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Phase transitions and heat conduction in post-glacial rebound
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S U M M A R Y
We have developed a method for including phase boundary conditions into post-glacial rebound
models that allows for conduction of latent heat away from the boundary. This method returns
the chemical boundary results if latent heat conducts away from the phase boundary too slowly
to allow the transition to proceed, as is commonly argued. This is not necessarily the case,
however. For example, the secular change of the geoid and the vertical uplift rates for phase
boundaries with latent heat conduction can differ from the chemical boundary results by up to 10
and 15 per cent, respectively. When modelling the phase transition, we consider two scenarios:
the latent heat is released either at a narrow boundary that separates the two phases or over a thick
mixed region of the two phases. In the case where the phase transition occurs over a thick enough
region (5–10 km), the final results are close to the results obtained by considering a phase
boundary that ignores the release of latent heat completely. This thick boundary formulation
also suggest that the phase boundaries could respond nearly instantaneously, changing both the
elastic load and body Love numbers. However, we have not considered kinetics, the energetics
of the mechanisms of the phase transitions, in this formulation. This work suggests a greater
knowledge of the kinetics near equilibrium phase transitions is required. A naive calculation
indicates that the kinetics will not be a significant factor for post-glacial rebound but will be a
limiting factor for earth tides.
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1 I N T R O D U C T I O N

The geodynamic behaviour of the 670 km and, to a lesser extent, the
400 km seismic discontinuities is an open question. The pressures
in laboratory experiments at which phase transitions have been ob-
served in the (Mg, Fe)2SiO4 system correspond to the pressures in
the Earth at which discontinuities in seismic velocities occur (e.g.
Jackson & Rigden 1998). Thus, the 400 and 670 km boundaries are
believed to be caused by phase transitions from olivine to wadsleyite
(β-spinel) and ringwoodite (γ -spinel) to perovskite plus magne-
siowüstite, respectively. In this system, the entire mantle should be
able to mix. However, some believe that the upper and lower mantles
are separate reservoirs and little mixing occurs across the boundary
(Anderson 1989; Gasparik 1993). These two endpoint views have
different implications for the long-term dynamics of the Earth. Con-
vection models must consider these phase transitions explicitly in
order to determine the style of mantle convection (e.g. Christensen
& Yuen 1985). Nevertheless, for shorter timescale geophysical pro-
cesses, such as post-glacial rebound (PGR), the possible movement
of material between the reservoirs is generally not considered.
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The introduction of phase boundaries into PGR models has been
studied previously. The first consideration of this problem was by
Gjevik (1972), who investigated phase changes as the primary mech-
anism for motion at the surface. He solved the heat equation to de-
termine changes in density but ignored any other means of material
motion. In a similar calculation, O’Connell (1976) showed that the
change in density arising from the phase transitions could account
for at most about 10–20 per cent of the displacement observed at
the surface of the Earth. Thus, the phase transitions could not be the
main mechanism for PGR. O’Connell also demonstrated that the re-
sponse time caused by thermal conduction is 4.5 Myr for the olivine-
to-wadsleyite transition and therefore argued that the transitions
were unimportant for the loading problem on the timescale of PGR.
In response to this article, Christensen (1985) showed that if the
boundary is divariant, the phase change occurs over a range of pres-
sures owing to a binary mineral system, it could respond on much
shorter timescales. Similarly, Buffett (1993) found analytic solutions
that indicated a mixed phase region would respond more quickly
than a plane boundary separating the two phases. Christensen
(1985) also explored the possibility of convection removing the la-
tent heat of reaction away from the boundary if the phase change
was univariant. These early studies, however, ignored the mechan-
ical motion associated with the redistribution of mass caused by
isostasy and the resulting feedback into the thermal equations.
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More recently, Mitrovica & Peltier (1989) accounted for the phase
boundaries by eliminating the relaxation modes associated with
buoyancy forces at the internal density discontinuities. As will be
discussed further later, the buoyancy modes for the phase bound-
aries do ‘disappear’ for certain cases. However, this technique fails
to account for changes that occur in the other modes and to the
elastic Love numbers. Johnston et al. (1997) included the bound-
ary conditions for a phase transition where the latent heat is ig-
nored, equivalent to the BD2 boundary type described below, and
their results show that the phase boundaries modify predictions of
surface observations by 10–15 per cent. The same boundary con-
ditions have also been included into direct time-domain calcula-
tions of PGR by Hanyk et al. (1998) with similar results. Johnston
et al. (1997) also considered the removal of latent heat by convec-
tion as suggested by Christensen (1985). This was accomplished
by introducing into the boundary conditions a multiplicative fac-
tor determined by the thermal parameters and assumed convection
rates. Because the time constant for thermal diffusion is longer than
1 Myr, none of these studies considered the explicit conduction of
latent heat away from the boundary, believing that it would be neg-
ligible at the relatively short timescales of PGR. The implication is
that if conduction were the only means of removing the latent heat
of transformation away from a boundary, phase transitions would
probably not proceed. However, O’Connell (1976) did show that
some of the material would change phase when subjected to pres-
sure disturbances on timescales shorter than the thermal diffusion
time constant, and Christensen (1985) suggested that the divariant
nature of the boundary could help reduce the response time of the
phase transitions.

In this paper, we consider how the conduction of heat away from
the boundary will affect signals observed at the surface and dis-
placements of the internal boundaries, and we extend the discussion
of the behaviour of the buoyancy mode associated with the phase
boundary in the case of an equilibrium phase transition (again BD2
below). In the next section we describe the problem and define the
terms that we will use in the rest of the paper. Section 3 examines the
possible impact of the kinetic mechanisms on the results of this pa-
per. The theory of coupling heat conduction and mechanical motion
at a phase boundary is presented in Section 4. Section 5 describes
the rheological models and the thermodynamic assumptions. In Sec-
tion 6 we present the effects of latent heat conduction on the modes,
elastic load Love numbers, internal boundary displacements and
surface observations. The results are discussed in the final section.

2 D E S C R I P T I O N O F T H E P R O B L E M

The behaviour of a phase boundary in response to a surface load
is quite different from the behaviour of a chemical boundary, as

Figure 1. A chemical boundary and a phase boundary have different re-
sponses to a load applied at the surface. The density discontinuity, our def-
inition of a boundary, moves with the particles in the case of a chemical
boundary. For a phase boundary, however, the location of the phase equilib-
rium remains at nearly a constant pressure.

Figure 2. An illustration of the Clausius–Clapeyron slope for the phase
change occurring at 400 km depth. An increase in temperature causes the
phase transition to occur at high pressures.

illustrated in Fig. 1. When a glacier forms at the surface, the pres-
sure at depth increases and the material under the load is pushed
downwards. For a chemical boundary, the discontinuity in density—
which is how we define the boundary—moves with the material
and so moves downwards. However, for a phase boundary, the dis-
continuity wants to occur at some characteristic pressure, which
is determined by the temperature. Thus, because the pressure has
increased, the boundary must move upwards. Whichever way the
boundary moves, there is now an anomalous density contrast under
the load. Buoyancy forces act to smooth out the density contrast
through viscous flow. The resulting flow for a chemical boundary,
however, will be in the opposite direction to that for a phase bound-
ary because the boundary displacements in these two cases are in
opposite directions.

The displacement of a phase boundary is not quite this simple
because a phase boundary also responds to temperature changes,
and there can be temperature changes induced by the load. For ex-
ample, if the Earth responds adiabatically to the load, then if the
pressure increases, so does the temperature. So both P and T in-
crease under the load. Consider the 400 km boundary, where the
Clausius–Clapeyron slope (d P/dT )c is positive. Suppose the tem-
perature increases from T1 to T2 as a result of the application of the
load. The phase boundary, originally (i.e. when T = T1) at a depth
corresponding to P1, now wants to change phase at a depth corre-
sponding to P2 (Fig. 2). Because P2 > P1, the temperature change
causes the boundary to move downwards. This temperature effect
is smaller than the pressure effect. For example, suppose the load
causes the pressure at a depth of 400 km to increase by 4 × 106 Pa
(characteristic of the pressure change induced by the addition of the
Laurentian ice load). Using the parameter values described in Sec-
tion 5, we discover that the associated temperature increase would
be about 0.04 K. The change in pressure would cause the boundary
to move upwards by about 108 m. The change in temperature would
cause the boundary to move downwards by about 4 m. So the total
displacement would be about 104 m upward. Thus, the adiabatic
temperature change only perturbs the results by about 4 per cent in
the case of the 400 km boundary.

However, there are two complications. One involves the energy
available to change phase, and depends on the kinetics, or mecha-
nisms, of the phase change. We will discuss this in Section 3. The
other is that as the boundary moves, material changes phase and
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releases (or absorbs) latent heat, which raises (or lowers) the tem-
perature of the boundary and can inhibit the phase change. In the
example above, as we load the Earth, the phase boundary wants to
start moving upwards in response to the local increase in pressure,
but is counteracted slightly by the downward motion in response to
the increase in temperature. As the boundary starts to move, ma-
terial changes phase from the overlying olivine to the underlying
wadsleyite. This releases heat and raises the temperature substan-
tially over and above the temperature increase adiabatically related
to the change in pressure.

From Fig. 2, we know that a temperature increase causes the
boundary to want to change phase back at a higher pressure—and
so at a greater depth. The extent to which this inhibits the phase
change depends on the latent heat of reaction and on the efficiency
with which the material can conduct this heat away from the bound-
ary and thereby minimize its effect on the temperature. This effi-
ciency depends on the thermal conductivity and on the timescale:
heat is conducted away more efficiently at longer timescales, and
so these effects of latent heat tend to be smaller at longer periods.
At short periods, or smaller conductivities, the latent heat release
can effectively prevent material from changing phase. In this limit,
a phase boundary will move with the material and so will respond
as though it were a chemical boundary.

