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[1] Polycrystals undergoing ductile deformation develop lattice-preferred orientation (fabric) as a
result of intracrystalline slip. A consequence of fabric development is that bulk physical properties
become anisotropic. Fabric development and macroscopic deformation are studied by examining
three effects: nearest-neighbor interaction (NNI) among crystals, polygonization, and migration
recrystallization. The effects of NNI are modeled by arranging the crystals on a three-dimensional
cubic grid and assigning six neighbors to each crystal. The ‘‘strength’’ of interaction can vary from
no interaction (homogeneous stress) to ‘‘strong’’ interaction (significant stress redistribution).
Increasing the NNI leads to a more homogeneous strain. Fabric varies in both strength and
symmetry at a given bulk strain, depending on the strength of NNI. For a prescribed fabric the strain
rate increases as the NNI increases. Recrystallization is modeled from energy balance
considerations, and polygonization is formulated in terms of stress differences. Both processes
require knowledge of dislocation density, which is calculated in the model as a function of crystal
strain and grain size, both of which vary with time. Models of fabric development in ice that include
NNI lead to more realistic fabric evolution than models with homogeneous stress. However,
available data on fabric evolution are inadequate to determine quantitatively the strength of NNI
acting in ice. INDEX TERMS: 1827 Hydrology: Glaciology (1863), 3210 Mathematical
Geophysics: Modeling, 3902 Mineral Physics: Creep and deformation, 5120 Physical Properties Of
Rocks: Plasticity, diffusion, and creep; KEYWORDS: glaciology, recrystallization, fabric, anisotropy,
deformation, ice

1. Introduction

[2] The ductile behavior of crystalline materials like rocks
and glacier ice depends on mechanical properties of individual
grains in the aggregate and on interactions between the grains.
In addition, the grain structure can also evolve in response to
deformation, thereby altering the mechanical properties. These
coupled processes have very important effects on the physical
properties of crystal aggregates of many common earth minerals.
An initially isotropic polycrystal undergoing ductile deformation
will develop lattice-preferred orientation (fabric) as a result of
intracrystalline slip. The preferred orientation of mantle minerals,
mainly olivine crystals, is known to cause seismic shear wave
splitting in the crust and the upper mantle [Savage, 1999]. In ice
sheets, fabric evolution has been well documented from exten-
sive thin section measurements on ice cores [Alley et al., 1995;
Gow et al., 1997; Thorsteinsson et al., 1997] and from sonic
logging in boreholes and on the ice cores themselves [Kohnen
and Gow, 1979; Taylor, 1982; Anandakrishnan et al., 1994;
Thorsteinsson et al., 1999]. A consequence of fabric develop-
ment is that bulk physical properties become anisotropic, as
shown by experiments and theory [Steinemann, 1958; Russell-
Head and Budd, 1979; Duval, 1981; Duval and LeGac, 1982;
Budd and Jacka, 1989; van der Veen and Whillans, 1990; Wenk
and Christie, 1991; Alley, 1992; Anandakrishnan et al., 1994;
Azuma, 1994, 1995; Azuma and Goto-Azuma, 1996; Castelnau
et al., 1996a].
[3] Several hypotheses have been used to model fabric develop-

ment; the best known are the Taylor-Bishop-Hill (TBH), viscoplastic
self-consistent (VPSC), and Sachs hypotheses. In the TBH hypoth-
esis the key assumption is that all the crystals in the aggregate

experience the same amount of strain, which guarantees compati-
bility (no voids or overlaps form), but not stress equilibrium [Bishop
and Hill, 1951]. To achieve arbitrary deformation for every crystal, a
minimumof four to five independent slip systems are required [Wenk
and Christie, 1991]. Models based on the TBH hypothesis have
mainly been used for crystals such as calcite where the plastic
anisotropy is not very strong, and many easy slip systems are
available [Wenk and Christie, 1991]. The VPSC method compro-
mises between compatibility and stress equilibrium. VPSC models
commonly assume that the neighborhood of each crystal is replaced
with a homogeneous equivalent medium (HEM), which has the
average properties of the aggregate. The HEM can have an aniso-
tropic rheology [Lebensohn and Tome, 1993, 1994; Molinari et al.,
1987], and the HEM can be defined to encompass any given volume
around a given crystal [Molinari et al., 1987;Wenk et al., 1991]. The
VPSC scheme is an iterative scheme, and as such, it is sometimes
difficult to visualize the redistribution of stress and strain between
crystals at each step. The VPSC method has been used to model
peridotite, olivine, quartz, and ice, to name only a few [Wenk et al.,
1991; Castelnau et al., 1996b]. Finally, there are models based on
the Sachs [1928] hypothesis, more precisely the homogeneous stress
assumption, where the stress state in each crystal is assumed to be the
same. It guarantees full stress equilibrium but not strain compati-
bility. Thorsteinsson et al. [1999] used this model to examine the
effect of anisotropy on the deformation of the borehole in the ice
sheet at Dye 3, Greenland.
[4] According to the TBH hypothesis the crystals are fully

