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S U M M A R Y
A key element in the solution of a geophysical inverse problem is the quantification of non-
uniqueness, that is, how much parameters of an inferred earth model can vary while fitting
a set of measurements. A widely used approach is that of Bayesian inference, where Bayes’
rule is used to determine the uncertainty of the earth model parameters a posteriori given the
data. I describe here, a natural extension of Bayesian parameter estimation that accounts for
the posterior probability of how complex an earth model is (specifically, how many layers it
contains). This approach has a built-in parsimony criterion: among all earth models that fit the
data, those with fewer parameters (fewer layers) have higher posterior probabilities.

To implement this approach in practice, I use a Markov chain Monte Carlo (MCMC) al-
gorithm applied to the nonlinear problem of inverting DC resistivity sounding data to infer
characteristics of a 1-D earth model. The earth model is parametrized as a layered medium,
where the number of layers and their resistivities and thicknesses are poorly known a priori.
The algorithm obtains a sample of layered media from the posterior distribution; this sample
measures non-uniqueness in terms of how many layers are effectively resolved by the data and
of the range of layer thicknesses and resistivities consistent with the data.

Because the complexity of the model is effectively determined by the data, the solution
does not need to be regularized. This is a desirable feature, because requiring the solution to
be smooth beyond what is implied by prior information can lead to underestimating posterior
uncertainty. Letting the number of layers be a free parameter, as done here, broadens the space
of earth models possible a priori and makes the determination of posterior uncertainty less
dependent on the parametrization.

Key words: Bayesian inversion, geophysical inversion, Markov chain Monte Carlo, MCMC,
resistivity.

1 I N T R O D U C T I O N

In geophysical inverse problems we aim to reconstruct the distri-
bution of subsurface properties (an ‘earth model’) given measure-
ments that are usually acquired at the surface. The solution of these
inverse problems is typically not unique. That is, significantly differ-
ent earth models give rise to predicted data that fit equally well actual
measurements. As clearly stated by Backus (1988), a geophysical
inverse problem has an existence half, where we wish to obtain an
earth model that fits the data, and a uniqueness half, where we want
to measure how much the earth model may vary while fitting the
data. A common way to solve the existence half of the inverse prob-
lem is to regularize, or damp the solution and obtain the smoothest
earth model that fits the data within a given error. This model
should only contain features that are required by the data and should
be common to all the possible solutions (e.g. Constable et al. 1987).

It is often necessary, however, to address the uniqueness half
of the problem, and a way to quantify non-uniqueness is to use

a probabilistic Bayesian inference approach. The starting point of
Bayesian inference is to specify the initial uncertainty of the earth
model parameters in a prior probability distribution. Bayes’ rule then
combines this prior distribution with a likelihood function (which
measures how probable an earth model is in light of the measure-
ments) to give a posterior distribution, which is the solution of the
problem and describes the final uncertainty of the earth model (e.g.
Tarantola & Valette 1982; Jackson & Matsu’ura 1985; Duijndam
1988).

In Bayesian inference, the role of regularization is played by the
prior distribution, which limits the space of plausible earth mod-
els by giving higher probability to those that agree more closely
with prior knowledge. Still, it seems that sometimes smoothing is
needed if the prior information does not constrain the earth model
closely enough. For example, Grandis et al. (1999) and Schott
et al. (1999) show that the posterior uncertainties in the resistivity
of a finely layered medium obtained by inverting surface electro-
magnetic measurements are huge unless the solution is smoothed.
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The smoothing factor was chosen to best trade off unrealistic
oscillations in the solution and features that were well constrained by
the data (Schott et al. 1999, p. 777). In Bayesian inference, however,
the degree of smoothness of the solution ought to be set on the basis
of a priori knowledge (Backus 1988; Scales & Tenorio 2001). If one
initially knows little about the distribution of resistivity in depth, it
is unlikely that one knows anything about the expected smoothness
of the solution. Yet, if smoother earth models effectively have higher
probabilities, the posterior distribution is not really based on what is
known a priori, and thus it does not faithfully represent the posterior
uncertainty.

The purpose of this paper is to describe an extension of the com-
monly used Bayesian parameter estimation approach to account for
the posterior probabilities of different parametrizations of the earth
model. Specifically, I will use a generic layered medium, where
the number of layers, the depths to the interfaces between layers (or
equivalently, layer thicknesses), and layer properties are free param-
eters. If the posterior probabilities of different parametrizations (that
is, different numbers of layers) is considered, there is no need for
regularization beyond what is dictated by scant prior information.
This is because the posterior probability of model parametrizations
obeys a principle of parsimony, or simplicity: among earth models
that fit equally well the data, the models that have fewer degrees of
freedom (fewer layers) have higher posterior probabilities. The net
effect is that the data determine how complex the model parametriza-
tion ought to be. Also, by broadening the space of parametrizations
possible a priori, the determination of posterior uncertainty does
not depend on a particular choice of parametrization (e.g. a fixed
number of layers) and gives a more comprehensive quantification
of the non-uniqueness of the solution.

In previous work, I demonstrated the parsimony feature of
Bayesian inference for linear inverse problems (Malinverno 2000),
and described an efficient Markov chain Monte Carlo (MCMC)
method applicable when the inverse problem can be partly lin-
earized (Malinverno & Leaney 2000). In this paper I extend the
previous work by describing a MCMC method that is applicable to
a fully nonlinear problem. I use the same problem as that treated by
Constable et al. (1987), Sen & Stoffa (1995), and Schott et al. (1999),
inverting DC resistivity soundings obtained at the earth’s surface for
a 1-D layered model of resistivity. The MCMC algorithm samples
the posterior distribution of layered models in a computationally
efficient way and obtains a meaningful measure of the posterior
uncertainty of the solution.

1.1 Notation

Vectors will be denoted by bold lowercase letters (e.g. x) and matri-
ces by bold uppercase letters (e.g. A). Vectors are column vectors,
so that the inner product of x is xT x, where the symbol T denotes the
transpose. In y = f(x), the function f is a vector-valued function that
returns a vector y for a given value of the vector x. Values assumed
a priori will be denoted with a bar; e.g. x is the prior value of x.
Values estimated a posteriori will be denoted by a hat (e.g. x̂ ). The
notation p(x | y) indicates the probability density function ( pdf ) of
x conditional on y.

2 D C R E S I S T I V I T Y S O U N D I N G S I N
A 1 - D G E N E R I C L A Y E R E D M E D I U M

The generic layered medium used here as an earth model is illus-
trated in Fig. 1. It is defined by a number of layers k, a vector of log-

Figure 1. A generic layered medium with k layers. The layer interfaces are
at depths between a minimum zmin and a maximum zmax, and no layer can
be thinner than hmin.

depths to the interfaces between the layers z = (z1, z2, . . . , zk−1),
and a vector of log-resistivities in each layer ρ = (ρ1, ρ2, . . . , ρk).
Using logarithms ensures that depths and resistivities are posi-
tive, accounts for the decrease in resolving power of the resis-
tivity sounding data with increasing depth, and covers the broad
range of resistivities encountered in nature while avoiding numerical
difficulties.

