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S U M M A R Y
The sensitivity distributions of different electrode configurations are computed for both a
homogeneous resistivity distribution and a model consisting of two vertical zones of homoge-
neous resistivity. The inner zone around the borehole axis represents a borehole filled with mud
and the outer zone is the undisturbed formation. The sensitivity of the homogeneous model
is independent of resistivity. Whereas the sensitivity in the case of the cylindrical coaxial
boundary depends on the contrast between formation resistivity and mud resistivity. With in-
creasing contrast, the sensitivity distribution changes dramatically for all investigated electrode
configurations.

The sensitivity patterns are used to illustrate the ability of different electrode configurations
to delineate thin layers. The superiority of focused tools in comparison to normal logs can
clearly be shown if the effect of variable bucking currents is included.
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1 I N T R O D U C T I O N

Multi-electrode resistivity tools yield a number of normal or lateral
curves which can be used to simulate the response of a variety of
conventional or focused tools. Synthetically focused logs resulting
from multi-electrode measurements have proved that a good vertical
resolution can be achieved without any technical focusing (Schön
& Weller 1984). However, a single focused log does not use the
full information provided by multi-electrode tools. Sophisticated
inversion algorithms perform the transformation of the measured
quantities into a reliable resistivity model (Fan 1998; Hakvoort et al.
1998). The tool design should consider the sensitivity distribution of
the measured quantities which shows where the information comes
from. The sensitivity describes the influence of a slight change of the
conductivity in a small volume element on the measured apparent
resistivity of a certain electrode configuration.

Several authors have published the sensitivity distribution of var-
ious surface configurations (e.g. Barker 1979; Kampke 1999). Dif-
ferent methods of calculating the sensitivity are given by Weller
et al. (1996) and Spitzer (1998). The sensitivity distribution is not
only used to characterize the resolution of the electrode configura-
tion. The sensitivity matrix, which is also called the Jacobian matrix,
relates changes of the resistivity model to changes in the measured
data. Most inversion procedures that are performed iteratively are
based on knowledge of the sensitivity matrix. Since the sensitivity
depends on the resistivity model, the sensitivity matrix has to be
updated with changes of the model. The use of the sensitivity of a
homogeneous half-space can only be a rough approximation. Loke
& Barker (1996) present a rapid least-squares inversion based on a

quasi-Newton update of sensitivity. Seichter (1998) uses the fully
updated sensitivity matrix in a simultaneous iterative reconstruction
technique.

2 C O M P U T I N G O F S E N S I T I V I T Y
D I S T R I B U T I O N

2.1 Definition of sensitivity

To compute the sensitivity distribution in the borehole environment
the relevant volume � is divided into j elements � j of resistivity ρ j .
Since the dependence of the azimuth angle is neglected, only two
dimensions are considered: the vertical z-direction and the radial
r -direction. Fig. 1 shows the scheme of the grid that is used for
computing. The grid size is 100 elements in the r -direction and 200
elements in the z-direction. The problem is formulated in cylindrical
coordinates. The sensitivity matrix

S = {si, j } i=1,...,M
j=1,...,N

(1)

with the coefficients

si, j = ∂yi

∂x j
(2)

can be formulated for different measured quantities yi and model
parameters x j . Since the order of resistivities varies over sev-
eral decades, a logarithmic presentation of the measured appar-
ent resistivity ρ̂i and the model resistivity ρ j is an appropriate
choice:
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Figure 1. Scheme of the grid used to compute the sensitivity distribution.

yi = ln ρ̂i , (3)

x j = ln ρ j . (4)

First, consider the case of the pole–pole configuration with the injec-
tion electrode A at the position described by the space vector rA and
the potential electrode M at the position rM . The sensitivity coeffi-
cients of the volume element � j for the i th pole–pole configuration
is (Weller et al. 1996)

si, j = Ki

ρ̂i I 2ρ j

∫
� j

∇V (r | rA) · ∇V (r | rM ) d3r, (5)

where Ki is the geometric factor and V (r | rA) the potential at the
location of vector r if the injection electrode is located at rA. The
corresponding return electrodes B and N are assumed to be shifted
to infinity. The equation is valid for any conductivity distribution.
It implies that the gradient of the potential caused by a current
injection at both positions A and M is needed to determine the
sensitivity coefficients. The sensitivity distribution of any electrode
configuration can be assembled by superimposing several involved
pole–pole configurations. For example, the sensitivity coefficient of
a four-electrode configuration with the current electrodes A and B
and the potential electrodes M and N results in

si, j = Ki

ρ̂i I 2ρ j
{ŝ A,M − ŝ A,N − ŝ B,M + ŝ B,N }, (6)

using the abbreviation

ŝ A,M =
∫

� j

∇V (r | rA) · ∇V (r | rM ) d3r, (7)

where Ki is the corresponding four-electrode geometric factor.

