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Determination of the influence zone for surface wave paths
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1 INTRODUCTION

SUMMARY

An approximate description of the zone of influence around the propagation path for a surface
wave is provided by investigating the Fresnel zones for the frequency range of interest. The
influence zone about surface wave paths, over which surface waves are coherent in phase, is
identified as approximately one-third of the width of the first Fresnel zone. A technique called
Fresnel-area ray tracing (FRT) for surface waves has been used to estimate this region around
the ray path for each frequency. The FRT technique is developed by combining two standard
ray tracing methods, i.e. kinematic ray tracing (KRT) and dynamic ray tracing (DRT). To obtain
the exact Fresnel area in a laterally heterogeneous structure would require the solution of a
large number of KRT equations. In contrast, the FRT approach requires just a few ray tracing
calculations. In the first step, the trajectory of the surface wave is computed by solving the
KRT system for the phase-velocity distribution at the required frequency. In the next step,
the behaviour of rays in the zone surrounding the KRT path is calculated by solving the DRT
system twice; once from the source to the receiver and once more from the receiver to the
source along the same trajectory. Finally, combining the solutions of these ray tracing systems
using paraxial ray theory, the Fresnel area around a central ray can be estimated. Using FRT,
stationary-phase fields can be constructed around a central ray path in a laterally heterogeneous
structure. The influence zone around the ray path is then estimated from the stationary-phase
function with simple assumptions concerning the perturbed wavefield. The estimate of the
influence zone can be efficiently calculated in laterally heterogeneous structure by using the
FRT technique, and allows an extension of current methods of surface wave analysis, which
have commonly been based on geometrical ray theory and on the approximation of great-circle
propagation. This approach allows the treatment of finite-width rays as well as deviations in
propagation from the great circle induced by moderate lateral heterogeneity as revealed by
recent tomography models. Such finite-width rays should be of major benefit in enhancing
ray-based surface wave tomography.
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and amplitude anomalies obtained from WKBJ approximation and
those from coupled-mode theory. Their condition is derived from

Geometrical ray theory has played a major role in many seismo-
logical studies because of its simple and efficient description of
seismic wave propagation. One of the most successful applications
of ray theory is seismic tomography and a number of Earth models
have been obtained by applying the theory to both body and surface
waves. Such studies for investigating the Earth’s interior based on
ray theory have provided us with an enormous amount of knowl-
edge concerning the structure and dynamics of the mantle. There
are, however, crucial limitations in the ray theory.

One of the well-known deficiencies of ray theory is that the theory
tends to breakdown in the presence of strong lateral heterogeneity
when the scalelength is comparable to the wavelength of the waves.
Wang & Dahlen (1995) have obtained an empirical condition for the
validity of surface wave ray theory by comparing phase, arrival angle
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a simple assumption that the width of the first Fresnel zone should
be much smaller than the scalelength of lateral heterogeneity. This
statement has been recognized implicitly since the early stage of
the surface wave studies based on geometrical ray theory, and the
assumption of smoothly varying heterogeneity around a ray path
has been an essential part of ray theory for surface waves (e.g.
Woodhouse 1974; Yomogida 1985; Tromp & Dahlen 1992a,b).
One of the ways to overcome the limitations of ray theory is
to use scattering theory for surface waves based on the first Born
approximation (Snieder 1986, 1987; Yomogida & Aki 1987). For
body waves at finite frequency, sensitivity kernels for traveltimes or
waveforms have been proposed by many researchers for 2-D cases
in the early 1990s based on the scattering theory (Luo & Shuster
1991; Woodward 1992; Yomogida 1992; Vasco & Majer 1993; Li
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Figure 1. A schematic illustration of the influence zone for: (a) a geomet-
rical ray and (b) a physical ray.

& Tanimoto 1993; Li & Romanowicz 1995; Marquering & Snieder
1995). Such scattering studies have been extended to diffraction
studies for 3-D waveform inversion (Meier et al. 1997) and to the
construction of 3-D sensitivity kernels (Marquering et al. 1998,
1999; Dahlen et al. 2000; Hung et al. 2000; Zhao et al. 2000). One
of the features of these techniques is that they involve an integral
over a finite region, whereas the geometrical ray theory is able to treat
the velocity variations only along the ray path. Studies of surface
wave scattering based on the Born approximation can be quite useful
when local strong heterogeneity exists around a ray path. Although
the conditions for the application of such a first-order scattering
theory to the real Earth may be rather restrictive.

In geometrical ray theory based on the high-frequency approxi-
mation, the influence zone around a surface wave path is supposed
to resemble a delta function (Fig. 1). However, actual surface waves
with finite frequency should sample a finite region around a ray path.
Such a ray with finite width can be termed a physical ray (Cerveny
& Soares 1992). In this paper, we focus on determining the effective
width of surface wave rays, which can be defined as the influence
zone around a surface wave ray path, in which surface wave phases
are coherent and there is only constructive interference from scat-
tered waves. As an extension of the ray theory, this zone can be found
by considering a bundle of neighbouring rays around a central ray
path. We should note that the objective of this paper is to consider
a region in which surface waves are coherent and, as a result, we
cannot distinguish waves with a slight deviation owing to scatter-
ing from a true ray. Thus obtaining rigorous sensitivity kernels is
beyond the scope of this study.

