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[1] Melting of a plume head can affect its dynamics by creating melt retention buoyancy. Melt
migration controls the distribution of the melt retention buoyancy and affects the dynamics of the
plume. We investigate in detail the effects of melt migration on the dynamics and partial melting of
a 20-km radius mantle diapir, using axisymmetric two-phase flow models. We first study melt
migration in a diapir with a 10% initial melt where no further melting is allowed. The diapir
dynamics are modeled for permeable and impermeable cases. In the permeable model, melt
migrates within the diapir, whereas no relative motion is allowed between melt and solid matrix in
the impermeable model. The permeable model shows a progressive increase of melt fraction in the
top portion and decrease in the bottom part of the diapir. This results in a melt buoyancy
polarization that elongates the diapir and increases its upwelling velocity. We then model the
dynamics of the permeable and impermeable diapirs allowing melting to occur. The velocity of the
permeable diapir and its melt generation are significantly larger than that of the impermeable diapir.
In general, the permeable diapirs lack the mushroom shape observed for the impermeable ones.
Because of intensive computational demand of the two-phase flow modeling, our detailed studies
are limited to small diapirs. However, we also investigate a 200-km-diameter mantle plume and
show that melt migration produces a nibble of higher melt fraction at the top of the plume that
ascends much faster than the bulk of the plume. INDEX TERMS: 8121 Tectonophysics:
Dynamics, convection currents and mantle plumes, 8145 Tectonophysics: Physics of magma and
magma bodies, 8434 Volcanology: Magma migration, 3210 Mathematical Geophysics: Modeling;
KEYWORDS: Melt migration, Mantle plume, Two-phase flow, Flood basalts, Numerical modeling

1. Introduction

[2] By crossing the solidus temperature, an upwelling mantle
plume forms a partially molten buoyant front within itself and
allows for a relative velocity to establish between melt and solid
matrix, namely, melt migration. Surrounded by an impermeable
viscous solid asthenosphere, melt migrates only within the partially
molten part of the plume. The asthenosphere is impermeable
because it does not melt or fracture. Farnetani and Richards
[1995] showed that only the material within plumes, with iso-
viscous and mildly temperature-dependent rheology, melts. Melt
can leave the front if it can hydraulically induce cracks in its
surrounding impermeable rocks. Fowler and Scott [1996] inves-
tigated the mechanism of hydraulic crack propagation and con-
cluded that the process is not viable even in a partially molten zone
lying beneath the lithosphere. Therefore melt can only reach the
base of the lithosphere by the ascent of the melting front because of
melt retention buoyancy, chemical buoyancy (arising from density
reduction of the solid matrix residue due to melting), and thermal
buoyancy.
[3] The significant difference between the density of the solid

matrix and melt makes the melt retention buoyancy the largest
source of buoyancy even when there is no melt migration. For
example, at zero pressure and 10% partial melting, melt retention
and chemical changes reduce density by 1.8% and 0.36%, respec-
tively. The density reduction due to the melt retention is equivalent

to that produced by a temperature increase of �600 K. Therefore it
is important to consider melt migration and the time-dependent
behavior of melt distribution within a plume.
[4] The problem of melt generation in mantle plumes has been

studied by many investigators [e.g., Campbell and Griffiths, 1990;
Watson and McKenzie, 1991; Arndt and Christensen, 1992; Farne-
tani and Richards, 1994; Olson, 1994; Manglik and Christensen,
1997; Schmeling, 2000]. Many aspects such as the chemical buoy-
ancy [Manglik and Christensen, 1997] and melt retention buoyancy
[Olson, 1994] have been investigated. Melt is simply removed
either instantaneously [Manglik and Christensen, 1997] or after a
certain threshold of melting [Olson, 1994]. Schmeling [2000] has
recently taken into account melt migration in an upwelling mantle
plume that is restricted to occur at melt fraction <5%.
[5] Previous works on melt migration based on two-phase flow

models can be grouped into three categories. The first category
[e.g., Scott and Stevenson, 1984, 1986; Richter and McKenzie,
1984] was concerned with the existence and properties of solitary
waves in the mantle while assuming an initial background perme-
ability. The second category [e.g., Buck and Su, 1989; Scott and
Stevenson, 1989; Su and Buck, 1993; Cordery and Phipps Morgan,
1993; Barnouin-Jha and Parmentier, 1997] investigated melt
migration beneath mid-ocean ridges while neglecting the compac-
tion of the solid matrix due to melt extraction and ignoring the
transient behavior of melt migration within the upper mantle. Ito et
al. [1996] and Barnouin-Jha and Parmentier [1997] considered a
steady state melt migration in their models of the mid-ocean ridges.
Steady state melt migration within an upwelling plume is possible
only if melt is extracted or solidified in the top portion of the
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upwelling plume, at the same rate as the average rate of melt
generation within the plume. None of these conditions occur in a
partially molten upwelling plume where unsteady behavior of melt
distribution is significant. The third category considered melt
migration beneath mid-ocean ridges [Ghods and Arkani-Hamed,
2000] and within upper mantle plumes [Schmeling, 2000] while
treating the upper mantle as a compacting two-phase flow media.
[6] In the present study, we consider the effect of melt migration

