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ABSTRACT Numerical 3D simulations of the development of spiral inclusion trails in porphyroblasts were conducted in order to test the

proposals that (a) 3D spiral geometry differs between the rotation and nonrotation end-member models of spiral formation

proposed in the literature, and (b) 3D spiral geometry can be used as a criterion to distinguish between the two end-member

models in rocks. Four principal differences are identified between the two sets of simulations: smoothness of spiral

curvature; spacing of foliation planes; alignment of individual foliation planes either side of the sphere representing the

porphyroblast; and spiral asymmetry with respect to matrix shear sense. Of these differences, only spiral asymmetry and

possibly the alignment of individual foliation planes are diagnostic criteria for distinguishing between the end-member

models. In the absence of a readily applied test to distinguish the end-member models, interpretation of spiral inclusion trails

is problematic. It is necessary to determine complementary evidence to distinguish porphyroblast rotation or nonrotation

during spiral formation.
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INTRODUCTION

Spiral inclusion trails within garnet porphyroblasts are
a feature of schistose rocks within many of the worlds
orogenic belts (e.g. Rosenfeld, 1970; Schoneveld, 1978;
Johnson, 1993a). The formation of spiral trails was
originally explained by the progressive capture of the
matrix foliation within a growing porphyroblast that
rotated during foliation-parallel shear (e.g. Spry, 1963;
Passchier et al., 1992). An alternative to this model
involves rotation of the matrix foliation around an
irrotational porphyroblast, which was first proposed
by Ramsay (1962) and Powell & Treagus (1970). More
recently, Bell & Johnson (1989) argued that spirals
form by irrotational garnet growth over multiple
overprinting near-orthogonal foliations. For the sake
of brevity, these two end-member models will be
referred to as the rotation (e.g. Passchier et al., 1992)
and nonrotation (e.g. Bell & Johnson, 1989) models.
The relative merits of the different models of spiral

development have been widely debated (e.g. Bell et al.,
1992b; Passchier et al., 1992; Visser & Mancktelow,
1992; Forde & Bell, 1993; Johnson, 1993b; Williams &
Jiang, 1999), but conclusive testing of each model has
been made difficult by the lack of diagnostic criteria for
distinguishing between the competing models in rocks.
This is largely because the central element of both
models is the relative rotation of porphyroblast and
matrix, and as such, most, if not all inclusion trail
patterns can be produced by either model (e.g. Powell &

Treagus, 1970; Johnson, 1993b). The significance of
this debate extends beyond the obvious question of
whether or not the porphyroblasts rotated relative to a
fixed reference frame, as the mode of spiral formation
has important implications for our interpretation of
shear sense (e.g. Bell & Johnson, 1992), fold mechan-
isms (e.g. Visser & Mancktelow, 1992; Stallard &
Hickey, 2001b), crenulation development and micro-
structural history of deformation (e.g. Stallard, 1998).
In an attempt to demonstrate that the end-member

models result in different geometries, Williams & Jiang
(1999) compared the 3D geometry of a theoretical
nonrotation spiral with a rotation spiral produced by
the mechanical model of Schoneveld (1977, 1979). The
authors concluded that 3D spiral geometry is model
specific, although they did not identify the geometric
features that distinguish the two models.
The aim of this study is to use numerical simulations

to test for diagnostic differences in the 3D geometry of
spiral inclusion trails produced by the competing
models. The degree of similarity between the resulting
simulated trails is then assessed to test if the 3D
geometry might provide criteria for determining the
origin of spiral inclusion trails in rocks.

3D SIMULATIONS

Hydrodynamic model

The numerical simulations presented in this study are
based on the 3D hydrodynamic model of Masuda &
Ando (1988) and Masuda & Mochizuki (1989). The
porphyroblast and matrix are modelled numerically as
a rigid sphere embedded in a homogeneous Newtonian
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viscous fluid. Deformation of the matrix is dextral
simple shear far from the sphere, and the sphere rotates
at a rate equal to half the far field simple shear strain
rate. The velocity vector is continuous and equal to zero
at the interface between the sphere and matrix, and
there is no slip at the interface. The radius of the sphere
increases at a constant rate of volume, and growth is
assumed to involve volume-for-volume replacement of
the fluid matrix. Marker particles are set in the matrix
to represent the foliation, and these move passively as
the matrix deforms, while those included in the growing
sphere rotate as the sphere rotates.

