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[1] We show that folding of a non-Newtonian layer resting on a homogeneous Newtonian matrix
with finite thickness under influence of gravity can occur by three modes: (1) matrix-controlled
folding, dependent on the effective viscosity contrast between layer and matrix, (2) gravity-
controlled folding, dependent on the Argand number (the ratio of the stress caused by gravity to the
stress caused by shortening), and (3) detachment folding, dependent on the ratio of matrix thickness
to layer thickness. We construct a phase diagram that defines the transitions between each of the
three folding modes. Our priority is transparency of the analytical derivations (e.g., thin-plate versus
thick-plate approximations), which permits complete classification of the folding modes involving a
minimum number of dimensionless parameters. Accuracy and sensitivity of the analytical results to
model assumptions are investigated. In particular, depth dependence of matrix rheology is only
important for folding over a narrow range of material parameters. In contrast, strong depth
dependence of the viscosity of the folding layer limits applicability of ductile rheology and leads to
a viscoelastic transition. Our theory is applied to estimate the effective thickness of the folded
central Asian upper crust using the ratio of topographic wavelength to Moho depth. Phase diagrams
based on geometrical parameters show that gravity does not significantly control folding in the Jura
and the Zagros Mountains but does control folding in central Asia. Applicability conditions of
viscous and thin sheet models for large-scale lithospheric deformation, derived in terms of the
Argand number, have implications for the plate-like style of planetary tectonics. INDEX TERMS:
8005 Structural Geology: Folds and folding, 8020 Structural Geology: Mechanics, 8122
Tectonophysics: Dynamics, gravity and tectonics, 8149 Evolution of the Earth: Planetary tectonics
(5475); KEYWORDS: Folding, Folds, Detachment, Décollement, Gravity, Argand

1. Introduction

[2] Folds appear on all spatial scales in nature with many forms
that reflect processes involved during folding. Folding, or buck-
ling, is a common response of layered rocks to deformation, and
folds are described from the microscale (crenulation) to the
regional scale [e.g., Whitten, 1966; Ramsay and Huber, 1987;
Twiss and Moores, 1992]. Many analytical studies have investi-
gated the mechanics of buckling, that is, layer-parallel shortening
of a single, competent layer embedded in a weaker matrix [e.g.,
Biot, 1965; Ramberg, 1981; Johnson and Fletcher, 1994]. Ana-
lytical methods are mainly applied to the initial stages of folding
where fold amplitudes are infinitesimal. The analytical studies
differ in whether they are concerned with small-scale or large-
scale folds. Small-scale studies assume that mesoscopic folds are
too small to be affected by gravity and take into consideration the
resistance of the matrix [e.g., Biot, 1961; Currie et al., 1962;
Ramberg, 1963; Chapple, 1968; Fletcher, 1974; Smith, 1977; Hunt
et al., 1996]. Large-scale studies treat structures that are large
enough to respond to the effects of gravity but neglect matrix
resistance (inviscid matrix), which is assumed to be small com-
pared to resistance caused by gravitational effects [e.g., Ramberg
and Stephansson, 1964; Turcotte and Schubert, 1982]. Whatever
the scale, an important result of these analytical studies is a
maximum of amplification rate for a certain fold wavelength,
which is designated the dominant wavelength [Biot, 1961]. Dom-

inant wavelengths of small-scale folds were investigated for elastic
[e.g., Biot, 1961], elastoplastic [e.g., Johnson, 1980], viscous [e.g.,
Biot, 1961], ductile (non-Newtonian, power law) [e.g., Fletcher,
1974], and viscoelastic [e.g., Schmalholz and Podladchikov, 1999,
2001a] layers embedded in an infinitely thick (half-space) matrix
and for elastic layers resting on a viscoelastic matrix [e.g., Hunt et
al., 1996], elastic layers resting on a finite, viscous matrix [Sridhar
et al., 2001], and viscous layers embedded in a finite, viscous
matrix [Ramberg, 1963]. Dominant wavelengths of large-scale
folds were expressed for elastic [Ramberg and Stephansson,
1964; Turcotte and Schubert, 1982] and ductile [Burov and
Molnar, 1998; Cloetingh et al., 1999] layers. In nature, both
gravity and matrix resistance affect rock folding simultaneously,
and several studies investigated this [e.g., Zuber, 1987; Martinod
and Davy, 1992; Goff et al., 1996]. However, there is no simple
analytical expression for the size of folds at which there is a switch
from matrix to gravity resistance as the controlling folding factor.
Our first goal is to investigate the transition between matrix- and
gravity-controlled folding modes and to provide a quantitative
answer to the question: What does large-scale mean in the context
of folding?
[3] Another shortcoming of many existing analytical theories is

that the matrix is considered to be infinitely thick. This consider-
ation allows the use of a half-space formulation for the vertical
stress exerted by the matrix onto the layer boundaries. However, in
many natural situations and especially in detachment folding [e.g.,
Epard and Groshong, 1995; Poblet and McClay, 1996] the weak
matrix is thinner than the competent, folded layer. For small-scale
folds (i.e., matrix-controlled), Ramberg [1963] showed that depend-
ing on the ratio of matrix thickness to layer thickness, a compressed
layer embedded in a weaker matrix of finite thickness develops
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smaller dominant wavelengths than it does in an infinitely thick
matrix. The so-called thick-plate analysis is the appropriate tool to
investigate both small- and large-scale detachment folding [Goff et
al., 1996]. Our second goal is to provide a simple analytical
description of detachment folding, i.e., folding of layers resting
on a matrix with finite thickness, which is more appropriate for most
geological situations than the infinite half-space approximation.
[4] For these purposes, folding of a ductile (non-Newtonian,

power law) layer resting on a finite, viscous matrix under the
effects of gravity is studied analytically in two dimensions using
linear stability analysis and thin-plate methods [e.g., Timoshenko
and Woinowsky-Krieger, 1959; Drazin and Reid, 1981] (Figure
1). Our main concern in this treatment is to obtain a transparent
unified analytic treatment that makes the accounting of a number
of coupled processes tractable. To this end, we sacrifice precision,
a decision partly justified by the uncertainty in geological
parameters. Both layer and matrix are assumed to have homoge-
neous material properties that are independent of pressure and
temperature. Natural cases are more complicated, in particular, on
the lithospheric scale. However, this study does not intend to
fully investigate folding lithospheric but focuses on quantifying
the interaction of gravity and matrix resistance on folding
characteristics.
[5] We derive critical parameters that define the transitions

between matrix-controlled, gravity-controlled, and detachment
folding. We introduce a single parameter S, which combines the
effective viscosity contrast and the Argand number. S determines
the transition from gravity-controlled to matrix-controlled folding
and defines the layer thickness at which gravity becomes signifi-
cant. A similar analysis is conducted for the detachment folding
mode. We show that the decay of matrix viscosity with depth (due
to temperature increase with depth) affects folding only for a narrow
range of parameters. We also establish the range of applicability for
ductile rheology as the effective rheology of competent layers on a
lithospheric scale considering a depth-dependent layer viscosity and
a viscoelastic rheology of the competent layer.
[6] Our final goal is to construct a phase diagram that defines

the conditions for matrix-controlled, gravity-controlled, and
detachment mode folding. This phase diagram is based on coor-
dinates that depend both on material and geometrical parameters.
We modify this phase diagram to be dependent on only measurable
geometrical parameters by expressing poorly constrained rheolog-
ical properties through an additional geometrical observable [e.g.,
Schmalholz and Podladchikov, 2001b]. Such a phase diagram is
then applied to estimate the effective thickness of the folded upper
crust in central Asia [e.g., Burov et al., 1993], using geological
information such as the ratio of topographic wavelength to detach-
ment depth (Moho). The phase diagram is also applied to folds in
the Jura and the Zagros Mountains.