on the dynamics, shape, and melt generation of an initially hot and
spherical body of 20 km radius ascending in an impermeable
asthenosphere using two-dimensional, two-phase flow convection
models in an axisymmetric cylindrical coordinate system. Herein-
after the body is called diapir. Because of the intensive computa-
tional demand of two-phase flow models the assigned radius of
diapir is much smaller than those of mantle plumes (i.e., 200–500
km). Thus the results obtained in this study do not relate directly to
mantle plumes but shed light on the fundamental fluid dynamic
phenomena that may occur when an upwelling mantle plume enters
the partial melting region of the upper mantle. In our modeling, we
first focus on the effects of melt migration by considering an
initially uniform melt fraction within the diapir and allowing no
further melting. The effects of melt retention and chemical and
thermal buoyancy on the dynamics of the diapir are studied in
detail. We then allow further melting and include all buoyancy
sources. These models are compared with equivalent models which
ignore differential velocity between melt and solid matrix. We also
investigate the effects of melt migration on the shape and partial
melting of a typical mantle plume of 200 km diameter. The melt
migration produces a zone of high melt fraction at the top of the
plume which ascends much faster than the bulk of the plume
because of its high buoyancy.

2. Mathematical Formulation

[7] Our treatment of a two-phase flow model is based on
McKenzie’s [1984] derivation. A two-phase flow model consists
of a compacting/decompacting continuous and permeable solid
matrix and melt which flows through the matrix. In a given time
step we solve equations of conservation of mass, momentum, and
energy without considering further melting. At the end of the time
step, melt fraction and temperature fields are corrected to include
the effect of melting. The normalized governing equations are
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The notations are defined in Table 1, and the normalization
schemes are listed in Appendix A, where the normalized variables

Table 1. Notation

Variable Description Units

CP specific heat of two-phase flow media at constant pressure J kg�1 K�1

CP
s specific heat of solid at constant pressure J kg�1 K�1

CP
l specific heat of melt at constant pressure J kg�1 K�1

dc compaction length m
�T temperature drop across the computational domain K
Di dissipation number –
g gravitational acceleration m s�2

H latent heat of melting J m�3

Kf permeability m2

K thermal conductivity of melt and solid matrix W m�1 K�1

M depletion factor –
P pressure Pa
PH hydrostatic pressure Pa
� reduced pressure Pa
Pe Peclet number –
Ra ratio of buoyancy to viscous force –
T temperature K
t time s
Us horizontal component of solid matrix velocity m s�1

Ul horizontal component of melt velocity m s�1

Vz
s vertical component of solid matrix velocity m s�1

Vz
l vertical component of melt velocity m s�1

Vs solid matrix velocity vector m s�1

V l melt velocity vector m s�1

Wo reference vertical velocity component for melt m s�1

xi coordinate axes m
a thermal expansion coefficient K�1

b melting expansion coefficient –
hs shear viscosity of solid matrix Pa s
hl shear viscosity of melt Pa s
z bulk viscosity of two-phase media Pa s
ks
o reference solid matrix diffusivity m2 s�1

f melt fraction –
fo reference melt fraction –
rs density of solid matrix kg m�3

rl density of melt kg m�3

rs
o reference mantle density kg m�3
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are indicated by asterisks. The asterisks in the above equations are
omitted for clarity. The paramenters t, �, and T are time, reduced
pressure, and temperature, respectively. Vs and Vz

s are the solid
matrix velocity vector and its vertical component; the z axis is
taken downward. Vl, Vz

l, f, fo, and Kf are the melt velocity vector,
its vertical component, the melt fraction, the reference melt
fraction, and the permeability, respectively; rs, rs

o, rl, CP, and K are
the density of the solid matrix, the reference density of the solid
matrix, the density of the melt, the specific heat, and the thermal
conductivity, respectively; di3 is the Kronecker delta function. The
stress tensor for the solid matrix s is defined as

s ¼ hs rVs þ rVsð ÞT
h i

þ z� 2=3hsð Þ r � Vsð ÞI; ð6Þ

where hs is the shear viscosity of the solid matrix, z is the bulk
viscosity of the two-phase flow media associated with the
volumetric deformation due to melt migration (i.e., compaction/
decompaction of the solid matrix), and I is the unit matrix. In
contrast to the considerable volumetric changes due to melting,
each of the melt and solid phases has negligible volumetric
changes. Therefore z is set to zero outside the molten zone.
Equations (1) and (2) express the conservation of the solid matrix
and melt, respectively, where both densities of the melt and solid
are assumed to be constant. The density of the solid matrix is not
constant in the momentum equation (equation (3)). Equation (4) is
the momentum equation for melt which is equivalent to Darcy’s
law. Pressure is defined as P = � + rs

ogdcdi3, where g is the
gravitational acceleration. The compaction length dc is the
characteristic length over which compaction occurs. It is defined as

dc ¼
Ko
f zþ 4hs=3ð Þ

hl

� 	1=2
; ð7Þ

where Kf
o and hl are the reference permeability of the solid matrix

and the viscosity of the melt, respectively. In the momentum
equations the nondimensional number Rd = rs

ogdc
2/hsWo is similar to

the conventional Rayleigh number in that it describes the relative
strength of mantle buoyancy versus the viscous forces [Cordery
and Phipps Morgan, 1993]. Wo is the characteristic velocity of the
system. The second nondimensional number A = hs/[fo (z + 4 hs/
3)] denotes the efficiency of compaction and melt migration.
Equation (5) is the conservation of energy. The nondimensional
Peclet number Pe = Wodc/ks

o describes the ratio of the rate of
thermal advection to that of thermal diffusion where ks

