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S U M M A R Y
This work deals with reconstruction of non-smooth solutions of the inverse gravimetric prob-
lem. This inverse problem is very ill-posed, its solution is non-unique and unstable. The stable
inversion method requires regularization. Regularization methods commonly used in geo-
physics reconstruct smooth solutions even though geological structures often have sharp con-
trasts (discontinuities) in properties. This is the result of using a quadratic penalization term as
a stabilizing functional. We introduce the total variation of the reconstructed model as a stabi-
lizing functional that does not penalize sharp features of the solution. This approach permits
reconstruction of (non-smooth) density functions that represent blocky geological structures.
An adaptive gradient scheme is shown to be effective in solving the regularized inverse prob-
lem. Numerically simulated examples consisting of models with several homogeneous blocks
illustrate the behaviour of the method.
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1 I N T R O D U C T I O N

The gravimetric inverse problem is to determine Earth’s density dis-
tribution from measurements of gravity (or its derivatives) on the
surface or in boreholes. This problem is (intrinsically) non-unique,
and its numerical solution is unstable: small variations in the data
can cause large variations in the solution. Moreover, gravity data
can only be measured at discrete points and are contaminated with
noise; hence there are always some deviations of the measured data
from the true gravity field. Different regularization techniques have
been developed to stabilize the inverse problem and ensure that the
solution constructed numerically is close, in some sense, to the true
solution. There is extensive literature on this subject (e.g. Tikhonov
& Arsenin 1977; Lavrentiev et al. 1980). Inversion methods com-
monly used in geophysics aim to recover a smooth model by includ-
ing a regularizing term that penalizes sharp changes in properties
(e.g. ‘Occam’s’ inversion; Constable et al. 1987). Smoothing regu-
larization operators are based on using L2 norms, in which case the
optimization problem is quadratic; its solution is given by a solution
of a linear equation. Most methods give good results for smooth
models; however, they are not able to recover blocky structures or
non-smooth density distributions. But blocky structures, such as
faults, mineral bodies, dikes, etc., with abrupt changes of properties
are often the targets of geophysical exploration. Efforts to recover
sharp density contrasts in the gravimetric problem are successful
when the shape of the anomalous body, its mass centre, or some
other geometric characteristics are available as a priori informa-
tion. Using such information, Green (1975) constructs a varying

background model. Last & Kubik (1983) minimize the total volume
of the body of anomalous density. Guillen & Menichetti (1984)
minimize the inertia of the body. In order to increase the depth res-
olution, depth weighting is introduced in Li & Oldenburg (1998).
Portniaguine & Zhdanov (1999) discuss several other stabilization
functionals.

We introduce an alternative regularization that can handle blocky
geological structures with discontinuities in properties. We propose
to use the total variation (TV) stabilizing functional to drive the so-
lution to blocky structures. Use of total variation functionals was
developed in image reconstruction to restore sharp edges and high
contrast images (Rudin et al. 1992); it is also used in electrical
tomography (Dobson & Santosa 1994). The variation of a func-
tion (Giusti 1984) is a total change of the values of the function
in the domain. It sums up the jumps of the function at disconti-
nuity points and its variation in the domains where the function is
continuous. When the function is differentiable, its variation can be
expressed as L1 norm of the derivative in 1-D case, or of the gradi-
ent in 2- or 3-D case. Introducing a total variation functional leads
to a non-quadratic minimization problem, the solution of which is
more computationally expensive than the solution of a quadratic
problem. We use an adaptive gradient algorithm to minimize the
objective functional that combines the data misfit with the total
variation of the solution. Numerical simulations show that an inver-
sion scheme regularized by the total variation functional can recon-
struct non-smooth features of the density distribution. This can be
a very desirable feature for many inverse problems in geophysical
exploration.
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2 T H E I N V E R S E G R A V I M E T R I C
P R O B L E M

The inverse gravimetric problem is to determine the distribution
of the density inside the earth from the measurements of the grav-
ity field on the surface. First, consider the forward problem. Let a
domain � ∈ R3 be a subsurface domain with a spatially varying
density of the mediumρ(r), r = (x, y, z). The gravitational potential
u(r) generated by this density function satisfies Poisson’s equation
inside the domain �:

�u(r) = −4πγρ(r), r ∈ �. (1)