2. Folding of a Ductile Layer Resting on an
Infinite, Viscous Matrix Affected by Gravity

[7] We use linear stability analysis [e.g., Drazin and Reid,
1981] to investigate an axially compressed, ductile layer resting
horizontally on an infinite, viscous matrix in two dimensions.
Assuming vertical gravity and neglecting the shear stresses exerted
by the matrix onto the layer boundary, the thin-plate theory
provides a single equilibrium equation for the folded layer [e.g.,
Timoshenko and Woinowsky-Krieger, 1959; Reddy, 1999]:

@2

@x2

ZH=2

�H=2

zsxxdz

0B@
1CAþ @

@x

ZH=2

�H=2

@W x; tð Þ
@x

sxxdz

0B@
1CA

þqm ��rgW x; tð Þ ¼ 0; ð1Þ

where x and z are horizontal and vertical coordinates, respectively,
H is the thickness of the layer,W(x,t) is the deflection of the layer, t
is the time, �r is the density difference between the material below
and above the layer, g is the gravity acceleration, sxx is the layer-
parallel stress, and qm is the vertical component of the stress
exerted by the matrix onto the layer boundary (Figure 1).
[8] For a ductile material the horizontal deviatoric stress txx can

be approximated as [England and McKenzie, 1982]

txxj j ¼ B _exxj j
1
n; ð2Þ

where _exx is the strain rate in the x direction, B is a material
constant (averaged across the layer), and n is the power law
exponent. The strain rate can be split into a mean (averaged over
layer thickness) and a fiber component [e.g., Timoshenko and
Woinowsky-Krieger, 1959; Reddy, 1999]:

_exx ¼ �_eB þ _eF ; ð3Þ

where _eB is the absolute value of the mean layer-parallel strain rate
caused by shortening and _eF is the fiber strain rate caused by
flexure, or bending, of the layer [cf. Schmalholz and Podladchikov,
2000]. Substituting (3) into (2) and expanding the nonlinear
equation (2) by a Taylor series around _eF = 0 (i.e., not bended
layer) provides a linear approximation for the deviatoric stress
[e.g., Fletcher and Hallet, 1983]:

txx ¼ �2meff _eB þ 2
meff
n

_eF ; ð4Þ

where meff is the effective viscosity of the layer given by

meff ¼
B

2
_e

1
n
�1ð Þ

B : ð5Þ

Note that B = 2ml if n = 1 with ml being the viscosity of the layer.
An expression for the total layer-parallel stress sxx can be found by
assuming that szz = 0 throughout the layer (i.e., constant thickness).
Then, for incompressible materials (i.e., _exx = �_ezz) the total layer-
parallel stress is twice the deviatoric stress in the x direction
[Turcotte and Schubert, 1982]:

sxx ¼ �P þ 4
meff
n

_eF ; ð6Þ

Figure 1. Schematic model of folding of a ductile single-layer
resting on a finite, viscous matrix affected by gravity. �rgW is the
stress caused by gravity, sxx is the compressive stress, qm is the
vertical stress caused by the resistance of the matrix, H is the layer
thickness, Hm is the thickness of the matrix, A is the amplitude, and
l is the wavelength.
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where

P ¼ 4meff _eB ð7Þ

is the mean (averaged over layer thickness) layer-parallel stress.
Assuming no shear stresses within the ductile layer, _eF can be
expressed as [e.g., Timoshenko and Woinowsky-Krieger, 1959;
Turcotte and Schubert, 1982]

_eF ¼ �z
@3W x; tð Þ
@x2@t

ð8Þ

The vertical stress of an infinitely thick matrix (half-space) that acts
on one layer boundary is given by [Biot, 1961]

qm ¼ �2mmw
@W ðx; tÞ

@t
; ð9Þ

where mm is the viscosity of the matrix, w = 2p/l, and l is
the wavelength of the layer perturbation. Assuming a constant
layer thickness and substituting (6), (8), and (9) into (1)
yields

meffH
3

3n

@5W ðx; tÞ
@x4@t

þ PH
@2W ðx; tÞ

@x2
þ 2mmw

@W ðx; tÞ
@t

þ�rgW ðx; tÞ ¼ 0: ð10Þ

A general solution of (10) for a single waveform is of the
form

W ðx; tÞ ¼ A0expðIwxþ atÞ; ð11Þ

where A0 is the initial amplitude, a is the amplification rate
of the considered layer perturbation, and I ¼

ffiffiffiffiffiffiffi
�1

p
. Substitut-

ing (11) into (10), collecting the coefficients in front of
exp(Iwx + at) and solving for the amplification rate a yields
[cf. Zuber, 1987]

a=_eB ¼ 6n 2�w2 � Arð Þ
�w �w3 þ 6nmm=meff �½ ð12Þ

where �w = wH and

Ar ¼ �rgH
2meff _eB

¼ �rgH

B_e1=nB

ð13Þ

is the Argand number [e.g., England and McKenzie, 1982].
Equation (12) presents the amplification rate (normalized by
_eB) for harmonic folding of a ductile layer resting on an
infinite, viscous matrix under the effects of gravity. More
generally, folding of a layer with arbitrary initial geometry
(including localized perturbations) can be Fourier-analyzed
into periodic contributions of different wavelengths evolving
in time according to (11) and (12) and can be reconstructed
by superposition of the modified components due to linearity
of (10). To reduce the number of controlling parameters in
(12), we introduce the following nondimensional parameters:

bw ¼ wHffiffiffiffiffi
Ar

p ¼ 2pH
l

ffiffiffiffiffi
Ar

p S ¼ 9
ffiffiffi
6

p

4

mmn

meffAr
3
2

: ð14Þ

Note that parameters with a ‘‘hat’’ (e.g., ŵ) are
dimensionless and scaled by other dimensionless numbers.

Substituting (14) into (12) provides a dimensionless
amplification rate:

ba ¼ a
Ar

n_eB
¼ 54

2bw2 � 1bw 9bw3 þ 4
ffiffiffi
6

p
S


 � : ð15Þ

This amplification rate yields a maximum for a certain
value of ŵ depending solely on the parameter S (Figure 2).
The maximal value of the amplification rate corresponds to
the fastest growing wavelength, which is the dominant
wavelength ltot. No simple explicit analytical expression for
ltot from (15) could be found because the solution requires
finding the roots of a polynomial of order 5. However, an
explicit relationship for the S versus the dominant wave
number (termed ŵtot) is derived by setting derivative of â
versus ŵ to zero and solving for S:

S ¼ 3
ffiffiffi
6

p

2

bw3
tot bw2

tot � 1
� 

2bw2
tot þ 1

: ð16Þ

Simple dominant wavelength expressions can be derived for the
end-member situations, at which either gravity is neglected
(g = 0 in (1), i.e., matrix-controlled) or the matrix is inviscid
(qm = 0 in (1), i.e., gravity-controlled) during folding. The
dominant wavelength for matrix-controlled folding is [e.g.,
Fletcher, 1974]

lmat ¼ 2pH
meff
3nmm

� �1
3

ð17aÞ

or

lmat

ffiffiffiffiffi
Ar

p

H
¼

ffiffiffi
6

p
p

S
1
3

: ð17bÞ

The dominant wavelength for gravity-controlled folding, derived
by setting S = 0 in (16), is

lgrav ¼
2pHffiffiffiffiffi
Ar

p ð18aÞ

Figure 2. Dimensionless amplification rate â versus fold
wavelength l̂ = 2p/ŵ. The amplification rate spectrum
depends only on S (see (14) and (15)) and yields a maximal
amplification rate that corresponds to a certain wavelength, which
is designated the dominant wavelength.
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or

lgrav

ffiffiffiffiffi
Ar

p

H
¼ 2�: ð18bÞ

The dominant wavelengths lmat and lgrav are plotted together with
ltot versus the parameter S in Figure 3a. The maximal values of the
amplification rates are obtained by back substitution of the dominant
wavelengths (17) and (18) to the amplification rate (15). The
maximal amplification rate for matrix-controlled folding is

amat ¼ 4n
1
3

meff
3mm

� �2
3

_eB ð19aÞ

or

amat

Ar

n_eB
¼ 6

S
2
3

: ð19bÞ

The maximal amplification rate for gravity-controlled folding is

agrav ¼
6n

Ar
_eB ð20aÞ

or

agrav

Ar

n_eB
¼ 6: ð20bÞ

An expression for the maximal amplification rate of the
complete (15) (termed atot) is obtained by eliminating S in
(15) using (16):

âtot ¼ 2
2ŵ2

tot þ 1

ŵ4
tot

: ð21Þ

Figure 3. Dominant wavelengths and maximal amplification rates versus the controlling parameters S, Sdet, and
Sdet/S (see text for definitions; double logarithmic scale). Every transition is controlled by only one of the controlling
parameters. For each transition the corresponding two limit solutions are plotted together with the total or complete
solution versus the corresponding parameter that controls the transition. The subscripts grav, mat, and det indicate the
limits gravity-controlled folding, matrix-controlled folding, and detachment folding, respectively, and subscript tot
indicates the complete folding solution (see text for definitions). The transitions occur when the limit solutions are
equal to each other. If the controlling parameters S, Sdet, and Sdet/S are either much smaller or larger than one, the total
solution is the same as one of the limit solutions.
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The amplification rates amat and agrav are plotted versus S in Figure
3b together with atot plotted parametrically using (16) and (21). If S
goes to zero, atot approaches asymptotically agrav (the gravity-
controlled limit). If, instead, S goes to infinity, atot approaches
asymptotically amat (the matrix-controlled limit, Figure 3b). The
ratio

agrav

amat

¼ S
2
3 ð22Þ

is equal to one if agrav and amat are identical (Figure 3b). During
folding, the two simultaneous resistances caused by gravity and
matrix viscosity interact in parallel, i.e., the total resistance
controlled by the strongest resistance. The strongest resistance
corresponds to the smallest (or slowest) amplification rate. There-
fore, if S < 1, then agrav < amat and the folding is by the slower
gravity-controlled mode; otherwise, amat < agrav and matrix
viscosity dominates resistance to folding. Similar results were
obtained by Schmalholz and Podladchikov [2001a] for a viscoleas-
tic layer with Kelvin rheology (parallel combination of elastic and
viscous elements), where the strongest resistance controls folding.
In contrast, for folding of a viscoelastic layer with Maxwell
rheology (serial combination of elastic and viscous elements) the
weakest resistance controls folding [cf. Schmalholz and Podlad-
chikov, 2001a].

