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[1] Broadband velocity waveforms of PKIKP in the distance range 150–180� are
inverted for a model of inner core attenuation due to forward scattering by a three-
dimensional heterogeneous fabric. A mean velocity perturbation of 8.4 ± 1.8% and a scale
length of heterogeneity of 9.8 ± 2.4 km are determined from 262 available PKIKP ray
paths. The velocity perturbations are larger for polar than for equatorial paths, decrease
with depth, and show anisotropy in both global and regional data. For paths beneath
North America, the smallest scale lengths (1–5 km) tend to lie in either the upper 200 km
of the inner core or along paths close to the rotational axis. The depth dependence
of attenuation is roughly similar to that obtained assuming a viscoelastic origin, except a
more abrupt transition is seen between higher attenuation in the upper inner core and
lower attenuation in the lower inner core. This transition may be sharp enough to
produce either a first- or second-order discontinuity with depth in the long-wavelength
(composite) elastic moduli. A fabric that satisfies the observed depth dependence and
anisotropy of attenuation requires solidification of iron crystals having high (>10%)
intrinsic anisotropy, which are preferentially aligned in time and depth. Since weak
velocity dispersion, elastic anisotropy, attenuation anisotropy, and their depth
dependence agree with that predicted by such a fabric, we suggest that scattering
attenuation is not a small fraction but, rather, the predominant mechanism of attenuation
in the inner core in the 0.02–2-Hz frequency band. INDEX TERMS: 8115 Tectonophysics:

Core processes (1507); 8124 Tectonophysics: Earth’s interior—composition and state (8105); 7203

Seismology: Body wave propagation; 7207 Seismology: Core and mantle; 3210 Mathematical Geophysics:
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1. Introduction

[2] The Earth is laterally heterogeneous everywhere and
on every spatial scale, from the size of crystals or grains in
rocks to the size of continents. Scattering will take place
when seismic waves propagate in the heterogeneous Earth.
Scattering attenuation occurs when energy that would have
otherwise arrived at the time of the direct arrival is redis-
tributed in space to other locations and in time to positions
in the later coda following the direct arrival. By modeling
the complexity of seismic waves, properties of the hetero-
geneities in the Earth can be estimated, including the
distribution of scale lengths and the seismic impedance
contrasts of heterogeneities. In a review, Wu and Aki
[1988] concluded that the velocity perturbation in the crust
and upper mantle varies from 0.1% to 10% and the scale
length varies from 0.001 km to 1000 km.

[3] The general problem of scattering of elastic waves by
heterogeneity within the Earth is a difficult one and ana-
lytical solutions are known for only a few special cases, and
even in these instances the solutions are complicated and
laborious to calculate. Thus, most seismological studies
have employed various approximations in attempts to
interpret scattered seismic waves. These include the
assumptions of only one type of wave (acoustic approx-
imation), low contrast in material properties (Born approx-
imation), long wavelength with respect to scale length of
heterogeneity (Rayleigh approximation), and short wave-
length with respect to the scale length of the background
medium (ray approximation). The differences between these
approximations are discussed by Korneev and Johnson
[1993a, 1993b, 1996], who compare the scattered waves
predicted by these approximations with those predicted by
analytical solutions for scattering by spherical inclusions.
[4] The domain of validity of either the ‘‘high frequency

approximations’’ or ‘‘low frequency approximations’’ is
frequently given in terms of the product of the wave number
and scale length. For example, if the scale length a of
scatterers is 0.1 km, the scattering of a P wave at 0.1 Hz and
propagating at a velocity of 10 km/sec can be treated by a
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low frequency approximation (ka � 1, where k is wave
number). If a = 10 km, the scattering of same P wave can
be treated by the Mie approximation (ka � 1). Without a
priori information on the distribution of scatterer size or
shape, it is risky to assume a particular approximation.
Thus, analytic solutions for scattering are preferred when-
ever they are computationally feasible. One possible ana-
lytic solution, which we considered in an earlier study
[Cormier et al., 1998], is a one-dimensional model con-
sisting of thin layers. In the current study, we assume a
three-dimensional distribution of scatterers in which the
scatterers consist of spheres. Analytic solutions for scatter-
ing by single spheres have been given by Korneev and
Johnson [1993a, 1993b, 1996], which Kaelin and Johnson
[1998] have extended using a parabolic approximation to
distributions of spheres to calculate an equivalent attenu-
ating medium.