In order to investigate the behaviour of rays and to define a partic-
ular region surrounding a ray path, we first develop a hybrid ray trac-
ing technique, Fresnel-area ray tracing (FRT) for surface waves on a
spherical Earth. The concept was originally developed by Cerveny
& Soares (1992) for body waves. The FRT technique consists of
two standard ray tracing techniques, kinematic ray tracing (KRT)
and dynamic ray tracing (DRT). KRT is used to determine the ray
trajectories (geometrical rays) in heterogeneous structures, and DRT
provides us with the relative behaviour of neighbouring or paraxial
rays. Combining the solutions from KRT and DRT, a paraxial Fresnel
area around a ray path can be obtained. In order to trace frequency-
dependent surface wave rays in a laterally heterogeneous structure,
we need to evaluate surface wave phase speeds at each geographical
point, depending on frequency and mode. Therefore, in this study,
we restrict our attention to phase-speed structure rather than a 3-D
structure, because it is more efficient to work with off-great-circle
propagation. FRT makes it possible to construct the stationary-phase
field around a ray path (rather than just the great circle) in a laterally
heterogeneous structure. The influence zone around a ray path is
estimated from the properties of this stationary-phase field.
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2 FORMULATION FOR
FRESNEL-AREA RAY TRACING

Since the theory and procedure of surface wave ray tracing, espe-
cially KRT and DRT, have been well established by the effort of
many researchers (e.g. Woodhouse 1974; Jobert & Jobert 1987;
Yomogida & Aki 1985; Dahlen & Tromp 1998), we briefly sum-
marize the essence of these standard ray methods. FRT for surface
waves on a spherical Earth is then developed by combining the so-
lutions from KRT and DRT.

2.1 Kinematic ray tracing

The KRT equations in a spherical polar coordinate system (6, ¢)
can be represented as a set of three coupled ordinary differential
equations (e.g. Aki & Richards 1980; Dahlen & Tromp 1998),

de

= , 1
75 cos ¢ (1)
d¢ sin¢
i Ak 2 @
ds sinf
d
il =sin§391nc—C(,)—Sgad)lnc—cotesin(, 3)
ds sin @

where the dependent variable s is the angular distance along a ray
path, ¢ is the local azimuth that corresponds to the propagation
direction of a ray and c is the local phase velocity. The geometrical
configuration is displayed in Fig. 2.

When we trace a ray on a spherical Earth, it is convenient to
rotate the coordinate system for the source and receiver pairs so
that the great circle lies on the equator as seen in Fig. 2. In the
rotated spherical coordinate system, the source location is always
(r/2, 0) and the coordinate of a receiver at the epicentral distance
A is (/2, A). In this study, all ray tracing is considered in these
rotated spherical polar coordinates.

The sets of differential eqs (1)—(3) can be solved numerically
with appropriate initial conditions for each equation. In the rotated
coordinate system the initial conditions are

Figure 2. A surface wave ray in a ‘rotated’ spherical-polar coordinate sys-
tem where the source and receiver are on the equator. The propagation di-
rection ¢ at (0, ¢) is measured from the south.
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When we calculate an arbitrary ray path with a certain take off
angle ¢’ at the source, we do not need to estimate the initial angle
and we can just put {, = ¢’. For a two-point shooting problem, the
initial angle ¢y = /2 + §¢ in the rotated coordinate system can be
estimated by ray perturbation theory (Woodhouse & Wong 1986;
Dahlen & Tromp 1998). The perturbed initial take-off angle can be
found from

A
8¢ = ! / sin (A — ¢)ds8cdo. 5)
0

csin A

The integration in eq. (5) is to be calculated along the great circle.
If the lateral heterogeneity is not too strong, the linear relation (5)
offers a fairly good estimate for the initial angle. To hit the receiver,
we need to solve the set of ray tracing equations iteratively. A prac-
tical numerical scheme for solving these equations is provided by
iterative use of the Runge—Kutta method.

2.2 Dynamic ray tracing

The kinematic ray tracing systems are useful for tracing an actual
ray, but only provide us with ray trajectories. When we are inter-
ested in the wavefield surrounding a ray rather than just on a line
(or ray trajectory), it is necessary to consider the behaviour of the
neighbouring or paraxial rays surrounding the central ray. In order
to investigate the relative behaviour of rays, we can obtain dynamic
ray tracing equations by differentiating the kinematic ray tracing
equations (1)—(3) with respect to the initial take-off angle ¢,
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The initial conditions for these three differential equations may be
given by assuming a point source,

00 _, 90 _ 50 _,
%o 9% %o
The geometrical spreading J can be evaluated from the solutions of

the DRT equations (6)—(8) as follows (e.g. Yomogida & Aki 1985;
Jobert & Jobert 1987):

) )

(12)

30\’ s\
2
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If there exist caustics where neighbouring rays cross then

J(s) =

Figure 3. Ray-centred coordinate system. An arbitrary point (s, #) is mea-
sured from a point on a central ray (s, 0).

w _
3 %

and this condition can be used to determine the locations of caustics.

(14)

2.3 Paraxial Fresnel area

Using the results from the KRT and DRT, the Fresnel area sur-
rounding a ray can be estimated based on the paraxial ray theory.
The estimated Fresnel area may be called the ‘paraxial Fresnel area’.
The theory of paraxial ray approximations has been discussed exten-
sively by Cerveny (e.g. Cerveny 1985, 1987; Cerveny et al. 1988)
for the body wave case and by Yomogida (Yomogida 1985, 1988;
Yomogida & Aki 1985) for the surface wave case, working in ray-
centred coordinates.

First, let us introduce a ray-centred coordinate system on a spher-
ical surface (s, n): s corresponds to the distance along the ray path,
and # is a coordinate perpendicular to the ray path and » = 0 on the
central ray (Fig. 3). When we expand the phase v in a Taylor series
around a point on the ray (s, 0) at fixed s,

Ws,m) = Y5, 0+ 207 M(s), (15)
where,
M(s) = %Y (s, n) _ w dJ(s) (16)

an® |, c(s)J(s) ds

See Appendix A for explicit formulations of eqs (15) and (16).