I use the logarithm of depths because the resolving power of
the resistivity sounding data decreases with increasing depth; the
logarithm of resistivity covers the broad range of resistivities en-
countered in nature while avoiding numerical difficulties. In short,
the earth model can be written as a vector

m = (k, z,ρ). (1)

This is a ‘generic’ layered medium because it has enough degrees
of freedom to describe media with different numbers of layers and
layer interfaces that are not constrained to be at fixed depths.

The illustrative data I use are log-apparent resistivities measured
at the surface using a Schlumberger array. For different spacings be-
tween the electrodes, the current lines sample different depth ranges
in the subsurface, and the measured apparent resistivities (the resis-
tivities that would be measured if the medium were homogeneous)
vary accordingly (see e.g. Keller & Frischknecht 1966). Solving
the forward problem requires specifying a forward modelling func-
tion g(m) that returns a vector of apparent resistivity data predicted
by the generic layered medium in m. I use here for g(m) the filter
method described in the Appendix of Constable et al. (1987), with
the 11-point filter of Guptasarma (1982).
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3 B A Y E S I A N I N F E R E N C E F O R A
G E N E R I C L A Y E R E D M E D I U M
A N D P A R S I M O N Y

In Bayesian inference, the posterior pdf of m measures how well a
generic layered medium agrees with prior information and data. It
is helpful to write this posterior using the definition of a conditional
pdf as

p(m | d,I ) = p(k | d,I )p(z,ρ | k, d,I ), (2)

where d = (d1, d2, . . . , dN ) are the measured log-apparent resis-
tivities and I denotes prior information. In Bayesian inference, all
probabilities are conditional at least on I, which represents prior
knowledge about the parametrization of the earth model, realistic
values of the parameters, the geometry of the subsurface, the forward
model, etc. Let us consider the two terms in Eq. (2) separately.

3.1 Parameter estimation: p(z, ρ | k, d,I )

This is the problem of determining the posterior pdf of the layered
medium parameters for a given number of layers k. In statistical
terminology, this is a ‘parameter estimation’ problem, and it has been
widely treated in the geophysical literature (e.g. Tarantola & Valette
1982; Jaynes 1984; Jackson & Matsu’ura 1985; Backus 1988; Cary
& Chapman 1988; Duijndam 1988; Mosegaard & Tarantola 1995;
Sen & Stoffa 1995; Gouveia & Scales 1998). The posterior pdf of z
and ρ can be written using Bayes’s rule as

p(z,ρ | k, d,I ) = p(z,ρ | k,I )p(d | z,ρ, k,I )

p(d | k,I )
, (3)

where p(z,ρ | k,I ) is the prior pdf of z andρ and p(d | z,ρ, k,I ) is
the likelihood function, which measures the probability of observing
the data d when the parameters of a medium of k layers equal z and
ρ. The denominator of eq. (3) is commonly called the ‘marginal
likelihood’ or ‘evidence’ and can be shown to be a normalizing
factor for the posterior pdf :

p(d | k,I ) =
∫

p(z,ρ | k,I )p(d | z,ρ, k,I ) dz dρ. (4)

As the marginal likelihood is not a function of z and ρ, it is typically
ignored in parameter estimation, so that for parameter estimation
we need only to define the prior pdf and the likelihood.

3.1.1 The prior pdf of z and ρ for a given number of layers k

The natural choice for a prior pdf is the distribution that allows for
the greatest uncertainty while obeying the constraints imposed by
prior knowledge. I treat here the case where very little is known about
z and ρ a priori, and it is natural to assume that prior knowledge of
the depths of the layer interfaces is independent of prior knowledge
of the layer resistivities. The prior pdf of z and ρ is then the product
of the prior pdf s of each:

p(z,ρ | k,I ) = p(z | k,I )p(ρ | k,I ). (5)

Starting from the log-depths of the interfaces, I suppose that any
configuration of k layers is as likely as any other a priori. In practice,
the values of z will have to be between a minimum zmin and a max-
imum zmax, and any layer will have a minimum log-thickness hmin.
These values are set depending on the range of electrode spacings
and on a maximum number of layers allowed (Appendix A). The

appropriate prior pdf of z is then a modified version of the pdf of
order-statistics:

p(z | k,I ) = (k − 1)!∏k−1
i=1 �z(i − 1)

, (6)

where �z(i) = (zmax − zmin) − (i + 1)hmin is the log-depth interval
available to place a layer interface when there are already i layer
interfaces in the model, and (k −1)! is the number of ways in which
(k −1) layer interfaces may be ordered (see 11.4 in Kendall & Stuart
1977).

For the log-resistivities in each layer, I assume that prior knowl-
edge only gives a most probable value and a multiplicative factor
within which the resistivity is expected to be; for example, one may
expect a priori the resistivity to be within a factor of ten about a
value of 100 � m. This information translates into a multivariate
normal prior pdf for the log-resistivities ρ:

p(ρ | k,I ) = 1[
(2π )k det Cρ

]1/2 exp

[
−1

2
(ρ − ρ)TC

−1
ρ (ρ − ρ)

]
,

(7)

where the prior mean vector ρ and the prior covariance matrix Cρ

are set on the basis of a most probable value and of the factor within
which resistivity is expected to vary (Appendix A). Keeping with
the principle of having as much uncertainty in the prior pdf as al-
lowed by prior knowledge, Cρ is a diagonal matrix, so that there
is no correlation a priori between the log-resistivities in different
layers and no smoothing will be imposed. A diagonal prior covari-
ance is the least informative state a priori because a prior covari-
ance matrix with non-zero off-diagonal terms implies that knowl-
edge of the resistivity of any single layer (say, from a hypothetical
point measurement) has consequences on the resistivities of other
layers.

3.1.2 The likelihood function

The likelihood function depends on the magnitude of the measure-
ment error vector e, defined as the difference between the N observed
data d and the data predicted for a given value of the parameter
vector:

e = d − g(z,ρ, k) = d − g(m). (8)

I follow here the common assumption that the measurement errors
have a normal distribution with zero mean and are uncorrelated. The
likelihood function is then

p(d | z,ρ, k,I ) = 1[
(2π )N det Ce

]1/2 exp

(
− 1

2
eTC

−1
e e

)
, (9)

where the diagonal prior covariance matrix of the measurement er-
ror vector Ce contains the variances of the errors expected for each
of the measured log-apparent resistivities in d (Appendix A). In
practice, the likelihood decreases as the quadratic form eTC

−1
e e be-

comes larger, and thus it quantifies how likely the layered medium
parameters are in light of the data.