2.2 Homogeneous space

In a homogeneous full space, each value of apparent resistivity ρ̂i is
equal to the constant resistivity of all elements ρ j = ρ. The potential
is given by the equation

V (r | rA) = ρ I

4π |r − rA| . (8)

Considering (8), eq. (5) results in

si, j = Ki

16π2

∫
� j

∇ 1

|r − rA| · ∇ 1

|r − rM | d3r. (9)

It can be seen that the sensitivity distribution is independent of the
resistivity in a homogeneous space. The integration is approximated
by the product of the cell volume and the two gradients in the middle
of the cell:

si, j
∼= Ki

8π
r j�r j�z j

× r 2
j + (z j − z A) (z j − zM )[√

r 2
j + (z j − z A)2

]3[√
r 2

j + (z j − zM )2
]3 , (10)

where z A and zM are the z-coordinates of the electrodes A and M ,
respectively. The corresponding r -coordinates vanish because the
electrodes are placed at the borehole axis.

2.3 Model with a cylindrical coaxial boundary

Since the average formation resistivity may be different from the
mud resistivity, the homogeneous space model is too simple to cal-
culate a reliable sensitivity distribution in practice. It is better to use
a cylindrical coaxial boundary between a mud-filled borehole and
the undisturbed formation. Fig. 2 shows the scheme of the model. In
the centre is the borehole axis surrounded by the cylindrical space
of the borehole with resistivity ρ0 and diameter d0 = 2r0. Outside,
there is the undisturbed formation with resistivity ρt. An electrode
configuration is assumed with current injection along the axis. The
potential function V (r, z) is defined in cylindrical coordinates. Since
we want to know the sensitivity in the formation, we require the po-
tential V (r, z) and its spatial derivatives for r ≥ r0, which are given
by the following two equations:

Figure 2. Scheme of a cylindrical coaxial model of a borehole filled with
mud and an undisturbed formation outside.

C© 2002 RAS, GJI, 149, 338–348



340 M. Furche and A. Weller

∂V (r, z)

∂r
= −ρt I

2π2r 2
0

×
∫ ∞

0

Dt(m)K1(mr/r0)m cos (mz/r0) dm, ∀r ≥ r0

(11)

and

∂V (r, z)

∂z
= −ρt I

2π2r 2
0

×
∫ ∞

0

Dt(m)K0(mr/r0)m sin (mz/r0) dm, ∀r ≥ r0

(12)

with

Dt(m) = I1(m)K0(m) + I0(m)K1(m)

(ρt/ρ0)I1(m)K0(m) + I0(m)K1(m)
, (13)

and I0, K0, I1 and K1 are the modified Bessel functions of order
zero and one, respectively. The details of the mathematical origin
of eqs (11)–(13) and the numerical calculation are explained in
Appendix A. It can be concluded from eq. (13) that the sensitivity
only depends on the resistivity ratio ρt/ρ0 and not on the absolute
values of ρ0 and ρt.

Finally, eqs (11) and (12) are inserted in eq. (5) to calculate the
sensitivity. Since ρt corresponds to ρ j , a factor of ρt/ρ̂i has to be
considered. For a given resistivity contrast ρt/ρ0, the apparent re-
sistivity ρ̂i is calculated by a numerical forward modelling.

3 C O M P A R I S O N O F
S E N S I T I V I T Y I M A G E S

The sensitivity images of four different configurations used in elec-
trical logging are investigated. Since the sensitivity depends on the
resistivity ratio ρt/ρ0, four different values 0.1, 1.0, 10 and 100 are
chosen to demonstrate their influence. The ratio 1.0 corresponds to
the homogeneous space. The procedure described in Section 2.3 and
Appendix A is used to calculate the sensitivity distribution for the
other resistivity ratios. A grid size of 200 elements in the vertical
direction and 100 elements in the radial direction is used (see Fig. 1).
In the sensitivity images, the r - and z-coordinates are normalized to
the borehole radius r0. All elements of the grid are squares of side-
length 0.1r0. Since the sensitivity distribution is only shown for the
undisturbed formation, the borehole is presented as a grey bar on the
left-hand side of each figure. The electrodes of each configuration
are indicated by small triangles and the letters A, B, Mn, Sn, . . . ,

on the left-hand margin.
Since the calculated sensitivity values vary over several decades

they are transformed on a logarithmic scale using the formula s ′
i, j =

sgn(si, j ) log(|si, j |×106) and setting all sensitivities with an absolute
value smaller than 10−6 to zero. This transformation preserves the
sign of si, j in s ′

i, j . For a positive value of s ′
i, j , a resistivity increase

in an element � j results in an increase of apparent resistivity ρ̂i .
According to the definition in eq. (2), s ′

i, j will be negative if an
increase of resistivity in the element � j results in a decrease of the
apparent resistivity ρ̂i .

3.1 Normal or potential configuration

The normal configuration consists of two electrodes in the borehole.
The potential field generated by the current injection in electrode A
is recorded by a single potential electrode M . The reference level

for displaying the measured apparent resistivity in depth is defined
as being half way between A and M . In the example in Fig. 3(a), the
distance AM is equal to 10r0.

An obvious feature is the symmetry of the sensitivity pattern
regarding the reference level. This property results from the reci-
procity, which means that interchanging electrodes A and M gives
the same reading. In the homogeneous space (ρt/ρ0 = 1), the sen-
sitivity between the two electrodes becomes negative. The negative
zone extends up to five borehole radii into the rock formation. A high
sensitivity gradient is observed near the positions of the electrodes.