Now let us define the first Fresnel zone surrounding a ray trajec-
tory for a point source at A and a receiver at B (Fig. 4). Introducing
a point F near the ray path, the first Fresnel zone is defined in terms
of the phase behaviour as follows:

[Wk +vi —vR| <, (17)
where ¥%, ¥f and 2 are the phases integrated along ray paths A-F,
B-F and A-B. Considering the points F at (s, n) and O at (s, 0),
the phases % and ¥ can be obtained from eq. (15),
1
A =R+ ot MY (18)
1
v =V My (19)

Both eqs (18) and (19) are defined along the same ray trajectory, but
in different ray-centred coordinate systems. That is, the coordinate
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B (recever)

Figure 4. Schematic view of the Fresnel area around a ray. The radius of
Fresnel zone is defined by the line F—Op.

system of eq. (18) is (s, n), whilst eq. (19) is (A — s, n), where A
is the distance from source to receiver along the ray path. Using the
relation ¥y" + 5" = ¥2, and substituting eqs (18) and (19) into
eq. (17), the equation for the paraxial Fresnel area can be obtained,

1
En2|M2F + M| <7 (20)

We can finally obtain the radius of the paraxial Fresnel area measured
from the ray path,

1/2
2
n=| —"1 . 1)
<]M,§’F+M§F\>

o 0
where M,* and My" can be expressed as

SF _ J/’\(OF)7 MgF _ o J}g(OF), 22)
c(Or) JA(Of) c(Or) J(OF)
with J' = dJ/ds. On inserting eq. (22) into eq. (21), the final form
for the radius of the paraxial Fresnel area can be expressed as

2me

12
n= (7[{) = (TCK)I/Z = ()"K)l/z ’ (23)

where 7T is the period of the wave, A is a wavelength and K =
Jads/|J5Js + J5Jal. At caustic points, the geometrical spreading
J shrinks to 0, and thus the radius of the paraxial Fresnel area is also
0. Since the radius of the exact Fresnel area at the point source is very
close to A/2 in the case of the first Fresnel zone (see Appendix B),
we may therefore expect a radius of the Fresnel zone of the same
order of A/2 even at caustics.

3 SYNTHETIC TESTS OF
FRESNEL-AREA RAY TRACING

In order to check the validity of the formulation and behaviour
of Fresnel zones in laterally heterogeneous structure, examples of
paraxial Fresnel areas in synthetic models are displayed in this
section.

3.1 Comparison with the exact and the paraxial
Fresnel area

The exact Fresnel area can simply be calculated for a laterally ho-
mogeneous structure since we can compute the traveltime along a
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Figure 5. Illustration of an exact Fresnel area on a spherical surface in a
rotated spherical-polar coordinate system.

great circle without any ray tracing. Let us consider the geometrical
configuration in the rotated spherical polar coordinates as shown in
Fig. 5. The definition of the first Fresnel zone, with respect to the
path-length, can be written as

A

Ak +ap a3 =3, (24)
which provides an alternative form to eq. (17). A is the epicentral
distance and the arclengths A% and A can be expressed in terms
of spherical trigonometry,

F T LT .
CosA, = cosEcose—i—smEsmG cos ¢ = siné cos ¢, (25)

F T .o B
cos Ap = cos 5 cos 6 + sin 0 sin 6 cos (AA — ¢)

sinf cos (AR —¢) . (26)

The boundaries of the exact Fresnel area on the spherical surface
can be obtained by solving eqs (24)—(26) numerically.

Examples of the exact Fresnel area and the paraxial Fresnel area
in a laterally homogeneous structure for three different periods (25,
40, 100 s) are shown in Fig. 6(a). We can see that the paraxial Fresnel
area is a fairly good approximation of the exact one, except close to
the source and receiver positions where the geometrical spreading
shrinks to 0 and, as a result, the paraxial Fresnel area vanishes.
As the period increases, the agreement between the exact and the
approximate Fresnel area becomes worse. As mentioned at the end
of the previous section, we may rectify the problem by assuming
that the paraxial Fresnel area at the source and the receiver as well
as at any possible caustic point have a Fresnel area radius of the
order of 1 /2 for the first Fresnel zone. Paraxial Fresnel areas with
corrections at the source and the receiver are shown in Fig. 6(b).
Such corrections are quite useful for matching the paraxial Fresnel
areas and the exact ones for an even longer period. The detailed
procedure for the correction of the paraxial Fresnel area is explained
in Appendix B.
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Exact and Paraxial Fresnel Areas
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Figure 6. (a) Exact (solid ellipsoid) and paraxial (shaded ellipsoid) Fresnel areas at 25 (left), 40 (middle) and 100 (right) s. The background map is only
plotted for the measure of the scale. (b) Same as in (a) but for paraxial Fresnel areas with corrections at the source and the receiver.

3.2 Hotspot heterogeneity

We next perform synthetic tests with simple hotspot models (Fig. 7).
These models contain a circular region with a radius of 4° and
the Rayleigh wave phase velocity is 10 per cent slower than the
surrounding area. These tests give us an insight into how the location

of a strong heterogeneity affects the wavefield and the Fresnel area
around a ray.

As can be clearly seen in Fig. 7, if the source is adjacent to a
strongly heterogeneous region, ray paths that are radiated toward
the heterogeneity are distorted significantly. When the source lies
slightly away from the heterogeneity but is still close enough, we can
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Figure 7. Ray pathsinhotspot models (left) and corresponding paraxial Fresnel areas for 40 s (right). Both regions inside and outside the circle are homogeneous,
but the Rayleigh wave phase velocity inside the circle is 10 per cent slower than the outside. The locations of the hotspot are 5°S, 140°E (top) and 10°S, 140°E
(bottom). The source location is 1°S, 140°E for both case. The distances from sources to the centre of the circle are 4° (top) and 9° (bottom). Rays are radiated

with the azimuths from 90° to 270° for every 3°.

see areas of focusing and defocusing behind the circular heterogene-
ity. The Fresnel areas shown for each heterogeneity configuration
suggest that they are severely affected by the strong velocity gradi-
ent in the vicinity of the heterogeneity and, as a result, the radii of
the Fresnel zone becomes smaller in such regions because the ray
path density is very high, in other words, the surface wave energy
concentrates in that particular area.