constrained by their neighbors, in the VPSC hypothesis they are
partially constrained through the HEM, and in the Sachs
hypothesis they are unconstrained since the deformation of each
crystal depends only on the applied stress. For the fabric
development in the Sachs model, on the other hand, the
rotations are calculated as if the crystal were constrained by
neighbors [Castelnau et al., 1996b].
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[5] During fabric development the nearest neighboring crystals
adjacent to a crystal are expected to have important effects on the
deformation of that crystal. By means of in situ observation of
plane strain deformation of polycrystalline ice, Azuma [1995]
found that the deformation of single crystals depended very
strongly on the interaction with their neighbors. Azuma formulated
a fabric evolution model that is partly based on these findings
[Azuma, 1994, 1995; Azuma and Goto-Azuma, 1996]. Sarma and
Dawson [1996] used finite element modeling of polycrystals and
found that neighbor interactions were the main factor in determin-
ing the variation of the single-crystal strain at a given bulk
equivalent strain.
[6] Dynamic recrystallization is an important mechanism in

fabric development during deformation. For temperatures (T ) close
to the melting point (T > �12�C for ice), migration recrystalliza-
tion is active. The high temperature allows the nucleation of new,
strain-free grains and the rapid migration of grain boundaries
[Duval and Castelnau, 1995]. In studies of high-temperature
(�5�C to 0�C) creep of ice, Kamb [1972] found that after only
�0.04 shear strain, there was already strong evidence of recrystal-
lization. Polygonization is another recrystallization process in
which grains are effectively divided due to rearrangement of
dislocations into subboundaries (dislocation walls). The effect on
fabric development from this process is less significant since the
orientation of the new crystal usually deviates by <5� from the
parent crystal.
[7] The purpose of this paper is to present a new model for

fabric development. The model modifies the homogeneous stress
assumption by redistributing the stress through explicit nearest-
neighbor interaction (NNI). If there is no NNI, the model reduces
to a homogeneous stress model. The effects of nearest-neighbor
interaction on the behavior of crystal aggregates are examined.
Dynamic recrystallization, both migration recrystallization and
polygonization, is considered. Migration recrystallization depends
on the dislocation density and crystal size, both of which have to be
taken into account.
[8] In order to model the fabric development for a given

material, one has to know the initial orientation distribution, the
slip system (s) normals (and Burgers vectors), and their respective
effective ‘‘viscosities,’’ hs = _g0

s / (t0
s)n, where _g0

s and ts are reference
shear strain rate and shear stress, respectively, and n is the stress
exponent (inverse of strain rate sensitivity; see equation (3)).
[9] Ice (Ih, hexagonal) is used as the model material. Ice Ih has

only two independent easy slip systems, the basal plane (0001)
[Ashby and Duval, 1985]. Good information about fabric and
texture exists from recent ice core studies [Thorsteinsson et al.,
1997; Gow et al., 1997]. Resistance to shear on other slip systems
(prism 10�10ð Þ 11�20h i and pyramidal 11�22ð Þ 1123

� �
is 20 times, or

higher, than on the basal plane slip system [Castelnau et al., 1997].
The fabric development is qualitatively known from thin section
and sonic logging measurements. The c axes rotate toward the
compression axis [van der Veen and Whillans, 1994; Morland and
Staroszczyk, 1998; Gödert and Hutter, 1998; Thorsteinsson, 2001].
[10] In this paper I will use fabric to refer to the orientation

distribution of slip system normals n (h0001i axes) and texture to
refer to the size and shape of crystals.

2. The Model

[11] In the model the crystals are arranged on a three-dimen-
sional cubic grid. Each crystal then has six nearest neighbors, as
illustrated in Figure 1. The cubic arrangement is used to find
nearest neighbors at all stages of the deformation. In this section I
begin by writing the constitutive equation for a single crystal and
explaining how the nearest-neighbor interaction (NNI) is taken into
account. The bulk (macroscopic) deformation and crystal rotations
are then derived. Finally, I describe how recrystallization (normal
grain growth, polygonization, and migration recrystallization) is

included in the model. Since the recrystallization depends on the
dislocation density, an evolution equation for the dislocation
density is also a part of the model.

2.1. Constitutive Relations

[12] The resolved shear stress (RSS) on each slip system s is

ts ¼ Ss : �c; ð1Þ

where Ss : �c = Skl
s �kl

c summing over repeated indexes, �c is the
state of stress in the crystal, and Ss is the Schmid tensor for the slip
system. The Schmid tensor gives the transformation from the
crystal coordinate system (microscopic) to the laboratory coordi-
nate system (fixed, macroscopic)

S ¼ b� n; ð2Þ

where b � n = binj, n is the slip plane normal, and b is the slip
direction (Burgers vector).
[13] The rate of shearing _g s, on slip system s, is