3. Folding of a Ductile Layer Resting on a Finite,
Viscous Matrix Affected by Gravity

[9] We consider the same setting as above (Figure 1), but
because the matrix now has finite thickness, a new expression
for the vertical stress, qm (equation (9)), that the viscous matrix
exerts on the layer is necessary. Assuming an incompressible
viscous matrix the equation of continuity is given by

@vx
@x

þ @vz
@z

¼ 0; ð23Þ

where vx and vz are the velocities in the x and z directions,
respectively. Equation (23) is used to express vx through vz. We
split the velocity into a background component due to shortening
and a perturbed component due to folding [e.g., Johnson and
Fletcher, 1994]:

vz ¼ ~vzðzÞexpðIwxÞ þ _eBz
vx ¼ ~vxðzÞexpðIwxÞ � _eBx

ð24Þ

where ~vz (z) and ~vx (z) are velocity coefficients dependent only on z.

The equations of equilibrium for slow viscous flow in two
dimensions are given by [e.g., Mase, 1970]

@sxx
@x

þ @txz
@z

¼ 0 ð25Þ

@txz
@x

þ @szz
@z

¼ 0; ð26Þ

where txz is the shear stress and szz is the vertical normal stress.
The stresses are given by Newtonian viscous rheology:

sxx ¼ �pþ 2mm
@vx
@x ; szz ¼ �pþ 2mm

@vz
@z ;

txz ¼ mm
@vx
@z þ

@vz
@x

� 
;

ð27Þ

where p is the pressure. Substituting the velocities expressions (24)
into (27) and stress expressions (27) into (25) and (26), taking the
partial derivative of (25) with respect to z and subtracting from it
the partial derivative of (26) with respect to x, using (23) and (24)
to eliminate ~vx (z), and collecting coefficients in front of exp (Iwx)
yields [e.g., Johnson and Fletcher, 1994]

@4~vzðzÞ
@z4

� 2w2 @
2~vzðzÞ
@z2

þ w4~vzðzÞ ¼ 0 ð28Þ

Four boundary conditions are required to solve (28), which we set as

~vz 0ð Þ ¼ @W ðx;tÞ
@t ; @~vz 0ð Þ

@z ¼ 0;

~vz Hmð Þ ¼ 0; @~vz Hmð Þ
@z

¼ 0;
ð29Þ

where Hm is the thickness of the viscous matrix (Figure 1). The
physical meaning of the boundary conditions is that there is no slip
between thematrix and the layer (i.e., bonded contact) and thematrix
and the rigid bottom (note that @ ~vz /@z=0)~vx=0, compare (23) and
(24)). Equation (28) is solved for ~vz (z); this permits calculation of vz
and vx using (23) and (24). Next, txz and p are calculated using (27)
and (26), respectively. Finally, the vertical stress of the finite, viscous
matrix qm is calculated using (27):

qm ¼ szz ¼ �2mmw
@W ðx; tÞ

@t
Fdet: ð30Þ

Equation (30) is similar to that for an infinitely thickmatrix (compare
(9)) but multiplied by a function Fdet that depends only on the
dimensionless product of w and Hm and is given by

Fdet ¼
�1þ 4wHmexp 2wHmð Þ þ exp 4wHmð Þ

1� 2þ 4w2H2
m

� 
exp 2wHmð Þ þ exp 4wHmð Þ:

ð31Þ

Fdet ! 1 when wHm ! 1, and Fdet  6/(wHm)
3 when wHm ! 0.

Table 1. Conditions and Results for the Three Modes of Foldinga

Folding Mode Formal Conditions Spelled Out Conditions Dominant Wavelength Maximum Amplification Rate

Gravity-controlled agrav < amat

agrav < adet
H > 3

3nmm
meff


 �2
3 meff _eB
��g

Hm > 4
3nmm
meff


 �13 meff _eB
��g

2pffiffiffiffi
Ar

p H 6n
Ar
_eB

Matrix-controlled amat < agrav

amat < adet

H < 3
3nmm
meff


 �2
3 meff _eB
��g

Hm > 4
3

meff
3nmm


 �1
3

H

2p meff
3nmm


 �1
3

H 4n
meff
3nmm


 �2
3

_eB

Detachment adet < agrav

adet < amat

Hm < 4
3nmm
meff


 �1
3 meff _eB
��g

Hm < 4
3

meff
3nmm


 �1
3

H

1:2p meff
3nmm


 �1
6

ffiffiffiffiffi
Hm

H

q
H 3n

meff
3nmm


 �1
3 Hm

H
_eB

aThe maximal amplification rate that controls the folding mode is the minimum out of the three maximal amplification rates corresponding to matrix-
controlled, gravity-controlled, and detachment folding (i.e., ad = min(agrav, amat, adet)). The slowest of the three amplification rates represents the strongest
resistance against folding (i.e., either due to gravity, matrix viscosity, or matrix thickness) and therefore controls the fold amplification. Note that for all
folding modes, there is the same approximate relationship between the maximal amplification rate and the dominant wavelength, specifically ad /_eB  (ld/
H)2n/p2.
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Therefore the stress expression in (30) approaches the half-space
stress expression presented in (9)with increasingHm. A similar result
for the vertical stress exerted by a finite, viscous matrix on the layer
boundary was recently presented by Sridhar et al. [2001] but for free
slip conditions (txz = 0 at layer-matrix boundary). Sridhar et al.
[2001] investigated buckling of an elastic layer resting on a finite,
viscousmatrix without the effects of gravity. Equations (30) and (31)
are substituted into (1), and the resulting nondimensional amplifica-
tion rate for folding of a ductile layer resting on a finite, viscous
matrix under the effects of gravity is

a=_eB ¼
6n 2w2 � Ar
� 

w w3 þ 6nFdetmm=meff
�  : ð32Þ

Using the approximationFdet 1+6/(wHm)
3, which is validwith the

good accuracy over the entire parameter range, this amplification rate
can be alternatively expressed through the parameters ŵ, S, and Sdet,
yielding (compare (15))

â ¼ a
Ar

n_eB
¼ 54

2ŵ2 � 1

ŵ 9ŵ3 þ 4
ffiffiffi
6

p
S þ 13:5S2det=ŵ

3
�  ; ð33Þ

where

Sdet ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24nmm=meff
ArHm=Hð Þ3

s
ð34Þ

and â has a single maximum for a function of ŵ depending on both S
and Sdet.
[10] If the matrix thickness Hm decreases below a critical value,

then folding is strongly controlled by the ratio Hm/H. We designate
this additional folding mode as detachment folding. Approximate
expressions of the dominant wavelength and maximal amplifica-
tion rates for detachment folding are found using Taylor expan-
sions for Hm/H ! 0. For detachment folding, the dominant
wavelength is given by