The inhibiting effects of latent heat release are reduced if the phase
boundary is not a sharp boundary but is spread out over a kilometre
or more. In this case, there is the same amount of total latent heat
released as in the thin-boundary case, but now it is spread throughout
the boundary region. This results in a smaller temperature increase
throughout the boundary region.

In this paper, we consider the phase boundary with several degrees
of simplification. In all cases, we assume that the phase boundary
remains in equilibrium. That is, if the pressure and temperature con-
ditions cross the line separating the different equilibrium regions,
defined by the Clausius–Clapeyron slope, the material will change
phase. While the kinetics of the transition may prevent the boundary
from remaining in equilibrium, we do not consider this possibility.
Given this simplification, there are still many ways to approximate
the effect of the latent heat release upon the phase transition. Be-
cause a simple one- or two-word description of the boundary types
might be misleading, we will refer to them with the abbreviations
BD1–BD4. How each of these is modelled mathematically will be
described in Section 4.

The boundary type that is most commonly used in PGR studies is
a chemical boundary. For a chemical boundary, the constituents on
either side of the boundary are different, and the material cannot mix.
Thus, a material particle on one side of the boundary will always
remain on its original side of the boundary. Therefore, the boundary
displacement can be described by the material displacement. We
call this boundary BD1.

For phase boundaries, however, material can cross the boundaries.
A particle that is initially on one side of the boundary might change
phase because of the pressure and temperature perturbation and thus
be on the other side of the boundary. This means that the material
displacements do not describe the displacement of the boundary.
The most simplistic way of incorporating a phase boundary into the
formalism is to assume that as soon as the externally induced pres-
sure and temperature perturbations are applied, the material changes
phase. This ignores any latent heat release or assumes that it can be
conducted away from the boundary infinitely quickly. We will call
this type of boundary BD2.

A more realistic way of accounting for the latent heat is to model
its conduction away from the boundary. This has the effect of forc-

Table 1. Summary of the boundary models abbreviated as BD1–BD4.

Boundary
abbreviation Brief description

BD1 A chemical boundary where the boundary moves with the
material

BD2 A phase boundary where the latent heat release is ignored
BD3 A phase boundary where the latent heat is released at an

infinitely thin boundary
BD4 A phase boundary where the latent heat is released over a

thick region

ing the boundary to react differently on different timescales. If the
boundary is forced quickly, the latent heat released does not have
time to conduct away from the boundary. Thus the phase transition
cannot proceed because the conditions are no longer favourable.
However, if the forcing is slower, then the latent heat can escape, and
the transition proceeds. The meaning of quickly and slowly above
have generally been defined in terms of a heat conduction diffusion
time (O’Connell 1976). This type of boundary will be represented
by BD3.

Finally, all of the above boundary types assume that the bound-
ary is infinitely thin and is at a well-defined position. Realistically,
the boundaries in the Earth occur over a finite thickness. There
are several reasons for this. First, when material flows through the
boundary, latent heat is released. This constant release causes the
adiabat to follow the Clausius–Clapeyron slope (Verhoogen 1965).
This effect is reduced, however, by the conduction of heat away from
the boundary (e.g. Jeanloz & Thompson 1983). Secondly, the min-
eral transitions are divariant and thus should occur over a range of
pressures (e.g. Jeanloz & Thompson 1983). Finally, kinetics will
play a role in the boundary thickness (e.g. Solomatov & Stevenson
1994). Kinetics will prevent the phase transition from proceeding
at its equilibrium position and will increase the radial extent over
which the two phases can exist. While we are not modelling the
processes that cause the finite thickness to occur, we can model the
effect of latent heat being released over a thick boundary instead of
an infinitely thin boundary. We will present results for boundaries
ranging from 1 to 10 km. The thick boundary improves the possibil-
ity that the material will change phase on shorter timescales because
less latent heat will be released at a particular position. This type of
boundary will be represented by BD4. The four boundary types are
summarized in Table 1.

3 K I N E T I C S

Throughout this paper we will assume that material will change
phase instantaneously as soon as the values of pressure and tem-
perature cross from one phase region to another. In reality, there
is a potential energy barrier that must be surmounted in order for
the phase transition to occur, and so there will be no phase change
unless the molecules have sufficient kinetic energy. Consequently,
the pressure and temperature may have to move well into the region
of the new phase before there is enough ambient energy to allow the
phase transition to proceed. These energy considerations are usually
loosely referred to as the kinetics of the phase transformation.

The importance of kinetics is well known for subducting slabs
(e.g. Däßler & Yuen 1996; Kirby et al. 1996; Devaux et al. 1997).
While equilibrium thermodynamics would cause the 400 km bound-
ary to be elevated in a cold descending slab, the kinetics cause the
olivine to exist metastably down to depths as great as 720 km (Kirby
et al. 1996). This metastability is the result of the slab descending
faster than the reaction rates allow the material to change phase. The
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reaction rates are particularly slow in this case because of the cold
temperature of the slab.

The kinetics of the olivine-to-wadsleyite phase transition have
been studied in some detail (for a recent summary see Kerschhofer
et al. 1998), but often in the context of large variations of tempera-
ture and pressure, which are useful in modelling subducting slabs.
The models of this transformation often assume two types of mech-
anisms. The first is nucleation where a new phase develops in the
middle of the original phase. The second mechanism is interface-
controlled growth of one phase at the expense of the other. Both of
these mechanisms have a region in pressure and temperature space
(which for our study can be transferred to real space using the hy-
drostatic pressure gradient and the adiabatic temperature gradient)
near the equilibrium position of the boundary where they are inhib-
ited from occurring because it is not energetically favourable for the
material to change phase. The distance from these equilibrium con-
ditions is larger for nucleation than for growth (Rubie 1993; Kirby
et al. 1996). When investigating subduction, one must consider both
of these mechanisms because the phase boundary in a subducting
slab is far from the equilibrium conditions. However, of these two
mechanisms, growth is more likely to dominate in our case because
we are investigating relatively small perturbations of the boundary
from its equilibrium position. One should note that a third mecha-
nism, diffusion, may dominate for these near-equilibrium processes
and probably governs the ringwoodite to perovskite plus magne-
siowüstite transition (Rubie 1993). In the discussion that follows,
though, we explore growth because the kinetic parameters for this
process are better known.

To obtain an estimate of the impact of kinetics, we compare the
growth rate with the velocity of the boundary caused by PGR. If
the velocity of the boundary is sufficiently greater than the growth
rate of the new phase, then one can ignore the phase transition
and assume that the density discontinuity behaves as a chemical
boundary. While temperature effects dominate the kinetic rates in
the case of cold subducting slabs, the energy difference between
the two phases dominates for PGR because the perturbations occur
from the equilibrium position of the boundary. A phase transition
would not proceed unless a geophysical process introduces an en-
ergy difference between the two phases. We assume that the energy
difference caused by PGR is equal to the change in pressure caused
by the boundary moving through the hydrostatic pressure gradient
times the transformational change in volume. Using this value along
with parameters for the olivine-to-wadsleyite transition from Rubie
& Ross (1994) in the growth rate equation (see Kirby et al. 1996,
eq. 1), we find that the estimated growth rate of the new phase is
two orders of magnitude larger than the velocity of the boundary.
Thus, if the growth were the appropriate mechanism for describing
the phase transformation under the conditions caused by PGR, then
kinetics would not be a significant factor.

As will be shown in Section 6.2, we are also interested in the
impact of kinetics on other geophysical processes, such as earth
tides. Using the same processes for an earth tide with a period of
1 day, we find the growth rate of the phase transition to be sev-
eral orders of magnitude smaller than the velocity of the boundary.
In this case kinetics would prohibit the phase change. However,
both of these results should be viewed with caution in that dif-
fusion may be the dominant kinetic process. Diffusion of atoms is
generally a slower process than that of rearrangement (growth or nu-
cleation). Transitions governed by this mechanism might be helped
by longer timescales because diffusion has an explicit dependence
upon time, whereas the proceeding argument depends only on the
perturbation from the equilibrium pressure. We believe that the re-

sults that follow, particularly for the elastic Love numbers, warrant
a more careful examination of the kinetic mechanisms governing
these small-amplitude motions.

4 T H E O R Y

The process of simultaneously solving the momentum equation, the
constitutive equation, and Poisson’s equation in the context of PGR
is well described in the literature (e.g. Wu & Peltier 1982). One
generally transforms the equations into the Laplace domain, with
transform variable s, and expands the equations in terms of spher-
ical harmonics. Certain values of s, associated with natural decay
times of the system, are called modal frequencies, and the corre-
sponding relaxation states are called modes. The most important
of these are the buoyancy modes, which are related to the gravita-
tional restoring force caused by the displacement of a density dis-
continuity. For the Earth model described in the next section, these
modes are denoted by M0, associated with the surface; L0, associ-
ated with the lithosphere–mantle interface; C0, associated with the
core–mantle interface; M1, associated with the 670 km boundary;
and M2, associated with the 400 km boundary. Surface observations
mostly reflect the excitation of M0, though L0 and C0 also contribute
strongly at low angular degrees (long wavelengths). The M1 and M2
modes contribute more at low degrees than at high degrees (though
their contributions to surface observations are relatively small in
any case).