_gs

_gs0
¼ ts

ts0

����
����
n�1 ts

ts0
; ð3Þ

where _g0
s and t0

s are the reference resolved shear strain rate and
shear stress, respectively, and n is the stress exponent.
[14] The nearest-neighbor interaction (NNI) is modeled by

defining a local softness parameter E for each crystal. The stress
acting on the center crystal (�c) is modified by Ec according to

�c ¼ Ecss; ð4Þ

where S is the Cauchy stress tensor acting on the crystal aggregate.
The softness E depends on the assigned strength of interaction,
defined by the contribution of the center crystal (z) and the
neighbors (x) to E, and on the magnitudes of the resolved shear
stress (RSS) of the neighbors compared to the center crystal. The
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ξ

ξ

ξ

ξ
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Figure 1. Illustration of the crystal arrangement used in the
calculations. The center crystal is z, and its six nearest neighbors
are x.
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contributions (z, x) thus determine the strength of interaction, and
the magnitudes of the RSS of the neighbors determine the softness.
The magnitude of the RSS is

T i ¼
X
s

tsb̂s

�����
����� ¼

X
s

Ss : ssð Þb̂s
�����

�����; ð5Þ

where b̂s is a unit vector in the direction of the Burgers vector and
i = 0,1,. . ., 6 refers to the the center crystal and its six nearest
neighbors. The local softness parameter Ec of each crystal is
calculated from the ratio of T 0 of the center crystal, relative to T i

of its neighboring crystals, and the relative contribution assigned to
the neighbor crystals

Ec ¼ 1

zþ 6x
zþ x

X6
i¼1

T i

T 0

 !
; ð6Þ

where z is the contribution of the center crystal and x is the
contribution of each neighbor, and since the RSS can be zero, there
is a specified roof for the maximum value of E.
[15] Setting z = 1 and x = 0 in (6) gives E = 1, which is the

homogeneous stress model, where there is no neighbor interaction.
When z = 6 and x = 1, the center crystal contributes as much as all
the neighbors together, while for z = 1 and x = 1 the center crystal
contributes as much as each of the neighbors. The effects of
varying z and x are explored below.
[16] The strain rate is defined by _e ¼ 1

2
Lþ LT
� �

, where L is the
velocity gradient and superscript T denotes a transpose. The
velocity gradient for a single crystal is related to the microscopic
slip system shear strain rates by

Lc ¼
X
s

Ss _gs: ð7Þ

[17] Equations (3) and (7) show that the velocity gradient of a
single crystal is

Lc ¼
X
s

_gs
0S

s Ec S
s : S

ts0

����
����
n�1

Ec S
s : S

ts0
; ð8Þ

where S is the Schmid tensor. The modeled velocity gradient of the
aggregate is

Lm ¼ 1

N

XN
c¼1

Lc: ð9Þ

2.2. Rotation of Single Crystals

[18] To calculate the fabric development, the rotation of crystals
with respect to the external reference frame must be formulated. A
boundary condition of a bulk rotation rate _�����b is imposed. The bulk
velocity gradient is thus L ¼ Lm þ _�����d [Castelnau and Duval,
1994] where

_�����d ¼ _�����b � _�����m; ð10Þ

is the difference between the imposed bulk rotation _�����b and the
modeled rotation rate of the crystal aggregate

_�����m ¼ 1

2
Lm � Lmð ÞT
h i

: ð11Þ

[19] The rotation rate of the crystal lattice is given by

_������ ¼ _�����b � _�����p; ð12Þ

where _�b is the bulk (macroscopic) rotation rate and _�p is the
plastic rotation rate of a single crystal

_�����p ¼ 1

2
Lc � Lcð ÞT
h i

: ð13Þ

The rate of change in orientation of n is given by

_n ¼ _������  n: ð14Þ

In the model calculations below, the change in the zenith and
azimuth angle of the normal (n) is calculated for each crystal. This
also allows us to update the orientation of the three Burgers vectors
in the basal plane [Thorsteinsson, 2001].

2.3. Dynamic Recrystallization

[20] For most polycrystalline materials, there are at least three
recrystallization regimes: normal grain growth, polygonization,
and migration recrystallization. The fabric (crystal orientation
pattern) is not affected by normal grain growth, where grain size
increases according to a parabolic growth law [Gow, 1971; Alley et
al., 1986]. As the grains strain, subboundaries (dislocation walls)
may form due to heterogeneous deformation within grains that
relieves stress concentrations. The formation of subboundaries can
lead to the division of the parent grain into two new grains, as the
misorientation of subgrains increases. This is called polygoniza-
tion, and it leads to the formation of two grains with a small
misorientation angle (�5�).
[21] The formation of subboundaries, by dislocations forming

dislocation walls, can create small (fraction of parent crystal size)
grains that are in a strain shadow. Being strain energy free, these
small grains can act as seeds for migration recrystallization. The
idea adopted here is that within the crystal aggregate, there are
many such seeds. They are not explicitly formulated in the model
since they are too small to contribute significantly to the deforma-
tion. However, they are envisioned to provide numerous potential
nucleation sites for new grains. When the temperature gets high
enough for grain boundary migration to be very efficient, these
seeds can quickly consume highly strained crystals, thus reducing
the free energy of the system. These small grains in the aggregate
are also envisioned to allow for grain growth; larger adjacent grains
can grow by consuming them.
[22] The number of crystals is kept constant in the calculations,