Description of rotation and nonrotation simulations

For the purpose of numerical simulation, the rotation
and nonrotation models are each defined in their most
simple form, while retaining the essential elements that
distinguish the respective models. Both sets of simu-
lations were run until the far field shear strain reached
gamma ¼ 8. Porphyroblast rotation in the numerical
simulations is described relative to the simulation
boundaries. In the rotation simulation, a single gen-
eration of matrix foliation is deformed by foliation-
parallel simple shear, which results in rotation of the
sphere (Fig. 1a; see also Masuda & Mochizuki, 1989;
Bjornerud & Zhang, 1994; Gray & Busa, 1994). The
nonrotation simulation involves matrix deformation,
without sphere rotation, during the development of
four overprinting orthogonal foliations (Fig. 1b).
This study is the first to simulate numerically the

nonrotation model. While the physics of matrix flow
around the sphere is the same in both models, the
nonrotation simulation involved three additional
complications. First, the nonrotation simulation
involves four overprinting foliations. Each change in
foliation was modelled by rotating the simulation shear
plane 90�, while ensuring that shear sense was kept
constant (i.e. consistently clock-wise or anticlockwise
during the course of the simulation). The timing of
each new foliation was decided at the stage where the
currently deforming matrix foliation, adjacent to the
sphere, had developed approximately 90� rotation
relative to the sphere (Fig. 1b).
Second, the Bell (1985) nonrotation model of por-

phyroblast growth involves partitioning of matrix
deformation into zones of coaxial shortening close to
the porphyroblast, and zones of noncoaxial strain that
anastomose around the porphyroblast. Such a pattern
of strain partitioning is too complex to model numer-
ically, so the matrix deformation was modelled under
conditions of simple shear. We consider this to be an
adequate approximation for the following reason. In
the nonrotation model, inclusion trail curvature, and
ultimately spiral-shaped inclusion trails, originate from
crenulation of the matrix foliation in zones of non-
coaxial strain (cleavage seams of a developing crenu-
lation cleavage) adjacent to the growing porphyroblast.
The curved foliation is later included within the

porphyroblast as it grows toward, and eventually over
the adjacent cleavage seam. Thus, although Bell (1985)
described the porphyroblast as occupying a zone of
coaxial strain, it is more appropriate to deform the
matrix by noncoaxial shear. The simulation does not
include an area of coaxial strain adjacent to the sphere,
but the velocity vector in those areas is extremely low
(light grey areas to the left and right of the sphere in
Fig. 2b), indicating minimal particle movement.
Third, the nonrotation model describes nonrotation

of porphyroblasts within local zones of coaxial strain.
The numerical simulation used in this study cannot
partition the deformation in this way, and thus the
pattern of matrix velocity in the nonrotation simula-
tion should theoretically result in sphere rotation. In
order to solve this inconsistency, we imposed a con-
dition of nonrotation upon the sphere (parameter k of
Bjornerud & Zhang, 1994), and removed the spin-
related part of the velocity field (the total velocity field
is calculated from two components: the matrix velocity
vector and the component of shear due to effect of
rotation of sphere on surrounding matrix). This does

Fig. 1. Schematic description of the rotation and nonrotation
simulations used in this study. (a) Rotation simulation. A single
generation of matrix foliation is deformed by foliation-parallel
simple shear. Inclusion trails are rotated within the rotating
sphere. (b) Non-rotation simulation. The irrotational sphere
grows during the development of four overprinting orthogonal
foliations. The pre-existing foliation is oriented at 90� to the
shear plane. New foliations are initiated at stages 1, 4 and 7 as
shown in the figure. Inclusion trails remain irrotational within
the sphere. This figure is schematic only, and the numbered
stages of each simulation represent the sequential development
of the simulation rather than equal intervals of time or spiral
development.
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not affect the validity of the physics of matrix fluid
flow (and particle movement) around the nonrotating
sphere.
Figure 2 shows the velocity vector and particle path

plots for both the rotation and nonrotation simula-
tions presented in this study, as well as a comparison
with Bell’s (1985) nonrotation model. The particle path
in the rotation simulation (Fig. 2e) is similar to those
previous published (e.g. fig. 1 of Pennacchioni et al.,
2000), while the nonrotation particle path (Fig. 2b)
resembles Bell’s (1985) deformation partitioning model
(Fig. 2a).
As noted by Johnson (1999), both the rotational and