ldet ¼ 1:2p
meff
3nmm

� �1
6

ffiffiffiffiffiffiffi
Hm

H

r
H ð35aÞ

or

ldet

ffiffiffiffiffi
Ar

p

H
¼ 2p

5Sdet=3ð Þ
1
3

; ð35bÞ

and the maximal amplification rate is

adet ¼ 3n
meff
3nmm

� �1
3 Hm

H
_eB ð36aÞ

or

adet

Ar

n_eB
¼ 6

S
2
3

det

: ð36bÞ

[11] The folding solution presented in (33) quantifies the entire
set of folding modes (matrix-controlled, gravity-controlled, and
detachment folding) and their mutual transitions. In section 2 the
transition between matrix-controlled and gravity-controlled folding
(Sdet = 0 in (33)) was investigated (Figure 3a and 3b). The solutions
for detachment folding (equations (35) and (36)) allow us to
investigate the transitions between gravity-controlled and detach-
ment folding (Figures 3c and 3d) and between matrix-controlled
and detachment folding (Figures 3e and 3f). Since gravity is only
important if S < 1, setting S = 0 allows us to investigate the
transition between the gravity-controlled and the detachment fold-
ing mode as a function of the single parameter Sdet (Figures 3c and
3d). Alternatively, if S � 1, then gravity is unimportant and setting
S to a large number (e.g., 500) causes the transition between the
matrix-controlled and the detachment folding mode to be a

function of the single parameter Sdet/S (Figures 3e and 3f ). The
parameters S and Sdet were defined in such a way that all three
transitions for the maximal amplification rates occur when the
controlling parameters S, Sdet, and Sdet/S have values of unity. The
conditions for the three transitions and the solutions for each
folding mode are listed in Table 1.
[12] The dominant wavelengths and the corresponding maximal

amplification rates derived from the general amplification rate
(equation (33)) are contoured in the S � Sdet space (Figure 4).
Considering the maximal amplification rates (Figures 3b, 3d, and
3f), the three transitions occur at the lines S = 1, Sdet = 1, and Sdet = S.
In the space S � Sdet these lines separate three areas with different
contour patterns (Figure 4b): horizontal contours corresponding to
matrix-controlled folding, vertical contours corresponding to
detachment folding, and curved contours corresponding to grav-
ity-controlled folding. Noting that S = (agrav/amat)

3/2 and Sdet =

Figure 4. Contours of the dominant wavelength and the
maximal amplification rate in the space S � Sdet. (a) The dashed
lines indicate the three transitions shown in Figures 3a, 3c, and
3e. (b) The transitions between the three folding modes (gravity-
controlled, matrix-controlled, and detachment folding) occur at
the dashed lines S = 1, Sdet = 1, and S = Sdet (see Figures 3b, 3d,
and 3f ). These lines separate areas with three different contour
patterns: (1) only horizontal contours corresponding to matrix-
controlled folding, (2) only vertical contours corresponding to
detachment folding, and (3) curved contours corresponding to
gravity-controlled folding (see also Figure 5).
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(agrav/adet)
3/2, we can construct a phase diagram in the space agrav/

amat � agrav/adet (Figure 5). Of the three end-member folding
modes the active folding mode is the one with the smallest
amplification rate.
[13] For detachment folding, decreasing the matrix thickness

Hm causes a decrease in the dominant wavelength and the
maximal amplification rate. Results obtained with our analytical
theory compare well with analytical and analogue results obtained

by Ramberg [1963] for folding, while the matrix above and
below the layer has the same finite thickness and gravity can be
ignored. Sridhar et al. [2001] showed that for folding of an
elastic layer resting on a finite, viscous matrix, both the dominant
wavelength and the maximal amplification rate decrease with
decreasing matrix thickness. Therefore the matrix thickness has
the same influence on the dominant wavelength and the maximal
amplification rate, independent of layer rheology for both free
slip and no slip between layer and matrix.
[14] To verify our analytical approximations, we derived a

more accurate solution for folding of a ductile layer resting on a
finite, viscous matrix affected by gravity using the perturbation
or ‘‘thick-plate’’ method. The perturbation method is a standard
method to investigate instability problems [e.g., Lin and Segel,
1974; Drazin and Reid, 1981] and is frequently applied to
instability problems in geodynamics [e.g., Smith, 1977; Fletcher
and Hallet, 1983; Ricard and Froidevaux, 1986; Zuber, 1987;
Bassi and Bonnin, 1988; Goff et al., 1996]. The results provided
by the perturbation method are in good agreement with our
results derived using thin-plate assumptions (Figure 6). The
strongest discrepancy between the methods is observed for
maximal amplification rates at high Argand number (i.e., Ar >
2). For example, for a Newtonian viscous layer and Hm/H >>
1 the thin-plate method yields a maximal amplification rate
smaller than one (i.e., atot /_eB < 1) for Ar > 6 (compare (20)),
whereas the perturbation method provides values of atot /_eB < 1 for
Ar >2.5.

4. Folding of a Ductile Layer Resting on a Matrix
With Depth-Dependent Viscosity

[15] In nature, the viscosities of the layer and the matrix are
strongly dependent on depth due to temperature variations [e.g.,
Braun and Beaumont, 1987], especially on the crustal and litho-
spheric scales. On such scales the depth extent of the matrix rocks
involved in folding deformation is generally greater than the
thickness of the competent layer, and therefore the depth depend-

Figure 5. The phase diagram for folding distinguishes three folding modes using the two dimensionless ratios agrav/
amat and agrav/adet. Every folding mode depends on one parameter which controls both the dominant wavelength and
the maximal amplification rate (see also Table 1).

Figure 6. Comparison of the thin-plate and thick-plate solutions.
The maximal amplification rate (atot / _eB, corresponding to the
dominant wavelength) is plotted versus the Argand number (Ar).
For Ar > 0.2 the thin-plate results start to deviate from the thick-
plate results. The comparison is done for a matrix thickness (Hm)
twice thicker than the layer thickness (H), a viscosity contrast (meff/
mm) of 100 and a power law exponent (n) of 1.
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ence of the matrix viscosity must be considered first. The matrix
viscosity is approximately an exponential function of depth [e.g.,
Fletcher and Hallet, 1983; Zuber, 1987; Shen et al., 2001]

mM zð Þ ¼ mmexpðz=zÞ; ð37Þ

where mm is the viscosity of the matrix at the layer-matrix boundary
and z is the e-fold length of the viscosity variation (Figure 7).
Using the same approach as in section 3, we can derive an
expression for the vertical stress qm exerted on the competent layer
by an infinitely thick matrix with exponentially varying viscosity.
The vertical stress is given by

qm ¼ �2mmw
@W ðx; tÞ

@t
Fdd ; ð38Þ

where

Fdd ¼
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z þ 2þ 8 wzð Þ2

q� �
Z þ 1ð Þ þ 16 wzð Þ2

16 wzð Þ3
; ð39Þ

with Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24 wzð Þ2þ16 wzð Þ4

q
: Fdd depends only on the

dimensionless product of w and z. Fdd ! 1 when wz ! 1, and
Fdd ! 4(wz)3 when wz! 0. Therefore the stress expression in (38)
approaches the half-space stress expression presented in (9) for
increasing z. Substituting (38) and (39) into (1) yields the
amplification rate (compare (32)):

a_eB ¼ 6n 2�w2 � Arð Þ
�w �w3 þ 6nFddmm=meffð Þ: ð40Þ

If Ar = 0, this amplification rate yields a maximum for a specific
dominant wavelength only for values of H/z smaller than some
critical value (see below). Folding of a layer resting on a matrix
with depth-dependent viscosity can be described by the results for
matrix-controlled folding if an enlarged (effective) layer thickness
is introduced. A close approximation for the dominant wavelength,
ldd, is then

ldd  lmat= 1� 4

5
E

� �
ð41Þ

with

E ¼ meff
nmm

� �1
3 H

z
:

The critical parameter that determines the deviation from lmat is E,
which depends on the viscosity contrast at the layer-matrix
boundary and the ratio of the layer thickness to the e-fold length
of the viscosity variation. If E is much smaller than one, then ldd 
lmat. If E is �1/2, then ldd is �65% larger than lmat, and if E
approaches 5/4, then ldd goes to infinity, which corresponds to
matrix-controlled folding with an infinitely large viscosity contrast.
[16] As for the other folding modes (see Table 1), the depend-

ence of the maximal amplification rate on the dominant wavelength
follows the same general relation given by

add

_eB
 n

p2

ldd

H

� �2

ð42Þ

Equations (41) and (42) show that add ! 1 when E! 5/4, which
arguably would replace this folding mode with another mode, such
as gravity-controlled or detachment folding, with finite growth
rate. Indeed, restoring the gravity term (Ar 6¼ 0) in (40) and using
the approximation Fdd ! 4(wz)3 valid for wz! 0 (or E > 1) yields

a=�eB ¼ 6nð2w� 2 � ArÞ
ð1þ 24n=E3Þw� 4

: ð43Þ

The expression for the dominant wavelength is identical to the
gravity-controlled limit (compare (18)):

ldd ¼ lgrav ¼
2pHffiffiffiffiffi
Ar

p : ð44Þ

The maximal amplification rate in this limit is

add ¼
6n �eB

1þ 24n=E3ð ÞAr ¼
agrav

1þ 24n=E3
; ð45Þ

which can be reduced to the gravity limit by introducing an
effective power low exponent:

neff ¼
n

1þ 24n=E3
: ð46Þ

This definition slightly widens the gravity-controlled folding field
on the phase diagram (Figure 5) due to the depth dependence of the
matrix viscosity. However, the general recipe for determining the
folding mode remains the same; that is, there is no need to
introduce an additional folding mode. We conclude that the folding
mode considered in this section has a limited range of applicability,
i.e., for 0.1 < E < 1.25 (if E < 0.1, then ldd  lmat; if E > 1.25, then
ldd  lgrav). Interestingly, through replacing H by z, the thin-plate
results (equations (44) and (45)) represent the true long-wavelength
(or Ar < 0.1) limit for folding of a viscous half-space with
exponentially decreasing viscosity in the gravity field [cf. Biot,
1961, equations (8.12)–(8.14)].
[17] Note that all considered stress expressions for the viscous

matrix (compare equations (9), (30), (38) and the one given by
Sridhar et al. [2001]) exhibit the same relation between stress,
matrix viscosity, perturbation wavelength, and layer deflection and
that additional multipliers (such as Fdet and Fdd) contain informa-
tion on matrix thickness, viscosity variation, and boundary con-
ditions at the layer-matrix boundary. The four stress expressions
can be variously combined into (1) to simulate a number of
different folding situations.

5. Applicability of the Ductile Rheology to
Competent Layers on the Lithospheric Scale

[18] In this section we consider depth-dependent rheology for
the competent layer, which may become essential on the litho-
spheric scale. The viscosity of the competent layer (i.e., the

Figure 7. Viscosity profile for folding of a ductile layer resting
on an infinitely thick matrix with depth-dependent viscosity. The
viscosity of the matrix decreases exponentially with depth
controlled by the e-fold length z. There is a viscosity step at the
boundary between layer and matrix from meff to mm, respectively.
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lithosphere or the top crustal layer) is high, and its upward increase
toward the Earth’s surface may cause a switch in rheology from
ductile to elastic in the upper part of the layer. The rheology of
rocks is generally a combination of time-dependent (e.g., ductile)
and time-independent (e.g., elastic) rheologies [e.g., Turcotte and
Schubert, 1982; Ranalli, 1995], and competent layers on the
lithospheric scale behave viscoelastically. Next we discuss con-
ditions under which the elastic rheology can be neglected and
whether the ductile rheology is sufficient to study lithospheric
folding.
[19] The simplest rheological models describing viscoelastic

behavior are the Maxwell body (elastic and viscous element
connected in series) and the Kelvin body (elastic and viscous
element connected in parallel) [e.g., Findley et al., 1989]. For
folding, Schmalholz and Podladchikov [2001a] demonstrated that
viscoelastic layers behave either quasi-viscously or quasi-elasti-
cally depending on the single parameter R, which is a combina-

tion of the viscosity contrast between layer and matrix and the
ratio of the layer-parallel stress to the layer’s shear modulus. For
R >> 1, layers with Kelvin rheology are quasi-viscous, whereas
layers with Maxwell rheology are quasi-elastic, and vice versa for
R << 1 [Schmalholz and Podladchikov, 2001a]. Therefore, to
establish conditions under which viscoelastic layers on the litho-
spheric scale behave quasi-viscously (justifying the usage of
ductile rheology), we must determine if their effective rheology
is better approximated by the Kelvin model or the Maxwell
model.
[20] In general, the effective rheology of rocks depends upon

the loading mode. Isotropic compression by lithostatic pressure is
better described by the Kelvin model (otherwise, rocks would
suffer infinite compaction). In contrast, the response of rocks to
shear loading, at any depth, is better described by the Maxwell
model, which accounts for large shear strains and the relaxation of
the elastic stresses. In this paper, we neglect the isotropic bulk

Figure 8. (a) The effective rheology of a folded, competent layer on the lithospheric scale. The rocks within the
competent layer exhibit a Maxwell rheology (i.e., elastic and viscous element connected in series). At the
lithospheric scale the temperature increases from around 0�C at the top of the competent layer to around 1300�C at
the bottom. Owing to exponential temperature dependence, the viscosity and consequently the Deborah number
(De = meff _eB/G) decrease exponentially with depth. The upper part of the competent layer with thickness He, in
which De > 1, behaves quasi-elastic, whereas the lower part with thickness H � He behaves quasi-viscous (De < 1).
On the lithospheric scale the effective rheology of a competent layer consisting of rocks exhibiting a Maxwell
rheology is the Kelvin rheology (elastic and viscous element connected in parallel). (b) Results for folding of a
competent layer which consists of an elastic layer resting on top of a viscous layer with exponentially decreasing
viscosity under the effects of gravity (see Figure 8a). The parameter le is the dominant wavelength for folding if the
viscous resistance is much smaller than the elastic, flexural resistance (i.e., elastic buckling), lv is the dominant
wavelength for folding if the elastic, flexural resistance is much smaller than the viscous one (i.e., viscous folding),
and lve is the complete dominant wavelength solution for folding of the viscoelastic competent layer. For a critical
value of He/z (designated as �Hec), le = lv. For values of He/z< �Hec, lve is better approximated by lv than by le and
vice versa for He/z > �Hec. (c) �Hec only dependent on Ãr. The solid line separates the area where viscous folding is
active from the one where elastic buckling is active.
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deformation, and rocks are thus considered incompressible. Then
the Maxwell model is appropriate for the nonisotropic (deviatoric)
deformation, but the situation is complicated by the temperature
(depth) dependence of its viscous component. The Deborah num-
ber (De = ml _eB/G [e.g., Reiner, 1964]) is suitable for determining if
viscoelastic rocks exhibiting a Maxwell rheology deform quasi-
elastically (De > 1) or quasi-viscously (De < 1). The upper part of
the competent layer may be nearly elastic at low temperatures (De
> 1 for large values of ml), while the lower, high-temperature part is
nearly viscous (De < 1 for small values of ml); that is, the overall
response of the competent layer is Kelvin-type behavior (Figure
8a) [cf. Schmalholz and Podladchikov, 2001a]).
[21] Kelvin-type behavior can be simulated by a competent

layer that consists of a thin elastic layer resting on top of a viscous
layer with exponentially decreasing viscosity (compare equation
(37) and Figure 8a). For such a competent layer we derived a
solution using the perturbation method for the viscous sublayer
using (28). Two boundary conditions are determined by assuming
that the horizontal and vertical velocities are zero if the vertical
coordinate z ! �1 (Figure 8a). The thin elastic sublayer is
incorporated into the perturbation solution for the viscous sublayer
through the boundary conditions. At the top of the viscous sublayer
we set the remaining two boundary conditions for the stresses as

szz ¼ �2ml _eB ~Ar �W �xð Þ � 1
6De

He

z


 �3
@4 �W �xð Þ
@�x4

� �
txz ¼ �2ml _eB

@ �W ð�xÞ
@�x

ð47Þ

where Ãr = �rgz/(2ml_eB), He is the thickness of the elastic
sublayer, z is the e-fold length of the viscosity variation, ml is the
viscosity at the top of the viscous sublayer, and W (�x) is the
dimensionless, vertical deflection of the elastic sublayer. We
investigate the transition between quasi-viscous and quasi-elastic
behavior and therefore set De = 1. Under layer-parallel compres-
sion the competent layer, consisting of both the elastic and viscous
sublayer, buckles elastically if the flexural resistance of the elastic
sublayer (controlled by (He/z)

3) is dominant. Alternatively, the
layer folds viscously if the elastic, flexural resistance is small
compared to the viscous resistance. If the elastic and the viscous
resistances are of the same order, the competent layer folds
viscoelastically. The full dominant wavelength solution lve for
viscoelastic folding must include two end-member solutions: le for
elastic buckling under gravity with negligible viscous resistance
[cf. Turcotte and Schubert, 1982], and lv for folding under gravity
of a viscous half-space with exponentially decaying viscosity
(equation (44) with H = z and Ar = Ãr). All three dominant
wavelengths depend on Ãr, and for a given value of Ãr, there exists
one value of He/z for which le = lv (Figure 8b). This critical elastic
thickness which defines the viscoelastic transition is termed �Hec.
�Hec only depends on Ãr, and the relation between the two
parameters is closely approximated by (Figure 8c)

�Hec 
2

3
ffiffiffiffiffi
~Ar

p � 1: ð48Þ

For He /z < �Hec the competent layer folds viscously, but for He/z
> �Hec it buckles elastically.
[22] If estimates of Ãr are available, (48) can be used to

determine the critical elastic layer thickness. This thickness deter-
mines whether a competent layer consisting of an elastic layer
resting on top of a viscous layer with exponentially decreasing
viscosity folds in an elastic or viscous mode. Consequently, (48)
can be used to estimate if the ductile rheology is applicable to
competent layers on the lithospheric scale. Typical values for z for
the ductile lithospheric mantle are around 2 km [see Connolly and
Podladchikov, 1998, Figure 12], and for values of 0.01 < Ãr < 0.1
the critical elastic thickness is around 3–7 times larger than z

(compare Figure 8c), which provides a critical elastic thickness
between 6 and 14 km.