Here γ is universal gravitational constant. Further we drop constant
γ as scaling does not affect the properties of solution. The coefficient
4π in the righthand side is changed to 2π when we deal with 2-D
problem. Using the fundamental solution G(r′, r), the solution of
eq. (1) at the point r′ can be written as

u(r′) =
∫

�

ρ(r)G(r′, r) dr. (2)

Most gravimeters measure the intensity F of the gravity field
(force), i.e. the component of the field in the direction of the field
itself. This can be described (Backus 1968) by a non-linear boundary
condition |∇u| = F . The problem is then linearized near the first
approximation of the solution that is given by the gravitating mass
in the centre of the Earth. Hence the linearized problem amounts
to a problem with the vertical derivative of the potential u on the
boundary. This corresponds well to an assumption that the measured
data are values of the vertical derivative of the gravitational potential
due to an anomalous mass distribution. We notice that this problem
is well posed contrary to a similar problem for magnetic potential
(Backus 1970), where the linearized problem is one with an oblique
derivative boundary condition (Cherkaeva 1990) and the presence of
magnetic equator completely changes the character of the problem.

Hence, we assume that the measured component of the gravity
field, a function g, is the vertical derivative of the gravitational po-
tential, which is related to the density ρ (see eq. 2) through the
integral equation:

g(r′) =
∫

�

ρ(r)K(r′, r) dr, (3)

where the kernel of the integral operator K(r′, r) in 2-D is given by:

K(r′, r) = ∂

∂z′ ln
1

|r − r′| = z − z′

|r − r′|2 , (4)

and in 3-D case is:

K(r′, r) = ∂

∂z′
1

|r − r′| = z − z′

|r − r′|3 . (5)

To solve the inverse problem, we need to solve the integral equa-
tion (3) with the known function g (or samples of g). Solution of this
inverse problem is very non-unique. This can be easily demonstrated
by representing the gravitational potential by a single layer potential
imitating a thin layer of masses on the boundary of the domain �. In
case of only Newtonian potentials (that correspond to volume mass
distribution), the inverse problem is also very non-unique. We show
an example demonstrating non-uniqueness of solution of this prob-
lem in Appendix A. Uniqueness can be achieved if we constrain
the set of functions that can serve as density distributions. This
corresponds to introducing a priori physical information. The first
results on uniqueness of reconstruction of a starlike object of con-
stant density are obtained by Novikov (1938). Strakhov & Brodsky

(1986) derived conditions for a unique solution of the inverse poten-
tial problem for polygonal structures. Constraints for the solution
stemming from the requirement of positivity of the density function
are considered by Sabatier (1977). The inverse gravity problem is
a particular case of the inverse source problem, the non-uniqueness
of its solution being discussed in detail by Isakov (1990).

Further we assume that we deal with the gravitational potential
described by the eq. (2) and vertical component of the gravity field
given by (3). Eq. (3) is a Fredholm integral equation of the first kind
(for ρ) and can be written in operator form

Kρ = g. (6)

The operator K is compact. Hence it can be shown that the inverse
operator K −1 is not continuous. This implies that the solution ρ does
not depend continuously on the measured data. The inverse problem
is unstable as well as non-unique. We assume that non-uniqueness
can be overcome in the standard way by constraining the solution
space. We concentrate here on the problem of stable reconstruction
of a non-smooth solution.

3 Q U A D R A T I C S T A B I L I Z A T I O N

A common way to solve inverse problems is by minimization of the
objective functional that combines least square data misfit functional
and a stabilization term penalizing non-smooth and fast oscillating
solutions. To formulate an objective functional, we consider least
square minimization of the data misfit

min
ρ

P(ρ, g) = min
ρ

‖Kρ − g‖2
2. (7)

To obtain a stable solution using the Tikhonov regularization ap-
proach, the penalization functional J (ρ) is introduced in the problem
(7). This leads to a regularized minimization problem:

min
ρ

Pα(ρ, g) = min
ρ

(‖Kρ − g‖2
2 + α J (ρ)

)
, (8)

where α is a parameter of regularization, which depends on the data
noise level and can be controlled by the interpreter. In absence of
exact knowledge of the noise level, L-curve or heuristic (or empiric)
methods are used (Hansen & O’Leary 1993).