3.2 Model selection: p(k| d,I )

This is the problem of determining the posterior probability of hav-
ing k layers in the earth model. In statistical terminology, it is a
‘model selection’ problem, in the sense that one wishes to extend
parameter estimation and compare the relative merits of different
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model parametrizations. Bayesian model selection has been de-
scribed in the statistics and signal processing literature (e.g. Jeffreys
1939; Gull 1988; Bretthorst 1988; MacKay 1992; Jaynes 1995; Ó
Ruanaidh & Fitzgerald 1996; Sivia 1996). An important feature of
Bayesian model selection is that earth models with fewer layers will
have greater posterior probabilities, as long as k is sufficiently large
to fit the data. This is the key characteristic that makes Bayesian
inference parsimonious without requiring an artificial smoothing of
the solution.

Compared to parameter estimation, model selection is relatively
new to geophysical inverse problems. For example, inversions of
surface electromagnetic measurements are typically done using ei-
ther a fixed, relatively small number of layers (Sternberg 1979; Sen
& Stoffa 1995) or many thin layers where the values of resistivi-
ties are smoothed (Grandis et al. 1999; Schott et al. 1999). When
solutions with different numbers of layers are compared (Jones &
Hutton 1979; Tarits et al. 1994), the merits of each parametrization
are not measured by their posterior probabilities.

In Bayesian inference, one can define a posterior probability dis-
tribution for the number of layers in the solution in the same way as
for the layer parameters z and ρ. Using Bayes’s rule, the posterior
pdf of k can be written as

p(k | d,I ) = p(k |I )p(d | k,I )

p(d |I )
, (10)

where p(k |I ) is the prior pdf of the number of layers and p(d | k,I )
the marginal likelihood of eq. (4). Assuming that there is no definite
a priori knowledge about the Earth’s layering, I set the prior pdf of
k to be uniform between one and kmax layers. In other words, any
number of layers is just as probable a priori as long as it is no more
than kmax. The denominator of Bayes’s rule in eq. (10) is again a
normalizing factor; as k is a discrete variable, it is

p(d |I ) =
kmax∑
i=1

p(k |I )p(d | k,I ) = 1

kmax

kmax∑
i=1

p(d | k,I ). (11)

Except for a normalizing constant, if p(k |I ) is uniform the poste-
rior probability of having k layers equals the marginal likelihood of
eq. (4).

To see why the marginal likelihood is higher for parametriza-
tions that fit the data and have relatively few layers, recall that it is
the integral of the product prior-likelihood in parameter estimation
(eq. 4). Consider a simplified case, where the prior pdf is uniform
for both log-depths of layer interfaces and log-resistivities over a
range �z and �ρ, respectively, so that we can write the prior pdf of
z and ρ as

p(z,ρ | k,I ) = 1

�z
k−1

�ρ
k . (12)

Suppose also that the likelihood constrains the log-depths of layer
interfaces and the log-resistivities to be in a posterior range �̂z and
�̂ρ, centered on maximum a posteriori values ẑ and ρ̂, respectively.
Assuming that the likelihood is approximately constant over these
posterior ranges, we can approximate the marginal likelihood inte-
gral of eq. (4) as

p(k | d,I ) ≈
[

�̂z
k−1

�̂ρ
k

�z
k−1

�ρ
k

]
· [p(d | ẑ, ρ̂, k,I )]

= [Ockham factor] · [Max. likelihood factor] (13)

As the number of layers in the earth model increases, the ‘Max.
likelihood factor’ in eq. (13) will typically increase, because with
more layers the data will be fitted more closely. The ‘Ockham factor’

in eq. (13) (Gull 1988; MacKay 1992; Jaynes 1995; Ó Ruanaidh &
Fitzgerald 1996; Sivia 1996) will instead typically decrease with
increasing k, because the ratio of posterior and prior ranges for z
and ρ will be less than one.

In other words, the Ockham factor measures how much prior prob-
ability is contained in the region of parameter space occupied by the
posterior pdf, which is the region where the earth model parameters
give a good fit to the data. As one allows for more parameters, the
amount of prior probability in the region of parameter space where
the data are fitted well (and hence the Ockham factor) will typically
decrease, while the best fit to the data will generally improve (and
the max. likelihood factor will increase).

A similar criterion to determine an optimal number of parameters
in an inverse problem has been proposed by Ulrych et al. (2001),
and named the ‘Akaike Bayesian Information Criterion,’ or ABIC.
From eq. (22) of Ulrych et al. (2001), the minimum of

ABIC = −2 log[p(d | k,I )] + 2k (14)

should be where the number of layers k is optimal. In terms of poste-
rior probabilities, the ABIC equals two times the negative logarithm
of the posterior pdf of the number of layers p(k | d,I ) for a prior
distribution p(k |I ) ∝ k−1. However, while Ulrych et al. (2001)
suggest fixing the number of layers to the value that minimizes the
ABIC, the full posterior pdf of k will be considered here. As it will
become clear later, using the whole range that k can take a a poste-
riori accounts for a broader range of possibilities and thus gives a
better measure of the final uncertainty.

In conclusion, Bayesian inference can evaluate the posterior prob-
abilities of layered media with different numbers of layers, given a
set of measurements. Models with fewer layers are more proba-
ble a posteriori, as long as there are enough layers to fit the data.
This approach is a natural extension of the well-known Bayesian
parameter estimation procedure; in fact, if a Bayesian approach is
used to determine the posterior pdf of the parameters in the prob-
lem, there is no reason not to use the same approach for the poste-
rior pdf of the number of layers. If Bayesian inference is properly
applied to determine the posterior distribution of the number of
layers, there should be no need to artificially smooth the solution.
The number of layers needed will be effectively determined by the
data.