o is the
thermal diffusivity of the melt and the solid matrix. The
nondimensional number Di = gadc/CP is the dissipation number
quantifying the importance of the adiabatic cooling/heating, where
a is the thermal expansion coefficient of the solid matrix. The
addition of adiabatic cooling/heating has minor effects on the
results. We therefore did not further consider adding a shear
heating effect since both of these effects scale similarly with Di. In
writing the energy equation it is implicitly assumed that thermal
equilibrium exists locally between the melt and solid matrix. No
latent heat of melting, internal heating, or shear heating are
considered in the energy equation. As we explain in section 3, at
the end of each time step the temperature field is corrected to take
into account the latent heat of melting. We also assume that the
thermal conductivity of the melt and solid matrix are equal and
rlCP

l = rsCP
s, where CP

s and CP
l are the specific heat at constant

pressure of the solid matrix and melt, respectively.
[8] Melting is a chemical reaction which depletes iron content

and reduces the density of the solid residue. Therefore the density
of the solid matrix is a function of temperature and the depletion
induced by melting:

rs ¼ ros 1� a T � Toð Þ � bM½ 	; ð8Þ

where b is the melt depletion coefficient and M is the fraction of
melting. For example, M = 0.1 denotes a solid residue of 10%
melting. To is the reference temperature which is assumed to be the
average of the temperature at the top and bottom of the
computational domain. In the impermeable models, where no
relative velocity is allowed between the melt and solid matrix, is
equal to f, whereas in the permeable models, M is smaller than f
in regions of melt accumulation and larger than f in regions of
melt extraction.
[9] Following Richter and McKenzie [1984], permeability is

considered to be a function of melt fraction:

Kf ¼ 10�3a2f3; ð9Þ

where the grain size a is set to 1 mm. Equation (9) implicitly
assumes that the porosity network is interconnected at all melt
fractions which is in general agreement with experimental results
[Kohlstedt, 1992].

3. Melt Generation

[10] There are two end-member melting models: batch melting
where melt is retained with the solid matrix and fractional melting
where melt is completely extracted. We consider both models in
order to investigate effects of the type of melting on the dynamics
of the impermeable upwelling diapirs. Because of melt migration,
melting of the permeable diapirs is considered to be fractional.
[11] To include the clinopyroxene out criterion in the melting, a

maximum melting of 25% is considered. At this melting stage the
low melting temperature components of mantle rocks are lost, the
melting temperature of the residual solid sharply increases, and
melting effectively ceases [Cordery and Phipps Morgan, 1993].
[12] McKenzie and Bickle’s [1988] batch melting model is used

to calculate batch melting of the impermeable diapir. The model
assumes a linear relationship between the temperature at a given
depth and the fraction of melt:

M ¼ T � To
s

To
l � To

s

; ð10Þ

where Ts
o and Tl

o are the solidus and liquidus temperatures,
respectively. The solidus temperature of fertile peridotite, Ts

o, is
obtained by fitting a third-order polynomial to the solution of
McKenzie and Bickle [1988],

To
s ¼ 1374:33þ 129:46PH þ 5:89P2

H � 1:59P3
H ; ð11Þ

where PH is the hydrostatic pressure. Changes in PH due to melting
are minute and are neglected in our calculations. The liquidus
temperature, Tl

o, is calculated as [McKenzie and Bickle, 1988]

To
l ¼ 2009:2þ 4:343PH þ 180tan�1 PH

2:2169


 �
: ð12Þ

Solidus and liquidus temperatures in (11) and (12) are in kelvins.
[13] In permeable models, melting is dynamic so that some

portion of the melt remains with the solid matrix, some portion
may migrate out, or some extra melt may be added to the partially
molten zone by melt migration from elsewhere. In this paper we
model the dynamical melting of the permeable diapir using the
solidus and liquidus curves of a fractional melting model and
assume that the addition of melt to a partially molten zone by melt
migration does not change the solidus temperature of the solid
residue. Our fractional melting model is a simplified version of
Iwamori et al.’s [1995] model and is constructed by modifying
McKenzie and Bickle’s [1988] batch melting model. The model is
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also used to calculate the volume of melt produced by the
impermeable diapir through fractional melting. Melt extraction in
the fractional melting models is simulated simply by setting melt
fraction remaining within the solid matrix (f) to zero.
[14] In the fractional melting model we replace the liquidus

temperature of peridotite (equation (12)) with that of pure forsterite
(i.e., Tl

o = 2164 + 4.77 PH [Presnall and Walter, 1993]). Fur-
thermore, to account for the dynamic nature of the problem, the M
field is advected in each time step using the following pure
advective transport equation:

@M
@t

þ 1� fofð ÞVs þ fofV
l

� �
� rM ¼ 0: ð13Þ

To simplify the calculations, we used bulk velocity, rather than the
velocity of solid matrix, for advecting the depletion field. The bulk
velocity may not substantially differ from the solid matrix velocity.
This is because of smaller percentage of melt in the regions where
melt migrates fast. In the high percentage melt region at the top of
the plume the velocities of the melt and solid matrix are similar
since no percolation of melt occurs in to the unmolten region at the
top. The fraction of melt produced in a given time step, �M, is
computed by the following coupled equations:

rsCPT1 ¼ rsCPT2 þ�MH ; �M ¼ T2 � Ts

To
l � Ts

1�Mð Þ; ð14Þ

where T1 and T2 are temperatures before and after correction,
respectively, and the latent heat of melting H is considered to be
constant. Ts is the instantaneous solidus temperature of the solid
residue of the previous time step which is calculated using (10) and
setting Ts = T to account for the increase of Ts through melting. The
removal of the melt in a fractional melting model increases Ts
because the solid residue becomes more refractory. The tempera-
ture field is corrected for the absorption of the latent heat of
melting and �M is added to the fM and fields.
[15] Melt fraction is not allowed to become larger than 0.25,