The choice of the functional J (ρ) is very important because it sig-
nificantly influences the solution. It determines a class of functions
that can be minimizers of this problem. Some popular quadratic
stabilization functionals (e.g. Tikhonov & Arsenin 1977; Constable
et al. 1987; Kolesova & Cherkaeva 1987; Bassrei 1993; Bertete-
Aguirre & Xavier 1994) are the L2 norm of the solution

J0(ρ) = ‖ρ‖2
2 =
∫

�

ρ2(r) dr, (9)

or the L2 norm of its derivatives:

J1(ρ) = ‖∇ρ‖2
2 =
∫

�

|∇ρ(r)|2 dr. (10)

Here the vector ∇ρ(r) is the vector of the gradient of the function
ρ(r)

|∇ρ(r)|2 = ρ2
x + ρ2

y + ρ2
z . (11)

The solution of the optimization problem (8) is provided by the
solution of the Euler–Lagrange equation that can be obtained vary-
ing the functional Pα(ρ, g). As an example, we consider the problem
with J1(ρ) stabilization functional. The Euler-Lagrange equation for
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this problem is derived in Appendix B. It can be written in operator
form convenient for discretization:

(K ∗K − α�)ρ = K ∗g. (12)

Problem (12) is linear. After discretization, it can be solved by direct
calculation of the inverse (or pseudo-inverse) of the matrix (K ∗K −
α�). Analogous derivation for the problem with the functional J0

leads to an equation similar to eq. (12), where identity operator takes
place of the laplacian.

4 S M O O T H I N G B Y A Q U A D R A T I C
S T A B I L I Z I N G F U N C T I O N A L

The considered functionals effectively stabilize an otherwise un-
stable solution, but they perform stabilization by suppressing the
high frequency content of the reconstructed function. This leads to
smoothing of the recovered density function. To show this smooth-
ing property of quadratic stabilizing functionals, we consider eq. (3)
in Fourier domain. Properties of potential fields in the frequency
domain are well studied in Bhattacharyya (1967), Parker (1973)
and Strakhov & Valyashko (1984) among others. We assume a 3-D
problem with a cartesian coordinate system, measurements are taken
on the plane S = {(s′, z′) : z′ = 0}, with s′ = (x ′, y′). We take
Fourier transform of both sides of (3) with the kernel K given
by (5):

ĝ(t) =
∫

�

ρ(r)z

∫
S

e−i(t·s′)

|s′ − r|3 ds′ dr. (13)

Here (t · s′) = τ1x ′+τ2 y′ with t = (τ1, τ2) being Fourier frequencies.
From Erdelyi et al. (1954), the integral over S can be estimated,
yielding:

ĝ(t) = 2π

∫
�

ρ(s′, z)e−i(t·s′)e−τ z ds′ dz, τ = |t|. (14)

To continue, we simplify the model and assume that the density ρ is
confined to a volume between two horizontal planes at the levels z1

and z2, z1 < z2, and in this volume, is constant in vertical direction,
ρ(x, y, z) = ρ(x, y) for z ∈ (z1, z2). Then,

ĝ(t) = 2π

∫
S

∫ z2

z1

ρ(s′, z)e−i(t·s′)e−τ z ds′ dz. (15)

For this model, calculation of the last integral immediately gives,

ĝ(t) = ρ̂(t)e−τ z1ητ−1, η = (1 − e−τ�z), (16)

with �z = z2 − z1. The reconstruction of the function ρ leads to
inverse relationship:

ρ̂(t) = ĝ(t)τη−1eτ z1 , (17)

which shows immediately that the problem is exponentially ill-
posed, and any arbitrary small high frequency noise present in the
measurements grows without bound being multiplied by the expo-
nential term eτ z1 . Therefore, to avoid unstable reconstruction al-
gorithms, we introduce regularizing constraints. For the problem
with the functional J0, optimality conditions lead to the regularized
solution with the Fourier transform ρ̂0(t):

ρ̂0(t) =
[

e−τ z1η

e−2τ z1η2 + ατ

]
ĝ(t). (18)

For the problem with the functional J1, Fourier transform of the
regularized solution ρ̂1(t) satisfies

ρ̂1(t) =
[

e−τ z1η

e−2τ z1η2 + ατ 3

]
ĝ(t). (19)

Eq. (19) is a Fourier transform of eq. (B9) resolved for the function
ρ. Eq. (18) is obtained similarly from the analogous (B9) equation
for the functional J0. The terms ατ and ατ 3 in the denominator
show the regularizing effect of the added stabilization functionals:
for large values of τ the impact of the first term is negligibly small.
The comparative value of the two terms in the denominator shows
how much the solution is perturbed due to the regularized scheme.