nonrotational models can be modified in various ways
to account for specific geometries that are not predicted
by the models in their simplest forms. This may involve
varying the amount of flattening in the matrix (e.g.
Williams & Jiang, 1999), the ratio of pure to simple
shear (Mandal et al., 2001), the timing and rate of
porphyroblast growth relative to deformation
(Bjornerud & Zhang, 1994), the rate of porphyroblast
rotation (e.g. Biermeier et al., 2001), or the geometry of
the predeformation foliation relative to the shear plane
(e.g. Masuda &Mochizuki, 1989). In this study, the two
models are compared in their most basic forms in order
to test for first-order or diagnostic differences in the
resulting 3D inclusion trail geometries. Additional
simulations were conducted to assess the variation in
3D spiral geometry resulting from modification of the
basic models, and these are discussed later.

Limitations of hydrodynamic model

The numerical modelling employed in this study
involves limitations and assumptions resulting from
the necessary numerical simplification of a complex
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Fig. 2. Velocity vector and particle path plots of simulations
used in this study, and comparison of nonrotation simulation
with the nonrotation model as described by Bell (1985).
(a) Strain partitioning model of Bell (1985). The porphyroblast
(dark grey) lies within a field of noncoaxial strain (light grey) and
thus does not rotate with respect to shear plane. Strain is par-
titioned into zones of shear (white) that are represented by
cleavage seams in real rocks. In this figure, adjacent microlithons
do not house porphyroblasts, and thus strain within these areas
is noncoaxial. (b) Velocity vector field of the nonrotation simu-
lation used in this study. The lengths of the bars indicate the
relative magnitude of the velocity, and the orientation indicates
direction. The spherical porphyroblast (dark grey) is surrounded
by a field of low flow velocity (light grey), although deformation
is not coaxial in this zone (cf. Fig. 2a). The areas of higher
matrix velocity (white areas) undergo noncoaxial shear, which
corresponds to the white areas in (a). The simulation represents
the central microlithon, porphyroblast and adjacent zones of
shear shown in (a). (c) Velocity vector field for the rotation
simulation. (d,e) Particle path fields for the nonrotation and
rotation simulations, respectively. The numbers represent the
magnitude of far field shear strain from the beginning of
deformation (0). Figures (c) and (e) are modified fromMasuda &
Ando (1988).
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natural system. The heterogeneous rock matrix is
modelled as a homogeneous fluid, and the porphyro-
blast as a perfect sphere. Important strain accom-
modation such as crenulation development,
recrystallization, and grain-scale deformation proces-
ses are not simulated. In the nonrotation simulation,
we impose a condition of nonrotation upon the sphere,
although under the physical conditions of the simula-
tion the sphere should rotate. These kinds of limita-
tions are common to previous studies of spiral
development (Masuda & Mochizuki, 1989; Bjornerud
& Zhang, 1994; Gray & Busa, 1994), but do not
preclude the geologic relevance and value of such an
investigation. Thus, the modelling provides a useful

and instructive approximation of the end-member
models, and provides an advance in the interpretation
of these controversial microstructures.

Simulation results

Description of simulation results

The simulation results are presented in Figs 3 & 4.
Figure 3 shows cut-away geometries of the 3D spirals,
and equivalent matrix foliation, for both the rotation
and nonrotation simulations. Figure 4 shows a series
of 2D sections through the simulated inclusion trails
and equivalent matrix foliation.