In a given layer in the mantle, following Wu & Peltier (1982), the
differential equations can be written as

dy

dr
= Ay, (1)

where A is a matrix and y is the six-component vector (U, V,
Tr , Tθ , �, Q)T, consisting of the radially dependent coefficients
of the spherical harmonic decompositions of radial and horizontal
displacements (U and V), radial and horizontal stress components
(Tr , Tθ ), and Eulerian potential and modified gravitational accelera-
tion scalars (�, Q). A subscript l, indicating the degree, is assumed
on each of the variables. The load Love numbers (the radial, hl , hor-
izontal, 	l , and gravitational, kl , response of the Earth to a point load
in both time and space) can be related to U, V and �, respectively
(e.g. Wu & Peltier 1982). In the case of BD1 conditions, all of the
above variables are continuous across the boundary. However, that
will not be the case for a phase boundary.

Using the conservation of mass, one can derive the boundary con-
dition for a phase boundary, BD2–BD4. Fig. 3 illustrates a Gaussian
pillbox argument that the mass leaving the box minus the mass en-
tering is equal to the change of mass in the box. As the left- and
right-hand sides of the box become vanishingly small, flow through
those sides do not contribute to the change in mass. The only mass
that does contribute flows through the top and bottom of the box,
and this argument reduces to

ρ+ur+ − ρ−ur− = (ρ+ − ρ−)δr, (2)

where ur is the radial displacement of a particle at the boundary,
and δr , the radial phase boundary displacement, is given by

δr = δP − (d P/dT )cδT

ρg + (d P/dT )c(dTo/dr )
, (3)

where dTo/dr is the background temperature profile (Dehant &
Wahr 1991; Defraigne et al. 1996). The Eulerian perturbations in
temperature and pressure, δT and δP , can be related to the solution
scalars for stress and displacement. The way in which δT is related

C© 2002 RAS, GJI, 149, 422–439



426 M. E. Tamisiea and J. M. Wahr

Figure 3. A Gaussian pillbox (dashed box) near the boundary showing the
conservation of mass. The solid line represents the unperturbed boundary and
the dotted line is the perturbed boundary. The two arrows right of the pillbox
show the displacement, ur− , of a particle that was just below the boundary
before the perturbation, and the displacement of the boundary itself, δr . The
density, ρ− , times the difference between these two displacements gives the
mass of material that changes phase.

to these solutions depends on the boundary type (BD2–BD4). Note
that if the boundary moves with the particles (the BD1 case), then
δr = ur and eq. (2) reduces to ur+ = ur−, as expected for a chemical
boundary.

A general reference for the following thermodynamic relation-
ships is Anderson (1989). From the equation of state δT can be
related to δρ and δP by

δρ

ρ
= −αδT + δP

kT
, (4)

where α is the coefficient of thermal expansion and kT is the isother-
mal bulk modulus. If one assumes that the relationship between δT
and δρ is adiabatic, then

δρ

ρ
= 1

γ T
δT, (5)

where γ is the Grüneisen parameter, and δT can be expressed as

δT = αT

ρcP
δP, (6)

where cP is the heat capacity at constant pressure. It is interesting
to note that if dTo/dr is also assumed to be adiabatic, i.e.

dTo

dr
= −ρg

αT

ρcP
, (7)

then eqs (3) and (6) reduce to

δr = δP

ρg
. (8)

Thus, in this case the response of the boundary is effectively de-
coupled from the background temperature gradient and is indepen-
dent of the temperature perturbation. The boundary simply moves
through the background pressure field to exactly offset any changes
caused by the externally applied pressure. Eq. (8) is used by Johnston
et al. (1997). Note that eq. (7) states that the background, unper-
turbed Earth is adiabatic, which may or may not hold (we always
assume this holds in the numerical calculations below), whereas
eq. (6) states that the relationship between the perturbed T and P
is adiabatic, which is likely to always be true as long as there is
no release of latent heat. Therefore, it is reasonable to expect that
eq. (8) can be used to describe BD2 conditions. The additional con-
tribution from latent heat release will be described below. Finally,
one needs to relate δP , the Eulerian quantity used in eqs (3) and (4),
to the solution scalars of eq. (1). δP is given by

δP = −1

3
trace

↔
τ + ρgur , (9)

where
↔
τ is the stress tensor (e.g. Dahlen & Tromp 1998).

One can perform a spherical harmonic expansion of eqs (2), (3),
and (9) in order to express these equations in terms of the scalar
quantities used in eq. (1). This gives

ρ+U+ − ρ−U− = (ρ+ − ρ−)δR, (10)

where δR is the spherical harmonic coefficient of δr ,

δR = δPl − (d P/dT )cδTl

ρg + (d P/dT )c(dTo/dr )
, (11)

δTl is the spherical harmonic coefficient of δT , and

δPl = − γ̄

3µ
Tr +

(
ρg − 4γ̄

3r

)
U + 2γ̄ l(l + 1)

3r
V, (12)

where γ̄ = µ(3λ + 2µ)/(λ + 2µ). Thus, the BD2 conditions are
obtained using eqs (10)–(12) and deriving δTl from the spherical
harmonic expansion of eq. (6).

When latent heat is released from either a narrow or thick bound-
ary, BD3 or BD4 conditions, its effects on δTl need to be included
by modelling the conduction of heat away from the boundary. We
assume that the change in temperature, δT , consists of two parts:
an adiabatic portion given by eq. (6) and a portion, θ , which results
from the release of latent heat. In order to calculate θ we consider a
simple spherical, two-layer Earth model. The heat equation is given
by

∇2θ = ρcP

k
θ̇ , (13)

where k is the conductivity and the overdot is a partial time deriva-
tive. The boundary conditions at the internal discontinuity, where
the latent heat is released, are

θ+ = θ− (14a)

∂rθ− − ∂rθ+ = Q

k
= ρ−L

k
(δ̇r − u̇r− ) (14b)

where Q is the rate of latent heat released per unit area at the interface
and k is assumed to be the same on either side of the boundary (Özişik
1993). The second equality in eq. (14b) expands Q in terms of L,
the latent heat per mass required to change the phase of material
below the boundary into material above the boundary (Schubert
et al. 1975). The factor δ̇r − u̇r− represents the rate of change of
the thickness of material that has changed phase (see Fig. 3). For
both the 400 and 670 km boundaries, L has the same sign as the
Clausius–Clapeyron slope. The final set of boundary conditions is
that θ goes to zero at both the Earth’s centre and outer surface.
These assumptions are justified by the fact that this temperature
perturbation falls off quickly away from the boundary.

The Laplace transforms of eqs (13) and (14), after transforming
to spherical harmonic coefficients, are

1

r 2

∂

∂r

(
r 2 ∂θl

∂r

)
=

[
sρcP

k
+ l(l + 1)

r 2

]
θl (15)

and

θl+ = θl− (16a)

∂rθl+ − ∂rθl− = sρ−L

k
(U− − δR). (16b)

The solutions to eq. (15) are spherical Bessel functions of the
form jl (

√|s|/κr ) and yl (
√|s|/κr ) if s is negative and il (

√
s/κr )
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and kl (
√

s/κr ) if s is positive where κ = k/(ρcP ) is the thermal
diffusivity.

Using the modal method typically used to invert the solution to
the time domain would give an infinite number of modes (all with
negative values of s) owing to the oscillation of the Bessel functions
jl and yl when s is negative. Very few, if any, of those thermal modes
would be important when summed together to obtain the deforma-
tion. Instead, the principal effect of those modes is that they can act
to obscure the more important buoyancy modes (i.e. M0, L0, etc.)
during the root-finding procedure. In the range of s values where
the buoyancy modes occur for BD1 conditions, the Bessel functions
oscillate rapidly owing to large arguments. These BD1 modes would
presumably be the most important modes for the models with ther-
mal conduction as well, but there they would be obscured by the
effects of the oscillating jl and yl . Thus, for the boundaries that
include latent heat release we resort to the collocation technique,
which uses only positive s values, to perform the inverse Laplace
transform (e.g. Peltier 1974; Mitrovica & Peltier 1992). This has the
disadvantage of not allowing one to track the behaviour of specific,
physically significant modes, but it does allow one to include the
contributions of all of the modes.

Assuming that all of the heat is released at a thin boundary (BD3
conditions) in a two-layer Earth model, the solutions for θl are

θl (r ) = ρ−Ls

k
ζb2 Il (b, r ) (U− − δR) r ≤ b (17a)

θl (r ) = ρ−Ls

k
ζb2 Il (r, b) (U− − δR) r ≥ b, (17b)

where

Il (x1, x2) = [il (ζ x1)kl (ζa) − il (ζa)kl (ζ x1)] il (ζ x2)

il (ζa)
, (18)

a is the radius of the Earth, b is the radius of the phase boundary
and ζ = √

s/κ . If we define θlo through the equation

θl (b) = θlo(U− − δR) (19)

and assume both that the Earth is incompressible (λ → ∞ so that
γ̄ → 3µ) and dTo/dr is adiabatic (see eq. 7), then one can combine
eqs (6), (10)–(12) and (19) to obtain

U+ = U− − (ρ+ − ρ−)

ρ+

Zo

D − (d P/dT )c θlo

×
[

Tr− + 4µ

b
U− − 2µl(l + 1)

b
V−

]
, (20)

where

D = ρgZo = ρg +
(

d P

dT

)
c

dTo

dr
. (21)

If one also assumes that θlo = 0 (no heat released from the phase
transformation), then eq. (20) further reduces to

U+ = U− − (ρ+ − ρ−)

ρ+

1

ρ−g

[
Tr− + 4µ

b
U− − 2µl(l + 1)

b
V−

]

(22)

which agrees with eq. (28) in Johnston et al. (1997) and is the
equation we use for our BD2 conditions.