The quadratic functionals discussed are easy to implement, they
lead to computationally efficient numerical schemes. However, due
to the presence of the terms ατ and ατ 3 in (18) and (19), these
numerical schemes impose restrictions on the ‘sharpness’ of the
solution.

5 N O N - S M O O T H R E G U L A R I Z A T I O N

An alternative to smooth regularization is to use a functional that
does not penalize sharp changes in properties (discontinuities). A
number of such functionals has been recently introduced in inversion
schemes dealing with image processing. These functionals usually
have a form

J (ρ) =
∫

φ(ρ), (20)

where the function φ(ρ) is chosen to be a non-quadratic, as in Geman
& Yang (1995),

φ(ρ) = |∇ρ|2
1 + |∇ρ|2 , (21)

or as in Morel & Solimini (1995):

φ(ρ) = |∇ρ|p, p > 1. (22)

Smoothing functionals J0 and J1 are also particular cases of eq. (20),
however, with a quadratic function φ(ρ). When φ(ρ) = ρ2, we
obtain the functional J0. If p = 2 in (22), this leads to the functional
J1.

To prevent penalization of sharp changes of the density function
in the minimization problem, we use the variation of the solution
ρ in the domain � as the stabilizing functional:

min Pα
TV(ρ, g) = min

ρ

(‖Kρ − g‖2
2 + α JTV(ρ)

)
. (23)

The variation of a function (Giusti 1984) is a total change of the
values of the function in the domain. It sums up the jumps of the
function at discontinuity points and its variation in the intervals
where the function is continuous. When the function ρ is differen-
tiable, JTV(ρ) is:

JTV(ρ) =
∫

�

|∇ρ| dr. (24)

We will use this expression understanding that if the function is
discontinuous at some point, its variation there is just the size of the
jump. For example, if a function is zero on the interval from zero to
0.5, and then it jumps and is equal to one on the rest of the interval,
its variation is one.

The functional JTV(ρ) is a particular kind of eq. (20) when φ(ρ) =
|∇ρ|. It was considered among other functionals in a number of
works in image reconstruction. It is shown in Vogel (1997) that
the minimization problem (23) is well posed, when the operator K
is a first kind integral operator (in 2-D) with a continuous kernel.
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The gravimetric integral operator (3) (in 2-D) is a particular kind
of such operator. Similar arguments can be used to show that the
minimization problem when K is a first kind integral operator in 3-D
is well posed (Vogel 1998).

To solve (23), we derive the Euler–Lagrange equation and use
the gradient of the parametric functional in an adaptive gradient
minimization scheme. For the first term in (23), the Euler–Lagrange
equation is,

(K ∗Kρ − K ∗g) = 0. (25)

For minimization of the total variation stabilization functional in
(23), the gradient of JTV is derived in Appendix C. The resulting
Euler–Lagrange equation is

(K ∗Kρ − K ∗g) + α∇ · ∇ρ√
|∇ρ|2 + β

= 0. (26)

Because the minimization problem (23) is non-quadratic, the ob-
tained problem (26) and a corresponding problem for a smoothing
stabilizer J0 or J1 are essentially different. The problem (12) is a
linear problem and its discretization leads to a well posed finite
dimensional problem. In (26) we encounter a problem of solving
integro-differential equation, and the previous technique does not
apply. Moreover, the problem (26) is non-linear, and to develop a
solution technique, we first need to linearize it. Having rewritten eq.
(26) as

∇ · σ∇ρ = 1

α
(K ∗g − K ∗Kρ), (27)

where we denote the term (
√

|∇ρ|2 + β)−1 as σ , we can observe
that (27) is the equation of ‘conductivity type’. Data misfit plays
a role of a current source term, while the ‘properties’ σ depend
on the solution. This suggests a possible iterative way of solution
of (27) which is similar to a method used in image reconstruction
works (Rudin et al. 1992; Chan et al. 1996; Vogel & Oman 1996).
Fix ρ(r), calculate data misfit and the ‘conductivity’ σ , solve the
electric conductivity problem with data misfit taken as a source.
The solution gives an updated distribution of the density ρ(r). Take
this solution as a new fixed ρ(r), again calculate data misfit and the
‘conductivity’ σ , and so on.