Fig. 3. Comparison of the 3D geometry of the rotation and nonrotation simulations. (a) and (b) show the rotation and nonrotation
simulations, respectively, with the spheres outlined in white. The three surfaces labelled on each simulation are shown separately in
Figs (c)–(h) to illustrate the varied geometry of surfaces located at increasing distances from the porphyroblast centre. The rotation
and nonrotation simulations are viewed from opposite directions in order to enable direct comparison of the two sets of geometries.
The fine scale wrinkles visible in the lower parts of (f) (g) and (h) are due to the limits of resolution of the simulation, and are not
real features of the spiral geometry.
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Fig. 4. Comparison of 2D sections through the rotation and nonrotation simulations. (a, b) sections parallel to the XZ plane.
(c, d) sections parallel to the YZ plane. (e, f) Sections parallel to the XY plane. (g) Oblique section through the nonrotation
simulation. Although (e) and (f) are both sectioned in the XY plane, it is more appropriate to compare (e) with a section from
the nonrotation simulation that also intersects the matrix foliation planes adjacent to the sphere. This results in the closed loops that
straddle the sphere margin. Equivalent colours represent equivalent surfaces in different sections of each simulation. Subplots
show orientation of each 2D section with respect to the simulation boundaries. In all figures, the sphere is represented by a dashed
black circle.
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In the rotation simulation, the matrix foliation
wraps around the growing porphyroblast and results
in a complex noncylindrical geometry. Once captured
within the sphere, the foliation is progressively rotated
away from the equivalent foliation in the matrix,
forming a smoothly curving spiral geometry. The
central inclusion surface forms a doubly curving non-
cylindrical geometry, which resembles a symmetrical
pair of sheath folds that once formed, are progressively
enlarged, rotated and stretched about the axis of
relative rotation between the sphere and matrix
(Fig. 3c). Planes 2 and 3 are positioned off-centre with
respect to the growing sphere and can be visualised as
single sheath folds that are progressively elongated and
rotated about the axis of relative rotation as the sphere
grows (Fig. 3d,e).
In the nonrotation simulation, the spiral geometry

results from rotation of the matrix around the irrota-
tional porphyroblast. As with the rotation simulation,
the matrix wraps around the sphere, and it is this shape
that is included within the growing sphere to define the
3D geometry of the spiral (Fig. 3b,f). From the centre
to the rim of the sphere, the central inclusion plane
contains intervals of relatively gentle curvature separ-
ated by intervals of relatively tight curvature, and is
not as smoothly curving as the rotation simulation.
In both sets of simulations, surfaces originally

positioned at progressively greater distances from the
sphere centre have sheath fold geometries that are
narrower and less elongate when viewed in the XZ
plane (Fig. 3e,h). Cross-sections through these sheath
folds geometries reveal closed-loop inclusion trail
patterns (Fig. 4c,d).
The simulation results presented in this study are

broadly consistent with the model spiral geometries
previously published by Powell & Treagus (1967,
1970), Masuda & Mochizuki (1989), Bjornerud &
Zhang (1994), Gray & Busa (1994), and Schoneveld
(1977), and with the sections through garnet published
by Johnson (1993a). The simulations are however,
different to Williams & Jiang’s (1999) theoretical
interpretation of the 3D geometry of spirals formed
according the nonrotation model. These differences
result from interpretations by Williams & Jiang
regarding the nature of matrix deformation around a
growing porphyroblast (see Johnson, 1999 for more on
this subject).

Comparison of results of rotation
and nonrotation simulation

At first glance, the 3D geometry of the rotation and
nonrotation simulations is very similar (Figs 3 & 4).
The apparent differences between the two simulations
in the 2D XY sections (Fig. 4e,f) occurs because at the
time the nonrotation simulation finished, the foliation
planes within the matrix did not cross the Z ¼ 0 plane
(cf. rotation simulation). Given further running-time
of the simulation, the nonrotation foliation planes

would soon rotate into a position comparable to those
in the rotation simulation. Although both figures
(Fig. 4e,f) are oriented in the same way with respect to
the simulation boundaries, they do not offer a valid
comparison of equivalent sections through the spirals
with respect to the position of the spiral and matrix
foliations. To illustrate this point, we re-sectioned the
nonrotation simulation in an orientation that intersects
the matrix foliation planes. The resulting 2D geometry
(Fig. 4g) is more comparable to that of the equivalent
section cut through the rotation simulation (Fig. 4e).
Comparison of the two sets of simulations reveals

the following four differences between the 3D
geometry of the end-member models:

(1) Smoothness of spiral curvature. The rotation
simulation displays a relatively smoothly curving
central inclusion trail surface, whereas the central
inclusion plane of the nonrotation simulation is
marked by intervals of gentle curvature separated by
narrow zones of relatively tight curvature (compare
Fig. 3c with Fig. 3f). These differences reflect the
number of matrix foliations developed during sphere
growth in each simulation. The rotation model des-
cribes sphere growth within a single foliation. Once the
matrix foliation has wrapped around the nucleated
porphyroblast, the relative orientations of the matrix
and inclusion trails reaches a steady-state and a
relatively smooth spiral results. The only variation in
spiral curvature occurs in the very centre of the sphere,
where a section of planar inclusion trails represent the
earliest portion of included matrix foliation (e.g.
Fig. 4a). In contrast, the nonrotation simulation
involves sphere growth that spans the development of
four distinct matrix foliations (Fig. 1). At the initiation
of each new foliation, the existing matrix foliation is
oriented at approximately 90� to the new direction of
shear, and is thus quickly rotated toward the shear
plane. The variably curving spiral represents cycles of
rapid rotation of the foliation about the sphere
coincident with the development of a new foliation,
and periods of slower rotation as the foliation matures
and is reoriented closer to the shear plane.