and accordingly, the permeability of molten rocks is limited to that
corresponding to a 25% molten rock. This is because the momen-
tum equations (equations (3) and (4)) are only valid when melt
flows within a continuous permeable solid matrix [McKenzie,
1984]. The equations are not valid [e.g., Spiegelman, 1993a;
McKenzie, 1984] for melt fractions larger than the value at which
the matrix disaggregates and forms a slurry-type two-phase fluid
media, i.e., at f = 0.2 ± 0.1 [Arzi, 1978]. We recognize the
possibility that accumulation of melt at the top of a mantle plume
may result in a very low viscosity slurry-type two-phase media.
However, developing momentum equations capable of describing
both continuous porous and slurry-type two-phase fluid media is a
challenging task which we do not attempt to investigate in this
paper.

4. Numerical Method

[16] An iterative finite volume method [Patankar, 1980; Pra-
kash and Patankar, 1985] is adopted to solve (1)–(5). Discretiza-
tion of momentum equations (equations (3) and (4)) are second
order accurate. A hybrid scheme [Patankar, 1980] is used to solve
the energy equation, and a second-order Runge-Kutta method is
adopted for discretization of the time derivatives in the equations of
conservation of melt (equation (2)) and energy (equation (5)). To
calculate the pressure field, (1) and (2) are combined and converted
to a pressure equation using (3) and (4), which is then solved using
the semi-implicit method for pressure-linked equations, revised
(SIMPLER)[Prakash and Patankar, 1985]. This eliminates the
time derivative terms and yields a pressure equation with no
explicit time dependence. Unless it is mentioned otherwise, the

numerical results presented in this paper are calculated in a
nonuniform rectangular grid of 71 � 201 nodes with a high-
resolution area fully covering the ascending diapir path (Figure 1).
The high-resolution area covers the entire computational domain
along vertical axis and within 25 km from the diapir axis. The
vertical grid spacing is constant at �0.6 km. The horizontal grid
spacing in the high-resolution area is �0.56 km and gradually
increases outward to a maximum of �6 km. The variable grid
reasonably resolves compaction lengths larger than 1.8 km, which
is always the case for f > 0.048.
[17] Entrapment of melt within the diapir produces a melt

fraction field with a sharp boundary between the diapir head and
the surroundings, which necessitates a special treatment of equa-
tions (2) and (13). We use a Monotonic Second Order Upwind
(MSOU) [Sweby, 1984] method to advect melt depletion and melt
fraction fields. MSOU is one of the most accurate Eulerian-based
methods [Tamamidis and Assanis, 1993]. To suppress the numer-
ical leakage of melt fraction outside the plume, the plume shape is
traced throughout its evolution by initially dying the plume with a
constant concentration and then tracing it with time. This allows us
to almost entirely prevent the numerical leakage of melt outside of
the plume by bringing the numerically leaked melt inside the
plume at each time step. Because of our very fine mesh, and thus
very small time steps, and the adopted high-accuracy numerical
method of MSOU, the numerical leakage is not significant in our
models. The melt is always within the dyed area, indicating that it
does not infiltrate into the unmolten region.
[18] To ensure convergence, four parameters are computed at

each time step: (1) the absolute value of the total vertical advective
heat transfer, (2) the sum of the flux of the two phases at the
normalized depth of 0.5, (3) the Nusselt number at the top left
corner, and (4) the Nusselt number at the bottom right corner. The
convergence of Nusselt number is usually slower at the corners
than any where else on the border of the computation domain. A
solution is assumed converged if the ratios of the absolute value of
the difference between the previous and current values of the above
parameters to their current values become smaller than our
assigned convergence accuracy limit of 2 = 5 � 10�5. In addition,
we check the sum of absolute values of errors in the solution of the
equation of conservation of mass over the entire computational
domain. This is a global constraint ensuring that mass is conserved
throughout the computation domain. Because of the absolute
values, even small local errors add up and can be detected by this
global constraint. The residual errors for different fields are always
less than the assigned convergence accuracy limit. The time step is
assigned to be one fifth of that prescribed by the Courant criterion
[e.g., Wendt, 1996].
[19] To test the fidelity of our numerical schemes, we use an

equivalent of our code in two-dimensional (2-D) Cartesian coor-
dinate system and calculate the shape of a single solitary wave in
one dimension. The width of the solitary wave is resolved with 40
grid spacings and is advected over a distance 5 times larger than its
width. Solitary waves should propagate at a constant velocity
without changing shape [e.g., Spiegelman, 1993a]. The theoretical
amplitude [e.g., Spiegelman, 1993a] is reproduced within �0.1%.

5. Diapir Dynamics

[20] We model the ascent of a partially molten diapir through
the upper 120 km of an impermeable asthenosphere in order to
investigate the effect of melt migration on the dynamics of upwell-
ing diapirs. Although our diapir size is much smaller than those
suggested for hot mantle plumes, we believe that it illustrates the
basic physics involved with an affordable computational demand.
[21] We consider an initially spherical diapir with a radius of 20

km (Figure 1). To minimize the effect of the zero velocity bottom
boundary condition, the base of the diapir is initially placed 20 km
above the bottom boundary. A free-slip boundary condition is
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applied for both melt and solid matrix velocities at the left, right,
and bottom boundaries. The velocities at the top boundary are set
to zero. Melt fraction is set to zero at the top and bottom
boundaries. A zero flux is specified for melt fraction and heat at
the vertical side boundaries. The temperature at the top boundary is
1673 K, and on the basis of an adiabatic temperature gradient the
temperature at the bottom boundary is set to 1723 K. The top
boundary of the computational domain is assumed rigid, represent-
ing the base of an impermeable rigid, stagnant lithosphere of 85 km
thickness. The diapir is initially 300 K hotter than its surroundings
and has 10% melt.
[22] Table 2 lists the values of all parameters used in this paper.

