ · [σ (x, y, z)∇v(x, y, z)] = −I δ(x − xq )δ(y − yq )δ(z − zq ),

(1)

where δ is the Dirac delta function.
Numerical approximations using eq. (1) typically give poor re-

sults in the vicinity of the source location because of steep gradients
of the field. A better approach is to remove the effect of the sin-
gular potential caused by the source. According to the singularity
removal procedure proposed by Lowry et al. (1989), the potential
in eq. (1) is split into the primary potential vn caused by the cur-
rent source in a uniform half-space with the conductivity σn and
the secondary potential va caused by the inhomogeneity with the
anomalous conductivity σa(x, y, z) = σ (x, y, z) − σn , yielding

v(x, y, z) = vn(x, y, z) + va(x, y, z). (2)

The primary potential vn satisfies the partial differential equation

∇ · [σn(x, y, z)∇vn(x, y, z)] = −I δ(x − xq )δ(y − yq )δ(z − zq ).

(3)

For a uniform half-space and a current source located at the surface
of the earth, the solution of eq. (3) is

vn = I

2πσnr
, (4)

where r = √
(x − xq )2 + (y − yq )2 + z2 is the distance from the

measuring point to the source, while σn is the conductivity of the
media at the source point (Zhao & Yedlin 1996).

With the above procedure, the singularity can be well removed and
the discretization error in the vicinity of the source location becomes
small. Especially when the background is a uniform half-space, the
numerical results are of satisfactory accuracy over the whole model
domain. However, if the background is a horizontally layered earth
or a vertical contact, the numerical results can be distorted near the
model domain boundaries. In this case, we make a refinement on the
above described method. We assume that the primary potential is
caused by the current source in a horizontally layered earth or in two
quarter-spaces. The potential of a vertical contact can be calculated
very easily using the method of images. Although a general expres-
sion for the potential at any point within a layered earth was given
by Koefoed (1979) and Parasnis (1986), the recurrence formulae
for all kernel functions, to our knowledge, are not available in the
literature. Therefore, they are given in Appendix A.

Substituting eqs (2) and (3) into eq. (1), we obtain the differential
equation for the secondary potential

∇ · [σ (x, y, z)∇va(x, y, z)] + ∇ · [σa(x, y, z)∇vn(x, y, z)] = 0.

(5)

To solve eq. (5), the boundary conditions must be defined. On bound-
aries with different conductivities, the total potential v and the nor-
mal component of the current density jn = σ∂v/∂n must be contin-
uous, where n denotes the outward normal direction of the boundary
interface. From this, we can further derive the continuity of the sec-
ondary potential va and σ∂va/∂n + σa∂vn/∂n on such boundaries.
Since there is no current flow through the air–earth interface 
s ∈ 
,
where 
 denotes the boundary of the whole model domain, we have

∂vn

∂n
= 0,

∂va

∂n
= 0 on 
s . (6)

On the outside domain boundaries 
∞ ∈ 
, mixed boundary condi-
tions (Dey & Morrison 1979) are applied:

∂vn

∂n
+ cos(r, n)

r
vn = 0,

∂va

∂n
+ cos(r, n)

r
va = 0, (7)

where r denotes the radial distance from the source location to the
boundary and n denotes the outward normal direction at the bound-
ary surface.

For arbitrarily shaped 3-D structures, the above boundary value
problem has to be solved numerically, e.g. by using the FE or FD
method. In the following, we first formulate the FE solution. For a
comparison with the FD method, we refer to the formulation given
by Dey & Morrison (1979), Zhang et al. (1995), Spitzer (1995) and
Spitzer & Wurmstich (1999).

3 FO R M U L A T I O N O F T H E
F E E Q U A T I O N S

The FE approximation of the governing eq. (5) is performed on a
model volume that entirely embraces the volume of the 3-D inhomo-
geneities, and extends far enough in all directions for the anomalous
potential to fade out to sufficient smallness on the outside boundary
of the model volume. For most models, if the boundaries are far
from the inhomogeneity, the secondary potential is mainly a dipole
field and will go to zero at least as fast as 1/r 2 (Zhao & Yedlin
1996). In this paper, we use the variational method to derive the FE
equations. According to the variational principle, the true solution
of a differential equation gives a stationary value to a functional. The
functional can be formed by using the minimum theorem (Pridmore
et al. 1981). For eq. (5), the functional reads