The image for the ratio 0.1 is similar. The negative zone is slightly
expanded and the contrast becomes sharper. In the case of a ratio
of 10, the situation changes significantly. The negative zone dis-
appears completely and the absolute values of sensitivity become
much smaller. The main feature for the ratio of 100 is a sensitivity
decrease in a radial direction. A depth structure in the sensitivity
image is hardly visible with the exception of two slight maxima in
the vicinity of the electrode positions.

If the resistivity ratio ρt/ρ0 increases a larger part of the injected
current will flow in the mud along the borehole and does not enter
in the formation. Consequently, the extension of areas of larger
sensitivity (e.g. s ′ > 1.25) into the formation decreases.

3.2 Lateral or gradient configuration

The lateral configuration consists of three electrodes in the borehole.
The electrodes M and N measure the potential difference of the
field caused by current injection at electrode A. The reference level
for the measured apparent resistivity is defined at the depth of the
centre between M and N . If the distance between M and N becomes
sufficiently small, the potential difference divided by the distance
approximates the vertical gradient of the potential field, which is
related to the mean value of the vertical component of the electric
field. Fig. 3(b) shows the sensitivity image for AM = 8r0 and M N =
2r0.

In the homogeneous case (ρt/ρ0 = 1), three different parts can
be distinguished. The main feature is a zone of negative sensitivity
between the injection electrode A and the first potential electrode
M . This part extends up to three borehole radii into the formation.
A second area of negative sensitivity is located above the potential
electrode N , it extends radially over the whole volume. All other
parts show positive sensitivity with maximal values between the
two potential electrodes and below the injection electrode. A distinct
gradient of sensitivity is found near the positions of the electrodes.

For a contrast of 0.1 the pattern is very similar. The sensitivity
gradients are steeper and the negative parts become slightly greater.
The situation changes for a ratio of 10. The negative part between
A and M disappears. Only a slight vertical change of positive sen-
sitivity is observed at the potential electrode positions. The zone of
negative sensitivity above N remains nearly unchanged. However,
the line of zero sensitivity is slightly shifted from the electrode po-
sition N down towards the position of electrode M . For a contrast
of 100, zero sensitivity is moved further downwards and the vertical
sensitivity contrast becomes lower again.

3.3 Second-difference configuration

The second difference approximates the second vertical derivative
of the potential field. This quantity, which can be calculated from
two gradient readings, is an appropriate indicator of current flow in
the radial direction. The reference level corresponds to the depth
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Figure 3. Distribution of sensitivity parameter s′ for four resistivity ratios ρt/ρ0. (a) Normal configuration, AM = 10r0. (b) Lateral configuration,
AM = 8r0, M N = 2r0. (c) Second-difference configuration, AM1 = 6r0; M1 M2 = M2 M3 = 2r0. (d) Laterolog-7 configuration, electrodes spaced at 2r0.
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of electrode M2. The geometry of the configuration in Fig. 3(c)
represents AM1 = 6r0 and M1 M2 = M2 M3 = 2r0.

The lower part (below M) of the sensitivity pattern for the ho-
mogeneous case (ρt/ρ0 = 1) looks similar to that for the gradient
configuration. However, above the second potential electrode M2,
there is another change of sign at the position of the third poten-
tial electrode M3. The zone of negative sensitivity is funnel-shaped
with its centre being between electrodes M2 and M3. This configura-
tion shows the most distinct contrast between positive and negative
sensitivity.

The trends for the other ratios ρt/ρ0 are similar to that for ρt/ρ0 =
1. The zone of negative sensitivity between the injection electrode
and the first potential electrode disappears with increasing contrast.
The lines of zero sensitivity are shifted. Compared with the other
configurations, the sensitivity contrast becomes only slightly smaller
with increasing resistivity contrast.

3.4 Laterolog-7

Fig. 3(d) shows the sensitivity images for a focused resistivity tool
consisting of seven electrodes that are equally spaced. The electrode
spacing is equal to 2r0. The two outer injection electrodes A′

1 and
A1, which are called guard electrodes, have the same polarity as the
central injection electrode A0. The focusing or bucking currents are
chosen in such a way that the two potential differences between the
pairs of monitoring electrodes S1, S2 and S′

1, S′
2 become zero. This

condition is necessary to impede a flow of current parallel to the
tool through the borehole mud. Consequently, the current will be
focused into the formation. The reference level corresponds to the
depth of the central electrode A0. The symmetry of the array results
in a symmetric sensitivity distribution in z about the reference level.
The bucking currents which depend on the resistivity contrast are
determined by a forward modelling algorithm.

In the homogeneous space (ρt/ρ0 = 1), the sensitivity image is
characterized by three different areas. There are two parts with neg-
ative sensitivity between the guard electrodes A′

1 or A1 and their two
neighbouring potential electrodes. These negative parts extend only
up to one borehole radius into the formation. An area of increased
sensitivity is centred around the current electrode A0.