4 M A R K O V C H A I N M O N T E C A R L O
( M C M C ) A L G O R I T H M

In the previous section, I defined a posterior pdf for an earth model
vector m that includes as a variable the number of layers in the earth
model. Formally, the value of this posterior pdf can be computed
(except for a constant) as the product of the marginal likelihood
(eq. 4), the prior pdf s of z and ρ (eqs 6 and 7), and the likeli-
hood function (eq. 9). An obvious practical difficulty, however, is
to evaluate the marginal likelihood integral of eq. (4). If the inverse
problem is linear and the prior pdf s of the earth model parameters
are Gaussian, this integration is straightforward (Malinverno 2000).
In the general nonlinear case examined here, however, the marginal
likelihood does not have an easily integrable form, and evaluating
its integral in a high-dimensional space is a difficult computational
problem. This is a common problem in Bayesian inference appli-
cations, where the main difficulties are not in the formulation but
in the calculations needed to characterize the solution, which typ-
ically require evaluating integrals of the posterior pdf in model
space (Smith 1991).
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Monte Carlo methods can efficiently evaluate integrals in high-
dimensional space (e.g. Press et al. 1992, p. 304). In particular,
Markov chain Monte Carlo (MCMC) algorithms have been found
to be well suited for problems of Bayesian inference. References in
the statistical literature are Gelman & Rubin (1992); Geyer (1992);
Neal (1993); Tierney (1994); Besag et al. (1995); Gilks et al. (1996);
applications to geophysical inverse problems are Mosegaard &
Tarantola (1995); Sen & Stoffa (1995); Mosegaard et al. (1997);
Grandis et al. (1999); Schott et al. (1999). MCMC algorithms con-
sist of a random walk where different states (i.e. different values
of a parameter vector) are visited and where the choice of the next
state depends only on the value of the current state. After an initial
‘burn-in’ period in which the random walker moves toward the high
posterior probability region, the chain samples a desired posterior
pdf, that is, returns a number of parameter vectors that are distributed
as in the posterior pdf (for a proof, see the references cited above).
It is then easy to compute any desired characteristic of the posterior
pdf (e.g. posterior means and standard deviations of the parameters)
from the sample obtained by the chain, effectively carrying out an
integration. It should be emphasized that MCMC algorithms are not
the same as Monte Carlo methods where models are chosen inde-
pendently and tested against the data (e.g. Press 1968; Sternberg
1979). A MCMC algorithm effectively has a memory mechanism
that makes the chain stay in the high posterior probability region of
model space, and thus it is much more efficient than a sequence of
independently picked models, most of which will have a very low
posterior probability.

A widely used MCMC algorithm is the Metropolis–Hastings al-
gorithm (Metropolis et al. 1953; Hastings 1970; Chib & Greenberg
1995), which is a two-step procedure. In the first step, the current
model parameter vector m in the Markov chain is modified at ran-
dom to obtain a candidate vector m′. This candidate is drawn from a
proposal distribution q(m′ | m), where the choice of m′ depends on
the current vector m. In the second step, the candidate is accepted
with an acceptance probability

α = min

[
1,

p(m′ | d,I )

p(m | d,I )
· q(m | m′)

q(m′ | m

]
= min

[
1,

p(m′ |I )

p(mI )
· p(d | m′,I )

p(d | m,I )
· q(m | m′)

q(m′ | m)

]
= min[1, (Prior ratio) · (Likelihood ratio) · (Proposal ratio)].

(15)

If the candidate is accepted, the state of the chain is changed to m′;
otherwise, the chain stays at m. If one were to always accept the
candidate states drawn from the proposal pdf, the chain would take
a random walk in the space of m. The acceptance probability in
eq. (15) effectively biases the random walk toward regions of model
space that have higher posterior probabilities. The ‘Proposal ratio’
term in eq. (15) applies a correction if the move from m to m′ has a
different probability of being proposed than the opposite move from
m′ to m.

The Metropolis–Hastings algorithm is typically applied to cases
where the dimension of the parameter vector m is fixed at the out-
set. Recently, Green (1995) showed that a Metropolis–Hastings al-
gorithm with the acceptance probability of eq. (15) can be applied
to inference problems where the number of parameters in m is not
fixed a priori, i.e. to problems where ‘the number of things you
don’t know is one of the things you don’t know’. Green’s expression
for the acceptance probability, on his p. 720, also contains a ‘Jaco-
bian ratio’ term, which is always 1 for the candidates proposed here.
The method only requires the ability to evaluate the prior pdf and

the likelihood function for any value of m, and there is no need to
compute the marginal likelihood integral of eq. (4). Green (1995)
calls this a ‘reversible jump’ MCMC algorithm, because the chain
can jump back and forth between different spaces corresponding to
different numbers of parameters. These jumps are done by occa-
sionally proposing to add a layer interface and split a layer in two,
or to delete a layer interface and merge two layers.

In the following, I give a schematic outline of how the method
of Green (1995) can be implemented for a nonlinear geophysical
inverse problem. The details are given in the appendixes: Appendix
A describes the parameters that need to be specified a priori and
the criteria used to set them; Appendix B describes the method used
to choose candidate models, paying particular attention to making
the MCMC sampling efficient; and Appendix C gives an explicit
expression for the acceptance probability of eq. (15).

To start, the Markov chain needs an arbitrary initial earth model
m (e.g. two layers with an interface placed in the middle of the
depth interval of interest and an initial log-resistivity equal to the
prior mean). The sampling then follows this loop:

(i) Start the sampling of a candidate model m′ based on m by
choosing a candidate number of layers k ′ and candidate log-depths
of layer interfaces z′; this is done by taking k and z of m and choosing
at random between one of the four following moves (Appendix B):

(a) Add a layer interface at a random location
(b) Delete a layer interface chosen at random
(c) Perturb the depth of a layer interface chosen at random
(d) Leave the layer interfaces unchanged

(ii) Complete constructing m′ by sampling a candidate value for
the log-resistivitiesρ′ in each layer from the proposal pdf of eq. (B.2)
(Appendix B)

(iii) Compute probability of acceptance α as in eq. (C5)
(Appendix C)

(iv) Sample a random number r between 0 and 1; if r < α, accept
the candidate and set m = m′, otherwise leave m unchanged

(v) If the burn-in period is over (see below), output m = (k, z,ρ)
(vi) Go to step (i)

As noted earlier, the MCMC algorithm will not be immediately
sampling the posterior pdf, but it will need a ‘burn-in’ period of some
number of iterations to converge to the high-probability region. A
simple way to diagnose the end of the burn-in period in the problem
discussed here is to monitor how well the data predicted by the
current model g(m) match the measured data d. As the chain is
started from an arbitrary point, at the beginning the fit to the data
will be very poor, and it will improve as the iterations progress. The
burn-in period is estimated to end the first time that the standard
deviation of the data misfit vector e = d − g(m) is less than the
standard deviation of the expected measurement errors.

Once the burn-in period is over, the parameter vectors output by
the chain should be distributed as in the posterior pdf. The next ques-
tion is obviously when to stop, i.e. how to decide when the sample
obtained by the MCMC algorithm is large enough to characterize
the posterior pdf. This problem is the subject of active MCMC re-
search (Gelman & Rubin 1992; Cowles & Carlin 1996; Brooks &
Gelman 1998; Brooks & Giudici 1999), and will not be treated here.
I will use a simple practical criterion, and continue the MCMC it-
erations until the characteristics of the posterior pdf stop changing
significantly.