I (va) =
∫

�

[
σ (∇va)

2 + 2σa∇vn · ∇va

]
d�, (8)

where � denotes the model volume. The variation of eq. (8) with
respect to va yields

δ I (va) =
∫

�

2(σ∇va + σa∇vn) · ∇δva d�. (9)

Using the vector formulae

∇a · b = ∇ · (ab) − a∇ · b, (10)

and the divergence theorem∫
�

∇ · b d� =
∮




b · n d
, (11)

where a is an arbitrary scalar, b an arbitrary vector, 
 = 
s + 
∞
represents the boundary surface of the model volume � and n is the
outward normal direction of the boundary 
, eq. (9) then becomes

δ I (va) = 2
∮


s+
∞

(
σ

∂va

∂n
+ σa

∂vn

∂n

)
δva d


− 2
∫

�

[∇ · (σ∇va + σa∇vn)]δva d�. (12)
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The volume integral in eq. (12) is equal to zero, because the integrand
is always zero according to eq. (5). From eq. (6), the surface integral
at the air–earth interface 
s must also vanish. Thus, eq. (12) reduces
to

δ I (va) = 2
∫


∞

(
σ

∂va

∂n
+ σa

∂vn

∂n

)
δva d
. (13)

Insertion of eq. (7) into eq. (13) gives

δ I (va) = −2
∫


∞

[
σ

cos(r, n)

r
va + σa

cos(r, n)

r
vn

]
δva d


= −δ

∫

∞

[
σ

cos(r, n)

r
v2

a + 2σa
cos(r, n)

r
vnva

]
d
, (14)

or

δ

{
I (va) +

∫

∞

[
σ

cos(r, n)

r
v2

a + 2σa
cos(r, n)

r
vnva

]
d


}
= 0.

(15)

In summary, the boundary value problem (5)–(7) is equivalent to
the following variational problem:

F(va) =
∫

�

[
σ (∇va)

2 + 2σa∇vn · ∇va

]
d�

+
∫


∞

[
σ

cos(r, n)

r
v2

a + 2σa
cos(r, n)

r
vnva

]
d
, (16)

δF(va) = 0.

The model volume � is subdivided into hexahedral elements, and
the conductivity in each element is assumed to be constant. Then,
the integral of eq. (16) is decomposed into integrals of each element,
yielding

F(va) =
ne∑

e=1

∫
�e

σ (∇va)
2 d� +

∑

∞

∫

e

σ
cos(r, n)

r
v2

a d


+ 2

[
ne∑

e=1

∫
�e

σa∇vn · ∇va d�

+
∑

∞

∫

e

σa
cos(r, n)

r
vnva d


]
, (17)

where �e denotes the volume of a particular element e, 
e is the
surface on 
∞ and ne is the number of hexahedral elements.

We further assume that in each hexahedral element the primary
and secondary potentials are linear functions of the Cartesian coor-
dinates x, y and z, i.e.

Figure 1. A hexahedral element in the global coordinate system (a) and in the local coordinate system (b) for FE modelling.

vn =
8∑

i=1

Nivn,i , va =
8∑

i=1

Niva,i , (18)

where vn,i and va,i are the primary potential and the secondary po-
tential, respectively, at the corner point i of a hexahedral element
(i = 1, . . . , 8) defined in global coordinates (see Fig. 1a), while Ni

are linear shape functions defined by Xu (1994) and Li (2000) as

Ni = 1

8
(1 + ξiξ )(1 + ηiη)(1 + ζiζ ), i = 1, . . . , 8. (19)

In eq. (19), ξi , ηi and ζi are the coordinates of the corner point i in
the local coordinates (ξ, η, ζ ) (see Fig. 1b).

A major step in the FE method is to transform the global coordi-
nates (x, y, z) into corresponding local coordinates (ξ, η, ζ ) by

ξ = 2

a
(x − xc), η = 2

b
(y − yc), ζ = 2

c
(z − zc), (20)

where xc, yc and zc are the coordinates of the centre of the hexahedral
element, a, b and c are the length, width and height of the hexahedral
element, respectively. This transformation simplifies the evaluation
of the integrals in eq. (17). Using eqs (18)–(20), the volume integrals
in eq. (17) are analytically evaluated in the local coordinates.

Similarly, the surface integrals in eq. (17) are evaluated analyti-
cally. In this case, the potentials vn and va are determined by linear
interpolation of the potentials at four nodes of a rectangular element.