The melt density is taken to be constant at 2700 kg m�3, and the
reference solid matrix density (rs

o) is assumed to be 3300 kg m�3.
A constant melt viscosity hl of 1 Pa s is chosen, which is the lower
limit of the viscosity range of basaltic melt (1–10 Pa s) [Kushiro,
1986]. Constant and equal shear (hs) and bulk (z) viscosities of
1.29 � 1019 Pa s are considered for the solid matrix. The
compaction length is 5.4 km for f = 0.1. Our current grid spacing
of 0.6 km resolves compaction length larger than 1.8 km (equation
(7)), implying that melt fraction >0.048 is properly resolved.
[23] In the first set of models an initially uniform 10% melt

distribution is assumed, and no further melting is al lowed. To
illustrate the effects of melt migration, the dynamics of a permeable
diapir in which melt is allowed to migrate is compared to that of an
impermeable diapir in which melt and solid matrix move together

with no differential velocity between them. In addition, the effects
of the thermal and chemical buoyancy forces are investigated. In
the second set of models, further melting is allowed. The perme-
able models are again compared with the corresponding imperme-
able models in both fractional and batch melting cases.

5.1. Nonmelting Diapirs

[24] In the first set of numerical experiments, dynamics of
nonmelting impermeable and permeable diapirs are modeled while
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Figure 1. The grid, initial value, and boundary conditions used in this paper. For clarity, every fourth node in the r
direction and every other node in the z direction are shown. Vr

s, Vz
s, Vr

l, Vz
l, f, and T are the horizontal and vertical

components of the solid matrix velocity, the horizontal and vertical components of the melt velocity, the melt fraction,
and the temperature, respectively; r and z are the cylindrical coordinates. For clarity only, relevant parts of this figure
will be shown in the next figures. The top of our model corresponds to the bottom of a 85-km-thick lithosphere.

Table 2 Physical Parameters Used in This Paper

Parameter Value

Solid density rs
o 3300 kg m�3

Melt density rl
o 2700 kg m�3

Earth gravity g 9.8 m s�2

Viscosity of solid hs 1.29 �1019 Pa s
Viscosity of melt hl 1 Pa s
Thermal conductivityK 3.3 W m�1 K�1

Specific heat CP 1000 J kg�1 K�1

Grain size a 1 mm
Latent heat of melting H 1.2 � 109 J m�3

Thermal expansion coefficient a 3 � 10�5 K�1

Melting expansion coefficient b 0.024a

aSparks and Parmentier [1994].
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considering only melt buoyancy. In this experiment an initially
constant 10% melt is assumed, and no further melting is allowed.
This singles out the effect of melt migration on the dynamics of the
upwelling diapir. Figure 2 shows the snapshots of melt fraction
field for the permeable model. In the early stages the melt fraction

increases in the top portion of the permeable diapir and decreases
in the lower regions (Figure 2a), producing a high melt fraction cap
at �0.008 m.y. (Figure 2b). Because of the nonlinear relationship
between permeability and melt fraction (equation (9)), the com-
paction/decompaction of the partially molten diapir develops a low
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Figure 2. Snapshots of melt fraction field for an upwelling permeable diapir at (a) 0.004, (b) 0.008, and (c) 0.161
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melt fraction zone beneath the high melt fraction cap, initiating 2-D
solitary waves (Figure 2c). Melt migration from deeper parts
increases the melt fraction beneath the low melt fraction zone
and results in an increase of permeability there. This causes further
draining of melt from regions beneath and creates a new local
minimum melt fraction, where the new minimum melt fraction
region obstructs the upward melt migration and initiates a second
maximum and so on [Spiegelman, 1993b]. The upwelling velocity
of the diapir decreases sharply in the vicinity of the upper
boundary. This causes the solitary waves to coalesce and join the
high melt fraction cap at the top.
[25] Figure 2b shows that melt is initially drained more along

the axis. We tested this issue further by examining in detail melt
distribution, temperature, velocity, and pressure fields along the
axis. The axial disturbance is only seen on melt distribution field
and at the very early stages of diapir ascending but not on other
fields. We have checked the implementation of the boundary
condition in our computer code and found no problem. We also
ran the same model in Cartesian coordinates and did not find the
along-axis disturbance. The axial disturbance in melt distribution
field arises because of the cylindrical coordinate system. The
curved boundary of the diapir at the top focuses melt toward the
axis. In the case of Cartesian coordinate system (x, y, z) the diapir is
actually an infinite cylinder along the y axis with a circular cross
section in the (x, z) plane, and focusing is parallel to the x axis. In
cylindrical coordinate system (r, q, z), with a vertical z axis, the
focusing is radial and moves all of the melt within the annulus
along q toward the axis.
[26] Comparing the shapes of impermeable and permeable dia-

pirs (Figure 3a) shows that the general shape of the permeable diapir
is cylindrical as compared to the mushroom shape of the imperme-
able diapir. For example, when both diapirs reach a depth of �15
km, the width of the permeable diapir is less than one half of the
impermeable diapir. Once the melt percentage reaches a maximum
of 25%, no further buoyancy polarization occurs, and the very top
portion of the cylindrical diapir starts to become mushroom-shaped.
Figure 3b compares temperature fields corresponding to Figure 3a.
The impermeable diapir is more diffused, and its mean temperature