so the volume (mass) can change discontinuously during recrystal-
lization when new crystals replace old ones of different size. Only
one of the two crystals resulting from polygonization is kept in the
calculation; the choice is random. Since the orientations of the two
parts are similar, this assumption does not significantly affect the
NNI or the fabric. The change in both number and size of crystals
would have to be taken into account for accurate modeling of
texture (size and shape of grains). During migration recrystalliza-
tion the new crystal is smaller (possibly equal in size) than the
parent crystal, and the ‘‘missing mass’’ becomes ‘‘seeds,’’ which
are assumed to be present but are not explicitly included in the
calculations. Polycrystalline ice is used as the model material, since
good information about the transition between these recrystalliza-
tion regimes exists from ice core studies.

2.3.1. Grain growth. [23] During normal grain growth the
mean crystal diameter increases with time [Gow, 1971; Alley et al.,
1986] according to a parabolic growth law

D2 � D2
0 ¼ Kt; ð15Þ
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where t is time and D0 is the mean crystal diameter at t = 0. The
grain growth factor is

K ¼ K0 exp � Q

RT

� �
; ð16Þ

where T is the temperature, Q is activation energy, and K0 is a
constant that depends on impurity concentration. In the calcula-
tions below, K0 = 8.2 � 10�9 m2 s�1, and Q = 40 kJ mol�1 is used
to represent ice [Alley et al., 1986].
[24] I have also used the difference in stored energy due to

dislocations Edisl (see equation (19) below) to calculate the rate of
change in individual crystal size [Wenk et al., 1997] by changing
the growth factor to

~K ¼ Eav
disl � Ei

disl

� �
K 0; ð17Þ

where Edisl
i is the stored energy of the crystal, Edisl

av is the average
stored energy for the whole sample, and K0 is a constant that
depends on temperature and impurities. This allows some crystals
to grow (if Edisl

av >Edisl
i ) and others to contract (Edisl

av < Edisl
i ).

2.3.2. Polygonization. [25] In theGreenland IceCore Project
(GRIP) ice core from the Greenland ice sheet, poly gonization
(rotation recrystallization) is active below 650 m depth, where the
vertical strain is�0.25 [Thorsteinsson et al., 1997].De La Chapelle
et al. [1998] found a lower bound for the dislocation density
associated with the formation of a grain boundary by considering
the energy associated with a dislocation density r and the energy
corresponding to the formation of a grain boundary. They estimated
that the dislocation density needed to form a wall is greater than
rpoly �5.4 � 1010 m�2.
[26] Here polygonization is modeled by considering a proxy for

bending moments. Grains that have low RSS are likely to expe-
rience different stress from their neighboring grains, which are
deforming. These stresses apply bending moments, which are
relieved when the dislocations organize themselves into walls
(subboundaries), effectively dividing the crystal [Duval and Cas-
telnau, 1995]. To account for polygonization in the model, the
magnitude of the RSS of the crystal is compared to the magnitude
of the applied stress. If that ratio is smaller than a given value d and
if the dislocation density r > rpoly, then the crystal polygonizes. The
orientation is changed by 	q, the crystal size is halved, and the
dislocation density r is reduced by rpoly. It is important to
remember that grains rotate into a orientation with lower RSS as
a result of intracrystalline slip. Some of the grains that have low
RSS therefore have very high dislocation densities. Also, through
the effects of NNI, a grain in a ‘‘soft’’ orientation can have a lower
RSS if surrounded by ‘‘hard’’ grains. Typical values used below to
model ice are d = 0.065 and 	q = 5�.

2.3.3. Migration recrystallization. [27] Migration
recrystallization is generally active when the temperature is close
to the melting point. In ice it is active when the temperature
exceeds ��12�C, but for colder temperatures it is generally not
observed [Duval and Castelnau, 1995]. To model migration
recrystallization, both stored energy and energy associated with
grain boundaries must be considered. The energy associated with
grain boundaries is

Egb ¼
3ggb

D
; ð18Þ

where ggb = 0.065 J m�2 (for high angle boundaries) and D is the
crystal diameter. The stored energy due to a dislocation density r
can be estimated as