We should note here that, with a ray-based technique such as
that used in this study, we cannot treat the full range of complex
multipath effects which can be caused in the presence of a strong
lateral heterogeneity such as this hotspot model, although such rapid
and strong velocity variations are not seen in most phase-speed
models.

4 INFLUENCE ZONE INFERRED
FROM STATIONARY-PHASE FIELD

In the previous section, we have shown the estimates of the first
Fresnel zones obtained from FRT. Now we examine the nature of

© 2002 RAS, GJI, 149, 440-453

the variation around surface wave paths as an extension of the geo-
metrical ray theory using stationary-phase fields.

4.1 Stationary-phase field

Using FRT, stationary phases around surface wave ray paths in lat-
erally heterogeneous structure can be evaluated simply. First, let us
define a reference waveform U along a central ray for a frequency
 as

Uo(w) = Ao(@) exp[—iYo(w)], @7

where the complex amplitude term 4, contains the source radiation,
the receiver eigenfunction, geometrical spreading and the spatial
variation of amplitude caused by a background structure, ¥ is the
phase of the wave integrated along the ray. Explicit forms for A4,
can be found in many textbooks (e.g. Aki & Richards 1980; Kennett
1983; Dahlen & Tromp 1998). As in most surface wave studies,
the wavefield U, along a ray path can be calculated as a WKBJ
seismogram. Hereafter we abbreviate the notation for the frequency
dependence.
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Figure 8. Geometrical configuration of influence zone (shaded area), a
geometrical ray (AOr B) and a perturbed ray (AFB).

Now let us assume that the waveforms along perturbed rays that
arrive at a receiver passing through a point F'(s, n) near the central
ray (Fig. 8) can be written as

UF = AF eXp (—il//p),

where Ar is a perturbed amplitude term for the off-centre ray path
and Y = Y5 + ¥f is a perturbed phase term integrated along the
path. Ur represents the perturbed wave and is to be distinguished
from scattered or diffracted waves for which an inclination factor
and different geometrical spreading need to be considered (e.g. Born
& Wolf 1999). From eq. (20), the perturbation of phase between a
central ray and neighbouring rays can be expressed as

(28)

SYp = vYr — Yo = —” > Mr(s), (29)

where Mp(s) = |M,§’F(s) + Mg¥(s)| is derived from FRT. Substi-
tuting eq. (29) into eq. (28) and using eq. (27), we obtain a relation

between Ur and U,

Ar exp (—io) exp (—isy)
Ar .

—U €xXp (—l(swp)

Ao

UF:

(30
(€2))

The exponential term in eq. (31) depends only on the background
structure, and we can therefore estimate the stationary-phase field
around a central ray path by evaluating this term.

To investigate the behaviour of the phase term in eq. (31), let us
consider an explosive source for which the azimuthally dependent
radiation effect can be ignored, and assume that amplitude variation
in the background structure is smooth and differences of epicen-
tral distance along a central ray and along perturbed rays are small
enough so that the differences in geometrical spreading can be ig-
nored. In such circumstances, we can assume that A ~ 4, near the
central ray path, and the perturbed waveform can be represented
as

Ur & Uy exp (—idyp) = Uy exp <—En2M ) (32)

An example of the stationary-phase function exp(— %i n® M) for
ray paths to CAN and NWAO stations is given in Fig. 9(a). Surface
wave rays are traced on a 40 s Rayleigh wave phase-speed model ob-
tained from a 3-D Australian Continent model of Debayle & Kennett
(2000). Throughout this study, this 3-D model is used to reconstruct
2-D phase-speed maps. Crustal corrections for these phase-speed
maps are made by using the 3SMAC model (Nataf & Ricard 1996).
Contours around each ray path correspond to the Fresnel zones, and
up to the eighth Fresnel zone is shown in this example.

(a) Stationary-phase field

110° 120" 130° 140° 150" 160° 170°

110° 120" 130" 140° 150" 160" 170°

(b) Stationary-phase function
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Figure 9. (a) Spatial projections of the real part of the stationary-phase function for CAN and NWAO stations. White solid lines denote geometrical rays and
white dotted lines denote corresponding great circle. Rays are traced on a 40 s Rayleigh wave phase-speed map. (b) Cross-section of stationary-phase field
along white thick-dotted lines in (a). Solid lines denote the real part of the stationary-phase function and dashed lines denote the imaginary part. Vertical dashed
lines show the first Fresnel zone and shaded areas show 1/3-width of the first Fresnel zone.
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The cross-sections of the phase function of both real and imagi-
nary parts at the middle of the source—receiver distance are shown
in Fig. 9(b). This type of function around a ray path has previously
been presented in the context of Born scattering (Aki & Richards
1980; Yomogida 1992; Marquering et al. 1998). Yomogida (1992)
obtained Fréchet kernels, which have a similar character to the phase
functions shown here, considering Fresnel zones around a ray path
for body wave case. Marquering et al. (1998) used the phase function
for a discussion of the validity of the stationary-phase approxima-
tion. Note the definition of the Fresnel zone implicitly includes a
first-order Born approximation. However, it should be emphasized
that our objective is not to try to discuss rigorous sensitivity kernels
considering scattering or diffraction, but to focus on the determina-
tion of a region around the geometrical ray path for surface waves,
in which the surface wave phases can be regarded as coherent, since
we wish to understand the scattering region appropriate to surface
wave tomography.