(2) Spacing of foliation planes. Neighbouring foli-
ation planes in the nonrotation simulation are more
closely spaced and more tightly wrapped around the
sphere than equivalent foliation planes in the rotation
simulation (compare Fig. 4c with 4d, and Fig. 4e with
4g). This occurs because the angular relationship
between the foliation planes and shear plane is
different in the two simulations. Reduction in the
spacing between foliation planes occurs while
the matrix foliation is oriented at a high angle to the
shear plane, and also as the foliation is progressively
wrapped around the sphere. During the course of the
nonrotation simulation, the angular relationship
between the shear plane and matrix foliation varies
continuously (Fig. 1b), and the foliation planes
become closely spaced in all orientations within the
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matrix as well as adjacent to the sphere. In contrast,
the rotation simulation involves sphere growth within
a single foliation that is always oriented at a low angle
with respect to the shear plane. The spacing between
planes is reduced only in those areas close to the sphere
and shortening occurs dominantly parallel to the Z
axis. The XY plane contains the greatest contrast in
the spacing of foliation planes between the two
simulations (e.g. compare Fig. 4c,e with Fig. 4d,g,
respectively).

(3) Alignment of foliation planes either side of the
sphere. A further difference between the two simula-
tions is the alignment of individual foliation planes on
opposite sides of the sphere. The rotation simulation
creates deformation of the matrix within a small
volume surrounding the sphere, and those parts of
individual foliation planes at greater distances from the
sphere remain less deformed. A single dashed line can
be drawn to join aligned sections of an individual
foliation plane either side of the sphere (Fig. 5a). In
contrast, the nonrotation simulation involves defor-
mation of all parts of the matrix foliation, including
those areas further from the sphere, and consequently
individual foliation planes are not aligned either side of
the sphere (Fig. 5b).

(4) Spiral asymmetry with respect to matrix shear
sense. The rotation and nonrotation simulations dis-
play contrasting relationships between spiral asym-
metry and matrix shear sense (compare Fig. 4a with
4b). This relationship has been described previously
(e.g. Bell & Johnson, 1989) and is established as a
diagnostic criterion for distinguishing between the two
models (e.g. Johnson, 1993b).

DISCUSSION

Are the differences between the simulations diagnostic
of the end-member models?

Having described the principal differences between the
two simulations, we now consider if these differences
are diagnostic and therefore provide a means of dis-
tinguishing between the end-member models in rocks.
Each of the four main differences between the two
simulations described in the previous section is con-
sidered below.

(1) Smoothness of spiral curvature. Given the end-
member models in their most simple forms, the central
inclusion surface produced by the rotation model is
likely to be more smoothly curving than the equivalent
surface resulting from the nonrotation model. This
criterion applies to the central inclusion surface when
viewed in the XZ section (e.g. Fig. 3c,f). However, in
rocks the spiral curvature may be influenced by factors
such as discontinuous porphyroblast growth, por-
phyroblast growth that is not radially continuous
(Passchier et al., 1992), and the control of crystal face

geometry (e.g. fig. 4 of Johnson, 1993b). Careful
mapping of inclusion trail patterns has shown that
spirals which initially appear smoothly curving and
continuous from core to rim are commonly character-
ised by varying inclusion trail curvature, and even
truncations of the inclusion trails (e.g. Bell & Johnson,
1989; Bell et al., 1992a). This criterion may be used to
support an interpretation, but is probably not diag-
nostic of either end-member model.

(2) Spacing of foliation planes. Foliation planes are
more closely spaced in the nonrotation simulation than
the rotation simulation, but this criterion is likely to be
both difficult to apply, and less pronounced in rocks.
There are three main reasons for this. First, in the
nonrotation simulation, the length of rotated
(deformed) foliation planes is restricted to the spacing
of cleavage domains of the newly formed foliation.