Summing up the integrals over all elements and assembling the
element matrices to a system matrix, we obtain the following ap-
proximation to the functional F(va):

F(va) = vT
a Kva + 2vT

a p, (21)

where K is the total system matrix, va is the vector of the unknown
secondary potentials at all nodes and p is the known vector resulting
from the final two terms of the right-hand side of eq. (17). The
superscript T denotes matrix transposition.

From eq. (21), the first variation of the functional F with respect
to va is

δF(va) = 2δvT
a Kva + 2δvT

a p. (22)

The functional is minimized by setting the first variation of the
functional to zero. This finally results in the finite-element equation

Kva = −p, (23)

where the system matrix K is symmetric and sparsely occupied
by non-zero elements. This system of linear equations is solved
numerically by using the conjugate gradient method (Hestenes &
Stiefel 1952), which provides the anomalous potential at all nodal
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points. The total potential is then obtained by adding the anomalous
potential to the normal potential.

4 P R E C O N D I T I O N I N G

To solve the equation system efficiently by using the conjugate gra-
dient method, it is often conventional to apply a preconditioning
technique. This decreases the condition number of the matrix and
accelerates the convergence. Following the idea of preconditioning,
the system of linear eq. (23) is transformed into an equivalent system

H−1Kva = −H−1p, (24)

where H−1 is an approximate inverse of K with H−1K ≈ I. Note
that the identity matrix I has the condition number 1.

In the previous two decades, different methods for the choice of
the preconditioning matrix H have been developed (Meijerink & van
der Vorst 1977; Kershaw 1978; Manteuffel 1979; Axelsson 1985;
Schwarz 1991). In the following, we investigate the efficiency of
three preconditioning methods for solving our problem.

4.1 Scaling the coefficient matrix

Scaling the coefficient matrix is the simplest way of preconditioning.
According to Schwarz (1991), the equation system (23) is written
as

K̃ṽa = −p̃, (25)

with

K̃ = DKD, ṽa = D−1va, p̃ = Dp,

where Di j = 0 for i �= j and Di j = 1/
√

Ki j for i = j . The modified

matrix K̃ is still symmetric and maintains the non-zero pattern of
K. All diagonal elements of K̃ are equal to 1. In general, scaling
already decreases the condition number considerably.

4.2 SSOR preconditioning with a scaled matrix

Schwarz (1991) suggested the symmetric successive overrelaxation
method. Following this method, the scaled coefficient matrix K̃ in
eq. (25) is presented by the sum of an identity matrix I, a lower
triangular matrix E and its transposition matrix F = ET as

K̃ = E + I + F. (26)

The preconditioning matrix H is defined by

H = CCT = (I + ωE)(I + ωF), (27)

where C = I + ωE. The matrix C is similar to the above defined
matrix E and has the same non-zero pattern as the lower part of
K̃. In eq. (27), ω ∈ R denotes a relaxation factor, which is chosen
to be 1.4 for all our model tests. The SSOR preconditioner has
the advantage of not requiring any additional memory because the
preconditioning matrix is implicitly constructed and stored.

4.3 IC preconditioning with a scaled matrix

An alternative method for producing a preconditioning matrix H is
based on an incomplete Cholesky decomposition of K̃. In general,
the IC decomposition fails, because the square roots of negative
numbers may arise. Such a breakdown can occur even for the prob-
lem where K̃ is symmetric and positive-definite. In this case, we use
a correction scheme suggested by Manteuffel (1979) and Schwarz

(1991), where the off-diagonal elements of the scaled matrix K̃ in
eq. (26) are reduced to

K̃′ = I + 1

1 + α
(E + F) (28)

with a small non-negative number α, which should be chosen to be
as small as possible. The larger α is, the more strongly the absolute
values of the off-diagonal elements of K̃ are reduced, and then the
matrix K̃

′
becomes increasingly a worse approximation to K̃ and

the preconditioning effect may be reduced. The suitable value of α

is found by experiments. It is chosen to be α = 0.01 for all model
tests in this paper.