6. Numerical Applications

[23] Folding is controlled by the effects of gravity if S < 1 and if
the thickness of the matrix has a negligible influence. This means
that (compare equation (14))

Ar >
3

2

3nmm
meff

� �2
3

ð49Þ

On the other hand, if the maximal amplification rate is smaller than
the absolute value of the thickening rate due to background
shortening (i.e., _eB), the deformation is dominantly accommodated
by homogeneous layer thickening or inverse boudinage [cf. Zuber,
1987]. Therefore the ratio agrav/_eB must be larger than one for
folding to occur in the gravity-controlled mode. This means that
from (20),

Ar < 6n: ð50Þ

Consequently, gravity-controlled folding only takes place for
Argand numbers in the range of

3

2

3nmm
meff

� �2
3

< Ar < 6n: ð51Þ

[24] The transition from matrix- to gravity-controlled folding
occurs at S = 1. Solving (compare (14) with S = 1) for the layer
thickness H yields a critical layer thickness:

Hcrit ¼
3meff _eB
�rg

3nmm
meff

� �2
3

ð52Þ

If a layer is thicker than Hcrit, the effect of gravity must be included
into calculations. Because of the simplifications made for deriving
Hcrit, the following examples are, of course, estimates of the exact
value for the critical layer thickness. For example, using common
values �r = 2500[kg m�3], g = 9.81[m s�2], _eB=10

�15[s�1], n = 1,
meff = 1022[Pa s], and mm = 1019[Pa s] yields �25 m for Hcrit.
Keeping all above values fixed except meff = 1021[Pa s] yields Hcrit

 12 m. For meff = 1022[Pa s] and mm = 1020[Pa s] one gets Hcrit 
120 m. According to these results, gravity starts to control folding
if the layer thickness is larger than 10 to 100 m. However, Hcrit

strongly depends on meff and the ratio of mm/meff, which are the least
constraint parameters. Therefore Hcrit can be considerably smaller
than 10 m if, for example, meff is smaller than 1021[Pa s] and mm/meff
is smaller than 0.001.

7. Geological Implications

[25] Our solution for folding with combined effects of gravity
and matrix thickness (equation (32)) can be used to estimate the
effective thickness of a strong, upper crust and a weaker, lower crust
during crustal-scale folding. For example, a topographic wavelength
of�50 km is observed in central Asia, where the depth of the Moho
is estimated to be �50 km [Burov et al., 1993]. The topographic
wavelength is attributed to folding of a strong, upper crust resting on
a weaker, ductile lower crust [Burov et al., 1993]. The Moho is
considered to be the top of a strong base (the upper mantle), and the
upper crust is assumed to be decoupled from the upper mantle.
However, to perform analytical investigations without considering
gravity and matrix thickness, the effective thickness of the upper and
lower crust and the effective viscosity contrast between the upper
and lower crust have to be estimated a priori [Burov et al., 1993]. Yet
the only observable (i.e., measurable) parameter is the ratio of the
topographic wavelength to the depth of the Moho. In a two-layer
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model consisting of upper and lower crust the depth of the Moho is
the sum of the thickness of the strong, upper crust (H ) and the weak,
lower crust (Hm). Using (32), the ratio of dominant wavelength to
total thickness l/(H + Hm) can be plotted versus the ratio of matrix
thickness to layer thickness Hm/H for different viscosity contrasts
meff /mm, (Figure 9a). This plot is done by taking the derivative of (32)
with respect to �w, setting the derivative to zero and solving for the
viscosity contrast which yields

meff
mm

¼ 3n

2

2�w5 �H3
m þ 48�w2 þ Ar �w3 �H3

m � 12
� 

�w6 �H3
mð�w2ArÞ

; ð53Þ

where �Hm = Hm/H. This viscosity contrast corresponds to the
dominant wavelength. The ratio l/(H + Hm) can be introduced into
(53) by the relation

�w ¼ 2p
l

HþHm
1þ �Hmð Þ

ð54Þ

Equations (53) and (54) provide a relationship between the ratios
of dominant wavelength to total thickness (l /(H + Hm)), the ratio
of matrix thickness to layer thickness (Hm/H), and the viscosity
contrast (meff /mm) for given values of Ar and n.
[26] To constrain the minimum value of Ar, we assume a typical

power law exponent n = 3 and maximal viscous stresses, as defined
by the brittle yield condition (see Flesch et al. [2001] for a detailed
discussion). The Argand number is estimated by using a density of
the lower crust of 2900 [kg m�3] and replacing the denominator
2meff _eB by gH [McAdoo and Sandwell, 1985], where g is the slope
of Byerlee’s law relating yield stress to depth. For a compressed
crust, g is �6 � 104 [Pa m�1] [Byerlee, 1978; McAdoo and
Sandwell, 1985]. This g value may overestimate the strength of the
strong upper crust, and we vary g between 6 � 104 [Pa m�1] and
1.8 �104 [Pa m�1], which provides Argand numbers of �0.5 and
�1.5, respectively. This range of Argand numbers is applicable to a
broad spectrum of natural folding situations in which the folded
layer rests on a weaker matrix. In our calculation we only

considered dominant wavelengths that correspond to maximal
amplification rates at least 5 times larger than the thickening rate
(i.e., atot /_eB > 5) because no significant fold amplitude will
develop for smaller maximal amplification rates. The ratio of
wavelength to total thickness (Moho depth) in central Asia is �1.
All results for viscosity contrasts ranging from 10 to 10,000 and
Argand numbers between 0.5 and 1.5 cross the ‘‘observed’’ (i.e.,
constrained by available geophysical observations) line l /(H + Hm)
= 1 in a narrow band corresponding to values ofHm/H between 3 and
7 (Figure 9a). We see that without knowing the viscosity contrast
and with only a rough approximation of the Argand number we can
estimate the effective viscous thickness of the crust to be between
6.25 km (Hm/H = 7) and 12.5 km (Hm/H = 3). This yields ratios of
wavelength to upper crustal thickness between 8 and 4, respectively.
These values are similar to results of Burov et al. [1993], who
estimated, from the matrix-controlled folding theory, the effective
thickness of the upper crust between 10 and 15 km and the ratio of
wavelength to upper crustal thickness between 4 and 6.
[27] A further application of our analytical solution has been

made on the Jura Mountains, which are characterized by Mesozoic
sediments dominated by limestones folded above a detachment
zone within Triassic evaporites [Buxtorf, 1916; Laubscher, 1977;
Mosar, 1999; Sommaruga, 1999]. We treat the foldedlimestones as
a single layer and the Triassic as a homogeneous matrix with
unknown effective viscosities. Using detailed sections [Buxtorf,
1916; Laubscher, 1977] provides average ratios of Hm/H between
0.2 and 0.6 and ratios of l /(H + Hm) between 1 and 2.5. Using (32)
with the same range of Argand numbers as applied for central Asia
(0.5–1.5) and standard power law exponents between 1 and 3
[Turcotte and Schubert, 1982] shows that the effective viscosity
contrast is smaller than �500 and that the ratio of amplification
rate to shortening rate (atot /_eB) is smaller than 10. Results are
plotted for Ar = 1 and n = 3 (Figure 9b).
[28] Similarly, a considerable part of the Zagros mountains in

southwest Iran, the so-called Simply Folded Belt [Colman-Sadd,
1978] consists of Paleozoic and Mesozoic sediments that were
folded above a rigid basement on top of which Proterozoic
sediments (Hormuz Series) acted as a detachment zone [Bird,