Similar MCMC algorithms have been described and applied
to geophysical inverse problems by other authors. Mosegaard &
Tarantola (1995) and Mosegaard et al. (1997) described a method
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based on the Metropolis–Hastings algorithm where the number of
layers in the earth model is allowed to vary. The two main differ-
ences with the approach described here are that these authors did not
consider the issue of model simplicity by evaluating the posterior
probability of having different numbers of layers, and that in their
implementation the candidate models in the chain are chosen from
the prior pdf. As noted in Appendix B, different ways to choose a can-
didate can significantly affect the efficiency of Metropolis–Hastings
MCMC sampling, and setting the proposal pdf on the basis of an ap-
proximation to the posterior pdf as done here is more efficient than
picking candidates from the prior. Other MCMC approaches allow
only for a fixed number of layers (Sen & Stoffa 1995), or introduce a
smoothing factor that is not determined by a priori information and
thus casts doubt on the final quantification of uncertainty (Grandis
et al. 1999; Schott et al. 1999).

5 R E S U L T S ( S Y N T H E T I C D A T A )

In this section I apply the MCMC algorithm described above to invert
a synthetic data set of DC resistivity soundings. The purpose of this
exercise is to check that the inferences one makes a posteriori from
the Markov chain Monte Carlo sampling results are consistent with
a true, known earth model. The simple three-layer earth model I use
is the same as that employed by Sen & Stoffa (1995) and Schott et al.
(1999), and is shown in Fig. 2. The synthetic measurements were
computed with the method described earlier in the forward model
section, adding to the log-apparent resistivities random Gaussian
noise with zero mean and a standard deviation equal to 10 per cent
of the apparent resistivity value.

The prior pdf used in the inversion was set assuming that little
was known a priori. The prior probability of the number of layers
is uniform from one up to kmax = 30 layers, and any configuration
of layer interfaces is equally probable a priori in a depth interval
of 0.1–1000 m determined by the span of electrode spacings in the
data (for details, see Appendix A). The resistivity in each layer was
assumed to be within a factor of five about a most probable value
of 50 � m, corresponding to a broad prior 95 per cent confidence
interval of 2–1250 � m.
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Figure 2. Three-layer earth model (a) and data (b) used in the synthetic example.

Figure 3. Progress of the algorithm in terms of how well each sampled
layered model fits the measured data (a) and of how many layers each model
contains (b).

The MCMC sampling algorithm was started from a two-layer
model with an interface in the middle and layer resistivities equal
to the prior mean. The sampling was then run for 500 000 itera-
tions, which took about 3 h on a Sun Ultra 60 workstation. After
these many iterations, the results of the sampling did not appear to
change appreciably. The progress of the algorithm is illustrated in
Fig. 3, which plots the average fractional misfit (the root-mean-
square difference between the measured data and the data predicted
by each sampled model) and the number of layers in each sampled
layered model. The starting model fit the data very poorly (the frac-
tional misfit being about 2.5), but the expected misfit level of 0.1
was reached quickly after 657 iterations (17 s of execution time).
The layered media sampled during this short ‘burn-in’ period were
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Figure 4. Fifty layered media sampled by the MCMC algorithm for the synthetic data in Fig. 2. The horizontal separation between layered media corresponds
to a factor of 1000 in resistivity.
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Figure 5. Histogram of the number of layers sampled by the MCMC al-
gorithm for the synthetic data in Fig. 2. This histogram approximates the
posterior pdf of the number of layers; note that the prior pdf is uniform.

discarded; after this initial interval, the chain sampled the posterior
pdf of layered media consistent with the data, and all the sampled
layered media were retained. Fig. 4 shows fifty layered media sam-
pled by the MCMC algorithm at intervals of 10 000 iterations over
the whole run.

Figs 3 and 4 also show that the chain mostly samples models that
contain relatively few layers, and only occasionally returns models
with more than 10 layers. A histogram of the number of layers
sampled by the chain is in Fig. 5; as the chain is sampling the
posterior pdf, this histogram is an estimate of the posterior pdf of
the number of layers. No models with fewer than three layers are
ever sampled, because three layers are the absolute minimum needed
to adequately fit the data; 91 per cent of the models sampled have
15 or fewer layers.

While the most probable number of layers in Fig. 5 is five, a
posterior image obtained by superimposing all values of resistivity in
the sampled layered models defines a clear three-layer structure with
a resistive layer sandwiched between two conductive layers (Fig. 6).
A three-layer structure is also evident in a posterior histogram of
the depths of the layer interfaces (Fig. 7), which shows two well
defined peaks, a sharp peak centered at a depth of 1 m and a broader
peak between 5 and 40 m (the layer interfaces in the true model
are at depths of 1 m and 25 m). The many sampled layered media
that have more than three layers contain minor departures from this
basic three-layer structure.

Figure 6. Image obtained by superimposing the values of resistivity in the
layered media sampled by the MCMC algorithm for the synthetic data in
Fig. 2. This image is an estimated display of the posterior marginal pdf
of resistivity at different depths. The dotted white line shows the range of
resistivity and thickness of the middle layer that are consistent with the data
of Fig. 2 (see the text and Fig. 8).

The results of Fig. 6 are consistent with a simple non-uniqueness
analysis of the inverse problem. It is well known that there are
many equivalent layered media that fit equally well DC resisitivity
sounding data, and that the data only constrain some combination of
the layer resistivities and thicknesses (Keller & Frischknecht 1966,
Chapter 3). The flat parts of the measured apparent resistivity curve
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Figure 7. Histogram of the depths to interfaces in the layered media sam-
pled by the MCMC algorithm for the synthetic data in Fig. 2. This histogram
approximates the posterior pdf of the depths to layer interfaces.

in Fig. 2 at short (<1 m) and long spacings (>400 m) constrain
the value of the resistivity of the top and bottom layers. The linear
increase in apparent resistivity for electrode spacings between 1 and
40 m is a function of the ratio resistivity/thickness of the top layer;
as the resistivity of the top layer is constrained to be around 10 � m,
its thickness is well determined by the data to be about 1 m. Fig. 6
indeed shows that the resistivities of the top and bottom layer and
the thickness of the top layer have small posterior uncertainties.

The main non-uniqueness in the results of Fig. 6 is in the resis-
tivity and thickness of the middle layer. In the case of three layers
with a resistive middle layer, the shape of the hump in the mea-
sured apparent resistivity curve depends primarily on the product
resistivity-thickness of the middle layer. To determine the range of
resistivity and thickness consistent with the measurements of Fig. 2,
I plot in Fig. 8 how well the data are fitted as resistivity and thick-
ness of the middle layer vary while keeping their product constant
to 390 � m × 24 m. The residual misfit is below the expected
value of 0.1 for resistivities of the middle layer between about 300
and 1240 � m, corresponding to thicknesses between about 31 and
7.5 m. This interval of resistivities and thicknesses is marked by a
dotted line in Fig. 6, and it encompasses the area of highest posterior
probabilities for the middle layer.