The preconditioning matrix H is defined by

H = CCT, (29)

where C is a lower triangular matrix, which describes an IC de-
composition of the matrix K̃

′
. The elements of C are determined

recursively by

Cii =
(

K̃ ′
i i −

i−1∑
l=1

C2
il

)1/2

, (30)

C ji =
(

K̃ ′
j i −

i−1∑
l=1

C jlCil

) /
Cii , if K̃ ′

j i �= 0, (31)

C ji = 0, if K̃ ′
j i = 0,

i = 1, . . . , n; j = i + 1, . . . , n.
(32)

The matrix C has the same sparsity pattern as K̃
′
. The IC precondi-

tioner requires additional storage for the matrix C.
A test was performed on a vertical dike model (Fig. 2). The dike

is 5 m wide and 20 m offset from the origin of the coordinate sys-
tem. It extends to infinity in ±x- and +z-direction. The resistivity
of the half-space and the dike are ρ1 = 100 � m and ρ2 = 10 � m,
respectively. Schlumberger soundings are carried out over the struc-
ture. The two current sources are located at (0, −1, 0 m) and (0, 1,
0 m), respectively. The modelling domain boundaries are located at
±5500 m in the x- and y-directions and 5500 m in the +z-direction.
The model is divided into 215 424 irregular cells using 73×89×35
grid lines, yielding a total of 227 395 field unknowns. The system
of equations is solved using the preconditioned conjugate gradient
method. We use v(0)

a = 0 as starting values. In Fig. 3, the relative

Figure 2. A vertical dike model.
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Figure 3. Convergence of three preconditioners for the vertical dike model in Fig. 2. The ordinate shows the norm of the residual of the kth iteration step |rk |
normalized by the residual of the first iteration step |r0|, and the abscissa shows the CPU time on the IBM RS/6000 computer.

norm of the residual |rk |/|r0| is plotted versus the CPU time on
the workstation IBM RS/6000 for all three preconditioning meth-
ods. |rk | = ‖−p̃ − K̃v(k)

a ‖ is the residual of the kth iteration and
|r0| = ‖−p̃ − K̃v(0)

a ‖ is the residual of the first iteration. One sees
that the IC method has the best convergence rate followed by SSOR
and scaling. This implies that the SSOR method is a suitable choice
for large 3-D grids, while the IC method is a good choice if sufficient
computer memory is available.

5 C O M P A R I S O N S O F T H E F E
A N D F D S C H E M E S

The FE and FD technique tackle the boundary value problem us-
ing very different principles. Whereas the FD formulation directly
transfers partial differential equations into difference equations, the
FE method is based on the variational principle or the method of
weighted residuals. In this section, we compare the FE method pre-
sented in this paper with the FD method given by Spitzer (1995)
and Spitzer et al. (1999), in terms of accuracy and memory re-
quirements to find the most effective approach to solving our 3-D
modelling problem in the DC method.

5.1 Accuracy

The accuracies of the FE and FD schemes are compared for the
previously described dike model (Fig. 2). All comparisons are car-
ried out for a pole–pole configuration. A single current source is
assumed to be located at the origin of the coordinate system.

An irregular grid with 61 × 61 × 31 nodes is used for the FE
and FD modelling. The model boundaries are at a distance of 5500
m in each direction. The model is more finely discretized near the
conductivity contrast. In Fig. 4(a), the apparent resistivity ρa com-
puted by both FE and FD algorithms is plotted versus the electrode
distance of the pole–pole configuration. The profile extends parallel
to the dike and along the +x-axis (i.e. x > 0 and y = 0). The solu-
tion computed by an analytical dike program (Hanstein 1994, pers.
comm.) is also shown for comparison. It is seen that both FE and
FD methods provide very accurate results over the whole range. The
relative deviation between the numerical results and the analytical

solution is less than 0.2 per cent (see Fig. 4b), except at the boundary
(x = 5500 m), where the error reaches 1.15 per cent for the FE so-
lution. This is probably caused by the conductive dike extending to
the model boundary. The elongated elements along with improper
boundary conditions produce poor results.