For BD4, the latent heat release is spread over a thick region as
discussed in the introduction. To model this we introduce a function,
n(x ′, t ′), which gives the fraction of material at radius x ′ and time
t ′ that is in the same phase as the material above the boundary
region. Thus, n(x ′, t ′) varies from 0 below the boundary to 1 above
the boundary and is centred at radius x p(t ′) (i.e. n(x p(t ′), t ′) =

1/2), chosen to be the radius where the pressure and temperature
conditions satisfy the Clausius–Clapeyron equation at time t ′. We
choose x ′ and x p(t ′) to be Lagrangian coordinates (i.e. coordinates
attached to material particles), so that if the boundary moves with
the material particles then x p(t ′) and n(x ′, t ′) do not change. We
choose an ad hoc form for n(x ′, t ′) that has most of the phase change
occurring near x p(t ′) and that has a time derivative that is easy to
integrate over x ′ (see below):

n(x ′, t ′) = erfc[(x p(t ′) − x ′)/w]/2, (23)

where w is the half-width of the boundary. As an example, if the
boundary is 4 km thick, so that w = 2 km, then n(x ′, t ′) increases
by 0.84 in a 4 km region centred about x p(t ′). Note that the shape of
the distribution will not change with time but that the central radius,
described by x p(t ′), will. The latent heat release comes from the
change in the position of this distribution with time

ṅ(x ′, t ′) = −ẋ p(t ′)
e−[x p (t ′)−x ′]2/w2

√
πw

. (24)

Examples of both n(x ′, t ′) and ṅ(x ′, t ′) are shown in Fig. 4. Because
x p(t ′) is the Lagrangian coordinate of the centre of the phase bound-
ary region, we can set ẋ p(t ′) = δ̇r − u̇r− in eq. (24) (see Fig. 3).

Figure 4. The functions (a) n(x ′, t ′) and (b) ṅ(x ′, t ′) as a function of po-
sition. The function n(x ′, t ′) gives the fraction of the material that is in the
same phase as the material above the boundary region. For these plots, the
position of the phase boundary, x p(t ′), equals b, the boundary is 4 km thick,
and ẋ p(t ′) = 1 km s−1.
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To find the temperature perturbation caused by this change
ṅ(x ′, t ′) in the phase concentration, we decompose the phase bound-
ary region into infinitesimally thin layers, find the temperature per-
turbation caused by the phase transformations that occur in each
of the thin layers, and add together (integrate) these temperature
perturbations. For example, suppose we want to find the temper-
ature perturbation at x caused by the phase transformations in the
infinitesimal layer of thickness dx ′ at x ′. The rate at which latent heat
is released per unit area at x ′ (i.e. Q in eq. 14) is equal to the latent
heat per mass, L, required to change material below the boundary
into material above the boundary, multiplied by the rate at which
mass per area is transformed from material above the boundary into
material below the boundary. For our thin layer at x ′, the rate of mass
transformation between these phases is −ρ− ṅ(x ′, t ′) dx ′. Thus, the
latent heat released by the layer is

Q = −ρ− Lṅ(x ′) dx ′ = ρ− L(δ̇r − u̇r− )
e−[x ′−x p (t ′)]2/w2

√
πw

dx ′. (25)

To simplify the integration over the thin layers, we assume that
x p(t ′) = constant = b in the exponential factor of eq. (25), where b
is the radius of the equilibrium position of the centre of the boundary
region. This is equivalent to assuming that the rate of change of the
distribution will not move with the boundary so that the maximum
temperature perturbation will always be at the equilibrium position
of the boundary. Because the temperature perturbation that goes into
the boundary conditions, through θlo in eq. (20), is measured at the
equilibrium position of the boundary, that temperature perturbation
and thus the effect of latent heat release on the boundary displace-
ment are overestimated. Therefore, if anything, this approximation
tends to underestimate the total effect of phase transitions on the
PGR process. However, this effect should be small as long as the
square of the error in the position of the boundary, say (δb)2, is small
compared with w2. After making this approximation for x p(t ′), ex-
panding Q in spherical harmonics, and taking the Laplace transform,
we find that for this thin layer at x ′ the boundary condition (eq. 16b)
is replaced by

∂rθl+ − ∂rθl− = sρ−L

k
(U− − δR)

e−(x ′−b)2/w2

√
πw

dx ′. (26)

Thus, the temperature perturbation at r owing to the phase trans-
formation in the thin layer at x ′, is given by eq. (17) with x ′

replacing b and multiplying the right-hand sides of eq. (17) by
e−(x ′−b)2/w2

dx ′/
√

πw.
Using this result, one can integrate this modified form of eq. (17)

over x ′ to find the temperature at r owing to material changing phase
everywhere in the boundary region. This temperature profile is given
by

θl (r ) = ρ−Ls

k
(U− − δR)

[∫ r

0

ζ x ′2 I (x ′, r )
e−(x ′−b)2/w2

√
πw

dx ′

+
∫ a

r

ζ x ′2 I (r, x ′)
e−(x ′−b)2/w2

√
πw

dx ′
]

. (27)

If θlo is again defined (see eq. 19) as the factor multiplying the term
(U− − δR) in eq. (27), then the boundary condition for U has the
same form, eq. (20), as it does for BD3 conditions. One should
note that this θlo will always be smaller than θlo obtained for a thin
boundary, because the total heat content of the phase change is
released over a wider region.

Finally, as mentioned earlier, we use a collocation technique to
perform the inverse Laplace transform. As a check of this method
we compare the modal solutions with the collocation solutions for

the BD1 and BD2 models. The collocation technique gives solu-
tions that are virtually identical to those from the modal technique
when sampling is at five points per decade (ppd) over 11 decades,
10−17–10−6 s−1, a larger number of points than used by Mitrovica
& Peltier (1992). While this range may seem unnecessarily large
when sampling the Love number spectrum to obtain surface dis-
placements, the spectrum for internal boundary displacements has
a significant power spread over a greater number of decades than
does the spectrum for outer surface displacements. We have found
that the addition of conductivity to the problem, as required for the
BD3 and BD4 conditions, also causes the function to vary over more
decades.

Once conductivity is added, a general check of the method can
be performed by looking at the limits of the conductivity. If the
value of conductivity is very small, then the latent heat would not be
able to diffuse out of the region. If the heat cannot escape, the pha-
se transition will not be able to proceed, and the boundary response
should be equivalent to that of the BD1 conditions. If the value is
very large, the latent heat diffuses quickly away from the boundary.
Thus, one can essentially ignore the latent heat, and the boundary
response should be close to that of the BD2 conditions. For the low-
conductivity limit, we divide the conductivities of both boundaries
by 105, and the corresponding solution is indistinguishable from the
BD1 modal solution. For the high-conductivity limit, we multiply
the conductivities by 1010 and sample the Love number spectrum
at 5 ppd from 10−17 to 104 s−1. The larger range is needed in this
particular case because the thermal modes cause a variation in the
spectrum at larger values of s. As will be discussed in Section 6.2 the
elastic load Love numbers are different for BD2 and BD3 conditions,
and when these differences are taken into account, the resulting
collocation solution is identical to the BD2 modal solution.

5 R H E O L O G I C A L A N D
T H E R M O D Y N A M I C A L M O D E L S

Because we are only interested in the general effects of introducing
phase boundaries into the formalism, we use a five-layer incom-
pressible Earth model, listed in Table 2, which has been used in a
previous study of PGR (Han 1993). This model includes an inviscid
core and a 120 km thick elastic lithosphere. Four models of vis-
cosity that assume a single discontinuity at the 670 km boundary
are also included in Table 2. The various viscosity jumps across the
670 km boundary represent a variety of views concerning the viscos-
ity profile, where some studies find a small jump (e.g. Tushingham
& Peltier 1992) and other studies find a large jump (e.g. Nakada &
Lambeck 1989). There are also some indications that the value of
the viscosity in the upper mantle may be smaller than 1021 Pa s, the
value that has been assumed classically (e.g. Nakada & Lambeck
1989). For that reason, Models 2 and 4 have the same lower-mantle
viscosity but have a factor of 2 difference in upper-mantle viscosity.

Table 2. Rheology models.

Depth vs ρ ν (1021 Pa s)
(km) (km s−1) (kg m−3) Model number

1 2 3 4

6371–2891 0.0 10 925 0.0 0.0 0.0 0.0
2891–670 6.6 4970 2.0 5.0 20.0 5.0
670–400 5.25 3850 1.0 1.0 1.0 0.5
400–120 4.33 3070 1.0 1.0 1.0 0.5
120–0 4.33 3070 ∞ ∞ ∞ ∞
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We use ICE-3G (Tushingham & Peltier 1991) as our ice model for
the deglaciation phase. The glaciation phase is modelled so that its
spatial dependence is identical to the starting distribution in ICE-3G
and is grown continuously for the 90 kyr prior to the start of ICE-3G.
If more than one loading cycle is used, we simply repeat the loading
cycle.