In the case of a resistivity contrast of 0.1, two additional zones
of negative sensitivity appear, both between electrode A0 and the
neighbouring electrodes S′

1 and S1, respectively. For a contrast of
10, the negative zones disappear and the sensitivity is increased
slightly at the positions of the guard electrodes. An increase of
sensitivity around the central injection electrode A0 is also observed.
In the case of a contrast of 100, the variation in the vertical direction
becomes smaller. Only around the central region of the configuration
can a slightly increased sensitivity be seen, but the absolute value
decreases.

4 VE R T I C A L R E S O L U T I O N

The sensitivity images can be used to assess the vertical resolution
of the different electrode configurations for detecting various geo-
logical structures. First, a thin layer is assumed. The second example
examines a layer thickness, which corresponds to 6r0. The results are
compared with a numerical modelling by a finite-difference code.

4.1 Sensitivity of a thin layer

A thin layer with a thickness of �z = 0.1r0 is chosen. The sensi-
tivity values shown in the preceding section are summed up in the
radial direction starting at the borehole wall up to a distance of 15

borehole radii from the axis. The resulting values correspond to the
sensitivity of a thin layer. Since the thin-layer sensitivity also varies
with the resistivity ratio ρt/ρ0 the following figures show the curves
for the configurations investigated and the four different resistivity
ratios. The curves reflect qualitatively the logging response of a thin
resistive layer. It should be noted that the sensitivity scale varies for
the different configurations.

The curves of thin-layer sensitivity for a normal configuration are
presented in Fig. 4(a). For low resistivity contrast (ρt/ρ0 < 5), the
resulting sensitivity becomes negative between electrodes A and M .
This behaviour causes the well-known resistivity inversion effect:
thin resistive layers are characterized by a crater structure (Pirson
1963) consisting of a central resistivity minimum with two adjacent
maxima. A thin conductive layer is displayed as a local maximum
between two minima. Since the layer sensitivity remains positive for
larger contrasts the inversion effect does not occur in this case.

The curves of a gradient array shown in Fig. 4(b) are charac-
terized by a maximum of thin-layer sensitivity between potential
electrodes M and N . With increasing resistivity contrast, this maxi-
mum approaches electrode M and the change from positive to nega-
tive sensitivity occurs between the potential electrodes. The second
maximum, which is called the shadow peak (Pirson 1963), near the
current electrode A is flattened. On the low contrast curves the sen-
sitivity approaches zero in the section between electrodes A and M ,
which is called the death zone (Pirson 1963).

In the case of the second-difference configuration as shown in
Fig. 4(c), the amplitudes of the thin-layer sensitivity curves decrease
with increasing resistivity contrast, too. The portion of current that
enters the formation is reduced with increasing formation resistivity.
The change from maximum to minimum sensitivity occurs between
potential electrodes M1 and M3. For the highest contrast, only a min-
imum is preserved. The local maximum near the current electrode
disappears.

The thin-layer sensitivity of the Laterolog-7 (Fig. 4d) is symmet-
ric and remains positive for all resistivity contrasts considered. No
inversion effect is observed. The sensitivity maximum corresponds
to the centre of the array.

4.2 Power of resolution

The thin-layer sensitivity can also be used to assess the resolution
power of different configurations. Assuming a hypothetical logging
tool with an ideal resolution, a thin layer should be reflected by a
sharp pulse in the logging curve. The amplitude should correspond
to the true formation resistivity and the width of the pulse should be
equal to the layer thickness. As the thin-layer sensitivity curves in
Fig. 4 show, the response of real electrical logging curves looks more
complicated. In order to assess the resolution power for all inves-
tigated configurations and resistivity ratios ρt/ρ0, three quantities
are compiled in Table 1: the maximum thin-layer sensitivity smax,
the half-width z1/2 and a resolution parameter q. The half-width
corresponds to half the distance between the depth values with half-
maximum amplitude. A vertical bar indicates the distance 2z1/2 in
Fig. 4. In the case of the second-difference configuration, the thin-
layer sensitivity values are multiplied by −1 to obtain a significant
maximum for all contrasts. The higher the maximum amplitude and
the smaller the half-width the sharper the signal in the electrical
logging curve and the better the resolution power. Therefore, the
parameter

q = smax

z1/2
(14)

has been defined to assess the resolution power.
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Figure 4. Thin-layer (�z = 0.1r0) sensitivity for four resistivity ratios ρt/ρ0. The vertical bar denotes the double half-width z1/2. (a) Normal configura-
tion, AM = 10r0. (b) Lateral configuration, AM = 8r0, M N = 2r0. (c) Second-difference configuration, AM1 = 6r0; M1 M2 = M2 M3 = 2r0. (d) Laterolog-7
configuration, electrodes spaced at 2r0.
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Table 1. Maximum sensitivity, half-width and resolution parameter of a
thin layer (�z = 0.1r0) for all investigated configurations and resistivity
ratios ρt/ρ0.