is less than the permeable diapir by�100 K. Figure 4 shows the time
evolution of the depth to the top of the diapir along its axis. The
permeable diapir ascends �4 times faster than the impermeable
diapir to reach at a depth of 10 km. The faster permeable diapir
impinges the top boundary (the base of the lithosphere) within <0.4
m.y., whereas the impermeable diapir may never reach it. These
differences are related to the polarized melt fraction distribution of
the permeable model due to melt migration (see Figure 2), which
produces a polarized melt retention buoyancy and leads to a more
slender diapir that suffers less drag while ascending. The fast
moving, slender diapir diffuses less thermal energy to its surround-
ings and is warmer than the impermeable model upon impinging the
top boundary. This point is also reflected in the time evolution of the
mean Nusselt number at the top (Figure 5). The maximum Nusselt
number of the permeable diapir is much larger than that of the
impermeable diapir and is attained much earlier.
[27] Figure 6 compares the time evolution of the depth to the top

of the diapir along its axis for the impermeable and permeable
models where thermal and chemical buoyancies are included in
addition to the melt retention buoyancy. The addition of thermal and
chemical buoyancies slightly increases the velocity of the diapirs.
However, the velocity increase is much less pronounced for the
permeable diapir than the impermeable one. This is related partly to
the already larger velocity of the permeable diapir and partly to the
initially uniform distribution of melt fraction and temperature within
the diapir. The initial values result in almost uniform thermal and
chemical buoyancies within the diapir, which reduce the ratio of the
melt retention buoyancy force to the total buoyancy force and
hampers the elongation of the diapir. A larger drag force is exerted
on the less elongated diapir which counterbalances the buoyancy
increase due to the addition of the chemical and thermal buoyancies.

5.2. Melting Diapirs

[28] In the second set of models we allow melting to take place.
The initial diapir has zero melt fraction but 300 K anomalous
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temperature. The diapir melts as it rises through the asthenosphere.
We do not restrict melting to the diapir, but it only occurs within
the diapir. This is in agreement with Farnetani and Richard’s
[1995] conclusion that the only material that melts is within diapirs

with isoviscous and mildly temperature-dependent rheology. All
buoyancy forces, thermal, chemical, and melt retention, are con-
sidered in this set of models. In the first two experiments the
dynamics of an upwelling impermeable diapir is investigated for
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cases in which the melt either is completely removed (fractional
melting) or is retained within the matrix (batch melting). In the
third experiment the melt is allowed to migrate within the partially
molten permeable zone.
[29] Comparison of the depletion () and melt fraction (f) fields

of the permeable model (Figures 7a and 7b show that the regions of
melt generation are different from the melt fraction field. Depletion
is maximum in the middle portion of the diapir and decreases
monotonically with depth. However, the melt fraction is concen-
trated in three patches which are separated by low melt fraction

zones. Figures 7a and 7b also indicate necking of the diapir, which
occurs because both melt retention buoyancy and chemical buoy-
ancy are significantly larger at the top portion of the diapir where
the degree of melting is at maximum. The necking produces three
separate regions of high melt fraction, one above the necked
region, one inside and one below (Figure 7a). The latter regions
form due to melting of the lower portion of the diapir at later times
as the diapir rises. To illustrate the effect of melt migration on the
shape of the diapir, the depletion and temperature fields of the
permeable and impermeable diapirs with batch melting are com-
pared when the diapir heads are at �10 km depth (Figure 8).
Because the velocities of the upwelling diapirs are not equal, the
times for the snapshots are different. The snapshots are taken at 2
and 0.56 m.y. for the impermeable and permeable models, respec-
tively. The permeable diapir is elongated and lacks the mushroom
shape associated with the impermeable diapir. Figure 9 compares
the time evolution of the depth to the top of the diapir along its
axis. The permeable diapir reaches at 10 km depth �4 times faster
than the batch melting impermeable diapir. Furthermore, the
permeable diapir results in the largest Nusselt number (Figure
10a) and produces the largest volume of melt (Figure 10b). This is
because the thermal energy of the permeable diapir dissipates less
due to its fast upward motion and the diapir remains hot and melts
more extensively while ascending through the melting window of
the upper mantle. The diapir with no melt retention buoyancy
(fractional melting) is the slowest and produces the lowest volume
of melt.

6. Discussion

[30] Our study indicates that melt migration causes the upwell-
ing velocity of the melting diapir and its melt production to
increase significantly. Furthermore, the initially spherical diapir
evolves to an elongated cylindrical body. The melt production of
our diapir model (i.e., <2%) is analogous to the possible melt
production of upper mantle plumes responsible for continental
flood basalts [Farnetani and Richards, 1994]. However, care
should be exercised in directly extrapolating our results to the
mantle plumes. One of the most important parameter is the size of
our diapir (i.e., 20 km) which is considerably smaller than those of
mantle plumes (i.e., 200–500 km). Our diapir models fully enter
into the melting zone of the upper mantle, whereas the mantle
plumes only partially enter due to their larger sizes, and they are
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already mushroom-shaped before their entrance. However, one can
imagine that melt migrates up the slope of the upper boundary of
the mushroom shape plume and forms a high melt fraction region
at the vicinity of the plume axis. We investigate this scenario by
considering an initially spherical plume model of 200 km diameter.
The top of the plume is initially at 100 km beneath the base of the
lithosphere (our top boundary). All initial values and boundary
conditions are exactly similar to the rest of our models. The
computation domain is increased to 600 � 600 km and has a
nonuniform grid of 201 � 201 nodes with a high-resolution area in
the top 80 km of the domain and within 125 km from the plume
axis, fully covering the partially molten zone in the upper mantle.
The vertical and horizontal grid spacings in the high-resolution
area are �0.65 and �1 km, respectively, and gradually increases
outward to a maximum of �5 km. Figures 11a–11c show three
snapshots of the plume shape, and Figures 11d–11f show the
corresponding melt fraction fields, for a permeable model where all
buoyancy forces are considered. The melt fraction fields show only
the upper part of the plume. A high melt fraction region forms at
the top of the plume (Figure 11a) which with time becomes
elongated and forms a nibble (Figures 11b and 11c ). The nibble
moves faster than the rest of the plume and delivers melt to the
base of the lithosphere before the main body of the plume impinges
there.
[31] The high melt percentages reported in our paper have not