Fig. 5(a) shows the apparent resistivity ρa obtained by the FE and
FD method for the pole–pole configuration together with analytical
solution. The profile extends perpendicular to the dike and along
the +y-axis (i.e. x = 0 and y > 0). The FE and FD solutions agree
very well with the analytical results. However, the signature of the
error distribution is different for each method (see Fig. 5b). Max-
imum errors between 0.20 and 0.54 per cent occur at y = 20–90
m for the FD solution, whereas for the FE solution the maximum
errors occur between y = 32.5–200 m. If the model discretization is
refined at y = 10–425 m, the accuracy of the FE scheme is improved
considerably, yielding a relative error of less than 0.14 per cent over
the whole range (Fig. 6). However, the maximum of the error for
the FD scheme remains, although the amplitude is reduced. These
model tests show that the FD scheme seems to be rather robust with
respect to coarse grids, i.e. geometric grid properties, and the FE
scheme with respect to conductivity contrasts. These differences
are probably related to the treatment of potential and conductivity
in assembling the coefficient matrix. A second-order Taylor series
expansion of the potential is used for deriving the FD expressions
(Spitzer 1995), but in assembling the FE matrix K it is assumed
that the potentials are linear function of the coordinates in each
hexahedral element. Thus, a local refinement of the grid in those
regions where the potential fields vary steeply is more essential for
FE than it is for FD to obtain accurate results. Moreover, in assem-
bling FE coefficients the electrical conductivity is assumed to be
constant over each hexahedron and is equal to the real conductivity
of the medium. However, in the FD scheme the conductivity value
at a grid point is the arithmetic average of eight volume-weighted
cell conductivities that surround the grid point (Spitzer 1995). This
approximation accounts for increased discretization errors near the
conductivity contrast. Uncontrollable numerical instabilities of the
FD solution are therefore observed in the case of a very high con-
ductivity contrast. Fig. 7 shows the FE and FD results of a pole–pole
configuration for the conductivity contrast of ρ1/ρ2 = 10 000 (i.e.
ρ1 = 100 � m and ρ2 = 0.01 � m). The FE solution agrees well with
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Figure 4. Comparison of the DC apparent resistivity obtained from FE and FD (top) and the relative deviation between the numerical result and the analytical
solution (bottom) versus the electrode distance for a pole–pole configuration along the +x-axis parallel to the dike in Fig. 2.

the analytical one after refining the grid adequately. However, it is
not possible to restabilize the FD solution.

5.2 Storage size of coefficient matrix

As mentioned in Section 3, the coefficient matrix of the FE equa-
tions is symmetric and sparse. With the hexahedral-element dis-
cretization, each node has a maximum of 26 neighbouring nodal
points. This means that the coefficient matrix generally has 27 non-
zero elements in each row. Owing to the symmetry of the matrix,
14 non-zero elements need to be stored in each row. For a grid with,
for example, 73 × 89 × 35 nodes, there are ∼ 3.1 × 106 non-zero
elements to be stored.

Most 3-D FD approaches are formulated with a central grid point
and its six direct neighbours along the main coordinate axes. This
means that the coefficient matrix resulting from FD discretization
has a maximum of seven non-zero elements in each row. Considering
the symmetry, there are only four non-zero elements to be stored in
each row. For the above grid of 73 × 89 × 35, there are ∼ 9.1 × 105

non-zero elements to be stored.
From the above discussion, we conclude that the FD method has

a much smaller storage requirement than the FE method. For our

example of a grid with 73 × 89 × 35 nodes, the FE scheme requires
approximately 3.4 times as much storage as the FD scheme.

6 I M P R O V E D S I N G U L A R I T Y
R E M O V A L T E C H N I Q U E

In this section, we first show the superiority of the singularity re-
moval technique and then illustrate the advantages of using more
suitable reference models for the potential split-up. So far, the ho-
mogeneous half-space has been most frequently used to calculate
the normal potential (Lowry et al. 1989; Xu 1994; Zhao & Yedlin
1996). However, for a wide range of models, horizontal layers or ver-
tical contacts are better alternatives. We refer to the former method
as the conventional singularity removal technique and the latter as
the improved singularity removal technique. In the following, the
vertical dike model given in Fig. 2 is studied to show the advantage
of modelling the secondary potential, whereas a cube buried in a
two-layered earth, and a cube buried near a vertical fault are con-
sidered to demonstrate the superiority of the improved singularity
removal technique.

Fig. 8(a) shows the apparent resistivity ρa of a Schlumberger con-
figuration for a profile along the y-axis perpendicular to the dike.
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Figure 5. Comparison of the DC apparent resistivity obtained from FE and FD (top) and the relative deviation between the numerical result and the analytical
solution (bottom) versus the electrode distance for a coarse grid and a pole–pole configuration along the +y-axis perpendicular to the dike in Fig. 2. The dotted
lines indicate the dike boundaries. The signature of the error distribution is different for the FE and FD method.