Configuration ρt/ρ0 Layer sensitivity Half-width Resolution
maximum z1/2 in r0 parameter
smax × 103 q × 103 in 1/r0

Normal 0.1 4.950 8.5 0.582
1 4.929 8.7 0.567

10 4.466 8.55 0.522
100 2.500 10.1 0.248

Lateral 0.1 35.295 1.04 33.938
1 28.480 1.1 25.891

10 13.912 5.08 2.738
100 4.592 5.8 0.792

Second 0.1 64.614 0.88 73.425
difference 1 48.764 0.9 54.182

10 31.021 1.02 30.412
100 35.699 1.13 31.592

Laterolog-7 0.1 7.166 2.9 2.471
1 9.048 3.0 3.016

10 6.238 5.2 1.200
100 2.510 8.78 0.286

From Table 1 it can be concluded that the second-difference con-
figuration yields the best resolution in the case of thin layers. The
changes of the resolution parameter q with varying resistivity ratio
ρt/ρ0 is only moderate. Even for a high resistivity contrast, a thin
layer can be resolved. This property of second differences is used
to detect layer boundaries (Hakvoort et al. 1998).

As is known from conventional resistivity logging, the lateral tool
possesses a better ability to resolve thin layers compared with a nor-
mal configuration. However, the comparison in Table 1 shows that
the resolution parameter q of the lateral array decreases significantly
with increasing resistivity contrast ρt/ρ0.

The focused resistivity arrays yield a good resolution if the layer
thickness reaches at least the width of the focused current beam. For
the Laterolog-7 tool used in this investigation, the beamwidth of 6r0

exceeds the true thin-layer thickness by a factor of 60. Therefore,
the focusing results in only a slight improvement of the resolu-
tion parameter q compared with that of the normal configuration
and the advantage of focusing vanishes at higher ratios ρt/ρ0. Only
taking into account the foregoing investigation, the thin-layer reso-
lution of a Laterolog-7 seems to be inferior to that of the lateral or
second-difference configuration. This conclusion may be modified
considering the results of the next section.

4.3 Comparison with numerical forward modelling

For a further investigation, a layer thickness of 6r0 is used. This layer
thickness corresponds to the beamwidth of the Laterolog-7 selected
in this study.

According to eq. (2) the change in apparent resistivity �ρ̂i mea-
sured by the configuration i can be approximated from a given
change in the resistivity of a certain region L in the model by the
relation

�ρ̂i ≈
∑
� j ∈L

si, j�ρ j , (15)

where the summation is done over all volume elements � j that
belong to this region L. If �ρ j is given as the relative change of
resistivity of an embedded layer compared with the adjacent forma-

tion the variation of the resulting apparent resistivity �ρ̂i is also a
relative quantity. Models with a relative difference in layer resistiv-
ity of +10, +50, +100 per cent (resistive layers), or −9, −33 and
−50 per cent (conductive layers) are chosen.

The relative changes of apparent resistivity are calculated by ap-
plying the sensitivity distribution according to eq. (15). Since the
resistivity is constant within a layer, first, the summation of sensi-
tivity is performed over all elements of the layer. Then, the resulting
layer sensitivity is multiplied by the relative change �ρL.

The linearization expressed by eq. (15) is only valid for small
changes in the resistivity model. Several authors use low-contrast
approximations for forward modelling and inversion of resistivity
data (Beard et al. 1996; Brunner et al. 1999). The aim of this inves-
tigation is to show the limits of the low-contrast approximation for
modelling of resistivity logging.

A logging curve can be designed by plotting the calculated
changes of apparent resistivity �ρ̂i as a function of the shift be-
tween the centre of configuration and the centre of the layer. The
curves are compared with the results of a numerical forward mod-
elling by a finite-difference code (Weller 1986) that considers the
same layered models.

Though the investigation has been performed with the same set of
four different resistivity ratios between mud and formation, only a
single resistivity ratio (ρt/ρ0 = 10) is selected for the graphical pre-
sentation. Fig. 5(a) shows the results for the normal configuration
with electrodes as depicted on the left-hand margin. The solid lines
correspond to the changes computed with the sensitivity approxi-
mation of eq. (15), the dashed lines to the results of the forward
modelling. The shape of the curves shows a crater-like structure
between electrodes A and M which is in agreement with the be-
haviour of a thin layer. In this case, the layer thickness (6r0) is smaller
than the electrode distance AM = 10r0. The sensitivity curves for
a relative difference in layer resistivity of +10 and −9 per cent
are close to those of the forward modelling. Also for +50 and
−33 per cent, the agreement is fairly good. As expected from a
linear approximation, the higher the contrast between the resistivity
of the layer and that of the homogeneous formation the greater the
differences between the curves. The method using the sensitivity
distribution overestimates the true changes in apparent resistivity
for resistive layers with a relative difference in layer resistivity of
>10 per cent. Yet, the absolute changes are underestimated for con-
ductive layers.

The lateral (Fig. 5b) and the second-difference configura-
tion (Fig. 5c) show similar features as found for the normal
configuration:

(1) a small difference in layer resistivity results in nearly identical
curves for the sensitivity approximation and forward modelling;

(2) a greater relative difference causes stronger deviations;
(3) for resistive layers, the changes are overestimated by the sen-

sitivity approximation;
(4) for conductive layers, the relative changes are underesti-

mated.