4.2 Extended influence zone

In geometrical ray theoheory, the waveform Uj is evaluated along a
ray (or a great circle). Thus the influence zone for U, is supposed to
be just like a delta function on the ray (Fig. 1). We now take a different
viewpoint from traditional ray theory to extend the effective zone
for the surface wavefield. We want to find the region about the ray
(the influence zone) in which the wavefield is coherent. An average
wavefield U,, over a zone X can be defined as

S5 Ur(s,. 055, n)ds dn

ffz dsdn ’

where ¥ is an area around the ray on the spherical surface and
Uk(s,, 0; s, n) is the waveform along a path which passes through a
point (s, n) and reaches the receiver (s,, 0) (Fig. 8). Using the parax-
ial approximation eq. (32), the average wavefield can be expressed
as

Uy = (33)

[ [ exp (—isyg)ds dn
~ Uy )

Uav
f 5 ds dn

(34

Thus if we require the average wavefield U,, to be approximately
equal to Uy, we require the average to be taken over an influence
zone X; such that,

fle exp (—idyr)ds dn
~ 1
fle dsdn

Eq. (35) leads us to a necessary and sufficient condition for the
influence zone,

(35

exp (—i8yF) = exp [—%nzMF(s)] ~ 1. (36)

It is clear that eq. (36) is sufficient to satisfy eq. (35). The necessity
of condition (36) arises from the fact that the denominator in eq. (35)
is a monotonically increasing real function, whereas the numerator
is a complex function that is oscillating along the n-direction. It
may be worth noting that the range of the n-integration should not
be too far away from the central ray, because we have assumed that
both the spatial amplitude variation and the differences of epicentral
distances between rays should be small in the region under consid-
eration (see eq. 32). Note that condition (36) is also valid for the
geometrical ray theory in which n-integration in eq. (34) is sim-
ply evaluated just on the central ray, that is, n = 0; this satisfies
condition (36) exactly, i.e. exp(—i0) = 1.
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The influence zone for the surface wave paths, which satisfies the
necessary and sufficient condition (36), can be readily found from a
diagram of the stationary-phase function (Fig. 9b). We can recognize
a fairly flat area around a central ray (n = 0) in the real part of the
phase function, whilst the imaginary part is close to zero. Now we
will focus on this region to determine the influence zone. For this
purpose, we use the condition for wavefield coherence in an integral
form, eq. (35), to investigate the zone that may have significant
effects on the total wavefield. Condition (35) can be rewritten using
eq. (29) as

L2 exp [—i /2n> M(s)] dn ds

nyW(s)
nyW(s)

j;) f nyW(s) dnds
where A is aray length, ¥ (s) is a half-width of the first Fresnel zone
at a point s on the central ray, and n; is a coefficient for determining
the width of a region to be integrated. n, is normalized to be 1.0 for

the first Fresnel zone. Considering the real and imaginary parts of
1(n;), the condition (37) can be reformed as

Re{l(n;))} ~1 Im{l(n;)}~0. (38)

I(n;) =

~ 1, 37

Fig. 10 shows diagrams of the real and imaginary parts of /(n;)
as a function of the normalized coefficient ;. The criteria can be
satisfied exactly only at the central ray path. We, therefore, need to
set threshold values that satisfy eq. (38) reasonably well such as

Re{I(n))} = 0.9 [Im{I(n)} <0.1. (39)

Atthe 1/3-width of the first Fresnel zone (i.e. n; = 1/3), we find that
Re{I(n;)} = 0.98 and |Im {/(n;)}| =~ 0.1 (Fig. 10), which satisfies
the condition (39). This area can be regarded as the influence zone
over which the perturbed waveforms are fairly coherent in phase;
giving a constructive interference for surface wavefields within the
influence zone, whilst outside there is rather a destructive interfer-
ence caused by the rapid fluctuation of the phase function, as shown
in Fig. 9(b).

Since the width of the Fresnel zone is proportional to the square
root of the phase differences between the central ray path and a
neighbouring ray path (see eq. 21), the condition on the size of the
influence zone can be written in a similar form to eq. (17),

8wl = [wi + v —¥R| = 5

The choice of the 1/3-width of the first Fresnel zone as the influence
zone may seem to be somewhat arbitrary, but this is a reasonable
choice as discussed in the following section in the context of the
uncertainties in actual phase-speed measurements.

We should recall that the paraxial Fresnel zone shrinks to 0 at
the source, receiver and caustic points. However, the radius of the
first Fresnel zone at these points are approximately A /2. Thus the
radius of the influence zone at the source and the receiver is expected
to be 1/6. A similar argument may be applied along the path and
the influence zone can be extended slightly beyond the positions of
source and receiver (see Appendix B).

Examples of the influence zones for the ray paths in Fig. 9(a) are
shown in Fig. 11 for fundamental-mode Rayleigh waves at 40 and
100 s. The width of the physical rays become wider for longer period
waves, because the width of the Fresnel zone is proportional to the
square-root of the product of the phase velocity and the period of
the waves as shown in eq. (23). In Fig. 12, physical rays for both
the fundamental and the first higher-mode Rayleigh waves at 40 s
are displayed. These rays pass through a region with moderate (not
smooth) heterogeneities near the continent—ocean boundary in east-
ern Australia. For the fundamental mode, the great circle between

(40)
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Figure 10. (a) Real part of an integral function /(n;) as a function of
coefficients for a distance from the central ray path n;. Note that n; is
normalized so that n; becomes 1 at the first Fresnel zone. (b) Same as in (a)
but for the imaginary part of /(n;). Lateral dashed lines show the criteria
for the influence zone (see eq. 39) and shaded areas show 1/3-width of the
first Fresnel zone (n; = 1/3).

the source and the receiver grazes along the edge of the influence
zone, whilst the ray for the first higher mode passes the other side of
the great circle. In such a case, we will need to take into account both
the different influence zones as well as the different ray paths for
each mode. Such effects cannot be treated with the traditional geo-
metrical ray theory and with the great-circle approximation. Thus,
physical rays in phase-speed structures provide us with the possi-
bility of enhancing the current methods of surface wave analysis,
even with moderate lateral heterogeneity for which geometrical ray
theory and the approximation of wave propagation along the great
circle tend to breakdown.