The known properties of the solution of a conductivity problem
suggest also an interpretation of TV regularization and explain its
non-smoothing behaviour. The solution of a conductivity problem
is known to change rapidly and to have larger gradients in regions
of low conductivity versus an almost constant solution with zero
gradient in the high conductivity regions. For problem (27), this
means that the density function ρ changes more rapidly and has
larger gradients in the regions where the value of σ calculated from
the previous iteration is small. On the contrary, the function ρ is con-
stant in the regions where σ is very big. However, σ is the reciprocal
value of the gradient of the solution calculated on the previous itera-
tion, and it is small in the regions where the gradient of the density ρ

is large. Hence, during the course of iterations, the density function
ρ is not smoothed but becomes more and more contract to be driven
to a sharp contrast solution. This analysis shows that the total vari-
ation stabilization can be efficient in recovering non-smooth geo-
physical properties.

6 N U M E R I C A L I M P L E M E N T A T I O N

Different approaches in Rudin et al. (1992), Chan et al. (1996),
Vogel & Oman (1996) and Bertete-Aguirre (1997) have been used

to minimize problem (23). In this work, we discretize the forward
operator K and the gradient of the TV functional, and then use a
steepest descent minimization to find the solution of the regularized
finite-dimensional problem. The solution ρ is constructed as a mini-
mizer of the functional (23) using an iterative gradient minimization
scheme. We start with some large value of the regularization param-
eter α. On each iteration step k, we calculate the descent direction
�k given by negative gradient of the parametric functional (23) at
the point ρ(k),

�k = −∂ Pα
TV(ρ, g)

∂ρ

∣∣∣∣
ρ=ρ(k)

. (28)

Calculation of the former (see Appendix C) results in:

�k = −(K ∗Kρ(k) − K ∗g
)− α∇ · ∇ρ(k)√∣∣∇ρ(k)

∣∣2 + β

. (29)

Using the line search we calculate the length of the step τ in the
direction of the steepest descent which minimizes the value of the
parametric functional,

Pα
TV

(
ρk + τ�k, g

)→ min
τ

. (30)

Having calculated the value τ of the step in the descent direction,
we update the solution

ρ(k+1) = ρ(k) + τ�k . (31)

The calculated density ρ(k+1) is used for evaluating the gradient (29)
of the functional on the next iteration step. Starting with a large value
of α, the changes in the values of the functional are monitored, and
α is decreased every time when the difference in residuals is less
than a predetermined threshold.

To introduce discretization, we consider 2-D problem assuming
that the density is constant in y-direction, and represent a rectangular
domain � of the size lx × lz , as a union of small rectangular blocks:
� = {�i j , i = 1, . . . , nx, j = 1, . . . , nz}. The function ρ(r), r =
(x, z), is a piecewise constant function:

ρ(r) =
nx∑

i=1

nz∑
j=1

ρi jχi j (r), r ∈ �, (32)

where

χi j (r) =
{

1, r ∈ �i j

0, otherwise.
(33)

Substituting this in the forward operator (3), we obtain a finite
dimensional approximation:

g(r′) =
nx∑

i=1

nz∑
j=1

ρi j

∫
�i j

K(r′, r) dr (34)

with ρi j being constant. We use an analytic solution of the 2-D for-
ward gravity problem for a rectangular prism (Telford et al. 1990) to
evaluate integrals in (34). Restoring dropped universal gravitational
constant γ , we have

gi j = 2γ aρi j . (35)

Here

a = Dθ2 − dθ1 − x log

(
r1r4

r2r3

)
+ b log

(
r4

r3

)
, (36)

and all the parameters refer to the i, j-th cell of discretization. Fig. 1
shows the parameters in (35)–(36).
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Figure 1. Geometrical parameters of a prism introduced for calculation of
a generated gravitational potential.