Fig. 5. Comparison of the deformation of individual foliation
planes produced by the rotation and nonrotation simulations.
(a) During the rotation simulation, those parts of a foliation
plane distant from the sphere are relatively undeformed, and
remain aligned either side of the sphere. (b) During the non-
rotation simulation, all parts of the foliation plane are deformed,
and those parts of an individual foliation plane either side of the
sphere become unaligned.
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This restricts the rotation of foliation planes to within
the confines of individual microlithons. The process of
crenulation is not included in the numerical simula-
tions, and thus the close spacing of foliation planes
developed during the simulations is likely to be less
pronounced in rocks. Second, a component of flatten-
ing normal to the XY plane in the rotation simulation
would act to reduce the spacing between adjacent
foliation planes and produce a geometry more similar
to that of the nonrotation simulation. Third, the
successful application of this criterion to rocks is
dependant upon knowledge of the spacing between
foliation planes prior to spiral formation compared
with the spacing after spiral formation, and this may
be difficult to determine. The spacing of foliation
planes is a criterion not easily applied to rocks and is
probably not diagnostic of either end-member model.

(3) Alignment of foliation planes either side of the
sphere. This criterion can be applied in rocks con-
taining a planar matrix foliation and inclusion trails
continuous with the external foliation (Fig. 5). The
relationships shown in Fig. 5 will not hold true if the
angle between the matrix foliation and shear plane (in
the rotation simulation) changed during the course
of the simulation, or had an initial nonzero value.
Assuming a constant angular relationship between
matrix foliation and shear plane, it is possible that this
criterion is diagnostic.

(4) Spiral asymmetry with respect to matrix shear
sense. The relative shear sense of spiral and matrix is
a distinguishing criterion between the two models,
provided that inclusion trails are continuous with the
matrix foliation and that matrix shear is demonstra-
ted to be contemporaneous with spiral formation. A
synthetic sense of shear between inclusion trail
curvature and matrix indicates spiral formation
according to the nonrotation model, whereas anti-
thetic shear is consistent with the rotation model (see
Fig. 1 of Hickey & Bell, 1999). However, establishing
the matrix shear sense synchronous with spiral
growth is commonly difficult to determine (see
Johnson, 1993b; p654). Previous studies have repor-
ted examples of inclusion trail asymmetry that are
apparently consistent with the rotation model (e.g.
Busa & Gray, 1992) and that are apparently
consistent with the nonrotation model (Treagus,
1987; Bell & Johnson, 1992).
The simulations conducted in this study compare the

rotation and nonrotation models in their most basic
forms, but if 3D geometry is to be used as a criterion
for distinguishing the two models in rocks, the full
range of spiral geometries that each model might
generate must first be considered. To investigate this
further, we conducted simulations to assess the effect
on spiral geometry of varying certain simulation con-
ditions (Fig. 6). These simulations reveal that growth
rate does not affect spiral geometry (Fig. 6a), but
an increase in the component of pure shear (in the

rotation simulation) results in decreased rotation
between sphere and matrix, and reduced spacing
between foliation planes (Fig. 6c). An increase in the
initial angle between the matrix foliation and shear
plane (theta) results in reversals in the asymmetry of
the inclusion trails (Fig. 6b). The reversals develop due
to changes in the rate of rotation of the matrix foli-
ation and sphere at the critical theta values of 135� and
45� (see Masuda & Mochizuki, 1989). Once the matrix
foliation has been reoriented close to the shear plane,
inclusion trails develop a more regular spiral geometry.
The geometries shown in Fig. 6(b,c) suggest that
the two models can produce a wide range of similar
geometries and highlight the problems in finding
diagnostic criteria to distinguish the two end-member
models in rocks. For example, a component of pure
shear reduces the spacing between foliation planes in
the rotation simulation, and thus creates uncertainty in
the use of spacing between foliation planes as a cri-
terion that potentially distinguishes the rotation and
nonrotation simulations (see above). Increased values
of theta affect the smoothness of spiral curvature
produced by the rotation simulation, and results in
reversals of inclusion trail asymmetry that might
mistakenly be interpreted as representing discreet
deformation events (cf. fig. 5 of Bell et al., 1998).

Why do contrasting models produce apparently
similar 3D simulation results?

While we have identified four principal differences
between the two simulations, the overall 3D geometry
of the spirals is surprisingly similar (Fig. 3). This
occurs despite differences in the initial conditions of
the respective simulations. These differences include:
the number of matrix foliations developed during
sphere growth (Fig. 1), the respective velocity vectors
and particle paths in the rock mass surrounding the
sphere (Fig. 2), and the distribution of strain within
the matrix. The 3D geometries are more similar than
what might be expected given the above differences in
the initial conditions of the two simulations, and the
reasons for this are discussed, in terms of the principal
differences between the two simulations, in the
following sections.