The results presented here are similar to those obtained by Sen
& Stoffa (1995). The main difference is that these authors consid-
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Figure 8. Fractional misfit to the data of Fig. 2 for three-layer layered
models whose top and bottom layers have a resistivity of 10 � m, while
the resistivity and thickness of the middle layer are varied keeping constant
their product to 390 � m × 24 m (solid line). The data are fitted below the
expected misfit level of 0.1 (dashed line) for resistivities of the middle layer
between about 300 and 1240 � m (thicknesses between about 31 and 7.5 m).
This interval of resistivities and thicknesses is marked by a dotted white line
in the posterior image of Fig. 6.

ered only models with three layers and carried out a search on a
finite interval for each model parameter (three layer resistivities and
two layer thicknesses). Letting the number of layers vary and not
restricting the resistivity value to a finite interval results in a greater
range of plausible models. For example, while Sen & Stoffa (1995)
allowed for possible values of resistivity between 100 and 450 � m
in the middle resistive layer, the results of Figs 6 and 8 show that
resistivities greater than a thousand � m are consistent with the data
in the middle layer.

Schott et al. (1999) used a regularization factor in their MCMC
and thus obtained a sample of solutions that were constrained to
be smooth (compare their Fig. 1 with Fig. 6 in this paper). All
these smooth solutions show a broad transition both at the top and
at the bottom of the middle resistive layer. The results of Fig. 6,
however, suggest that the depth to the top of the middle layer is
much better resolved than the depth to the bottom of the middle
layer. Regularization smears these transitions uniformly throughout
the depth interval being investigated, and thus does not allow for
distinguishing layer interfaces that are well resolved from those that
are not. In addition, the posterior uncertainties of resistivity in Fig. 1
of Schott et al. (1999) are relatively small (about a factor of two) and
uniform over the whole depth interval considered. In contrast, the
results of Fig. 6 indicate that posterior uncertainties in resistivities
are much greater at the center than at the top and bottom.

6 R E S U L T S ( F I E L D D A T A )

In this section I apply the MCMC algorithm to the inversion of
field DC resistivity soundings using the data set from the central
Australia Wauchope station of Constable et al. (1984) (Fig. 9). As
in the synthetic data example, I assume that very little is known a
priori: the prior probability of the number of layers is uniform from
one up to kmax = 30 layers, and any configuration of layer interfaces
is equally probable a priori in a depth interval of 0.1–100 000 m. The
resistivity in each layer was assumed to be a priori within a factor
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Figure 9. Field measurements from the Wauchope DC resistivity sounding,
central Australia, after Constable et al. (1984).

of ten about a most probable value of 1000 � m, corresponding to a
very broad prior 95 per cent confidence interval of 10–100 000 � m.
The measurement errors were set to the values given by Constable
et al. (1984). The MCMC sampling started from an initial featureless
two-layer model and continued for 500 000 iterations. As in the
synthetic data example, after these many iterations the results of
the sampling did not appear to change significantly. Fig. 10 shows
fifty layered media sampled by the MCMC algorithm at intervals of
10 000 iterations over the whole run.

Fig. 11 is a histogram of the number of layers sampled by the
chain after the initial ‘burn-in’ period; this histogram estimates the
posterior pdf of the number of layers. At least four layers are required
by the data, and most layered models sampled by the chain have less
than 15 layers. The posterior image of resistivity (Fig. 12) and the
posterior histogram of the depths to the layer interfaces (Fig. 13)
obtained from all the sampled layered models define four to five
major layers. While the resistivities of the layers and the depth to
the interfaces are relatively well constrained a posteriori down to
about 100 m depth, there are large posterior uncertainties in the
resistivities and the interface depths of the deeper layers.

The inversion results presented here are generally in agreement
with those of Constable et al. (1984) and Constable et al. (1987).
Constable et al. (1984) obtain a six-layer model whose resistivi-
ties and layer thicknesses are close to those illustrated in Fig. 12.
These authors analyse the correlation of the inverted resistivities
and thicknesses and note that only the product resistivity-thickness
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Figure 10. Fifty layered media sampled by the MCMC algorithm for the field data in Fig. 9. The horizontal separation between layered media corresponds to
a factor of 1000 in resistivity.
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Figure 11. Histogram of the number of layers sampled by the MCMC algo-
rithm for the field data in Fig. 9. This histogram approximates the posterior
pdf of the number of layers; note that the prior pdf is uniform.

is well determined for the resistive fifth layer. The MCMC sam-
pling carried out here shows this fundamental non-uniqueness for
the resistive crustal layer with a top at about 100 m and a bottom
between 500 and 10 000 m (Fig. 12; see also the earlier discussion of
non-uniqueness in the inversion of synthetic data). While Constable
et al. (1984) note that the data seem to indicate a low-resistivity bot-
tom layer, they express some doubts about the significance of this
result, because their analysis shows that the resistivity in the deep
layer is poorly resolved. The MCMC sampling results agree with
their conclusion, as Fig. 12 shows that the posterior distribution of
resistivity in the deepest layer is very close to the prior distribution
(which has a mean of 1000 � m and a 95 per cent confidence interval
of 10–100 000 � m), meaning that the data do not provide signif-
icant information on resistivity at this depth. Finally, the median
posterior resistivity in Fig. 12 (thick solid line) is close to the max-
imally smooth solution of Constable et al. (1987) (see their Fig. 2).
The main difference is that the change in resistivity around 100 m
depth is more abrupt in the results obtained here, because there is
no smoothing enforced a priori.

7 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, I presented an extension of the often used Bayesian
parameter estimation to include the number of free parameters in
the earth model being inverted (specifically, the number of layers).
As the posterior probability of earth models that fit the data becomes
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Figure 12. Image obtained by superimposing the values of resistivity in the
layered media sampled by the MCMC algorithm for the field data in Fig. 9.
This image is an estimated display of the posterior marginal pdf of resistivity
at different depths. The continuous curves are the median value of resistivity
(thick line) and the 5 per cent and 95 per cent bounds (thin lines).

lower as the number of layers increases, this procedure ensures that
parsimonious model descriptions are preferred without imposing
an additional simplicity requirement. This formulation has been
implemented using a Markov chain Monte Carlo algorithm that
returns a sample of layered models distributed as in the posterior
pdf. This sample spans the space of earth models that fit the data
within a specified measurement error (Fig. 14).