Having discretized the subsurface region, we introduce a cell cen-
tred finite difference approximation for the gradient of the objective
functional. We use the same notation for the vectors obtained from
discretization of the functions ρ and g, and for the matrix K. Dis-
cretization of the gradient of the data misfit is straightforward. To
show discretization of the gradient of the TV functional we intro-
duce hx = lx/nx and hz = lz/nz and a discrete gradient with the
entries ∇i, j :

∇i, jρ =
(

ρi+1, j − ρi, j

hx
,
ρi, j+1 − ρi, j

hz

)
. (37)

Discretized gradient of the TV functional can be written as a 2-D
vector with the elements of the form:

∇T
i, j

∇i, jρ√
|∇i, jρ|2 + β

. (38)

Let qi, j be the term with the square root in the denominator:

qi, j = 1√
|∇i, jρ|2 + β

. (39)

Then, exploiting eq. (37) results in qi, j having the value

((
ρi+1, j − ρi, j

hx

)2

+
(

ρi, j+1 − ρi, j

hz

)2

+ β

)− 1
2

. (40)

Now, if we use (37) in (38), the i, j-th element of the discretized
gradient can be readily calculated as:

Qi j
x

h2
x

+ Qi j
z

h2
z

(41)

with

Qi j
x = ρi+2, j qi+1, j + ρi, j qi, j − ρi+1, j (qi+1, j + qi, j ),

Qi j
z = ρi, j+2 qi, j+1 + ρi, j qi, j − ρi, j+1(qi, j+1 + qi, j ).

7 R E S U L T S O F N U M E R I C A L
S I M U L A T I O N S

For numerical simulations we used several models with a piecewise
density function that exhibits sharp density contrast and sharp edges.
The first model is a model of a fault shown in Fig. 2. The observations

Figure 2. Distribution of the density for the fault model.

are performed on the earth surface in 267 stations aligned in the
horizontal direction x .

We consider initially only computer noise added during the com-
puting of the numerical solution, then we added 6 per cent Gaussian
noise to the measured data to numerically study stability and robust-
ness of the algorithm in the presence of noise in observations. The
regularization parameter was allowed to decrease until no improve-
ment in the solution was obtained due to the presence of low level
amplitude noise.

Fig. 3 shows an attempt to recover the density function when the
norm of the 2-D gradient of the solution is used as a stabilization
functional. The domain is divided in 240 cells, which turns the
problem into highly ill-posed one. The solution is obtained using
an adaptive gradient minimization. The starting model was the true
model shown in Fig. 2 with added 25 per cent random noise. Starting
with the ‘true’ model emphasizes the effect that the regularization
term has on the final model. The result of inversion is shown in
Fig. 3. The inverted density function has the correct range of values,
but it is very smooth. The inversion procedure fails to recover the
non-smooth density distribution in spite of information contained
in the starting model. The structural information contained in the
starting model was ‘smoothed’ out in the minimization procedure
due to the 2-D gradient penalty term.

Inversion results with the TV stabilization functional are shown
in Figs 4 and 5. The starting model and discretization used in this
simulation were the same as in the previous example. Fig. 4 shows
the reconstructed density function after 19 iterations as an interme-
diate result of inversion. Fig. 5 shows results of inversion of noisy
data: 6 per cent Gaussian noise was added to the gravitational obser-
vations. The reconstructed density, though not perfectly blocky, is

Figure 3. Solution for the fault model using a smoothing regularization
scheme together with the observed and predicted data on the top.
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Figure 4. TV regularization: Intermediate solution for the fault model con-
structed using the 2-D total variation regularization scheme (density function
after 19 iterations).

closer to the non-smooth function. Hence the method based on TV
stabilization is able to recover a contrast density function preserving
information available in the starting model without ‘smoothing’ it
in the stabilized inversion procedure.

As it was mentioned before, there are many practically impor-
tant situations where non-smooth density distributions give a better
picture of the earth model. Initial models presenting these features
are often available from previous research in the area, but as it was
shown, smoothing inversion techniques would not preserve this in-
formation. Results presented here show that the quadratic penalty
term smoothes the solution destroying the information about the
model sharpness even if we start from the true solution or a density
function that is very close to the true solution. On the other hand,
TV stabilization functional does not have this smoothing feature and
drives the iterative model to a more contrast density distribution.

Another model used in simulations was the dipped fault model.
The true distribution of the density is shown in Fig. 6. We dis-
cretize the 2-D density function and obtain the model consisting of
240 cells. The density function is assumed to be constant in each
cell. This discrete model roughly represents a dipped geological
fault.