Edisl ’ krGb2ln
Re

b
; ð19Þ

where G is the shear modulus, b is the length of the Burgers vector,
k is (4p)�1 for screw and [4p(1 — n)]�1 for edge dislocations
(where n ’ 0.3 is the Poisson’s ratio), and Re is the mean average
of the dislocation strain field range [Mohamed and Bacroix, 2000;
Kuhlmann-Wilsdorf, 1998, 1999]. Re is commonly approximated
by 1

 ffiffiffi
r

p
, butMohamed and Bacroix [2000] found that this leads to

an underestimate of Edisl; k is therefore treated as an adjustable
parameter, but Re is kept as Re ¼ 1

 ffiffiffi
r

p
. For ice, G ’ 3.4 � 109 Pa

and b = 4.5 � 10�10 m.
[28] Migration recrystallization is included in the model by

considering the balance between the stored energy Edisl associated
with the dislocation density and the grain boundary energy Egb. As
the crystals strain, the dislocation density increases, and it becomes
energetically favorable to recrystallize if the energy due to the
dislocation density (Edisl) exceeds the grain boundary energy Egb

that is created by the recrystallization. Tracking of both the crystal
size and dislocation density is therefore needed. An estimate of the
change in dislocation density r with time is given by

@r
@t

¼
_e
bD

� ar
K

D2
; ð20Þ

where a is a constant >1, K is the grain growth factor, and D is the
crystal diameter [De La Chapelle et al., 1998; Montagnat and
Duval, 2000]. The first term on the right-hand side represents the
increased dislocation density, by work hardening, and the second
term represents the absorption of dislocations at grain boundaries
(recovery). Although the details of the processes at the grain level
are more complicated than formulated in (20) [Miguel et al., 2001],
these two processes are the most significant.
[29] In the model the crystal size D and dislocation density r

are calculated at each step. When Edisl >Egb, the crystal recrys-
tallizes. The crystal is then replaced with a new ‘‘strain-free’’
crystal, with dislocation density r0 = 1010 m�2 [Montagnat and
Duval, 2000]. The size of the new crystal scales with the
effective stress se

2 = sklskl/2 as D0 � se
�1.33 [Guillope and

Poirier, 1979; Ross et al., 1980; Shimizu, 1998, 1999]. A totally
random orientation for the new grain is not to be expected; some
subset of possible zenith angles seems more likely. In uniaxial
compression of ice, for instance, a small circle girdle fabric forms
[Budd and Jacka, 1989]. This indicates that new crystals that
form in orientations with high RSS are favored to grow. The
orientation of the new crystal is chosen at random from within a
specified range of possible angles in the model. This range
corresponds to the ‘‘softest’’ orientations in the applied stress
state. In uniaxial compression, for example, the range within
which new crystals can form is chosen to be between 35� and 55�.

3. Model Results

[30] This section explores the effects of several levels of
nearest-neighbor interaction (NNI) and recrystallization assump-
tions on the fabric development and bulk behavior. The results are
then compared with data from the GRIP ice core.
[31] In the following, deformation by dislocation glide on the

basal plane slip system is considered, using ice as the model
material. Kamb [1961] showed that for the observed range of the
stress exponent, 2 < n < 4, the expected response to simultaneous
glide along the a axes differs so slightly from the hitherto-
postulated a axis-independent, noncrystallographic glide as to be
practically undetectable experimentally. The resistance to slip on
the basal plane is the same for the three a axes, and only the basal
slip system is considered for ice; therefore we can write

_gs0
ts0
� �n ¼ bA Tð Þ; ð21Þ

where b is a constant, and A(T ) = A0 exp (�Q/RT ), where A0 is a
constant, Q is the thermal activation energy, R is the gas constant,
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and T is the temperature. The parameter b is chosen such that an
isotropic distribution yields the same strain rates as Glen’s [1958]
flow law, or some reliable measurements.

3.1. Nearest-Neighbor Interaction (NNI)

[32] The effects of the NNI on the fabric development are
examined first without any recrystallization. Three types of NNI
are used, (z, x) = (1,0), (6,1) and (1,1), which will be called the no-
NNI, mild-NNI, and full-NNI cases, respectively.
[33] Figure 2 shows model results for ice deformed under

constant uniaxial compressive stress along the 3 axis. Figure 3
shows the results for ice deformed in constant pure shear stress
(s33 = �s11). Each row shows the results for different NNI. The
left plot in each row shows the strain rate, _e33, normalized by the
initial isotropic strain rate, as a function of axial strain

e33 ¼
XN
i¼1

_ei33	ti;

where 	ti is the time it takes to complete the strain step i and N is
the number of steps. The middle plot in each row shows the strain
of single crystals as a function of the bulk equivalent strain,
eeq ¼

P
N
i¼1 _e

i
eq	ti, where

_eeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_e : _e

r
:

The results are displayed as a density plot, where the percentage of
crystals within a given strain (range) at a given bulk strain (range)
is shown. The right plot in each row is the resulting fabric at the
end of the model run.
[34] In the uniaxial compression model run (Figure 2) the

maximum strain rate generally increases with increasing NNI. In
pure shear (Figure 3), that effect is very small, since the fabric
evolution is less favorable for the deformation; the fabric locks
up. The strain of individual crystals with no NNI in uniaxial
compression follows two primary branches, zero strain or rapid
strain. Many of the crystals are simply not deforming. With
increasing NNI the spread diminishes, and for full NNI all the
crystals deform to some extent. The final fabric shows that NNI
induces a distinct change in character of the final fabric; compare
the top and bottom row of Figures 2 and 3. Increasing NNI tends
to increase the spread of crystal orientations, since the ‘‘hard’’
crystals are now deforming. Similar observations apply to the
pure shear deformation.
[35] It is clear from the final fabric in Figure 2 that the rate of

change of the zenith angle q (zenith angle velocity, dq/dt) changes
as the NNI changes. Figure 4 shows the zenith angle velocity for
the no-NNI, mild-NNI, and full-NNI cases. When there is no NNI,
the zenith angle velocity of each crystal at a given zenith angle is a
constant. When there is NNI, the zenith angle velocity at a given
zenith angle depends on the nearest neighbors. The mean velocity
at a given zenith angle is thus different from the no-NNI case.
From Figure 2 we see that the maximum zenith angle velocity, of
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Figure 2. Model results for uniaxial compression deformation for varying NNI: (top) no-NNI (1,0), (middle) mild-
NNI (6,1), and (bottom) full-NNI (1,1) cases. (left) The normalized vertical strain rate versus the vertical strain.
(middle) The distribution of single-crystal strain as a function of bulk equivalent strain, where the scale bar shows the
percentage of crystals with a given strain. (right) The final fabric achieved in each case.
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the bulk average, decreases as the interaction increases but the
velocity is more uniform over a range of zenith angles.

3.2. Dynamic Recrystallization

[36] In the following, the model starts with an initial fabric
which has a random distribution of c axes (isotropic ice), randomly
assigned crystal size of 3 to 5 mm diameter with a mean of 4 mm,
and a constant dislocation density of r = 4 � 1010 m�2 for each
crystal. The stress level is �0.1 bar, and in the examples below, the
crystal size remained essentially constant because only a short time
was required to achieve the strain.
[37] The results in uniaxial compression with mild NNI and

polygonization are shown in Figure 5. The strain rate versus strain,
the single-crystal strain density, and the final fabric are shown in
Figure 5 (top), and the polygonization events are shown in Figure 5
(bottom). The temperature is too low for migration recrystallization
to be active. Polygonization starts at a vertical strain of �0.03. The
minimum dislocation density needed to form subboundaries is
rpoly = 5.4 � 1010 m�2. If the magnitude of the RSS for a crystal is
<6.5% of the applied stress magnitude, and if the dislocation
density is high enough, then the crystal can polygonize. This
process is represented by setting d = 0.065. Each time a crystal
polygonizes, the dislocation density is reduced by rpoly. The zenith
angle changes by ±5�; if the crystal is within 30� of vertical, the
sign is positive (crystal moves away from vertical); otherwise, the
sign is chosen at random. The strain rate is higher than in the case
without polygonization, since crystals in ‘‘hard’’ orientations are
preferentially removed by the polygonization criteria. The single-
crystal strain distribution is more homogeneous at a given bulk

equivalent strain, and the final fabric is not as strong (compare with
the middle row of Figure 2).
[38] Figure 6 shows the results when migration recrystallization

is active. The strain rate versus strain, the single-crystal strain
density, and the final fabric are shown in Figure 6 (top), and the
recrystallization events are shown in Figure 6 (bottom). Initially, all
the crystals have the same dislocation density r = 4r0, so Edisl is very
small relative to the grain boundary energy. However, as the crystals
strain at different rates, the stored energy (Edisl) increases and in
some crystals eventually reaches Egb; crystal growth/contraction is
negligible in these calculations. I used k = 0.35 to simulate the
steady tertiary creep of ice after �10% strain; values of k smaller
than 0.2 did not result in strong girdle fabrics. Larger values of k
would initiate migration recrystallization for lower dislocation
density, i.e., at lower strains, and results in stronger recrystallization
‘‘waves.’’ When the stored energy of a crystal exceeds Egb, that
crystal will recrystallize. The first recrystallization event occurs
after 0.005 equivalent strain, and �4% of the crystals recrystallize
at each step (0.001 equivalent strain) after the initial peak. The strain
rate increases rapidly at first, but after �0.1 strain it levels off,
approaching normalized strain rate _e


_eisotropic

� �
of �3. A similar

pattern is observed in laboratory experiments [Budd and Jacka,
1989]. Individual grains acquire only �0.03 strain before their Edisl

exceeds the Egb; the crystal size is �4.2 mm throughout.
[39] Comparison of model results with measured fabric is

complicated, especially since the initial fabric is often not truly
random. At the GRIP borehole, Greenland, the fabric close to the
surface does not have an isotropic orientation distribution. This is
clearly demonstrated in Figure 7, showing the c axis orientations of
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the ice at 139 m depth. The strain (<0.1) that the ice has
experienced is insufficient to reorient the crystals significantly,
yet the fabric is far from the sine curve distribution characteristic of
isotropic ice.