The different scales of the �ρ̂ axis should be noted. An increase of
the maximum is observed proceeding from the potential, over lateral
to second-difference configuration curves. An interesting property
is observed for the second-difference configuration. The distance
between the maxima and the minima of the curves corresponds
approximately to the layer thickness of 6r0. This property can be
used to derive the location of layer boundaries.

The situation for the Laterolog-7 tool seems to be more com-
plicated. In Fig. 5(d), the curves resulting from the sensitivity
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Figure 5. Comparison between the sensitivity approximation and the numerical forward modelling of a layer with a thickness of 6r0 and six different relative
resistivity contrasts and a resistivity ratio ρt/ρ0 = 10. (a) Normal configuration, AM = 10r0. (b) Lateral configuration, AM = 8r0, M N = 2r0. (c) Second-
difference configuration, AM1 = 6r0; M1 M2 = M2 M3 = 2r0. (d) Laterolog-7 configuration with varying bucking currents in forward modelling, electrodes
spaced at 2r0. (e) Laterolog-7 configuration with fixed bucking currents in forward modelling, electrodes spaced at 2r0.
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approximation are flat compared with the curves calculated by
numerical forward modelling that show more accentuated maxima.
Even for small changes, the differences are significant. The maxima
of apparent resistivity are severely underestimated by the sensitivity
approximation. The differences are caused by the current ratios. In
the forward modelling, the bucking currents are adapted to the true
resistivity structure, ensuring that the potential differences between
the two pairs of monitoring electrodes are zero. Since in our fo-
cused tool no pairs of electrodes are shorted, two different bucking
currents are calculated. A special study has shown that the use of a
constant geometrical factor (Jackson 1981) yields better results for
this version of a Laterolog-7 compared with the variable geometric
factor as proposed by Roy & Dutta (1993).

The sensitivity approximation does not take into account varia-
tions of the bucking currents. It assumes a fixed current ratio that is
predetermined for a homogeneous formation. As shown in Fig. 5(e),
the use of constant bucking currents in the forward modelling cal-
culation of focused curves results in a static response that becomes
comparable with the curves resulting from the sensitivity approxi-
mation.

As can be seen from a comparison between Figs 5(d) and (e), the
real focusing effect is only achieved by considering the appropriate
choice of the bucking currents. Compared with the static response
of a focused tool in Fig. 5(e), the dynamic response of the forward
modelling with varying bucking currents (Fig. 5d) shows the real
power of focused tools.

The maximum and mean differences between the logging curves
resulting from forward modelling and the linearization according
to eq. (15) are shown in Table 2. Since a reliable modelling of the
Laterolog-7 response is not possible using the linear approximation,
this configuration will not be discussed. The other data confirm that
the linearization can be applied as a low-contrast approximation. A
resistivity contrast of 1.1 causes deviations of less than 1 per cent
between the finite-difference model and the linear approximation.
The deviation increases by up to 25 per cent for a resistivity contrast
of 2. The approximation works best for the normal configuration and
it becomes worse for lateral and second-difference configuration.
Since the contrast of layer resistivities in most wells is greater than
2, the application of the low-contrast approximation should remain
the exception.

The results of all investigated resistivity ratios between mud and
formation are compiled in Table 3. The maximum of the resistiv-
ity change �ρ̂max and the half-width z1/2 are derived from forward
modelling for an embedded layer with a relative resistivity differ-
ence of +100 per cent with respect to the adjacent formation. The
resolution parameter q is determined as the ratio between �ρ̂max and
z1/2. Compared with the very thin layer in Table 1 with a thickness
of 0.1r0, the resolution parameter has increased strongly for a layer
with a thickness of 6r0. However, the factor of 60 corresponding to
the thickness ratio is only exceeded by the Laterolog-7. The poor res-
olution of the normal configuration for a layer thickness smaller than
the electrode spacing is confirmed by this investigation. A better res-
olution is achieved by a lateral or second-difference configuration.
However, the resolution deteriorates with increasing resistivity ratio
ρt/ρ0 because part of the current flow is restricted to the borehole.
Since the focused tool forces the current to enter into the formation
Laterolog-7 is not affected by this resistivity ratio.

5 R E S U L T S A N D C O N C L U S I O N S

The sensitivity distribution of different electrode configurations has
proved to be an appropriate tool for analysing the resolution capabil-

Table 2. Maximum and mean differences between the resistivity
logging curves calculated by finite-difference forward modelling
and using the linear approximation for an embedded layer with a
thickness of 6r0 and a resistivity ratio ρt/ρ0 = 10.