Unlike in most PGR studies, the inclusion of phase boundaries
requires that we adopt numerical values for thermal parameters. We
assume that the mantle consists of olivine, wadsleyite (β-spinel),
ringwoodite (γ -spinel) and perovskite plus magnesiowüstite in suc-
cessively deep layers. It is commonly believed that the phase tran-
sitions between these minerals contribute strongly to the 400 and
670 km discontinuities. Because there is no boundary in our rheol-
ogy model at 520 km, the effect of the possible phase transition from
wadsleyite to ringwoodite is not included. These minerals probably
only make up 40–60 per cent of the mineralogy of the mantle (e.g.
Jackson & Rigden 1998). While the rest of the minerals that make up
the mantle probably contribute significantly to the nature of these
boundaries (e.g. Gasparik 1990; Vacher et al. 1998), this model
will give one an idea of how phase transitions can affect the final
results.

We need to adopt values for: the Clausius–Clapeyron slopes,
(d P/dT )c; the heat capacity, cP ; the thermal expansivity, α; the
temperature, T; and the conductivity, k. The values for cP and α are
obtained from the equations given in Saxena (1996). The values of k
are derived from Hofmeister (1999), which include both lattice and
radiative contributions. We correct both k and α for temperature and
pressure, whereas we correct cP only for temperature, because the ef-
fect of pressure is only expected to be around 10 per cent (Anderson
1989). The temperature at 670 km is from Ito & Katsura (1989)
and the adiabatic temperature gradient, eq. (7), is used to obtain
the value at 400 km. The values of the Clausius–Clapeyron slopes
are chosen to be within a range found by experiment (Bina & Helf-
frich 1994). The parameters that go into the boundary condition
need to be evaluated on only one side of the boundary (Dehant
& Wahr 1991 ). For example, while we use ρ− (δr − ur− ) to rep-
resent the mass of material that changed phase, we could have
used the quantity ρ+ (δr − ur+ ). Because we use the first expres-
sion, we choose to use values of thermal and rheological parame-
ters from the lower side of the boundary in the various boundary
equations unless other values are specified explicitly, such as in the
expressions for �ρ or the conservation of mass (eq. 2). We then
derive the diffusivity, κ , and the latent heat release, L, using the
formulae

κ = k

ρ− cP
(28)

and

L = �ρT

ρ−ρ+

(
d P

dT

)
c

, (29)

where the last equation is taken from Schubert et al. (1975). For κ we
use the densities listed in Table 2. To estimate the latent heat, how-
ever, we take values for the densities and for the boundary density
jumps from PREM (Dziewonski & Anderson 1981). The rheology
model listed in Table 2 adopts the average properties for an entire
layer, and thus its density jumps across boundaries are unrealistic.
Table 3 shows the values of assumed and derived thermodynamic
properties. To take into account the uncertainties of these values, we
both increase and decrease the value of k by an order of magnitude
as liberal estimates to determine the sensitivity of the results to this
parameter.

Table 3. Thermal parameters.

Parameter Value

400 km 670 km Units

Assumed values
T 1753 1873 K
k 2.93 7.39 W m−1 K−1

α 2.76 × 10−5 2.96 × 10−5 K−1

cP 1.315 × 103 1.34 × 103 J kg−1 K−1

( d P
dT )c 2.5 × 106 −2.5 × 106 Pa K−1

Calculated values
κ 5.79 × 10−7 1.11 × 10−6 m2 s−1

L 5.996 × 104 −1.04 × 105 J kg−1

We have made a number of simplifying assumptions throughout
this paper with regard to the thermal parameters. The first is that we
assume a non-zero value of α (e.g. eq. 4), which is incompatible with
the assumption of incompressibility. We do not consider the thermal
effect on the mechanical equations (i.e. thermal viscoelasticity),
and thus the mechanical and thermal parts of the problem interact
only at the phase boundaries. This assumption is justified because
the temperature perturbation at the boundary owing to the latent
heat release is three orders of magnitude larger than that owing to
adiabatic compression, which can be deduced by comparing L/cP

with eq. (6). We make the assumption that the conductivity and
the diffusivity are the same on both sides of the boundary when
applying the boundary conditions and solving the heat equation.
The background temperature gradient, dT o/dr , is assumed to be
adiabatic except in the modal result subsection where we will also
consider a non-adiabatic gradient for illustrative purposes. Finally,
we assume that the kinetics of the phase transitions are unimportant,
as discussed in Section 3.

6 R E S U L T S

In this section we present the results of using phase boundary condi-
tions instead of chemical boundary conditions at the 400 and 670 km
discontinuities. The first two subsections examine the direct effects
on the modes and the resulting changes in the elastic Love num-
bers. The next subsection introduces the general effects of phase
boundaries. Section 6.4 demonstrates that the displacement fields
of internal boundaries clearly show differences between the chem-
ical and phase boundary conditions. However, observations of in-
ternal boundary displacements are difficult to obtain and interpret.
Finally, we present results for vertical uplift and secular variations
of the geoid, which will provide an important constraints in future
studies of PGR.

6.1 Modal results

An Earth with phase boundaries has significantly different modal
characteristics from an Earth that has only chemical boundaries.
Here we extend the conclusions of Johnston et al. (1997) regarding
the behaviour of the modes in the presence of BD2 conditions in
two regards. First, while traditionally ignored at a phase boundary,
the buoyancy mode from the density discontinuity does exist but
becomes a geostrophic mode (an infinite-period mode of a neutrally
stable, inviscid fluid) when the background temperature profile is
adiabatic. Secondly, we show that if the background temperature
gradient is not adiabatic, then the buoyancy modes no longer have
infinite periods.
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Johnston et al. (1997) introduced an ad hoc parameter ξ into their
boundary conditions such that ξ = 0 corresponds to BD1 conditions
and ξ = 1 to BD2 conditions. This parameter also allowed them
to consider the removal of latent heat by convective flow through
the boundary. They found that the period of the buoyancy mode
associated with the phase boundary goes to infinity as ξ → 1 and
that the load Love number for horizontal motion, 	l , converges to a
non-zero constant.

In the case of BD2 conditions, the infinite-period modes can be
interpreted physically. Suppose an entire column of material is dis-
placed upwards adiabatically without changing the pressure at any
Eulerian point within the Earth. If the background temperature pro-
file is also adiabatic, the material in the displaced column will have
the same temperature as the surrounding material, and so the phase
transition will want to occur at the same pressure and depth as in
that surrounding material. Assuming the transformation is free to
proceed instantaneously, the phase boundary will thus remain fixed
at the same Eulerian position in the Earth, and the column of mate-
rial simply moves through it. There is no displacement of the phase
boundary and so no accompanying density anomaly, and hence there
is no restoring force on the displaced column. This static displace-
ment is all that would remain of the M1 and M2 modes when the in-
ternal boundaries change phase instantaneously and the background
temperature distribution is adiabatic. These modes have infinite pe-
riod, and do not contribute to the radial motion of the density dis-
continuity. For this reason Mitrovica & Peltier (1989) included the
effects of phase boundaries by assuming chemical boundary condi-
tions in all computations, but not including the M1 and M2 modes
when summing to obtain displacements in the time domain. How-
ever, this method of modelling the phase boundaries does not take
into account the changes that occur to the other modes, such as M0,
or the contributions of M1 and M2 to horizontal motions through
the Love number 	l .

In a neutrally stable, inviscid fluid region of the Earth, such as
the outer core, static deformations that do not perturb the den-
sity structure (or equivalently the gravitational potential) are called
geostrophic modes (Dahlen 1974; Dahlen & Tromp 1998). As de-
scribed in the preceding paragraph, the static deformation caused
by the buoyancy modes of phase boundaries suggests that these
modes have become geostrophic modes. Except for the lithosphere,
the Earth does behave as though it were a fluid in the s = 0 limit
(which, for example, is the modal frequency of M1 when there is a
phase boundary at 670 km and an adiabatic temperature profile). If
the Brunt-Väisälä frequency vanishes in a fluid Earth, as it does in
an incompressible homogeneous model, then the Earth is neutrally
stable. Hence, there are infinite-period geostrophic modes. For these
modes the Earth’s density profile cannot change during the motion
because that would cause a restoring force and introduce finite modal
periods. Thus for geostrophic modes under BD1 conditions, U must
vanish at the surface and at internal density discontinuities. In be-
tween the boundaries, however, the radial functions must meet the
criteria established for geostrophic modes (Dahlen & Tromp 1998):
Tθ = � = 0, Tr = ρgU and Q = 4πGρU . For BD2 conditions, how-
ever, it is δR that must vanish at internal boundaries in order to
ensure there is no perturbation of the density profile. Because U is
discontinuous and no longer associated with the movement of the
density discontinuity, it can be non-zero at the boundary. We have
confirmed that these criteria, both on the radial functions between
the boundaries and on δR at the boundary, are met by M1 as ξ → 1.
Therefore, the M1 and M2 modes become geostrophic modes when
BD2 conditions are applied and the temperature gradient is adia-
batic. The only effect these modes have on any observable quantity

is their contribution to horizontal displacements at the outer surface
through the Love number 	l . Horizontal surface displacements are
possible for geostrophic modes because those displacements do not
induce restoring forces. Because geostrophic modes have infinite
periods, these horizontal displacements do not exhibit any effects of
viscoelastic relaxation, and so they are best viewed as contributing
to the Earth’s elastic response.