[40] Keeping in mind the complications mentioned above,
Figure 8 shows a comparison of the model results, using mild
NNI with polygonization, with fabric data from the GRIP borehole,
Greenland [Thorsteinsson et al., 1997]. The vertical strain is �0.25
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at 650 m depth and �0.5 at 1293 m depth. The initial fabric in the
model was isotropic, and the criteria for polygonization are the
same as above. The temperature is below �12�C so there is no
migration recrystallization. The zenith angle averaging includes all
1000 crystals used in the model run. The results for mild NNI are
in broad agreement with the measured fabric. Model runs with no
interaction (no NNI) lead to a much stronger fabric and be ruled
out. Full NNI produces fabric that is more evenly distributed than

the mild-NNI fabric, but for samples of only a few hundred crystals
the distributions do look very similar, and therefore full NNI
cannot be ruled out.

3.3. Sensitivity to the Number of Crystals Used

[41] This model can be used to calculate the instantaneous
deformation for a predescribed fabric. The question, then, is
how many crystals are needed to represent the fabric for strain
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rate calculations? First, I examine how many crystals are
needed to give an accurate description of isotropic ice. In the
model the crystal orientations are chosen at random; an infinite
number of crystals are needed to exactly satisfy isotropy. The
calculations of strain rate must depend to some extent on the
finite number of crystals used; obviously, 100 crystals chosen
at random cannot uniformly cover the lower hemisphere. For
each given number of crystals in Figure 9 the strain rate is
calculated 100 times, each time using a new random fabric.
Then the mean and standard deviation (SD) of the strain rates
are calculated for the 100 numerical experiments. Since the
correct strain rate for an infinite number of crystals is known
analytically [Thorsteinsson, 2001], it can be used to normalize
the resulting strain rates. Figure 9 shows how the number of
crystals used in a calculation affects the accuracy. Note that the
SD declines greatly as the number of crystals increases from
100 to �5000. The improvement between 5000 and 10,000
crystals is minimal. I conclude that accurate results are
achieved using a 20 � 20 � 20 arrangement of crystals.
[42] Note also that the ratio of the number of crystals at the

surface of the cubic arrangement to the total number of crystals,
Rd = S/V = 4 d2/d3 = 4/d goes from 40% for 103 crystals to 20%
for 203 crystals. This is important since a periodic arrangement
of crystal boxes is used for the NNI (that is, the arrangement
shown in Figure 1 is repeated for 203 crystals in each box).
[43] Having established that �8000 crystals can be used to

adequately represent the strain rate, the strain rate as a
function of fabric can now be modeled. An example fabric
is a vertically orientated cone, which is described by a cone
angle a, which is half the apex angle of the cone within
which the crystals are evenly distributed. Figure 10 shows the
normalized strain rate, _e33 að Þ=_e33 90�ð Þ, in uniaxial compression
as a function of cone angle. With increasing interaction
the maximum strain rate increases. Figure 11 shows how

increasing NNI increases the maximum enhancement in a simple
shear stress state.

4. Discussion

[44] In the model the level of stress for each crystal depends on
the orientation of the crystal and the orientation of the nearest
neighbors (except in the no-NNI case). The crystals are arranged
on a cubic grid, and that arrangement does not change during the
deformation. The formulation applies equally well to other crystal
arrangements. The model could be extended to include next-to-
nearest-neighbor interaction, which would presumably make a
smaller contribution to the local softness. The nearest-neighbor
interaction leads to more enhanced deformation rates for cone
angles between 40� and 90� in uniaxial compression along the
direction of the cone (Figure 2). The same is not true in pure shear
(Figure 3) because the deformation quickly moves the crystals into
unfavorable orientations, where the RSS is smaller.
[45] Fabric plots from various ice cores show that the crystals in

uniaxial compression move toward and reach vertical, and few are
left near horizontal. This indicates that some NNI is needed, since
the zenith angle velocities for no NNI (Figure 4) go quickly to zero
near horizontal and vertical, and therefore the crystal c axes in
compression (Figure 2) do not reach vertical, nor do they move out
of horizontal starting positions. The strength of NNI is difficult to
constrain from available thin section data, since closely spaced thin
sections often show very different fabric and generally contain only
a few hundred crystal orientations.
[46] Since I keep track of grain size in the model, it would be

possible to assign weight according to grain size. I did not do that
here since the grain size that was used was fairly uniform and
deformation of ice under the conditions modeled does not show a
strong dependence on grain size [Duval and LeGac, 1980].
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However, grain size may be important when mechanisms other
than intracrystalline slip contribute to the deformation [Goldsby
and Kohlstedt, 1996; Cuffey et al., 2000]. During grain growth,
grains smaller than some critical size are being consumed. These
grains also act as seeds for recrystallization. They can be pictured
as tiny strain-free subgrains that do not contribute to the deforma-
tion because of their small size but can quickly consume highly
strained adjacent grains. To model the grain size evolution accu-
rately, a better model of the grain size statistics is needed. One
particular future direction for modeling would be to let the total
number of grains vary.
[47] The choice of the simple relation for grain growth (equa-