Velocity vector and particle path (Fig. 2)

Differences in the velocity vector and particle path
plots for the rotation and nonrotation simulations
primarily reflect the contribution of the spin-related
part of the velocity field in each model. The rotation
model describes simple shear and sphere rotation, and
results in an eye-shaped flow perturbation about the
sphere (Fig. 2e). A separatrix surface (see Passchier
et al., 1993) marks the boundary between closed
elliptical displacement paths close to the sphere, and
open displacement paths further away. In contrast, the
spin-related component of the nonrotation velocity
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field is equal to zero, and a bow-tie shaped flow pattern
results (Fig. 2d). Separatrix surfaces either side of the
sphere (as viewed in Fig. 2d) mark the boundary
between areas of open displacement paths above and
below the sphere, and flow paths either side of the
sphere that first move toward, then away from
the sphere. The areas of principal difference in the
respective particle paths occur either side of the sphere
(as viewed in Fig. 2d,e), in zones that are usually
occupied by strain shadows in rocks.
Despite the differences, the contrasting particle

paths produce only minimal differences in the resulting
simulation geometries, for which we suggest two rea-
sons. First, the areas of contrasting particle paths
between the two simulations (areas either side of the

spheres in Fig. 2d,e) are areas of low flow velocity,
whereas areas that contain similar particle paths (areas
above and below spheres) have large flow velocity.
This means that areas of contrasting matrix deforma-
tion develop slowly compared to areas with similar
deformation patterns, and this acts to minimise
differences in the spiral geometry between the two
models. Second, with the development of each new
foliation in the nonrotation model, the velocity vector
and particle path fields are rotated by 90� with respect
to the sphere (see Fig. 1b, steps 4 and 8). Areas that
were within the low-velocity zone adjacent to the
sphere during development of the first foliation are
located within the high-velocity zone during develop-
ment of the second foliation. In this way, the relatively

Fig. 6. Summary of varying spiral geometry resulting from changes to sphere growth rate, matrix strain type, and initial angle between
matrix foliation and shear plane. (a) Completed simulations (gamma ¼ 8) at different rates of sphere growth. The growth rate of
the simulations shown in Figs 3 and 4 is 0.001 per time step of the simulation. (b) Rotation simulation with initial angle between matrix
foliation and shear plane (theta) of 90�. The theta value of the rotation simulations shown in Figs 3 and 4 is 0�. (c) Rotation
simulation with ratio of simple shear to pure shear ¼ 2. Compare this with the simulations shown in Figs 3 and 4, which involved
simple shear matrix deformation with no component of pure shear. All sections shown in this figure are XZ sections.
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slowly developing areas of contrasting geometry adja-
cent to the sphere are quickly overprinted during the
succeeding foliation to produce a geometry that is
similar in both models.

Distribution of strain

Whereas the rotation model involves highly noncoaxial
simple shear deformation, Bell (1985) explained por-
phyroblast nonrotation as a consequence of strain
partitioning into zones of noncoaxial strain and zones
of coaxial shortening. Despite these differences in
strain distribution, both models contain common ele-
ments of spiral development. In both models, foliation
curvature, which is the essence of spiral formation,
occurs within zones of noncoaxial shear in the matrix
adjacent to the growing sphere. As the porphyroblast
grows over the adjacent zone of noncoaxial shear,
the curved foliation planes are included within the
porphyroblast to form a spiral geometry.

Matrix foliations

The rotation model describes porphyroblast growth
within a single matrix foliation of consistent orienta-
tion, whereas the nonrotation model involves repeated
cycles of crenulation and foliation development to
account for spiral formation (e.g. Bell & Johnson,
1989). Although we don’t consider the number of
foliations to result in diagnostic differences in the 3D
spiral geometry, evidence of multiple foliations pre-
served within the porphyroblast does support the
nonrotation model (e.g. figs 4 & 5 of Stallard &
Hickey, 2001a).