4.3 Evaluation of the influence zone

We now discuss the nature of the influence zone defined in the
previous section. First, let us look at the stationary-phase function in
the time domain as a function of distance from a ray. Fig. 13 displays
the phase function in the time domain with a narrow-frequency band
around 25 mHz (40 s)atn; = 0, % and 1 (where n; = 1 corresponds
to the half-width of the first Fresnel zone). The phase function at
ny= % is quite coherent with that at n; = 0 with only a very slight
phase shift. This small phase shift is equivalent to the maximum
differences in arrival time of a wave along a central ray and that
along a neighbouring ray within the influence zone. The arrival-
time delay within the influence zone can be estimated analytically.
The width of the Fresnel zone is proportional to the square root of
the period 7' ofthe wave (see eq. 23), so that the 1/3 width of the first
Fresnel zone depends on 1/9 of the period. Since the first Fresnel
zone is defined as the half-period zone, the arrival-time delay §7 for
the influence zone can be estimated as 7 x (3)* = 7 T, which is
equivalent to around 5.6 per cent of the period 7. For 40 s surface
waves, 6T ~ 2.2's.

As we have explained in the previous section, the surface wave-
fields within the influence zone are assumed to be coherent. In other
words, we cannot distinguish surface waves along different paths
that are passing inside the influence zone. However, phase coherence
tends to be violated as the perpendicular distance from the central
ray becomes large. This effect can be investigated considering the
differences in a path-average phase speed along the central path and
that along a neighbouring path near the edge of the influence zone as
follows. Let us consider the phase of a surface wave along the central
ray, X /¢, and that along a neighbouring ray, w(X + §X)/(¢ + §¢),
where X and ¢ are the ray length along the central ray and the corre-
sponding path-average phase speed, respectively. §X and §¢ are the
differences in ray length and in path-average phase speeds between
the central and neighbouring rays. Here, we ignore the effect of the
initial phase from the source and only consider the propagation ef-
fect on the phase, assuming that these phase along different rays
within the influence zone is coherent and approximately identical,
wX (X +6X)

& etee
If we put 8¢ = &¢, where ¢ is a small parameter, which corresponds
to an uncertainty in the perturbation of the path-average phase speeds
along different ray paths, then, ¢ can be represented as
€= 6—? ~ 2( (42)

c X

For our definition of the influence zone, 6 X = %)\(%)2 = 1—18)L. Now,
let us think about Rayleigh waves at 40 s, for which the phase ve-
locity is around 3.9 km s~!. A typical epicentral distance in regional
tomography is around 3000 km. In this case, from eq. (42), the dif-
ference in the average phase velocity along a central ray and that
along a neighbouring ray near the edge of the influence zone is less
than 0.3 per cent of the phase velocity. This value is equivalent to or
less than the errors in measured phase speeds, which supports the
validity of the phase coherence within the influence zone. Note that
the estimated errors of phase speeds from eq. (42) become large for
longer periods, because it is proportional to the wavelength. There-
fore, the coherence in phase within the influence zone becomes
worse for longer periods.

The above argument for the validity of the phase coherence also
raises a very important aspect of phase-speed measurements at finite
frequency. The phase speeds of surface waves are generally mea-
sured along the great-circle paths and inevitably have some error in

(41)
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Figure 11. Physical rays of the fundamental-mode Rayleigh waves for two paths to CAN and NWAO stations at 40 s (top) and 100 s (bottom) with correction
at the source and receiver. Shaded elliptical areas show the influence zone, dashed ellipsoid show the first Fresnel area and dotted lines show corresponding

great circle.

measurement. As we have seen, the apparent phase-speed changes
in eq. (42) introduced by deviations in the ray path within the in-
fluence zone will generally be less than the errors in phase-speed
measurement. For lower-frequency surface waves we can therefore
regard the measured phase speeds as an average over the influence
zone, rather than an average along the great circle (or the appropriate
ray).

Within the influence zone we cannot distinguish scattered waves
from bent rays because they have such a similar phase. We
can therefore treat the entire influence zone as being equivalent
when inverting for phase-speed maps, and employ an area av-
erage of the surface wave phase over the influence zone. Be-
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cause this zone is chosen so that there is very little variation
in phase, we do not need to employ a rigorous calculation of
the sensitivity kernels, which gives considerable computational
savings.

However, outside the influence zone the phases are not coher-
ent. Once we include such paths we need to employ full sensitivity
kernels around the central ray paths to accommodate the effects of
scattering and diffraction. Such sensitivity kernels for phase-speed
structures are discussed in more detail in a future publication.

The influence zone defined in the previous section is based on a
number of assumptions. However, we can justify the validity of these
assumptions in the following way. Since the influence zone is not
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160°

Figure 12. Physical rays of the fundamental mode (black solid ellipsoid)
and the first-higher mode (grey-shaded ellipsoid) to CAN station. Correc-
tions are applied at the source and receiver locations. Geometrical rays of
these paths are shown in black (the fundamental mode) and white (the first-
higher mode) dashed lines. Rays are traced on a 40 s Rayleigh wave phase-
speed model. A black dotted line shows the corresponding great circle.

too wide and lies close to the central ray (Fig. 11), the azimuthally
dependent radiation effects from a double-couple source may be
ignored in a good approximation, except near a nodal direction. The
small width of the influence zone also helps to justify the assumption
of small spatial amplitude variation and also that of small changes
in epicentral distances between rays in the zone. We should note that
these assumptions become worse as the period of waves becomes
longer and as the mode-branch number increases, because the width
of the influence zone becomes wider for these waves.