Configuration Relative resistivity Maximum Mean
difference difference difference
in per cent in per cent in per cent

Normal −50 8.2 7.6
−33 3.7 3.4
−9 0.5 0.5

+10 0.3 0.3
+50 0.9 0.6

+100 5.3 4.2

Lateral −50 9.0 6.2
−33 3.7 2.6
−9 0.3 0.2

+10 0.1 0.1
+50 4.5 2.8

+100 15.7 9.8

Second −50 18.7 7.0
difference −33 7.1 2.7

−9 0.5 0.2
+10 0.3 0.2
+50 7.7 3.9

+100 25.0 12.8

Dynamic −50 28.9 11.1
Laterolog-7 −33 18.9 6.8

−9 4.9 1.7
+10 5.2 1.7
+50 24.5 7.9

+100 45.2 14.6

Static −50 7.7 5.5
Laterolog-7 −33 3.3 2.4

−9 0.4 0.3
+10 0.1 0.1
+50 2.6 1.3

+100 9.9 5.6

ities of electrical logging tools. Since the sensitivity pattern depends
on the resistivity model in the borehole environment, the sensitivity
for a homogeneous media can only give a rough approximation. The
sensitivity distribution considering the resistivity contrast between
a mud-filled borehole and formation allows a more reliable assess-
ment of the resolution power of a certain configuration for different
mud or formation resistivities.

The sensitivity can also be used for an approximate forward
modelling—the smaller the contrast the better the agreement with
the numerical forward modelling. If the resistivity contrast reaches a
factor of 2 the resulting response only qualitatively reflects the main
features of the logs. The accuracy of this low-contrast approximation
is no longer sufficient for a quantitative interpretation.

In the case of focused tools the sensitivity pattern does not con-
sider the effect of the varying bucking currents. However, the focus-
ing effect is only achieved by an appropriate choice of the bucking
currents. A constant bucking current results in a static response that
does not reach the resolving power of a real focused tool.

The numerical study has confirmed the advantages of Laterolog-7
in comparison with normal configurations as pointed out by Roy &
Dutta (1993):

(1) the apparent resistivity anomaly becomes sharper;
(2) the apparent resistivity curve shows a monotonic rise or fall

across a contact;
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Table 3. Results of numerical forward modelling: maximum resistivity
change, half-width and resolution parameter of a layer with a thickness of
6r0 and a relative resistivity contrast of +100 per cent for all investigated
configurations and resistivity ratios ρt/ρ0.

Configuration ρt/ρ0 Normalized Half-width Resolution
resistivity change z1/2 in r0 parameter

maximum q × 103 in 1/r0

�ρ̂max × 103

Normal 0.1 157.17 11.75 13.37
1 161.79 11.75 13.76

10 156.97 11 14.27
100 93.73 12 7.81

Lateral 0.1 605.44 2.75 220.16
1 574.54 3 191.51

10 430.50 5.5 78.27
100 148.95 6 24.83

Second 0.1 791.85 1.15 688.56
difference 1 601.50 1.3 462.69

10 384.56 2 192.28
100 452.44 2.75 164.52

Static 0.1 291.45 3.75 77.72
Laterolog-7 1 368.72 4.25 86.75

10 239.65 6.0 39.94
100 93.51 10.0 9.35

Dynamic 0.1 476.22 2.7 176.38
Laterolog-7 1 846.63 2.4 352.76

10 790.54 2.5 316.22
100 755.84 2.5 302.34

(3) the bucking current logs can be used for a sharper delineation
of bed boundaries;

(4) the curves are suitable for delineating thin layers.

The last item is valid if the layer thickness reaches at least the order
of the beamwidth. The tool design should consider this property in
order to obtain the required resolution.

The design of sophisticated multi-electrode resistivity tools in-
volves investigation of the resolution power and the ability to detect
several geological or borehole features. The choice of electrode
positions and the manner combining them for data acquisition in-
fluences the resolution of the tool. The inversion of logging data
can only extract information that has been gathered by the sets of
different configurations.

An accurate and fast algorithm for determining the sensitivity
distribution is the basis of any efficient inversion programme. Our
aim in more recent work has been the further improvement of the
inversion algorithm for the data of a multi-electrode resistivity tool.
The tool design and the results of the inversion will be reported in
a forthcoming paper.
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A P P E N D I X A : P O T E N T I A L I N T H E
C A S E O F A C Y L I N D R I C A L
C O A X I A L B O U N D A R Y

Dakhnov (1962) gave a description for solving the forward problem
for the case of cylindrical coaxial boundaries. Forward modelling
requires the knowledge of the potential at the borehole axis V (0, z).
Although our aim is different, we use a similar approach. For conve-
nience, all coordinates are expressed in terms of the borehole radius
r0, i.e. r̂ = r/r0 and ẑ = z/r0. The potential function

V (r̂ , ẑ) =
{

V0(r̂ , ẑ) r̂ < 1

Vt(r̂ , ẑ) r̂ ≥ 1

must satisfy the following requirements.