Figure 9. The ratio of dominant wavelength to total thickness (l/(H + Hm)) versus the ratio of matrix thickness to
layer thickness (Hm/H). (a) In central Asia both the observed topographic wavelength and the Moho depth (i.e., H +
Hm) around 50 km, yielding l/(H + Hm)  1. For effective viscosity contrasts (meff /mm) between 10 and 10,000 and
Argand numbers (Ar) between 0.5 and 1.5, all results lie within the shaded field. The value of Hm/H is constrained
between 3 and 7. (b) In the Jura Mountains, values of Hm/H between 0.2 and 0.6 and values of l/(H + Hm) between 1
and 2.5. The observed parameter range indicates that effective viscosity contrasts are smaller than �500 and
normalized amplification rates (atot/_eB) are smaller than 10. This is also observed for Argand numbers between 0.5
and 1.5 and power law exponents (n) between 1 and 3.
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1978; Colman-Sadd, 1978; Mann and Vita-Finzi, 1988]. Folding
is considered to have started in the Miocene, and therefore we
ignore the sediments deposited since the Miocene because we
analyze the initial wavelength selection process. These young
sediments are, moreover, incompetent and exhibit much smaller-
scale folds [Colman-Sadd, 1978]. Therefore the initial folding
setup or geometry is the same as in central Asia and the Jura
Mountains. Observed wavelengths in the Simply Folded Belt are
between 6 and 18 km, the thickness of the folded series is
between 6 and 7 km, and the thickness of the matrix (detachment
zone) is between 1 and 1.5 km [Colman-Sadd, 1978; Mann,
1988]. Using the same range of Argand numbers and power law
exponents as in the Jura Mountains indicates that in the Zagros
Mountains the effective viscosity contrast was less than �500,
and the ratio of amplification rate to shortening rate was less
than �10.

8. Discussion and Conclusions

[29] In this study, linear stability analysis and thin-plate meth-
ods are used. The folded layer and the matrix exhibit homogeneous
and isotropic material properties. Natural settings, especially on the
crustal and lithospheric scales, are more complicated because of
strong pressure and temperature dependence of material properties,
complex rheologies, large strains, effects of shear heating, etc.
Numerical methods are required to investigate large strain folding
under more complex conditions [e.g., Burov and Molnar, 1998;
Burg and Podladchikov, 1999; Gerbault et al., 1999; Schmalholz et
al., 2001] because even powerful analytical methods, such as
thick-plate or perturbation methods, are unsuitable to incorporate
many complex natural conditions. This study does not investigate
folding under lithospheric conditions but focuses on the simulta-
neously acting resistances due to gravity, matrix viscosity, and
matrix thickness against fold amplification and especially on the
transitions at which one of these resistances starts to control
folding. For our purposes a simple analytical approach is advanta-
geous because it allows the derivation of dimensionless parame-
ters, such as S, that alone define the dominant wavelength and the
transition between two different folding modes (Figure 3). S, for
example, provides important information on how the involved
physical parameters (e.g., H, meff) affect folding. An increase in
H causes S to decrease, which shifts folding closer to the gravity-
controlled mode. Also, changing H has a stronger influence than a
change in meff because H appears with a larger absolute exponent in
S than meff (compare (14)). In addition, complex natural settings are
usefully reduced to simpler settings with only a few layers
characterized by so-called effective thicknesses and effective
competence contrasts [e.g., McAdoo and Sandwell, 1985; De Rito
et al., 1986; Burov and Diament, 1995; Zuber and Parmentier,
1996]. This requires understanding of simplified folding processes
such as the one considered in this study (Figure 1) and a posteriori
justifies the application of simplified folding models to more
complex, natural situations.
[30] The dominant wavelength for gravity-controlled folding

of ductile layers (equation (18)) depends on the square root of the
Argand number, a result at variance with the solution proposed
by Burov and Molnar [1998] and Cloetingh et al. [1999], which
depends on the fourth root of the Argand number. This discrep-
ancy occurs because they employed the so-called equilibrium
analysis [e.g., Bazant and Cedolin, 1991], which requires anap-
proximation of the inherently time-dependent viscous formula-
tionby an effective quasi-static (e.g., elastic) model involving
only stationary parameters (e.g., background strain rate _eB). To
achieve this reduction, the kinematic equation (8) was approxi-
mated as

_eF ¼ �z
@3W x; tð Þ
@x2@t

¼ �az
@2W x; tð Þ

@x2
 �_eBz

@2W x; tð Þ
@x2

; ð55Þ

which is equivalent to setting the folding growth rate equal to the
background strain rate, i.e., a  _eB. If the more accurate expression
for a = 6n_eB/Ar (equation (20)) is used, the square root dependence
of the buckling wavelength, lcrit, on the Argand number is
recovered within the framework of the equilibrium or ‘‘loss of
stability’’ analysis [Turcotte and Schubert, 1982, equation (3–
124)]:

lcrit ¼ 2pH
4

ffiffiffiffiffiffiffiffiffiffiffiffi
a

6_eBAr

r
¼ 2pH

4 ffiffiffi
n

pffiffiffiffiffi
Ar

p ð56Þ

in agreement with (18) for the Newtonian case (n = 1). The fact
that both solutions fit the observations of crustal folding in central
Asia suggests that the Argand number is of order 1 and a� _eB for
this particular case.
[31] We show that folding dominates homogeneous layer

thickening if Ar < Arcrit = 6n (equation (50)). More accurate
thick-plate analysis lowers Arcrit to  2.5n. Homogeneous
(constant trough depth) layer thickening of the crust and litho-
sphere has been applied to model the Indian-Asian continental
collision using the so-called thin viscous sheet model [England
and McKenzie, 1982; Houseman and England, 1993]. In these
models the Argand number is defined differently [England and
McKenzie, 1982, equation (19)] than it is here (equation (13))
due to the different problem setup. We use the density difference
between the material below and above the layer to characterize
the gravitational stress and the background strain rate to describe
the layer-parallel stress. England and McKenzie [1982] use the
density contrast between the layer material, rc, and the material
below the layer, rm, to describe the gravitational stress and the
ratio of the indentation velocity, u0, to layer thickness, H, to
characterize the layer-parallel stress. In the following, the Argand
number originally introduced for the thin sheet model is des-
ignated ArTS and, in our notation, is

ArTS ¼ rc
rm

1� rc
rm

� �
rmgH

Bðu0=HÞ
1
n

: ð57Þ

Assuming a mantle density of 3300 [kg m�3] and crustal density of
2725 [kg m�3], the conversion between the two definitions is

ArTS  1

7

_eB
u0=H

� �1=n

Ar  1

7

H

L

� �1
n

Ar; ð58Þ

where our background shortening strain rate is replaced by the ratio
of the indentation velocity to the characteristic horizontal length
scale L of the deforming area, i.e., _eB = u0 /L. If L � H, then our
Argand number is around 7 times larger than the one used in the
thin viscous sheet models. The homogeneously thickening thin
sheet model is appropriate if

ArTS � ArTScrit ¼
1

7

H

L

� �1
n

Arcrit 
n

3

H

L

� �1
n

ð59Þ

(using the thick-plate estimate Arcrit = 2.5n). On the other hand, the
ArTS number must be <10 to sustain appreciable crustal elevation
contrasts [England and McKenzie, 1982]. England and Houseman
[1986] found that the value of ArTS number that gives the best match
to central Asian topography is �1 if n = 3 and is �3 if n = 10, and
they focus on these two cases in subsequent publications [House-
man and England, 1993]. However, both sets of these parameters
result in ArTS  Arcrit