Stationary-phase function in time domain

T T T T T
900 1000 1100
time (sec)
Figure 13. Inverse Fourier-transformed stationary-phase function with a
narrow-frequency band around 40 s. The phase function in time domain at

n = 0 is shown as a solid line, that at » = 1/3n, where n; is the radius of
the first Fresnel zone, as a dashed line and that at » = n; by a dotted line.

The finite-width rays can also be used to estimate the limits on
lateral resolution in surface wave tomography. The typical width
of physical rays for a 40 s Rayleigh wave with epicentral distances
of 3000 km is around 200 km. If two physical rays crossover, the
diagonal spread of the crossover region should be slightly larger than
the width of the influence zone of the rays (Fig. 11). The estimated
lateral resolution for regional surface wave tomography is around
300 km (e.g. Debayle & Kennett 2000). Therefore, the scale of
lateral resolution of the tomography is fairly consistent with that of
the width of the physical rays, indicating the utility of the concept
of the influence zone.

5 DISCUSSION

By using the FRT technique, we have defined the influence zone
for surface waves by considering a bundle of neighbouring rays
around a ray path. Our definition of the influence zone is that surface
waves are coherent in phase within the zone, which implies that the
scattered energy within this zone affects the total surface wavefield
in a constructive way. The estimated width of the influence zone is
approximately one-third of that of the first Fresnel zone.

The influence zone for surface waves defined in this study can
be applied simply in 2-D phase-speed inversions. In such a case,
the phase speeds measured from observations are no longer just
a ‘path average’, but can be regarded as an ‘area average’ within
the influence zone. From the perspective of finding a realistic Earth
model, the difference will be a slight blurring of the phase-speed
maps. The use of the physical rays is more appropriate than the use of
geometrical rays, in that the realistic finite-frequency effect of wave
propagation can be taken into account in tomographic inversion.
Vasco et al. (1995) have applied simple Fresnel volumes for body
waves (corresponding to a Fresnel ‘area’ for surface waves) using a
similar technique to this study based on the method of Cerveny &
Soares (1992). They have shown that tomographic inversions with
the Fresnel volumes provide comparable models to those obtained
using rigorous sensitivity kernels, which requires considerably more
numerical computation.

In most studies of 2-D and 3-D sensitivity kernels, there are
prominent variations in sensitivities along the path, that is, the
maximum sensitivities appear in the vicinity of the source and re-
ceiver. Vasco et al. (1995) have also suggested that such variations of
the sensitivity along the path can be considered by normalizing the
Fresnel volume by its elliptical cross-section area perpendicular to
the path (corresponding to the width of the Fresnel area in the
2-D case). This results in a sensitivity peaked at the source and
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receiver locations. Such an approach can also be applied to the
influence zone in this study, when we apply it to inversions for
phase-speed maps, and provides a means of coping with errors
in source location. If locations and neighbouring structure of the
source and receiver are fixed, there are then strong latent contribu-
tions from the sensitivity kernel, but these do not influence the actual
results.

In the application of the influence zone to surface wave tomog-
raphy, it may be worth applying a weight function perpendicular to
the central ray to reduce the errors arising from the slightly larger
phase differences near the edge of the influence zone. If scattering
effects are conspicuous in the observed waveforms and we need
to consider scattering effects outside the influence zone, some rig-
orous calculations for sensitivity kernels will be necessary to take
into account the complex effects of scattering and diffraction, which
may interfere rather destructively with the total wavefield. As long
as we are working with intermediate period waves (say longer than
40 s), strong scattering effects are not expected in the real Earth.
However, as the period of interest becomes shorter, we may need to
consider the effects of scattering or coupling between mode branches
(e.g. Kennett 1984; Kennett & Nolet 1990; Marquering et al.
1999).

One of the significant advantages of the FRT technique is that oft-
great-circle propagation can be treated effectively. Since the width
of the Fresnel zone around a ray path depends on the phase-velocity
gradient, which is evaluated on the central ray, the influence zone
should be obtained around an actual ray rather than around a great
circle. However, this may not be critical issue, since the great circle
and the actual ray path are very close to each other if the great circle
lies in the influence zone.

The concept of the influence zone also gives us an insight into the
validity of the great-circle approximation, which has been widely
used in most studies of surface wave tomography. Since the influence
zone is defined so that the waveforms within the area are coherent,
we may say that phases of surface waves along rays passing out of
the influence zone are no longer coherent with the phase along the
central ray path. In other words, if the great circle lies outside of the
estimated influence zone for a model, the waves along an actual ray
and the corresponding great circle should be significantly different,
which may result in mislocation of heterogeneity in tomographic
models.

Since the FRT approach relies on paraxial ray theory, which
is based on a high-frequency approximation, a velocity structure
should not vary appreciably within the width of the Fresnel area.
Recent tomography models in regional scales (e.g. Debayle &
Kennett 2000) have shown quite large velocity variations (over
£10 per cent) in the uppermost mantle, although these models
are still derived from the assumption of wave propagation along
the great circle. Such models with moderate lateral heterogeneities
seem to be at the limit of the ray-based technique and the great-circle
approximation is about to be violated. Even though our approach is
still based on similar limitations to the conventional ray theory, we
may slightly extend the limit of the ray-based method by introduc-
ing ray tracing and considering the effects from surrounding regions
about a surface wave ray path to take into account the off-great-circle
propagation as well as the finite-frequency effects.