been observed by seismic investigations in Yellowstone [Saltzer
and Humphreys, 1997] and Iceland [Wolfe et al., 1997]. One

possible explanation for the low melt content of Yellowstone and
Iceland plumes is that they have already impinged to the base of
the lithosphere and their high percentage melt areas have been
consumed through outpouring. This is similar to the case of mid-
ocean ridge where the permeable zone extends to the base of the
crust. The two-phase flow model of Ghods and Arkani-Hamed
[2000] showed that the fast melt migration in the crust beneath
mid-ocean ridge does not allow the melt fraction in the upper
mantle to exceed 2–3%.
[32] Volcanism predates rifting in many continental rifting

associated with flood basalts [Farnetani and Richards, 1994] such
as Parana [Piccirillo et al., 1988] and Kenya Rift [Smith, 1993;
Morley, 1993]. Our model is consistent with this observation and
shows that melt delivery to the base of the lithosphere can occur
before the arrival of the main body of the plume that exerts
horizontal stress to the overlying lithosphere and causes rifting
[Farnetani and Richards, 1994].
[33] The melt density is assumed to be constant in our models

despite an appreciable increase of the density with pressure. The
melt density of an equivalent basaltic magma devoid of iron and
alkalis changes from its surface value of �2700 to �3000 kg m�3

at a depth of 100 km [Rigden et al., 1984]. This reduces melt
retention buoyancy and hampers upward migration of melt from
deeper parts of the diapir. Consequently, the formation of the
compacting and decompacting regions at the bottom and top of the
diapir is delayed. One can estimate from Darcy’s law (equation (4))
that a reduction of melt buoyancy by half doubles the time required
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for the formation of the high melt fraction cap. Nevertheless, the
formation time of the polarized buoyancy distribution is much
shorter (�0.01 m.y.) than the time taken for upwelling of the diapir
through asthenosphere (�0.3 m.y.). The upwelling velocities of the
impermeable and permeable diapirs reduce similarly with the
reduction of the total melt buoyancy. Therefore the increase of
melt density with depth may not substantially change the ratio of
these velocities. Results of models with 1/2 and 1/4 of density
contrast used in our previous models confirm the above statements.
[34] In this study, we considered a simple permeability law

(equation (9)). However, permeability may become significant only
after a critical threshold of 2–3% of melt fraction [Faul, 1997].
Imposing such a threshold results in an initially slower formation
of the buoyancy polarization within the diapir and thus slower
speedup of the permeable diapir. Melt migration becomes signifi-
cantly fast once the melt fraction exceeds the threshold. However,
the time required for formation of the high melt fraction cap is very
short in comparison to the time required for the upwelling of the
diapir. Thus the shape and dynamics of diapir would not be
significantly different from those presented in our paper. Melt/rock
reaction also increases permeability [Aharonov et al., 1995].
Further investigations are needed to study effects of melt/rock
interaction and a permeability threshold on the dynamics of the
upwelling diapirs.
[35] Recent studies suggest that upwelling plumes may have

�15% eclogite. Cordery et al. [1997] showed that such plumes can
produce the volume and composition of melt observed in flood
basalt provinces without having a high initial temperature. In our
models the peridotite solidus and liquidus curves are adopted
because we are primarily concerned with the effect of melt
migration on the dynamics of the upwelling diapirs. The general
conclusions drawn in this paper, the polarized structure of the melt
distribution and the elongation of the upwelling diapirs, are
expected to hold even if the melting models of Cordery et al.
[1997] are used.
[36] To address the effect of the grid resolution on the dynamics

of our diapir models, we examine three different grids: 51 � 101,
71 � 201, and 141 � 401. Our adopted 71 � 201 grid resolves
compaction length longer than 1.8 km, which corresponds to melt
fractions larger than 4.8%. Figure 12 shows the time evolution of
the depth to the top of the impermeable and permeable diapir
models calculated using these grids. The models show that by
increasing the resolution the difference between the arrival times of
the impermeable and permeable diapirs to a depth of �10 km
increases. Furthermore, a higher resolution delays the arrival of the
diapirs to the depth of 10 km, especially that of the impermeable
one. However, the grid dependency of our models is not vital and

does not significantly affect our major conclusions about the
effects of melt migration on the dynamics of the upwelling diapirs.
[37] The solid matrix shear viscosity is an important parameter

affecting its compaction and decompaction and thus the dynamics
of the upwelling diapir. It is a function of melt fraction, perme-
ability, temperature, and strain rate, among other factors. The
pressure effect is insignificant for the depths considered in our
models. It is expected that because of a positive feedback mech-
anism between the viscosity of the solid matrix and the increase of
the strain rate, a strain rate dependent rheology would have a
significant effect on the difference between the permeable and
impermeable models. However, the dynamics of the upwelling

2 4 6 8 10

10

20

30

40

50

60

12

Time (m.y.)