TS . This result means that for the values of the
Argand number and n used by Houseman and England [1993],
layer thickening is not the sole deformation mechanism: Folding
provides maximal amplification rates that are of the same order as
the thickening rates. In this case, the folding instability and the layer
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thickening equally contribute to the uplift rates of the topography
and neither mode can be neglected. We argue that the thin viscous
sheet models (with either n = 3, ArTS = 1 or n = 10, ArTS = 3 and
deformation simplified to be depth-independent) are accurate only
in areas where the horizontal length scale of the deformed area is
much larger than the thickness of the thin sheet. Although the length
L is not known a priori in the thin viscous sheet models, it is hard to
satisfy the applicability condition, (L/H)1/n � 1, everywhere in the
computational domain, especially if n = 10 is used (preferable for
matching the degree of strain localization). Moreover, in the thin
viscous sheet models of Houseman and England [1993] the
horizontal length scale of the deformation at sides and corners of the
indentation is much smaller than the horizontal length scale of the
deformed area in the front of the indentation (as in Figures 3 and 4
of Houseman and England [1993]). The corners of the indentation,
the so-called syntaxes, are the sites of high shortening strain rates
orthogonal to the indentation direction. Arguably, syntaxes are the
areas where folding dominates homogeneous thickening and the
thin sheet approximations must be extended to handle folding
[Medvedev and Podladchikov, 1999a, 1999b]. Large-scale folding

as the primary response to shortening has indeed been suggested for
both syntaxes of the Indian-Asian continental collision [Burg and
Podladchikov, 1999].
[32] We show that the effective rheology of competent layers on

the lithospheric scale can be described by the Kelvin rheology. This
rheology may be suitable to describe the effective rheology of the
oceanic lithosphere, especially in the context of the initial folding
stages during compression. A shortened oceanic lithosphere would
behave quasi-elastically, if the thickness of its elastic sublayer
exceeds the limit given by (48). We speculate that on Earth this
limit (�5–15 km) may be exceeded and the resulting quasi-elastic
behavior of the oceanic lithosphere would explain its plate-like
behavior (‘‘memory’’ of the internal stress state and geometry). In
contrast, the thickness of the top elastic layer may not exceed the
critical value on Venus due to its high surface temperature explain-
ing the absence of plate tectonics.
[33] The application of our analytical results to folding in

central Asia and the Zagros and Jura Mountains shows the
advantage of the geometrical parameter Hm because it allows
the use of observable, geometrical information such as the ratio

Figure 10. Phase diagram for fundamental folding modes for given values of the Argand number (Ar) and the power
law exponent (n) of the layer material. The phase diagram is constructed using as coordinates the ratio of matrix
thickness to layer thickness (Hm/H) and the ratio of wavelength to total thickness (l/(H + Hm)). The dashed lines are
contour lines of the effective viscosity contrast (meff /mm is given by the numbers on the dashed lines) between layer
and matrix. Folding is negligible if the maximal amplification rate of the folding instability is smaller than the
thickening rate of the layer. The narrow field for gravity-controlled folding limits the fields for matrix-controlled and
detachment folding because for fold geometries above the line for gravity-controlled folding, the amplification rates
for matrix-controlled and detachment folding are larger than the one for gravity-controlled folding. The active folding
mode is determined by the mode that provides the slowest amplification rate (see Figure 5).
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of wavelength to total thickness l /(H + Hm) and the ratio of
matrix thickness to layer thickness Hm/H. Burov et al. [1993]
constrained the effective viscosity contrast between upper and
lower crust to values between 20 and 30 in order to obtain ratios
of crustal wavelength to crustal thickness l/H between 4 and 6.
However, our results, including gravity and matrix thickness,
show that such values can be obtained for effective viscosity
contrasts between 10 and 10,000. Therefore the ratio l/H does
not provide a reliable information about the effective viscosity
contrast (see also Figure 10).
[34] The ratios l /(H + Hm) and Hm/H can be used to construct a

phase diagram for the three folding modes (Figure 10). If the
Argand number (Ar) and the power law exponent (n) are fixed, the
three folding modes can be determined within the space l /(H +
Hm) � Hm/H. The critical maximal amplification rate (atot /_eB),
below which folding is considered to be negligible, is set to one.
For folding with atot /_eB < 1, no observable fold shapes will

develop. The amplification rates within the matrix-controlled and
the detachment folding mode depend on the viscosity contrast
(dashed lines in Figure 10) where increasing viscosity contrasts
cause increasing growth rates (compare equations (19) and (36)).
In the matrix-controlled and detachment folding fields the contours
of the effective viscosity contrast allows estimation of the effective
viscosity contrast if estimates of the Argand number are available.
The gravity-controlled folding mode is independent of the
viscosity contrast (compare equation (20)) and is therefore
represented by a line rather than a field within the space l /(H +
Hm) � Hm/H. More generally, the phase diagram can be
constructed for variable values of Ar and n (Figure 11). The
transition between matrix-controlled and detachment folding (the
solid line in Figure 11) depends only on the ratios of l/(H + Hm)
and Hm/H and is independent of Ar and n. The equation for this
transition is derived by equating lmat and ldet (compare equations
(17) and (35)), using (54) and solving for l /(H + Hm). The

Figure 11. General phase diagram for fundamental folding modes. The phase diagram is constructed using as
coordinates the ratio of matrix thickness to layer thickness (Hm/H ) and the ratio of wavelength to total thickness (l /(H
+ Hm)). The transition between matrix-controlled and detachment folding is defined by the single, solid line. The
equation for this line only depends on l /(H + Hm) and Hm/H. The fields for matrix-controlled and detachment folding
are bounded at their top by the shaded lines that define the gravity-controlled folding mode. The gravity-controlled
folding mode only occurs within a narrow field. The thick shaded lines defining the gravity-controlled folding mode
depend in addition on the coordinates of the phase diagram on the Argand number (Ar). A decrease in Ar causes an
increase in the fields for the matrix-controlled and detachment folding mode. For example, for Ar  1, folding in
central Asia takes place in the gravity-controlled folding mode, but for Ar < < 1, folding takes place in the matrix-
controlled folding mode. These fields for the matrix-controlled and detachment folding mode are bounded at their
bottom by the dashed lines, which represent the constraint that the maximal amplification rates must be larger than the
layer thickening rate (i.e., atot /_eB > 1). These boundary lines depend on the power law exponent (n), and increasing n
increases the active fields for matrix-controlled and detachment folding. These lines show that for folding in the Jura
and the Zagros Mountains, n must have been larger than 1.
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boundary at which the maximal amplification rates for matrix-
controlled and detachment folding are equal to one (the dashed
lines in Figure 11) depends on n. The analytical expression for this
boundary is found by setting amat = 1, using (54) and solving for
l /(H + Hm). For folding geometries below the dashed lines,
folding is negligible since atot /_eB < 1. The line at which gravity-
controlled folding is active can be constructed with (18) and (54).
[35] The phase diagram presented in Figure 11 provides impli-

cations for the observed folds in central Asia and the Jura and
Zagros Mountains. For central Asia, Argand numbers cannot be
considerably larger than 1 because folding cannot occur for the
observed fold geometries. If Argand numbers are around 1, the
folding in central Asia occurred in the gravity-controlled folding
mode. If Argand numbers were considerably smaller than 1, the
folding would occur in the matrix-controlled folding mode. Fold-
ing in the Jura and the Zagros Mountains took place in the
detachment folding mode. Moreover, the power law exponents
are required to be larger than 1 for folding to occur. It can be
argued that the maximal amplification rates should be at least > 3
for noticeable fold shapes to develop, which would imply power
law exponents larger than 5.
[36] The upper limits for the ratios of amplification rate to

shortening rate estimated for the Jura and Zagros Mountains are
around 10 (Figure 9b). These values are obtained by assuming that
the observed fold wavelength corresponds to the dominant wave-
length. However, the wavelength selected in the nucleation stage
decreases with progressive shortening [Sherwin and Chapple,
1968], and observed wavelengths are smaller than the initial
dominant wavelengths. Taking this effect into account, the values
of l/(H + Hm) would increase and the observed fields, representing
the geometry of the folds in central Asia and the Zagros and Jura
Mountains, would move to larger values of l /(H + Hm), i.e., to the
right in Figure 11. However, because of logarithmic axes of the
phase diagrams, these results corrected for strain would not change
the estimated folding mode but would increase the estimated limits
for the ratios of amplification rate to shortening rate. Better
estimates for these limits can be obtained by incorporating the
change of wavelength and arc length during folding in the
analytical theory [e.g., Sherwin and Chapple, 1968; Schmalholz
and Podladchikov, 2000], which complicates the analytical results
and requires additional information on strain [e.g., Schmalholz and
Podladchikov, 2001b].
[37] According to our phase diagrams (Figures 5 and 11),

folds can be assigned to different modes that provide different
types of information: (1) Matrix-controlled folding provides
information about the effective viscosity contrast between the
folded layer and the matrix, (2) gravity-controlled folding pro-
vides information about the Argand number, and (3) detachment
folding provides information about the thickness of the detach-
ment zone (Table 1).
[38] Finally, it can be seen from Table 1 that for all folding

modes (including folding with depth-dependent matrix viscosity
(equation (42)), the same approximate relationship always exists
between the maximum amplification rate, ad, and the dominant
wavelength, ld, namely,

ad

_eB
 n

p2

ld

H

� �2

: ð60Þ

This means that a first-order estimate of the amplification rate can
be done for any fold by only observing the ratio of wavelength to
thickness and a rough estimation of the power law exponent of the
layer material.
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