Figure 6. Relative deviation between the numerical results and the analytical solution for a fine grid and the dike model in Fig. 2. The electrode array is the
same as that used in Fig. 5. The dotted lines indicate the dike boundaries. Refinement of the grid mainly reduces the error for FE.

The two current sources are located at (0, −1, 0 m) and (0, 1, 0 m), re-
spectively. The apparent resistivity ρa is obtained by directly solving
the differential eq. (1). The results from the conventional singularity
removal technique are also presented. It is clear from Fig. 8 that the

method without singularity removal produces larger errors than the
method with the conventional singularity removal, especially near
the current source point. The average error, which is calculated as
the sum of the percentage error at all profile nodes divided by the
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Figure 7. DC apparent resistivity versus the electrode distance for a pole–pole configuration and a large conductivity contrast of ρ1/ρ2 = 104 (ρ1 = 100 and
ρ2 = 0.01 � m) for the dike model in Fig. 2. After refining the grid, the FE solution becomes more accurate, whereas the FD solution remains unstable.

Figure 8. The effect of singularity removal for a Schlumberger configuration along the y-axis perpendicular to the dike depicted in Fig. 2. Part (a) shows
the apparent resistivity ρa versus half of the electrode distance of the Schlumberger sounding (AB/2); (b) the relative deviation between the FE result and the
analytical solution. Note the small errors near the source for the singularity removal technique.

number of nodes, is 8.02 per cent for the FE solution without singu-
larity removal and 0.13 per cent for the FE solution with singularity
removal. This example demonstrates that a secondary potential ap-
proach improves the accuracy considerably.

The second model is a cube buried in a two-layered earth shown
in Fig. 9(a). The first layer has a resistivity of ρ1 = 100 � m and a
thickness of h = 3 m. The underlying half-space has a resistivity of
ρ2 = 10 � m. A conducting cube with a resistivity of ρ3 = 10 � m
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Figure 9. The effect of singularity removal for a Schlumberger sounding, where two current sources are located at (0, −0.1, 0 m) and (0, 0.1, 0 m), respectively.
Part (a) shows a cube model buried in a two-layered earth and (b) the DC apparent resistivity ρa versus half of the electrode distance of a Schlumberger sounding
(AB/2). The improved singularity removal technique increases the accuracy toward the boundaries significantly.

and side length of 2 m is embedded in the first layer. A Schlumberger
sounding is carried out along the y-axis and the two current sources
are located at (0, −0.1, 0 m) and (0, 0.1, 0 m). The apparent resis-
tivity ρa is calculated using the FE method with the conventional
and the improved singularity removal technique. For the latter, the
two-layered earth (ρ1 = 100 � m, h = 3 m and ρ2 = 10 � m) is re-
garded as the normal structure. In Fig. 9(b), the apparent resistivity
ρa is plotted versus half of the electrode distance of the Schlum-
berger configuration (AB/2). For comparison, the numerical result
from a boundary-integral method (Hvoždara 1995) is also shown.
It can be seen that the FE solution using the improved singular-
ity removal technique agrees very well with the boundary-integral
solution, whereas the FE solution using the conventional singular-
ity removal technique shows huge deviations for large electrode
spacings (AB/2 > 15 m). This example shows that the use of the
conventional singularity removal technique with a homogeneous
half-space as a reference model is inadequate when the background
is a layered earth.

The same comparison is carried out for a cube buried near a verti-
cal fault shown in Fig. 10(a). The current sources for a Schlumberger
sounding are located at (0, −3.4, 0 m) and (0, −2.6, 0 m). The FE

method with the improved singularity removal technique uses a ver-
tical contact as the normal structure. In Fig. 10(b), the calculation
results from the improved and conventional methods are compared
again with those from a boundary-integral method (Hvoždara &
Kaikkonen 1994). The improved singularity removal technique pro-
duces a small error of 3.1 per cent at the boundary, the numerical
results obtained with the conventional singularity removal technique
are distorted seriously.