The formulation presented here addresses two basic problems
in solving the non-uniqueness half of inverse problems: the diffi-
culty of setting a prior distribution when little is known a priori and
the dependence of the posterior uncertainty on a particular earth
model parametrization. While Bayesian inference has many desir-
able qualities for geophysical data inversion, setting the prior pdf on
the basis of available knowledge is often problematic (e.g. Backus
1988; Ulrych et al. 2001; Scales & Tenorio 2001). Setting the prior
distribution is equivalent to formulating an initial hypothesis that
should then be modified by the data as needed (Ellis & Oldenburg
1994). If little is known a priori, the prior hypothesis should allow
for a variety of possible earth models and for a broad range for the
parameters in these models. But this does not seem generally feasi-
ble: to solve the problem in practice, it seems that one must choose a
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Figure 13. Histogram of the depths to interfaces in the layered media sam-
pled by the MCMC algorithm for the field data in Fig. 9. This histogram
approximates the posterior pdf of the depths to layer interfaces.

particular parametrization (e.g. fix the number of layers) and impose
a regularization factor that goes well beyond prior knowledge.

This paper shows how it is possible to set a simple prior pdf with
earth model parameters that are effectively unknown a priori (such
as the number of layers) being left as such. The a posteriori span
of all the unknown parameters is then effectively determined by
the data. Because earth models that have fewer layers have higher
posterior probabilities, there is no need to impose smoothness on
the solution beyond what is implied by prior information. In the
examples presented here, any layer configuration up to a maximum
number of layers was equally probable a priori, while the prior pdf
of log-resistivity in each layer was set to a normal pdf with a large
prior standard deviation and no correlations between different layers
(that is, no regularization).

Broadening the space of possible earth model parametrizations
also addresses a fundamental problem noted by Constable et al.
(1987), namely, that the results of inversion are subject to the choice
of parametrization. The answer offered to this problem by Constable
et al. (1987) is to drastically restrict the space of possible solutions
and choose the smoothest earth model that fits the data. While this
approach obviously provides a single, sensible earth model that fits
the data, the non-uniqueness or uncertainty of the inversion cannot
be properly assessed because of regularization: smoothed solutions
can only span a narrow range of possibilities.
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Figure 14. The images in the background are histograms of the apparent
resistivity curves predicted by the layered media sampled by the MCMC
algorithm in the synthetic (a) and field data example (b).

The alternative offered here to make inference less sensitive to
the parametrization is to first allow for a range as broad as possible
of different and potentially complex earth model parametrizations,
and then to assess their relative merits (i.e. posterior probabilities) in
light of the data. If Bayesian inference is properly applied to quantify
the posterior probability of the various candidate parametrizations,
the data effectively choose the level of complexity needed in the
earth model. This parsimony characteristic ensures that the pdf of
parametrizations and associated parameters gives a realistic measure
of the posterior uncertainty of the earth model.

It should be emphasized that while the approach described here
accounts properly for the uncertainty due to not knowing the num-
ber of layers in the earth model, the posterior uncertainty will still
be subject to the a priori choice of a class of parametrizations. If
the earth models considered are layered media with no smoothness
imposed a priori, then solutions with a few layers and large resistiv-
ity jumps will be the most probable a posteriori. If the earth model
were a continuous function, the results might be different. Constable
et al. (1987) correctly point out that resistivity sounding data do not
necessarily require sudden jumps in resistivity; their inverted earth
model for the Wauchope data with a gradual transition from low to

high resistivity between depths of 50–1000 m fits the data as well
as the sampled layered media in Fig. 12, most of which contain a
jump in resistivity at 100 m depth.

The approach presented here, however, can be immediately ex-
tended to other classes of parametrizations where the earth model
consists of many thin layers. For example, just as done in this paper
for the number of layers, one may determine the posterior distri-
bution of the number of nodes in a cubic spline interpolation (e.g.
Malinverno 2000) or of the value of a correlation length in the
prior distribution of resistivity. In principle, the results obtained
with different classes of parametrizations could be ranked on the
basis of their respective posterior probabilities. Again, the point is
that the more parametrizations one examines, the more extensively
one can address the uniqueness half of the inverse problem. The
intent of this paper is to show how to decrease the dependence on
the parametrization of the inverse problem and thus obtain a more
general quantification of the uncertainty in the inferred earth model.
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A P P E N D I X A : P A R A M E T E R S
T O B E S E T A P R I O R I

A1 Layering parameters

The parameters that need to be defined are a maximum number
of layers kmax, and a minimum zmin and maximum log-depth zmax.
The maximum number of layers can be set to a value that is large
compared to the number of layers needed to explain the data (in
the examples shown here, kmax = 30). The minimum log-depth zmin

and the maximum zmax can be set to a value near the minimum and
the maximum electrode spacings in the measured data, respectively.
This depth range covers the interval probed by the measurements and
is the range typically used when inverting these kinds of measure-
ments (e.g. Constable et al. 1987; Schott et al. 1999). The minimum
log-layer thickness is computed as hmin = (zmax −zmin)/(2kmax); this
choice of hmin ensures that even when k approaches kmax at least
half of the interval zmax − zmin is available to place a new interface.

A2 Prior values of resistivity

The prior mean log-resistivity ρ is set to the logarithm of the most
likely value of resistivity, and the prior standard deviation σρ to
the logarithm of one plus the factor within which the resistivity
is expected to vary. The prior mean vector and the prior covariance
matrix in the prior pdf of log-resistivity (eq. 7) are then set toρ = ρi
and Cρ = σ 2

ρI, respectively (where i is the unit vector of length k
and I the k × k identity matrix).

A3 Measurement errors

The errors of the measured log-apparent resistivities are assumed
to be independent and normally distributed with zero mean. Their
prior covariance matrix Ce (used in the likelihood function of eq. 9)
is diagonal, and contains the variances of the errors expected for the
logarithm of each measured log-apparent resistivity in d.

A P P E N D I X B : T H E C H O I C E
O F A C A N D I D A T E M O D E L m′

This appendix described how a candidate model m′ is selected on
the basis of the current model m from a proposal pdf q(m′ | m). It is
helpful to break the selection of a candidate in two steps: first pick a
candidate number of layers k ′ and a candidate log-depth of the layer
interfaces z′ based on k and z of the current earth model; then pick

C© 2002 RAS, GJI, 151, 675–688



Parsimonious Bayesian MCMC inversion 687

a candidate log-resistivity ρ′ based on k ′, z′, and ρ in the current
model. The proposal pdf can then be written as

q(m′ | m) = q(k ′, z′ | m) q(ρ′ | k ′, z′, m) (B1)

and the two steps in selecting a candidate models will be illustrated
separately.

B1 Picking candidates k′, z′

Similarly to the implementation of Green (1995) and Denison et al.
(1998), the choice of candidates k ′ and z′ on the basis of k and z
in the current model is done by selecting at random one of four
possible moves:

(i) Birth: The candidate number of layers is k ′ = k + 1, and
the candidate log-depth of layer interfaces z′ is the same as z with
an interface added at a random log-depth between zmin and zmax

(making sure that no layers thinner than hmin are created);
(ii) Death: k ′ = k − 1, and z′ is the same as z with an interface

chosen at random and deleted;
(iii) Perturbation: k ′ = k, and z′ is the same as z, but for a

randomly chosen interface whose log-depth is changed at random
within an interval ±hmin about its current value (making sure that
no layers thinner than hmin are created);

(iv) No Perturbation: k ′ = k, and z′ = z.