The method of FRT is simple and computationally effective and,
therefore, allows us to apply it in large-scale inversions. Although
the scattered waves coming from outside the influence zone cannot
be fully treated with our approach, such scattering effects seem not
be so important in the intermediate period range (40—150 s). We
are now able to deal with ray paths with finite widths as well as the
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deviations in propagation from the great circle in a simple, compu-
tationally efficient form. The recent development of a technique of
the multimode dispersion measurements for regional surface waves
(Yoshizawa & Kennett 2002a) allows us to reconstruct multimode
phase-speed maps on regional scales. Together with such multi-
mode information and the influence zone for phase-speed structures,
we can envisage a new approach for reconstructing a 3-D image
of the upper mantle from multimode surface waves (Kennett &
Yoshizawa 2002). The concept of the influence zone presented here
should be of great help in extending the current methods of surface
wave tomography, which have commonly been based on geometrical
ray theory and on the approximation of great-circle propagation.
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APPENDIX A: PARAXIAL RAY
APPROXIMATION IN A RAY-CENTRED
COORDINATE SYSTEM

In this appendix, we will derive an explicit formulation for a second

partial derivative of i based on the paraxial ray approximation. We

first consider the Taylor expansion of the phase ¥ around a point on

the ray (s, 0) at fixed s,

oY (s, n) N an a2¢(s,n)
on 2 an?

n=0 n=0

V(s,n)=1Y(s,0)+n (A1)

neighbouring ray

Figure A1. Ray coordinate system. (s, m) is evaluated from a ray passing
through that point and another orthogonal coordinates (s’, m’) is introduced
for all rays. So that the direction of m is always perpendicular the ray and
tangent to the wave front.

Since the wave front is perpendicular to the ray in ray-centred
coordinates,

oY(s,n)

=0, A2
o (A2)

n=0

and so the phase ¥ at (s, n) can be expressed as

(s, n) = V(s 0)+ %nzM(s), (A3)

where M(s) = 32(s, n)|n=o-

Following Yomogida (1988), M(s) can be determined from the
geometrical spreading evaluated at (s, 0). For the time being, let us
introduce a ‘ray’ coordinate system (s, 71) (Fig. A1). This coordinate
system is different from the ‘ray-centred’ coordinate system. In ray-
centred coordinates, the central ray is fixed and a neighbouring point
(s, n) is represented by a perpendicular distance # from a point (s, 0)
on the central ray (Fig. 3), whilst in ray coordinates, s is measured
along a different ray path passing through the point (s, m) which is
under consideration. In other words, we need to consider different
coordinates for points on different ray paths as seen in Fig. Al. For
the points on the central ray in a ray-centred coordinate system, the
‘ray’ (s, m) and ‘ray-centred’ (s, n) coordinates will be the same.

In the ray coordinates for 2-D case, the Laplacian of the phase v
can be written as

1 d [ hy oy o (h oy

Vi = — | == — ==, A4

v hih, [85 (h1 8s> +8m (h2 om (A4)
where /1, and &, are scaling factors for s and m, respectively. In this
rey-coordinate scheme, s is always a tangent to the ray path and m
is perpendicular to the ray path, resulting in
d a
W _ 2 W _,

k= —,
as c om

(A5)
Substituting (AS) into (A4) with the scaling factors &y = 1,h, = J,
w|d (J 0 (w o dJ
Viy==—|—(=]|==(- —_—, A6
v J|:3s<c>} Bs(c>+cjds (46)

where the constant J is assumed to be a function of s. The scaling
factor h, = J corresponds to the geometrical spreading.
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Next let us return to ray-centred coordinates (s, n) and investigate
the relation between M and J. By differentiating (A3) with respect
to s and n,

Iy 1 ,dM

=k+-n*"—, A7
as —|—2n ds (A7)
d
W _ oy, (A8)
on

The Laplacian of the phase i in this case can be obtained from (A7)
and (A8),

2 2
V2| = (3 LA ‘”) 0 <9> MG, (A9)
n=0

We then find the relation between M and J by comparing (A6) and
(A9),
o dJ(s)
T els)J(s) ds
Since we already know the geometrical spreading J as in eq. (13),
the evaluation of M(s) is straightforward.

In (A10), we need to differentiate J with respect to s. This can be

done analytically using eq. (13) and the derivative can be expressed
in terms of the solutions of the DRT eqs (6)—(8),

M(s) (A10)

dJ 1 .00 9¢ ) o
— = —|—sin{ — — +sinf —( cosfcosf—
ds J 8;‘0 8{0 8;0 8{0
—cotesing“ﬁ +C0$§3_§ (A11)
9% 3% )]

APPENDIX B: CORRECTION
OF THE PARAXIAL FRESNEL
AREA AT SOURCE AND RECEIVER

The radius of the paraxial Fresnel area in eq. (23) shrinks to 0 at the
source and receiver locations because the geometrical spreading J
disappears there. However, as seen in Fig. 6, the exact Fresnel area
should have a finite radius even at such singular points. Correction
of the paraxial Fresnel area can be made by considering the simple
geometry around the source and the receiver (Fig. B1).

We pay attention only to the source region as shown in Fig. B1.
To extend the paraxial Fresnel area around the source location, it is
sufficient to consider two points F, and F,. Let us consider a path
AF,B; in the far field, we can expect A5 « AR, so that AB~ Ak
Using eq. (24), the radius of the paraxial Fresnel area Ai” at the
source can be given as

A

Al ~ 3 (B1)

© 2002 RAS, GJI, 149, 440-453

Surface wave influence zone 453

n

paraxial Fresnel area

exact Fresnel area

Figure B1. Illustration of the correction of the paraxial Fresnel area at the
source and the receiver.

For a path AF, B along the ray, we can extend the paraxial Fresnel
area slightly over the source position. In this case, AE = AL + AB.
Inserting this relation into eq. (24),

A =2 (B2)

The location of the point F,, relative to the source can be obtained
from an extrapolation along the ray.

The extended paraxial Fresnel area can be obtained from inter-
polation of such points surrounding the source on the boundary of
the first Fresnel zone. The corrections for the receiver and caus-
tics can be similarly made by following the same procedure as
above. The correction of the influence zone at these points is ob-
tained in a similar fashion; we can evaluate the radius of the zone
to be one-third of that of the first Fresnel zone, i.e. A" ~ 1/6 and
AR~ /12,