In this numerical example, measurements of the vertical compo-
nent of the gravity field are simulated assuming they are taken on
the surface of the Earth. The measured vertical anomaly is shown
in the top plot in Fig. 6. Fig. 7 shows a model of the density that we
use as initial model for the density distribution starting the inver-
sion procedure. The initial model for this simulation was the true
model of the fault (Fig. 6) with added 25 per cent noise. Graphs on
the top in Fig. 7 show the vertical gravity field generated by this
model together with the measured data corresponding to the true
model. The solid line corresponds to measured data, circles ‘◦’ are
used to show data due to the initial model. This difference between
the measured data and the values calculated from the model den-
sity distribution is used to form the misfit functional and then to
compute the gradient of the misfit functional augmented with the
TV stabilization functional. Figs 8 and 9 show the evolution of the
misfit functional and of the stabilization functional during the iter-
ation scheme. In first iteration steps, the data misfit functional has

Figure 5. TV regularization: Solution for the fault model with noisy data
using the 2-D total variation regularization scheme.

Figure 6. Bottom figure shows distribution of the density modelling a
dipped fault. Top figure shows vertical gravity field generated on the surface
at 267 observation points.

almost constant value. The stabilization functional, however, fast
decreases in the beginning of iterative process. Practically, due to
large values of the regularization parameter in the beginning of iter-
ations, only the stabilization functional is subject to minimization.
Later, the data misfit functional starts to play more important role,
and the value of the stabilization functional stays almost constant.
The misfit functional fast decreases in the middle, however, later the
convergence slows down. This corresponds to the well-known effect
of slow convergence in the domain close to the minimum value of
the functional.

The inversion results using TV regularization method are shown
in Fig. 10, which demonstrates the reconstructed density function
after 179 iterations. We can see that the TV method still is able to
recover part of the non-smooth features of the true model.

The last numerically simulated model was a model of a salt dome
oil reservoir. Bottom figure in Fig. 11 shows geometry of a salt dome
oil reservoir. For this simulation, measurements are assumed to be

Figure 7. Starting model of the density distribution for the dipped fault
model. Top figure shows vertical gravity field generated by this model. Solid
line corresponds to measured data, ‘◦’ show data due to the initial model.
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Figure 8. Changing of the misfit functional in the course of the iteration
procedure (solution for the dipped fault model).

Figure 9. The values of the total variation stabilization functional (solution
for the dipped fault model).

Figure 10. TV regularization: Reconstructed density for the dipped fault
model using the total variation penalization scheme.

Figure 11. Bottom figure shows a model of the distribution of the density
for oil reservoir simulation. Top figure shows vertical gravity field generated
by this model.

taken in a horizontal borehole below the reservoir. We assume that
the measurements are contaminated with 5 per cent noise. We show
a density function for the oil reservoir in Fig. 11, the model be-
ing discretized in 240 cells. The starting model for the oil reservoir
simulation was the true model with added 25 per cent noise. The de-
structive influence of this amount of noise on the true model can be
appraised from comparison of the models for dipped fault simulation
depicted in Fig. 6 for the true model and Fig. 7 with added 25 per cent
noise. The solution of the inverse gravimetric problem for the salt
dome oil reservoir model with the TV regularization scheme is
shown in Fig. 12. The display in Figs 11 and 12 shows depth in
vertical direction so that the zeroth layer of the blocks corresponds
to the surface structures. The measurements now take place at the
horizontal borehole at the bottom of the model.

The presence of 5 per cent noise in the gravity data limits the
accuracy in the inversion scheme, which is reflected in the quality
of the recovered density distribution. However, the inversion results

Figure 12. Bottom figure gives the reconstructed density function for the
oil reservoir model. Reconstruction using the TV regularization scheme.
Top figure shows generated vertical gravity field. Solid line corresponds to
measured data, ‘◦’ show data due to the calculated density model.
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show that the TV method still is able to recover part of the non-
smooth features of the true models. In spite of the presence of noise
in the gravity data, the constructed solution is close to the true
density distribution. This illustrates numerically the stability of the
TV reconstruction algorithm.

8 C O N C L U S I O N

Stabilization of inversion methods with smoothing functionals can
result in oversmoothed reconstructions of Earth’s interior properties.
We suggest the use of the total variation of the model parameters
as a stabilization functional to preserve sharp features in inverted
models. Examples show that this approach can recover sharp con-
trast density functions. The adaptive gradient minimization shows to
be an efficient scheme for this problem. The approach is especially
effective in situations when prior information about the geological
structure is available.
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A P P E N D I X A : N O N - U N I Q U E N E S S
O F T H E I N V E R S E P R O B L E M
F O R N E W T O N I A N P O T E N T I A L