Each of these moves will have some probability of being selected; in
the examples shown in this paper, the probabilities of birth, death,
and perturbation are 1/6, and the probability of no perturbation
1/2.

B2 Picking a candidate ρ′

The next step in choosing a candidate earth model is to pick values of
the candidate log-resistivities ρ′ given k ′, z′, and the log-resistivities
ρ in the current model. To decide what to do at this stage, it is
important to realize that the choice of the proposal pdf will have a
major effect on the efficiency of the algorithm. For example, suppose
that the current parameter vector m is in a high-posterior probability
region and that a ‘no perturbation’ move was chosen in the previous
step. If the proposed ρ′ typically differs from ρ by an amount that
is large compared to the spread of the posterior pdf, m′ will have
a low likelihood, α in eq. (15) will be small, and it will take many
iterations before a proposed move is accepted. At the other extreme,
if the changes proposed are small, α will be large, but many iterations
will be needed to cover the high-posterior probability region of the
parameter space (Chib & Greenberg 1995; Gelman et al. 1996). The
best choice for q(ρ′ | k ′, z′, m) would be a pdf that approximates
the posterior pdf of ρ; in this case, the acceptance probability α in
eq. (15) would generally be close to one.

The proposal pdf for ρ′ used here is a multivariate normal pdf
with a mean vector ρ̃′ and a covariance matrix C̃ρ′ :

q(ρ′ | k ′, z′, m) = 1[
(2π )k′ det C̃ρ′

]1/2

· exp

[
−1

2
(ρ′ − ρ̃′)TC̃−1

ρ′ (ρ′ − ρ̃′1 )

]
. (B2)

The mean vector ρ̃′ is obtained from the log-resistivities ρ in the
current model. If the first step was a move where k ′ = k, ρ̃′ is
simply set to equal ρ. If the first step was a birth (or death), the
log-resistivities in ρ̃′ are the same as those in ρ for all layers that
were not split by the birth (or combined by the death). In a birth,
the log-resistivities in ρ̃′ for the two layers that were generated by

splitting a single layer in ρ are the same as that of the original layer.
In a death, the log-resistivity in ρ̃′ for the layer that resulted from the
combination of two layers in ρ is the average of the log-resistivities
in the two original layers.

The reasoning above suggests that the proposal pdf should ap-
proximate the posterior pdf of ρ. An approximate posterior covari-
ance matrix for ρ can be obtained from a linearization about the
point at ρ̃′ (Bard 1974) as

Ĉρ ≈ [
JT CeJ + Cρ

]−1
, (B3)

where J is the Jacobian matrix (the matrix of derivatives of the
predicted data with respect to each element of ρ) evaluated at ρ̃′.
Constable et al. (1987) show in their Appendix how to compute the
Jacobian matrix in the DC resistivity problem (the only difference
here is that the elements ofJ are derivatives of predicted log-apparent
resistivities with respect to model log-resistivities). Using the recipe
suggested by Gelman et al. (1996) for optimally sampling spherical
distributions, I set C̃′

ρ′ to be a diagonal matrix with entries equal to
the diagonal elements of the approximate Ĉρ in eq. (B 3) multiplied
by a scaling factor chosen so that the acceptance rate of the Markov
chain is around 25 per cent. Gelman et al. (1996) show that this
acceptance rate is optimal in the sense that it maximizes the diffusion
rate of the random walk taken by the Markov chain. A scaling factor
that worked well was 1.5/

√
k ′ (in terms of standard deviations),

which is slightly less than the value of 2.4/
√

k ′ suggested by Gelman
et al. (1996).

Following the principle that the proposal pdf should approximate
the posterior, it may seem that a better strategy would be to sim-
ply set C̃′

ρ to the approximate value of Ĉρ estimated by eq. (B3).
This strategy gives good results when the inverse problem is lin-
ear for the material properties in the layers (Malinverno & Leaney
2000) or where the Jacobian matrix is evaluated at the mode of the
posterior pdf (Malinverno & Torres-Verdı́n 2000). In the DC resis-
tivity sounding problem, however, this strategy does not work well
because the approximation of eq. (B3) is often not very good in
the off-diagonal elements and the choice of a candidate model is
correspondingly poor.

A P P E N D I X C : T H E A C C E P T A N C E
P R O B A B I L I T Y α

Once the proposal pdf is defined (Appendix B), the acceptance
probability in eq. (15) can be written out explicitly. To start, note
that there is an obvious symmetry between the terms in the prior
and the proposal ratio of eq. (15):

Prior ratio = p(m′ |I )

p(m |I )
= p(k ′, z′ |I )

p(k, z |I )

p(ρ′ | k ′, z′,I )

p(ρ | k, z,I )
(C1)

Proposal ratio = q(m | m′)
q(m′ | m)

= q(k, z | m′)
q(k ′, z′ | m)

q(ρ | k, z, m′)
q(ρ′ | k ′, z′, m)

(C2)

As noted by Mosegaard & Tarantola (1995), if the candidate models
are sampled from the prior pdf, the proposal pdf equals the prior pdf
and the corresponding terms in the acceptance probability cancel
out. This is in fact the case here for the number of layers k and
the log-depths of the layer interfaces z. If the move proposed is a
perturbation of z or no perturbation, so that k ′ = k, then clearly

p(k ′, z′ |I )

p(k, z |I )
= q(k, z | m′)

q(k ′, z′ | m)
= 1. (C3)
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If instead a birth move is proposed, the proposal ratio is

q(k, z | m′)
q(k ′, z′ | m)

= �z(k)

k
, (C4)

as the probability of a birth move equals the probability of a death
move, the probability of choosing any layer interface for death equals
1/k, and the probability of placing a new layer at a given travel-
time is 1/�z(k) (where �z(k) is the log-depth interval available to
place a layer interface when there are already k interfaces in the
model; see eq. 6). This is the inverse of the ratio of the prior pdf s
from eq. (6), so that the proposal ratio and prior ratio terms for

k and z cancel each other. The same reasoning holds for a death
move.

The acceptance probability for the proposal pdf used here is then

α = min

[
1,

p(ρ′ | k ′, z′,I )

p(ρ | k, z,I )
· p(d | m′,I )

p(d | m,I )
· q(ρ | k, z, m′)

q(ρ′ | k ′, z′, m)

]
= min [1, (Prior ratio) · (Likelihood ratio) · (Proposal ratio)],

(C5)

where the prior ratio can be obtained from eq. (7), the likelihood
ratio from eq. (9), and the proposal ratio from eq. (B2).
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