(1) Outside the current injection point that is placed at the origin,
the Laplace equation

∇2V (r̂ , ẑ) = 0 (A1)

is satisfied. Since axial symmetry is assumed, the Laplace equation
in cylindrical coordinates reduces to

∂2V (r̂ , ẑ)

∂r 2
+ 1

r

∂V (r̂ , ẑ)

∂r
+ ∂2V (r̂ , ẑ)

∂z2
= 0. (A2)

(2) At large distances from the injection point the potential
vanishes:

lim
R→∞

V (r̂ , ẑ) = 0 (A3)

with R = √
r̂ 2 + ẑ2.
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(3) In the vicinity of the current source, the potential is approxi-
mated by the potential of the homogeneous space with the resistivity
ρ0,

lim
R→0

V0(r̂ , ẑ) = ρ0 I

4π Rr0
. (A4)

(4) The potential is continuous at r̂ = 1 (first boundary
condition):

V0(r̂ , ẑ)|r̂=1 = Vt(r̂ , ẑ)|r̂=1 . (A5)

(5) The current density is continuous at r̂ = 1 (second boundary
condition):

1

ρ0

∂V0(r̂ , ẑ)

∂r

∣∣∣∣
r̂=1

= 1

ρt

∂Vt(r̂ , ẑ)

∂r

∣∣∣∣
r̂=1

. (A6)

(6) Since the current is injected at z = 0 the potential is symmetric
in z about the origin

V (r̂ , ẑ) = V (r̂ , −ẑ), (A7)

a separation approach

V (r̂ , ẑ) = f (r̂ ) · g(ẑ) (A8)

is used to solve eq. (A2). It results in two separate differential
equations:

g′′(ẑ)

g(ẑ)
= −m2 (A9)

and

f ′′(r̂ ) + 1

r̂
f ′(r̂ ) − m2 f (r̂ ) = 0. (A10)

The particular solution of eq. (A9) are the sine and cosine functions.
The sine function can be excluded because of the symmetry con-
dition (A7). The solution of the Bessel differential equation (A10)
are the Bessel functions of first and second kind of zero order. The
complete solution must have the form:

V (r̂ , ẑ) =
∫ ∞

0

[A(m)I0(mr̂ ) + B(m)K0(mr̂ )] cos (mẑ) dm. (A11)

Considering condition (A4) and the Weber–Lipschitz formula, the
solution in the borehole results in

V0(r̂ , ẑ) = ρ0 I

2π2r0

∫ ∞

0

[K0(mr̂ ) + C0(m)I0(mr̂ )] cos (mẑ) dm.

(A12)

In the undisturbed formation, the potential Vt cannot contain the
term I0(mr̂ ) which tends to become infinite for large values of the

argument r̂ . Using an analogous preceding factor, the solution in the
undisturbed formation may be given in the form:

Vt(r̂ , ẑ) = ρt I

2π2r0

∫ ∞

0

Dt(m)K0(mr̂ ) cos (mẑ) dm. (A13)

The two unknown functions C0(m) and Dt(m) are determined by
applying the boundary conditions (A5) and (A6):

ρ0[C0(m)I0(m) + K0(m)] = ρt Dt(m)K0(m), (A14)

C0(m)I1(m) − K1(m) = −Dt(m)K1(m) (A15)

with I1(x) = d I0(x)/dx and K1(x) = −d K0(x)/dx are the Bessel
functions of the first order. Using these identities, the functions
are:

C0(m) = (ρt/ρ0 − 1) K0(m)K1(m)

I0(m)K1(m) − (ρt/ρ0)I1(m)K0(m)
, (A16)

Dt(m) = I1(m)K0(m) + I0(m)K1(m)

(ρt/ρ0)I1(m)K0(m) + I0(m)K1(m)
. (A17)

The spatial derivatives of the potential are:

∂Vt(r̂ , ẑ)

∂r
= −ρt I

2π2r 2
0

∫ ∞

0

Dt(m)K1(mr̂ )m cos (mẑ) dm, (A18)

∂Vt(r̂ , ẑ)

∂z
= −ρt I

2π2r 2
0

∫ ∞

0

Dt(m)K0(mr̂ )m sin (mẑ) dm. (A19)

Using the periodic behaviour of the sine and cosine functions, the
substitution m = n + 2kπ/ẑ yields the formulae to determine nu-
merically the value of the derivatives:

∂Vt(r̂ , ẑ)

∂r
= −ρt I

2π2r 2
0

∫ 2π/ẑ

0

cos (nẑ)
∞∑

k=0

[Dt(n + 2kπ/ẑ)

× (n + 2kπ/ẑ)K1(nr̂ + 2kπ r̂/ẑ)] dn, (A20)

∂Vt(r̂ , ẑ)

∂z
= −ρt I

2π2r 2
0

∫ 2π/ẑ

0

sin (nẑ)
∞∑

k=0

[Dt(n + 2kπ/ẑ)

× (n + 2kπ/ẑ)K0(nr̂ + 2kπ r̂/ẑ)] dn. (A21)

The interval is divided in four sections [0, π/2ẑ], [π/2ẑ, π/ẑ],
[π/ẑ, 3π/2ẑ], [3π/2ẑ, 2π/ẑ], and these parts are numerically in-
tegrated by the Gaussian quadrature using abscissas and weight
factors given by Abramowitz & Stegun (1965). A finer subdivi-
sion becomes necessary if the ratio r̂/ẑ becomes too large. It can be
shown that for i > 0

lim
m→∞

[Dt(m)Ki (mr̂ )m] = 0, (A22)

so that only a finite summation has to be performed.
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