Consider a twice differentiable function u1, that is zero together with
its derivatives outside some region �1 inside the domain �. Let a
function ρ1 equal a laplacian of u1 scaled by a coefficient (−4π ).
Because the function u1 and its derivatives are zero outside �1, the
density function ρ1 is different from zero also only in the region �1,

�u1 = −4πρ1, r ∈ �1. (A1)

Now, if a true density distribution is a sum ρ + ρ1, then Poisson’s
equation becomes

�(u + u1) = −4π (ρ + ρ1), r ∈ �. (A2)

Measuring the vertical component of the gradient outside �1 we
register only function ∂u/∂z′, but not the function ∂u1/∂z′. Hence
these data give information only about the density function ρ, but not
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the function ρ1. This shows that measuring potential fields (or com-
ponents of their gradients) on the boundary of the region containing
anomalous density, we cannot distinguish a true density function in
a class of functions satisfying described requirements.

A P P E N D I X B : T H E E U L E R E Q U A T I O N
F O R Q U A D R A T I C S T A B I L I Z A T I O N
P R O B L E M

The Euler-Lagrange equation for solution of the optimization prob-
lem (8) with the quadratic functional J1, is derived varying the func-
tional Pα(ρ, g) with respect to ρ. Variation of the functional P(ρ, g)
leads to the following expression:

δP(ρ, g) =
∫

�

δρ(r)

∫
∂�

K(r′, r)

×
(∫

�

ρ(r′′)K(r′, r′′) dr′′ − g(r′)

)
dr′ dr. (B3)

Variation of the stabilization functional

δ

∫
�

|∇ρ(r)|2 dr, (B4)

gives an additional term,∫
∂�

δρ(r′)
∂ρ

∂n
dr′ −

∫
�

δρ(r)�ρ(r) dr, (B5)

where � is laplacian. The Euler equations are obtained by setting
the coefficients of δρ to zero. This permitted us to drop 2 in (B3)
and (B5). On the boundary ∂� we have,

∂ρ(r′)
∂n

= 0, r′ ∈ ∂�. (B6)

We assume that the eq. (B6) is always satisfied as we deal with an
isolated anomaly model. In the region �, we have two terms: The
first term EM , comes from varying the misfit functional, EM equals
to∫

∂�

K(r′, r)

(∫
�

ρ(r′′)K(r′, r′′) dr′′ − g(r′)

)
dr′. (B7)

The second term arrives from varying the stabilization functional
multiplied by α:

ES = −α�ρ(r). (B8)

The optimality condition requires the sum of these two terms to be
zero: EM + ES = 0. Hence, the Euler equation can be written as∫

∂�

K(r′, r)

∫
�

ρ(r′′)K(r′, r′′) dr′′ dr′ − α�ρ(r)

=
∫

∂�

K(r′, r)g(r′) dr′. (B9)

A P P E N D I X C : G R A D I E N T O F T H E
T O T A L V A R I A T I O N F U N C T I O N A L

The gradient of the total variation functional can be derived by the
following way:

δρ

∫
�

|∇ρ| dr =
∫

�

∇ρ · ∇δρ

|∇ρ| dr. (C10)

Integrating by parts recasts the previous integral as∫
∂�

δρ

|∇ρ|
∂ρ

∂n
ds −

∫
�

δρ

(
∇ · ∇ρ

|∇ρ|

)
dr. (C11)

The optimality condition is satisfied if

∇ · ∇ρ

|∇ρ| = 0 in �,
∂ρ

∂n
= 0 on ∂�. (C12)

The second of these equations is satisfied if we deal with an isolated
mass anomaly, which is a standard assumption for geophysical in-
verse problems. The lefthand side of the first equation gives us the
gradient of the TV functional.

Due to the term 1/|∇ρ| in the eq. (C12), the functional JTV is non-
differentiable when |∇ρ| = 0. To avoid singularity, we introduce a
small positive parameter β, and approximate |∇ρ| as:

|∇ρ| ∼=
√

|∇ρ|2 + β. (C13)

This corresponds to approximation of the non-differentiable func-
tional JTV by a differentiable one:∫

�

|∇ρ| dr ∼=
∫

�

√
|∇ρ|2 + β dr. (C14)

Such an approximation is continuous (Vogel & Oman 1996). The
resulting gradient of the total variation functional is

∂ JTV

∂ρ
= ∇ · ∇ρ√

|∇ρ|2 + β
. (C15)
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