Until now, we have assumed that the background temperature
gradient is adiabatic. If this were not the case, then even with BD2
conditions the M1 mode would have a finite period or may even be
unstable. To understand this instability, imagine again that a col-
umn of material is displaced upwards without changing the Eule-
rian pressure distribution, but that there is now a superadiabatic
background temperature profile. Consider the phase transition at
the 400 km boundary that has a positive Clausius–Clapeyron slope.
The material in the column is now warmer than the surrounding
material, and thus the phase transition in the column occurs at a
higher pressure than in the surrounding material. The boundary is
therefore displaced downward from where it was before the column
was initially uplifted, which causes a buoyancy force that pushes
the column up further, which causes the boundary to be depressed
further, etc. Thus, this buoyancy mode, M2, is unstable. If one con-
siders the same case applied to the 670 km boundary, where the
Clausius–Clapeyron slope is negative, the phase transition occurs at
a lower pressure in the upwardly displaced column of material. The
boundary is thus displaced upwards from its initial position caus-
ing a buoyancy force that pushes the column downward—back to
its equilibrium position. In this case, the mode, M1, is stable. One
might think that a superadiabatic temperature profile would always
produce unstable motions. However, one should remember that we
are only considering the stability of the phase transition boundary.
The material itself is incompressible and will not interact with the
background temperature profile.

In the rest of this paper we assume that the unperturbed tempera-
ture gradient and the relationship between pressure and temperature
perturbations are always adiabatic. This means that for BD2, the
M1 and M2 modes will have infinite periods. When heat conduc-
tion is added to the problem, M1 and M2 will have finite periods.
In that case, there is a stability argument for these modes similar
to that presented above. Because of the assumed adiabatic tempera-
ture relationships, the only change in temperature that plays a role in
determining the displacements of the phase boundaries is the con-
tribution, θ , from the release of latent heat. Suppose, again, that a
column of material at the 400 km discontinuity is displaced upwards,
with no accompanying change in the Eulerian pressure distribution.
The phase boundary, which was initially carried upward with the
column, wants to move back down to its original depth. However,
now it cannot do so instantaneously. The reason for this is that as
material beneath this elevated boundary begins to change from the
high-density phase to the low-density phase, it absorbs heat from the
surroundings, thus causing θ to decrease. This decrease in θ causes
the phase transformation to want to occur at a lower pressure than
before the column was displaced, and so the boundary remains ele-
vated above its original position. The buoyancy force owing to this
displaced density discontinuity will cause the column to move back
downwards. Therefore, this mode, M2, is stable. A similar argument
applied to the 670 km boundary shows that M1 is also stable.

6.2 Elastic load Love numbers

To calculate the elastic load Love numbers, one must consider how
the various models of the phase transitions will respond in the
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Table 4. Elastic load Love numbers hE
l and kE

l for BD1, BD2 and BD4 conditions.

Boundary type/ −hE
l −kE

l
Boundary thickness

2 10 30 2 10 30

BD1 0.4663 0.7296 1.5648 0.2485 0.065 16 0.043 48
BD4/1 km 0.6574 1.0238 1.6573 0.2559 0.075 79 0.045 33
BD4/2 km 0.7858 1.1816 1.6870 0.2610 0.081 39 0.045 92
BD4/5 km 1.0009 1.3936 1.7161 0.2693 0.088 79 0.046 49
BD4/10 km 1.1546 1.5150 1.7292 0.2753 0.092 97 0.046 75
BD2 1.4300 1.6883 1.7447 0.2859 0.098 86 0.047 05

These results are for an incompressible Earth model. Compressibility greatly affects the
elastic Love numbers, and the effect of phase boundary conditions would be reduced.

elastic limit. BD2 conditions describe the instantaneous response
of a phase boundary to a change in pressure and temperature ig-
noring the latent heat release. Thus, this boundary condition should
change the elastic Love numbers because surface loads can cause
instantaneous, elastic changes in the pressure and temperature at
depth. For BD3 conditions, all of the latent heat from the transition
is released at the boundary. The faster the forcing, the greater the
rate of latent heat release. Therefore, for a delta function forcing, all
of the latent heat from the transition is released instantly. This heat
cannot conduct away from the boundary on short timescales, and the
phase transition does not proceed. The elastic Love numbers would
thus be the same as for an Earth with a chemical boundary. This
result can be understood in the Laplace transform domain by not-
ing that the temperature perturbation becomes infinite in eq. (17) as
s → ∞, which eventually causes the boundary condition, eq. (20),
to reduce to U+ = U− (let θlo → ∞ in eq. 20). This argument does
not hold for BD4 conditions, however. The latent heat is still re-
leased instantly, but the source of that latent heat is now distributed
over a boundary region with non-zero thickness. If one looks at the
temperature perturbation at a particular point, that point can see the
heat released by phase changes occurring at its own position plus the
heat released in some volume dV around it. As s increases (i.e. at
shorter time intervals after the load is applied), the local concentra-
tion of heat that was released at the point increases, but the volume
that the point can see around it decreases. This has the net effect
of causing the temperature perturbation at that point to be finite as
s → ∞. Thus, even at the shortest timescales, the boundary condi-
tions do not reduce to those of BD1, and so BD4 and BD1 elastic
Love numbers are different.

Generally, finding the elastic load Love numbers from the tech-
niques described earlier is simple: one replaces the s-dependent
functions λ(s) and µ(s) with their elastic values λ and µ and finds
hl and kl in the usual way. However, it is more difficult for the BD4
conditions. The latent heat enters into the problem explicitly, and
one must solve the problem in the Laplace domain. We take θlo at
s = 10−6 s−1 to be the s → ∞ limit and assume that the solution
for this value of s is the elastic response. We settled on this value
of s after repeating these calculations for a number of other large-s
values and noting that the temperature perturbation in the Laplace
domain had converged when s was as large as 10−6 s−1. Table 4
shows the values of hE

l for four different boundary thicknesses for
the BD4 conditions as well as the solutions for the BD1 and BD2
conditions. Note that the difference can be as large as a factor of 3
for l = 2. Phase boundary conditions do not affect kE

l to the same
extent as hE

l , but can still be significant. For example, kE
10 for BD2

conditions differs by 50 per cent from kE
10 for BD1 conditions.

The predictions for the elastic body Love numbers also vary de-
pending upon boundary type, but not to the extent of the load Love

numbers. Table 5 shows the variations in the predictions of hB
2 and

kB
2 where the superscript B represents the body Love numbers. Note

that kB
2 , used in calculations of the luni-solar body tides and the

Chandler wobble, only has a 3 per cent difference between the BD1
and BD2 conditions. However, a change of this size can have a sig-
nificant impact on estimates of the Chandler wobble period (Smith
& Dahlen 1981).

This difference in the elastic Love numbers suggests the interest-
ing prospect of trying to find discrepancies between the observed
elastic response of the Earth to applied loads, such as that from
ocean tidal loading (e.g. Melchior & Francis 1996), and the predic-
tions from traditional calculations based upon the load Love num-
bers for BD1 conditions. However, there are two factors to consider
when interpreting these results. First, compressibility makes a large
difference in the Love numbers. Using a code that calculates Love
numbers for an elastic Earth represented by PREM, we find the
difference between the two extreme conditions (BD1 and BD2) re-
duces to 32 per cent for hE

2 and 1 per cent for kB
2 (Tamisiea & Wahr

2002). Secondly, we have not considered kinetics, which might be
the dominant mechanism preventing a change of phase for the rela-
tively small motions caused by ocean tidal loading and the Chandler
wobble, as was discussed in Section 3.

6.3 General effects of conductivity

In the following subsections, we will show results computed using
the four different boundary types. (Note that all of the following
results are found by summing the solutions for spherical harmonic
degrees 2–30.) As a typical example, consider Fig. 5, which presents
results for the present-day maximum displacement of the 670 km
boundary under Canada. Results such as those shown in this figure
will be interpreted in the following subsection. To generate these

Table 5. Elastic body Love numbers hB
l

and kB
l for BD1, BD2 and BD4 conditions.

Boundary type/ hB
2 kB

2
Boundary thickness

BD1 0.5551 0.3066
BD4/1 km 0.6007 0.3084
BD4/2 km 0.6324 0.3097
BD4/5 km 0.6870 0.3119
BD4/10 km 0.7272 0.3136
BD2 0.8001 0.3165

These results are for an incompressible
Earth model. Compressibility greatly
affects the elastic Love numbers, and the
effect of phase boundary conditions
would be reduced.

C© 2002 RAS, GJI, 149, 422–439



432 M. E. Tamisiea and J. M. Wahr

Figure 5. Maximum displacement of the 670 km boundary for: (a) BD1 and
BD2 conditions (shown at the left- and right-hand edges of the plot), and for
BD3 conditions with various values of conductivity and (b) BD4 conditions.
In (a), the numbers indicate the factor that multiplies the conductivities
given in Table 3. The solid vertical line indicates the results obtained with
the assumed conductivity values given in Table 3. In (b), the conductivities
are always taken to be the assumed values shown in Table 3. The viscosity
models are given in Table 2.

results, we used the ICE-3G deglaciation history as an applied sur-
face load, assuming either one loading cycle or an infinite number
of them. We then computed the Earth’s response to this load for the
four boundary types, assuming different viscosity models, different
conductivity values (for BD3 conditions) and different boundary
thicknesses (for BD4 conditions). We extracted the present-day dis-
placement field from the results in each case, and searched for the
largest value of that displacement field. The results are plotted in
this figure. The top plot shows results for BD1 and BD2 conditions,
as well as for BD3 conditions with various values of thermal con-
ductivity. As we described previously, one would expect that low
values of conductivity would return BD1-type results and high val-
ues would return BD2-type results. The numbers on the x-axis of
these graphs indicate the multiplicative factor of the conductivities
in Table 3. The solid vertical line represents the results for the as-
sumed values listed in Table 3. The factors of ten on either side of
this line are included to determine the effect that underestimating or
overestimating the conductivity would have on the final results. The
factors of 102 and 103 are included to illustrate the smooth transition
to the BD2 limit.