tion (15)) or the one dependent on the stored energy (equation (17))
does not change the results of the fabric evolution or strain history.
When the stored energy Edisl (equation (19)) is used to calculate
grain boundary migration rates [Wenk et al., 1997], some grains
grow, and others get smaller. However, to model grain size
evolution realistically, consideration of differences in the stored
energy between neighboring grains would be necessary to allow
for inhomogeneous grain growth. Ice, for instance, often shows
interlocking texture [e.g., Duval and Castelnau, 1995]; a simple
expansion or contraction of each grain would not explain those
observations.
[48] Polygonization takes place in the model when the grains

are most likely to be affected by the inhomogeneity of the
stress state at the grain size scale. This is achieved by
comparing the magnitude of the RSS on the basal plane of
the grain to the magnitude of the applied stress. If that ratio is
low, it is likely that the grain experiences forces from deform-
ing neighbors. Grains with higher RSS and high dislocation
density can also form subboundaries (P. Duval, personal com-
munication, 2000). This is partly accounted for by the fact that
as the grains strain, they eventually rotate into orientations with
low RSS and therefore can polygonize and by the fact that a

grain surrounded by stiff grains has a lower RSS than if there
were no NNI.
[49] Migration recrystallization is difficult to model. Very

complex models of dislocation interactions and grain boundary
migration are needed to incorporate the fundamental physics. The
approach taken here is to parameterize this process by consider-
ing the energies involved. However, even the energy associated
with a dislocation density r is difficult to estimate [Mohamed and
Bacroix, 2000; Kuhlmann-Wilsdorf, 1998]. The resulting fabric
and strain rate (Figure 6 using equation (19) with k = 0.35) are
very similar to laboratory measurements [cf. Budd and Jacka,
1989, Figure 8]. This value of k is similar to suggested values
for a mix of screw and edge dislocations, k = 0.1 [Mohamed and
Bacroix, 2000]. There is also considerable uncertainty about the
orientation of newly recrystallized grains. For ice the girdle
pattern obtained in Figure 6 is commonly observed [Budd and
Jacka, 1989]. That clearly indicates that there is a preferred
orientation for the newly formed grains, but whether it is due to
oriented nucleation or oriented growth is uncertain [Branger
et al., 2000; Rajmohan and Szpunar, 2000]. The modeled strain
rate prior to 1% strain will look different from experimental data
since there is no initial redistribution of stress or an elastic
response. For strain �1% the modeled and the measured strain
rates are almost identical. However, since only the final orienta-
tions of <100 crystals are generally available from experiments,
the trade-off between the effects of fabric and the NNI on the
strain rate prevents determination of the strength of NNI.
[50] Figure 12 shows a comparison of the fabric modeled in

uniaxial compression, after an axial strain of 0.5, using Azuma’s
[1994] model, and the model described here with no NNI (homo-
geneous stress; Sachs model), mild NNI, and full NNI. For
comparison, the fabric at 1293 m depth in the GRIP borehole is
also shown [Thorsteinsson et al., 1997], where the strain is �0.5
[Castelnau et al., 1996b]. There is active polygonization at this
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depth in the GRIP core, but as we have seen, this does not
significantly change the fabric. The fabrics predicted by the Azuma
and Sachs model evolve too quickly. In ice sheets the fabric is
much closer to the mild- and full-NNI cases; compare those to the
GRIP fabric at 1293 m depth. The VPSC model yields fabrics that
are very similar to the mild-NNI (VPSC spherical) and full-NNI
(VPSC ellipsoidal) cases (for strain of 0.4)[Castelnau et al., 1996a,
Figure 8]. VPSC spherical refers to model runs where the crystals
remain spherical throughout, and VPSC ellipsoidal refers to model
runs where the shape is represented by an evolving ellipsoid
[Molinari et al., 1987]. Calculating the fabric evolution for 1000
crystals using 100 steps to reach 0.5 strain requires �25 s of CPU
time on a 450-MHz Pentium III workstation.

5. Conclusions

[51] The nearest-neighbor interaction (NNI) changes the overall
pattern of fabric development. With increasing interaction the
strain of single crystals becomes more evenly distributed; this
changes the rate of fabric development. From comparison with
measured fabric I conclude that some NNI is necessary, but the
required interaction strength is difficult to assess. The recrystalli-
zation part of the model is able to yield realistic results, but more
data on fabric (evolution) are needed to constrain the free param-
eters.

Notation

n normal to slip plane (c in ice).

b Burgers vector.

s slip system.

_g strain rate on a slip system [1/s].

t resolved shear stress on a slip system [Pa].

_e strain rate [1/s].

S stress [Pa].

� stress acting on crystal [Pa].

S Schmid tensor.

E local softness parameter.

T magnitude of RSS.

d critical ratio of RSS and equivalent stress.

z, x contribution of the central and neighbor crystals,
respectively.

r dislocation density [m�2].

Egb, Edisl energy associated with grain boundaries and disloca-
tion density, respectively.

b, k constants.

	q change in angle during polygonization [deg].
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