7 C O N C L U S I O N S

In this paper, we have developed a 3-D finite-element algorithm for
DC resistivity modelling with incorporation of the singularity re-
moval technique and mixed boundary conditions. We have demon-
strated that with the conventional singularity removal technique,
when the background structure is a uniform half-space, the singu-
larity can be removed in the vicinity of the current source and the
numerical results are of higher accuracy over the whole model do-
main. However, if the background is not a homogeneous half-space,
this technique may fail. To solve this problem, we have introduced
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Figure 10. The effect of singularity removal for a Schlumberger sounding, where two current sources are located at (0, −3.4, 0 m) and (0, −2.6, 0 m),
respectively. Part (a) shows a cube model buried near a vertical contact and (b) the DC apparent resistivity ρa versus half of the electrode distance of a
Schlumberger sounding (AB/2). The improved singularity removal technique is again superior to the conventional one.

an improved singularity removal technique, where the solution of
a horizontally layered earth or a vertical contact is regarded as the
primary potential. This technique works well for a wide range of
models and increases the accuracy considerably toward the bound-
aries.

Our studies have shown that the preconditioned conjugate gradi-
ent method is a very effective solver for 3-D finite-element equa-
tions. The SSOR preconditioner provides a fast convergence rate
without additional memory requirements. IC decomposition with a
scaled matrix is even faster, but at the expense of increased memory
allocation.

From the numerical tests presented in this paper we conclude that
both FE and FD methods give accurate results when an appropriate
grid is used. In comparison with the FE method, the FD method
requires less storage, but it produces larger errors near conductivity
contrasts. On the other hand, the FE method produces smaller errors
near conductivity contrast, but it requires more storage and is less
robust with respect to coarser grids. In this paper, we have used hexa-
hedral elements for FE modelling, so that the results are comparable
with those from the FD method. Our future aim is the incorporation
of tetrahedral grids for a better handling of complicated topography
and sloping interfaces.
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A P P E N D I X A : R E C U R R E N C E
F O R M U L A E F O R K E R N E L F U N C T I O N S
T O C A L C U L A T E T H E P O T E N T I A L A T
A N Y P O I N T I N A L A Y E R E D E A R T H

Consider an n-layer earth with thicknesses h j and resistivities ρ j

( j = 1, . . . , n). Let Hj be the depth of the bottom of the jth layer

and assume the nth layer to extend to infinity, i.e. hn = ∞ and Hn =
∞. The coordinate system (r, φ, z) is cylindrical with the current
electrode as the origin and z positive downward.

Following Koefoed (1979) and Parasnis (1986), the potentials in
the first layer and in the substratum read

v1(r, z) = Iρ1

2πr

∫ ∞

0
e−λz J0(λr ) dλ

+
∫ ∞

0
A1(λ)[e−λz + eλz]J0(λr ) dλ (A1)

vn(r, z) =
∫ ∞

0
An(λ)e−λz J0(λr ) dλ (A2)

and the potential in any layer j ( j �= 1, or n) is

v j (r, z) =
∫ ∞

0

[
A j (λ)e−λz + Bj (λ)eλz

]
J0(λr ) dλ, (A3)

where J0 is the Bessel function of the first kind of order zero.
A1, . . . , An and B2, . . . , Bn−1 are unknown functions of the earth
parameter and the real number λ. Conventionally, one is only in-
terested in finding the potential at the surface of the earth, so that
only the coefficient A1 needs to be found. The recurrence formulae
for A1 was given by Koefoed (1979) and Parasnis (1986). However,
we need the potential at any point in a layered earth. Thus, we have
to find all coefficients A1, . . . , An and B2, . . . , Bn−1. They can be
determined by solving the system of 2(n − 1) linear equations ob-
tained from the continuity conditions of the potential and the normal
current density at the layer interfaces Hj ( j = 1, . . . , n − 1). The
solution is straightforward but tedious. The solutions are:

A1 = Iρ1

2π
e−2λh1

P12

1 − P12e−2λh1
, (A4)

A2 = Iρ1

2π

1 + P12

1 − P12e−2λh1

1

1 + P23e−2λh2
, (A5)

B2 = P23e−2λH2 A2, (A6)

An = (1 + Pn−1,n)An−1. (A7)

A3, . . . , An−1 and B3, . . . , Bn−1 are given by

Ai = 1 + Pi−1,i

1 + Pi,i+1e−2λhi
Ai−1,

Bi = Pi,i+1e−2λHi Ai , i = 3, . . . , n − 1, (A8)

where

Pi,i+1 = Z (i+1) − ρi

ρi + Z (i+1)
,

Z (i) = ρi
Z (i+1) + ρi tan h(λhi )

ρi + Z (i+1) tan h(λhi )
,

Z (n) = ρn

for i = 1, . . . , n − 1.
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