Testing the rotation and nonrotation models

Previous studies have proposed a number of criteria
for discriminating between the rotation and nonrota-
tion models in rocks. These include 3D inclusion trail
geometry (e.g. Williams & Jiang, 1999), inclusion trail
orientations over a large area (e.g. Johnson, 1990),
specific inclusion trail microstructures (fig. 10 of
Johnson, 1993a; p. 182 of Passchier & Trouw, 1996),
spiral axis orientations over a large area (e.g. Bell
et al., 1998), and matrix shear sense during por-
phyroblast growth (Johnson, 1993b). The application
of these criteria to rocks has proven controversial. For
example, Johnson (1993b) concluded that most, if not
all, inclusion trail geometries in spiral porphyroblasts
can be explained by either model, and that 3D
geometry and specific microstructures are not diag-
nostic of the competing models (cf. Williams & Jiang,
1999). Interpretation of inclusion trail orientation data
is also a debated topic. The consistent orientation of
inclusion trails over a large area has been interpreted
to support the nonrotation model (e.g. Johnson,
1990), but Jiang (2001) has cautioned that such pat-
terns are a natural consequence of vorticity during

folding, and do not necessarily indicate that por-
phyroblasts remained irrotational during deformation
(see also Kraus & Williams, 2001). The interpretation
of individual microstructures preserved within por-
phyroblasts has also been a subject of debate (e.g.
Passchier et al., 1992; Gray & Busa, 1994; Johnson &
Bell, 1996). Bjornerud & Zhang (1994) suggested that
the geometry of mica �haloes� adjacent to spiral por-
phyroblasts reflect the degree of porphyroblast rota-
tion during spiral formation. This proposal can be
further evaluated once the interaction of multiple flow
patterns can be successfully modelled (e.g. Samanta
et al., 2002).
A different approach to the problem is to consider

the deformation environment in which the porphyro-
blasts grew (e.g. Stallard & Hickey, 2001a), as each
model predicts a different deformation environment
for spiral formation. Descriptions of the rotation
model usually describe spiral development within a
shear zone (e.g. Williams & Jiang, 1999), whereas the
nonrotation model describes multiple episodes of cre-
nulation, folding and foliation formation.
It is also possible that a combination of processes

occurs in nature, and that porphyroblasts grow in a
folding environment in which the spiral geometry is
largely the result of overprinting foliations, although
accompanied by some net rotation of the porphyro-
blast relative to fold axial planes (e.g. Stallard &
Hickey, 2001b). In this scenario, the spiral geometry
reflects accumulated crenulation events, in accordance
with the nonrotation model, although it remains dif-
ficult to quantify the net porphyroblast rotation with
respect to fold axial planes. In such a situation, the
geometric relationship between inclusion trails and
matrix folds provides a means of estimating the
amount of porphyroblast rotation (e.g. Williams &
Jiang, 1999; Stallard & Hickey, 2001b; Jiang, 2001).
This line of investigation is important, as spiral garnets
are commonly found in multiply folded terranes in
rocks that preserve multiple foliations and crenulation
cleavages (e.g. Bell et al., 1998; Mares, 1998; Stallard &
Hickey, 2001a; Williams et al., 2001). Such an
approach may lead to more realistic models of spiral
development that incorporate elements of both the
rotation and nonrotation models and link spiral for-
mation to fold mechanisms and the competence of
rocks at the time of folding.
In summary, any interpretation concerning the

mode of spiral formation is best supported by a suite
of complementary evidence that may include 3D spiral
geometry, matrix shear sense, microstructures pre-
served within the porphyroblast (e.g. crenulation
cleavages), spiral axis orientation patterns, and the
alignment of individual foliation planes within the
matrix. Ideally, the minimum data required for such an
exercise includes detailed 3D analysis of spiral geo-
metry from multiple samples within the area of study,
and detailed microstructural and kinematic informa-
tion from the rock matrix.
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CONCLUSIONS

Numerical simulations reveal four principal differ-
ences in the 3D geometry of spiral inclusion trails
produced by the rotation and nonrotation models.
These are: smoothness of spiral curvature, spacing of
foliation planes, alignment of individual foliation
planes within the matrix either side of the porphyro-
blast and spiral asymmetry with respect to matrix
shear sense. Of these four differences, only spiral
asymmetry and possibly the alignment of individual
foliation planes are diagnostic criteria for distin-
guishing between the end-member models. None of
the four criteria are easily applied in rocks, and
testing the mode of spiral origin will only become
more reliable with technology that readily enables the
3D reconstruction of spiral geometry. Thus, it is
necessary to determine a suite of complementary
evidence to distinguish porphyroblast rotation or
nonrotation during spiral formation.
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