D
ep

th
(k

m
)

(a)

2 4 6 8 10

10

20

30

40

50

60

1
2

Time (m.y.)

(b)

2 4 6 8 10

10

20

30

40

50

60

1
2

Time (m.y.)

(c)

Figure 12. Time evolution of the depth to the top of the diapir for impermeable (curve 1) and permeable (curve 2)
melting diapir along their axis for a grid of (a) 35 � 101, (b) 71 � 201, and (c) 141 � 401.

0.5 1.0 1.5

0

20

40

60

D
ep

th
(k

m
)

2
1

Time (m.y.)

Constant viscosity model

Melt dependent viscosity model

1
2

Figure 13. Time evolution of the depth to the top of the
permeable diapir models with constant viscosity solid matrix
(curve 1) and melt-dependent variable viscosity solid matrix (curve
2). Models are computed on a nonuniform grid of 141 � 401
nodes. Melt retention and thermal and chemical buoyancy forces
are considered.

GHODS AND ARKANI-HAMED: MELT MIGRATION EFFECTS ON MANTLE DIAPIRS XX X - 11



diapir may not significantly change since the compacting and
decompacting regions develop fast. The solid matrix viscosity
substantially reduces after a critical value of 4% melt [Hirth and
Kohlstedt, 1995]. Khodakovskii et al. [1998] showed that the
reduction due to melt exceeding a threshold of 5% causes an
increase in the growth rate of solitary waves and a decrease in their
length scale. The solid matrix viscosity has been taken to be
constant in the above models. To study the effects of the solid
matrix viscosity reduction due to melt fraction, we calculated
permeable and impermeable diapir models where the solid matrix
viscosity is linearly reduced by a maximum of 1 order of
magnitude as the met fraction increased from zero to a maximum
of 25%. Figure 13 compares the time evolution of the depth to the
top of the diapir along its axis for permeable diapir models with
constant and melt-dependent variable solid matrix viscosity. Both
models are computed on a higher-resolution nonuniform computa-
tional grid of 141 � 401 nodes. The diapir with melt-dependent
variable viscosity ascends slightly faster than the diapir with
constant viscosity because the viscosity reduction by melt fraction
allows the portion of the diapir that enters the upper mantle melting
zone to easily move upward and to enhance the buoyancy polar-
ization and to render the diapir more slender. This result further
emphasizes the main conclusions reached in this paper. The
difference in upwelling velocity between variable and constant
viscosity impermeable diapir models is even less important. We
would like to mention that viscosity reduction due to melt fraction
may be several orders of magnitude. Our 1 order of magnitude
reduction is more likely a lower limit. However, we believe that
simple reduction of the solid matrix viscosity enhances the pro-
cesses observed in our previous models but may not result in new
physical phenomena not observed in the present models. It is
required to formulate the dynamics of a diapir, or a mantle plume,
by a new set of equations that can simultaneously describe the
dynamics of a partially molten porous medium for the region of
lower melt fractions and a slurry medium for the zones with higher
melt fractions. This is certainly a demanding task as described in
some detail by Bergantz [1995], and we are presently investigating
this scenario.
[38] Melt depletion increases the viscosity of the solid matrix

[Hirth and Kohlstedt, 1996]. The large melt depletion and the low
melt fraction in the middle part of the permeable diapir (Figures 7
and 8) make it more viscous relative to the top portion of the diapir
where melt fraction is very high. This may hamper the upwelling of
the more viscous, depleted material of the diapir. We have not yet
taken into account the effect of melt depletion on the solid matrix
viscosity in our models. Nor have we incorporated the effect of
temperature on the viscosity. These two effects tend to cancel each
other in the middle region where both depletion and temperature
are high. Also, a constant bulk viscosity of solid matrix is assumed
in our calculations, although it may vary with melt fraction
[Schmeling, 2000].

7. Conclusions

[39] The effects of melt migration on the dynamics of a 20-
km-radius diapir are investigated using two-phase flow model in
a 2-D axisymmetric cylindrical coordinate system. In the first set
of models we single out the effects of melt migration by
modeling permeable and impermeable diapirs with a 10% melt
fraction uniformly distributed initially and allowing no further
melting. Melt migration to the top of the partially molten region
and the corresponding melt retention buoyancy makes the per-
meable diapir more slender than the impermeable diapir.
Although both models have equal mean buoyancy, the more
elongated permeable diapir suffers less drag and ascends faster.
In the second set of models the dynamics of the permeable and
impermeable diapirs are investigated while melting is allowed.
The permeable diapir moves faster as soon as it enters the partial

melting window of the upper mantle because of the highly
polarized melt retention buoyancy and its more slender shape.
The fast moving diapir diffuses less thermal energy to its
surrounding and generates more melt during its ascent through
the upper mantle. The permeable models lack the mushroom
shape observed for the impermeable models. The solid matrix
viscosity reduction due to melt fraction further facilitates the
processes but does not result in new physical phenomena. We
also model the dynamics of a mantle plume of 200 km diameter
and show that melt migration produces an axial high melt fraction
nibble in the upper part of the plume that ascends much faster
than the bulk of the plume.

Appendix: A Normalization Scheme

[41] Normalization schemes used in this paper are as follows.
The normalized variables are indicated by asterisks.
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