For all quantities, one observes a fairly smooth transition between
the two extreme limits (BD1 and BD2 conditions). However, this

Figure 6. Maximum vertical velocity at the surface for: (a) BD1 and BD2
conditions, and for BD3 conditions with various values of conductivity and
(b) BD4 conditions. The symbols and line styles are defined in Fig. 5.

trend is not always monotonic. On some occasions, the signal ex-
hibits a maximum or minimum between the limits. An example of
this is shown in Fig. 5(a) for BD3 conditions, viscosity Model 3, and
one loading cycle. The reason for this is not clear. The periods of the
M1 and M2 modes are probably growing longer as the conductivity
increases, and perhaps the individual responses at each wavelength
conspire to give a larger response. Occasionally, as in the case of
the surface uplift velocity (Fig. 6) for Model 1 and one loading cy-
cle, the maximum amplitude of the BD2 response is larger than the
amplitude of the BD1 response. For this Earth model, the contri-
bution from M1 to the surface radial velocity for BD1 conditions
is positive. Thus, if one naively removed M1, the signal would de-
crease, not increase as is observed. We also examined the M0 and
L0 modes and found that their individual contributions to the signal
both increased in the case of BD2 conditions as compared with BD1
conditions.

Maximum displacement values, such as those shown in Fig. 5, are
always found in a region underlying the position of the Laurentide
ice sheet, with latitudes of between 20◦N and 70◦N and longitudes
of between 10◦W and 150◦W. There may be values that are larger
in other parts of the globe, especially over Antarctica. However,
the PGR component of surface signals is easier to identify over
Canada, whereas the current ice mass changes affect the signals
over Antarctica.

The results shown in Fig. 5, which are typical for most observ-
ables, suggest that for most of the viscosity models, the number of
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loading cycles has almost no effect on the results for BD2 condi-
tions. Because the long-term contributions from M1 and M2 have
disappeared from the viscous response, a single loading cycle does
not excite any modes of period longer than the loading cycle. The
only arguable exception occurs for Model 3 which has the largest
viscosity discontinuity, and it is still nearly true even in that case.

The lower panel in Fig. 5 shows results for BD4 conditions with
various boundary thicknesses. The results for the 2 cm boundary
shown at the left-hand edge of the panel agree well with the results
for the BD3 boundary condition in the top panel. Note that in order
for the thickness of the boundary to have much effect on the results,
the boundary must be thicker than 1 km. The 10 km boundary gener-
ally gives results that are consistent with an increase of conductivity

Figure 7. Topography of the 670 km boundary for (a) BD1 and (b) BD2 conditions after an infinite number of loading cycles for Model 1. Note the opposite
direction of the displacement for the two types of boundary conditions.

in the narrow boundary case (BD3) by one to two orders of magni-
tude. The results generally decrease monotonically with increasing
boundary thickness.

6.4 Internal boundary displacements

Because the modes associated with a boundary have the largest effect
on that boundary, it is not surprising that the displacements of the
internal boundaries show the greatest change with the introduction
of the phase boundary conditions. Thus, observations of the position
of the boundaries could put an additional constraint on the PGR
model if one could isolate the contribution from the rebound alone.
As an example, Fig. 7 shows the topography of the 670 km boundary
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Figure 8. Maximum displacement of the 670 km boundary as a function of the number of loading cycles for: (a) BD1, and (b) BD3 conditions with the thermal
conductivities listed in Table 3. Note that the displacement of the boundary varies less as a function of loading cycles for BD3 conditions than it does for BD1
conditions.

calculated for an infinite number of loading cycles and Model 1. The
maximum uplift for BD1 conditions is 200 m, while the boundary
is displaced downward 15 m for BD2 conditions. Hence, in theory
if one knew the current position of the boundary, one would be able
distinguish between the different types of boundaries. Many other
factors, however, enter into the solution and make the interpretation
of boundary position difficult.

The number of loading cycles used (if two or greater) generally
only has a small effect on surface observations (e.g. Johnston &
Lambeck 1999). The effect on displacement of the internal bound-
aries, however, is much larger. Fig. 8 shows a plot of the maximum
displacement of the 670 km boundary under the Laurentide ice sheet
versus the number of loading cycles for the four viscosity models.
The maximum displacement for BD1 conditions occurs after 10–20
loading cycles and only decreases by around 20 per cent from there.
This decrease is a result of the long-term loading effect of the 400 km
boundary on the 670 km boundary. The mode M2 has both a longer
period and the opposite contribution to displacement at 670 km
compared to M1, which explains the shape of the curve in Fig. 8(a).
When conductivity is introduced into the problem, the boundary
effectively comes to equilibrium after a much smaller number of
loading cycles. A closer inspection of the results indicate that the
maximum occurs later, as one would expect if the period of M2 were
becoming longer. It is also likely, although impossible to check be-
cause of our use of the collocation technique, that the contribution of
M2 to the displacement of 670 km decreases. One can imagine that
as the phase transitions become more important causing the periods
of M1 and M2 to become longer, other modes with much shorter
periods such as M0, L0 and C0 govern the motion of the density
discontinuities.

As mentioned earlier, Fig. 5 shows the maximum radial displace-
ment of the 670 km boundary for the four different boundary condi-
tions and different values of conductivity. By comparing the results
for Models 2 and 4, one can see that the displacement at 670 km
after an infinite number of loading cycles is insensitive to the upper-
mantle viscosity profile. However, the displacement of the 400 km

boundary is much more dependent on the upper-mantle viscosity,
as one would expect. The chemical boundary results agree qualita-
tively with those found by Wu (1990). Nevertheless, the amplitudes
presented here are smaller because Wu used a single-disc ice sheet,
which has a greater mass per unit area at the surface than the ICE-3G
model we use.

As with all predictions of observables, uncertainties in the vis-
cosity profile have a large effect on the answers. However, if one
were able to use observations to identify the PGR portion of the
topography on an internal boundary, and those observations were
used to infer viscosity without accounting for the phase transitions
at the 400 and 670 km boundaries, one could make a error in the
inferred viscosity. After an infinite number of loading cycles, for
example, the displacement of a 5 km thick boundary at 670 km for
Model 2 is nearly the same as the displacement for BD1 conditions
of Model 3, which has a viscosity that is a factor of 4 larger.

However, the practical use of these estimates is difficult. Seis-
mic observations show that the boundaries have large topographies,
±15 km, on both large scales (Flanagan & Shearer 1998, 1999) and
short scales (Dueker & Sheehan 1998). This topography is much
larger than that predicted from PGR and is presumably a result
of convective processes. If the error in the seismic estimates were
small, one could try to fit the general PGR pattern to this topography.
However, the observational errors are generally of the order of the
thickness of the boundary or larger. Thus, displacements as small
as 100 m would be impossible to detect.

6.5 Surface observations

There are many surface observations that are used as constraints
in PGR modelling. Many of these signals, however, can have large
contributions from other geophysical processes. In this final subsec-
tion, we illustrate the possible effects of phase boundaries on three
surface observations: vertical uplift, J̇ l , and the secular change of
the geoid. We have chosen these because new space geodetic tech-
niques, such as GPS and GRACE, will give us new constraints in
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Figure 9. Values of J̇ l for BD1 and BD2 conditions, and for BD3 conditions with various values of conductivity. The symbols and line styles are defined in
Fig. 5.

the years to come. We also list the results for several other com-
monly investigated surface observations. As one would expect, the
long-period modes contribute little to rate of change observations,
and thus these observations are insensitive to the number of loading
cycles. Therefore, the graphs in this section will only present results
for an infinite number of loading cycles.

Both vertical and horizontal motion give constraints on PGR mod-
els. Each of these has drawbacks, however. Horizontal motion is
much more sensitive to the ice sheet parametrization, lateral varia-
tions in viscosity and lithospheric thickness than is vertical motion
(e.g. Mitrovica et al. 1994). Yet vertical rates derived from GPS
measurements have larger errors than horizontal rates. GPS verti-
cal motions reliable to 1 mm yr−1, which is the level of accuracy
needed to differentiate between different models of viscosity, require
about 5 yr or more of continuous measurements (Larson & van Dam
2000). One of the best examples of GPS data for use in PGR is the
BIFROST campaign in the Fennoscandian region (Scherneck et al.
1998; Milne et al. 2001). Fig. 6 shows the radial velocity predicted
at the surface for various models. For BD1 conditions, one can note
that a viscosity jump of 5 or 20 at 670 km gives roughly the same
result. This is a commonly known, general feature of all rate of
change surface observables we have considered; i.e. that the same
results can be obtained from both a small and a large jump in the

viscosity. For radial velocities the BD3 conditions cause a 6–15 per
cent variation in the results, whereas a 2 km wide boundary causes
a 1–7 per cent variation from the BD1 solutions.

Three dedicated gravity missions have recently been approved:
CHAMP, GRACE and GOCE. In particular, GRACE (Gravity
Recovery and Climate Experiment) will have the accuracy needed to
detect the time-varying portion of the gravity field up to degree and
order of 70, and is similar to the SST mission described in Dickey
et al. (1997). Currently, the most common space-based measure-
ment of the PGR contribution to time-variable gravity are satellite
laser-ranging measurements of secular variations of the zonal har-
monics, J̇ l . These are the scaled, m = 0 coefficients in the spherical
harmonic expansion of the secular change in the geoid height (e.g.
Chao & Gross 1987). Fig. 9 shows the variation of the zonal har-
monics for BD1, BD2 and BD3 boundary conditions, and Fig. 10
shows the variation for BD4 conditions. Note that the (−1)l+1 fac-
tor has been included so that all of the coefficients are displayed as
positive. Data from LAGEOS and Starlette have been used to obtain
the time-varying portion of the lowest-degree even harmonics, but
there is difficulty in obtaining the odd-degree solution (e.g. Yoder
et al. 1983; Rubincam 1984).

Many other processes can contribute to J̇ l , including ongoing
changes in the ice masses over Greenland and Antarctica. It is
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Figure 10. Values of J̇ l for BD4 conditions with various boundary widths. The symbols and line styles are defined in Fig. 5.

possible to eliminate the signal from Antarctica if one had the
odd degrees (James & Ivins 1997), but the signal from Greenland
would still contaminate the result. One will probably have to look
at the signal regionally instead of globally to remove all of the other
‘noise’ signals. This is where the shorter wavelengths available with
GRACE offers an improvement over previous satellite gravity mis-
sions (see, for example, Wahr & Davis 2002). The maximum secular
geoid change is shown in Fig. 11.

A BD3 boundary would cause a 3–9 per cent error in the secular
variation of the geoid for a particular viscosity profile if BD1 condi-
tions are used to model the rebound. If one assumes BD4 boundary
conditions, the situation becomes better and the variation from the
BD1 solutions is reduced to 3 per cent or less. It is unclear, how-
ever, how well the viscosity profile itself can be determined using
this type of data. Initial tests show that the ice sheet parametriza-
tion will play a large role in the final signal. One would need to
perform a joint inversion for both the ice sheet parametrization and
the viscosity profile to determine how well this information can be
inferred.

Finally, Table 6 summarizes the likely range of phase boundary
effects for a wide variety of observations. The results provide a
general idea of the level at which the phase boundary conditions be-
come important for particular measurements. As mentioned in Sec-

tion 6.3, the perturbation from the BD1 solutions are not necessarily
monotonic as one increases either the thermal conductivity or the
boundary width. For example, BD3 conditions increase the signal of
observables that do not depend upon the number of loading cycles,
such as the rate of change measurements, while BD2 conditions gen-
erally decrease the same signals from the BD1 predications. Table 6
also lists the perturbations of relative sea level (RSL), which has
been a prominent measurement in past studies. Mitrovica & Peltier
(1993) found that near the centres of ice sheets, the RSL curves can
be modelled as A(e−t/τ − 1) and that τ is sensitive to the viscos-
ity profile. For this example, we calculated the values of 1/τ from
predictions of RSL curves at Hudson Bay. The largest perturbations
from the BD1 solutions (63 per cent for BD2 conditions and 31 per
cent for BD4 conditions) occur for Model 3, which has the largest
viscosity jump at 670 km. In these two cases, the phase transitions
effectively allow the Earth to relax on shorter timescales and would
cause one to underestimate the value of lower-mantle viscosity if
observations were compared with predictions calculated using BD1
conditions (Johnston et al. 1997). A general conclusion from the re-
sults in this table is that any attempt to improve a viscosity model by
trying to match observational discrepancies that are of the order of
the 5–10 per cent level may be limited by our imperfect knowledge
of the characteristics of the internal boundaries.
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Table 6. Summary of percentage perturbations from BD1 solutions for BD2, BD3, and
BD4 conditions.

Observation Loading per cent perturbation
cycles

BD2 BD3 BD4

670 km displacement 1 −312 to 109 −37 to 52 −172 to 43
∞ −451 to −107 −62 to −18 −224 to −56

400 km displacement 1 −291 to 80 −212 to 453 −175 to 15
∞ −422 to −113 −44 to −15 −256 to −66

Surface displacement 1 −39 to −19 5 to 19 −21 to −9
∞ −64 to −34 −10 to −6 −38 to −19

Uplift velocity 1 −13 to 4 6 to 15 −8 to 1
∞ −13 to 2 6 to 15 −8 to 2

Geoid anomaly 1 −28 to −9 1 to 15 −14 to −5
∞ −55 to −15 −8 to −2 −30 to −8

Rate of change of geoid 1 −7 to 1 3 to 9 −3 to 2
∞ −7 to 0 3 to 9 −3 to 1

Free air gravity anomaly 1 −22 to −13 −1 to 5 −13 to −6
∞ −39 to −16 −7 to −3 −22 to −9

J̇ 2 1 −1 to 0 3 to 7 0 to 1
∞ −2 to −1 3 to 8 0 to 1

1/τ (RSL) 1 6 to 62 −10 to 3 2 to 30
∞ 8 to 63 −10 to 3 3 to 31

For the BD4 conditions, these results are for a 5 km thick boundary. The range in
perturbations listed is a result of variations in the results for different viscosity profiles.
If x is the percentage perturbation, then the solution for a given quantity can be found by
multiplying (1 + x/100) times the BD1 value.

Figure 11. Maximum secular change of the geoid height for: (a) BD1 and
BD2 conditions, and for BD3 conditions with various values of conductivity
and (b) BD4 conditions. The symbols and line styles are defined in Fig. 5.

7 C O N C L U S I O N S

Our objective is to better understand the possible effects of mantle
phase transitions on PGR. The results are relevant to the interpreta-
tion of PGR observations for at least two reasons. One is that they
may indicate whether or not those observations could be used to
learn more concerning the characteristics of the 400 and 670 km
discontinuities. The other reason is that studies that have used PGR
observations to learn about the Earth’s viscosity have, with only
a few exceptions, ignored the effects of phase transitions. The re-
sults described in this paper are thus useful for estimating the errors
that could be introduced into those viscosity solutions if the internal
boundaries behave as phase boundaries but are incorrectly modelled
as chemical boundaries.

Modelling the effects of phase transitions is complicated by two
factors: the release of latent heat during the phase transformation
and the presence of a potential energy barrier related to the kinetics
of the phase change. In the models described above we have included
the release of latent heat, but not the kinetics. These models extend
earlier models by including the effects of latent heat through the heat
conduction equation. The importance of those effects depends on the
thermal conductivity of the material near the boundary and on the
thickness of the boundary region, neither of which are well known
for either the 400 or 670 km boundary. The boundary thickness is
especially uncertain.

Phase transitions at an internal boundary are particularly impor-
tant because of their effect on the buoyancy mode associated with
particle displacements at that boundary. In previous studies it has
usually been assumed that a buoyancy mode has no impact on the
PGR solution when the boundary is a phase boundary. We have
found that this is correct only if the material surrounding the bound-
ary is stratified adiabatically and if there is no release of latent heat
during the phase transformation (or, equivalently, if the thermal con-
ductivity is infinite). In that case, the buoyancy mode reduces to an
infinite-period geostrophic mode. Yet if the background temperature
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is not adiabatic then the buoyancy mode can have a finite period or
even be unstable. If the temperature distribution is adiabatic and the
effects of latent heat are included, the buoyancy mode will be stable
but will have a finite period. In fact, the most important consequence
of latent heat release in terms of its impact on the PGR solution is
that it causes buoyancy modes to make non-negligible contributions
to the deformation.

The numerical results presented in Section 6 show that if the in-
ternal boundaries at 400 and 670 km are phase boundaries but are
incorrectly modelled as chemical boundaries, there will be 5–10 per
cent errors in the model predictions of the most useful PGR observ-
ables, including geoid and gravity anomalies, the secular change
in the geoid, relative sea level changes and the radial motion of
the outer surface. These estimates of the errors introduced by in-
correctly modelling the boundaries should be interpreted as upper
limits; the large density jumps at the boundaries in our rheology
model may cause the importance of the boundaries to be overesti-
mated. Overall, though, these results suggest that there is not much
point in trying to refine a viscosity or ice deglaciation model to ex-
plain a 5–10 per cent disagreement with a PGR observation unless
the phase boundary effects are well understood.

The one component of PGR on which phase transformations can
have a dramatic effect is the topography of internal boundaries. The
effects of phase transformations on that topography are typically of
the same order as the uncertainty caused by imperfect knowledge
of the viscosity profile. It is unlikely, though, that observations of in-
ternal boundary topography could be used to learn more concerning
the characteristics of these phase transformations. The topography
caused by PGR is predicted to be of the order of a few hundred me-
tres, at most. Seismic observations, on the other hand, suggest that
the total topography on those boundaries is of the order of ±15 km.
These large topographic amplitudes are presumably the result of
convective flow unrelated to PGR, and cannot be predicted inde-
pendently to anywhere near the accuracy required to determine the
PGR contributions. In fact, our tentative conclusion is that there is
little hope of using any PGR observations in the near future to learn
about phase transitions at internal boundaries.

One intriguing conclusion, though, from Section 6.2 is that the
elastic Love numbers could be modified significantly by the pres-
ence of phase transformations at the 400 and 670 km boundaries, if
the width of the phase transition zone is a kilometre or more. This
suggests that observations of the luni-solar body tide, the ocean load
tide, or the Chandler Wobble period (which depends on the elastic
l = 2 body tide Love number; see Smith & Dahlen 1981) might pro-
vide useful information concerning the characteristics of the phase
transitions. However, this conclusion does not consider the effects
of kinetics, which could severely hinder the phase transformations
for the small displacements and relatively short timescales associ-
ated with these motions. Nevertheless, we believe that these results
warrant a closer examination of the kinetic processes responsible
for phase transitions in the case of these near-equilibrium, small-
amplitude motions.
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