2. Modeling

2.1. Parameterization

[5] Based on Korneev and Johnson’s [1993a, 1993b,
1996] analytic solutions for scattering by a sphere, Kaelin
and Johnson [1998] developed a general dynamic compo-
site elastic medium (DYCEM) theory. DYCEM theory can
be used with either non-self-consistent or self-consistent
approximations to estimate velocity and attenuation of P-
and S-waves at all frequencies for heterogeneous media
with distributions of spherical inclusions. Except for large
impedance contrasts, the results from the non-self-consistent
method and the self-consistent methods differ little. Since
the computational time for the non-self-consistent method is
shorter, we use the non-self-consistent method to calculate
the scattering operator.
[6] In the non-self-consistent method, the complex wave

number of a P wave after traveling through the composite
medium is given as

k ¼ k0 þ
3

2k0

XN
n¼1

An0

cn

R3
n

ð1Þ

where k0 is the wave number of the incident wave, N is the
total number of different types of inclusions, Rn and cn are
the radius and concentration, respectively, of the nth type of

inclusion with
PN
n¼1

cn ¼ 1. Here An0 is the scattering function

of the nth type of inclusion relative to a homogeneous type
0 background. Its formula was derived by Korneev and
Johnson [1996] as

An0 ¼
i

k0

X1
l¼0

2l þ 1ð Þapp
l ð2Þ

Here al
pp

is the lth-order canonical scattering coefficient
for a P wave, which is a function of radius of the in-
sclusion, wave numbers in the background matrix and in-
clusion, and the densities in the background matrix and
inclusion. (For details, see Appendix A of Korneev and
Johnson [1996].
[7] The complex wave number can be recast as a complex

velocity and treated in the same way as in the viscoelastic
inversion problem of paper 1 [Li and Cormier, 2002]. To

simplify the inversion, two assumptions are taken in the
three-dimensional scattering model for the inner core. Since
large density contrasts across heterogeneities in the inner
core are unlikely to dynamically persist, the densities of the
inclusions and the background are assumed to be the same.
Second, the percent perturbations of shear velocity and
compressional velocity are assumed to be the same. Depar-
ture from this latter assumption will not affect estimates of
scale length and only weakly affect the estimated magnitude
of the P velocity perturbation. The model is thus described
by two parameters: the P velocity perturbation and the scale
length of scatterers (equivalent to the radius of the spherical
inclusions). The velocities of inclusions are taken from a
Gaussian distribution with the fixed mean velocity given by
PREM and a varying perturbation. The concentration cn is
proportional to the probability density of the nth type of
inclusion, which is just the Gaussian distribution function
for velocity.

2.2. Pulse Attenuation and Velocity Dispersion

[8] Figures 1 and 2 show how the phase velocity and
apparent Q�1 of this model varies with frequency for scale
lengths varying from 0.1 to 51.2 km and velocity perturba-
tion varying from 4.6% to 20%. The apparent Q�1 is
estimated from

Q�1 wð Þ ¼ 2 Im â wð Þ½ 
=Re â wð Þ½ 
 ¼ �2 Im k wð Þ½ 
=Re k wð Þ½ 
 ð3Þ

where k(w) is given in equation (1). Similar to viscoelas-
ticity, a frequency band of peak attenuation will exist as
will regions of both low and high dispersion. As the
frequency approaches zero, the real part of the velocity
and elastic modulus approaches the static limit predicted
by theories for the elastic moduli of composite media [e.g.,
Berryman, 1980; Kuster and Toksoz, 1974]. At high
frequencies, corresponding to wavelengths much smaller
than the scale length of inclusions, it becomes increasingly
possible to obtain a minimum time path solely confined to
the highest velocity member of the composite. In this
frequency band, velocity oscillates about a value closest to
the member of the composite having the highest velocity.
With increasing velocity perturbation, the magnitudes of
attenuation and velocity dispersion increase. With increas-
ing scale length, the peak in attenuation and region of
strongest velocity dispersion are shifted to lower fre-
quency. In contrast to the behavior of an absorption band
of viscoelasticity, strong dispersion exists over a relatively
narrow band of frequencies, being strongest in a narrow
band just below the point where the attenuation achieves
its peak. Figures 3a and 3b are the corresponding
attenuation operators convolved with different incident
wavelets. The effect of increasing the scale length and the
velocity perturbation is to decrease the amplitudes and
increase the duration of the output signals. Another
significant effect is that with increasing scale length and
velocity perturbation, the onset of the apparent first arrival
is earlier.

2.3. Searching Ranges and Intervals

[9] For the scattering attenuation model, a possible
searching range for velocity perturbation in the inner core
is suggested by the elastic moduli predicted by Stixrude and
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Cohen [1995] for hcp (hexagonal close-packed) and fcc
(face-centered cubic) iron. The maximum difference in P
wave velocity in different directions is about 4%. Recent
first-principles calculations by Steinle-Neumann et al.
[2001], however, predict much higher P wave velocity
differences (12%) for hcp iron at inner core temperature
and pressure. Allowing for this result and the possibility of
heterogeneity in the form of inclusions of partial melt, the
searching range for velocity perturbation was set as 0.5% to
20%.
[10] Both observational and theoretical constraints are

also available for scale lengths of heterogeneity or sizes
of anisotropic crystals in the inner core. Analysis of the
coda of backscattered PKiKP coda by Vidale and Earle
[2000] found a scale length of 2.5 km in the outer 300 km of
the inner core. From extrapolation of laboratory experi-
ments, Bergman [1998] suggested the scale length in the
inner core varies from hundreds of meters to more than 10
km. Test inversions using upper bounds of 4 km and 8 km
found that too many optimal fits to waveforms fell on the
margins of the searching range, implying the upper bound

of 8 km may be too small. Hence, we chose a significantly
higher upper bound of 51.2 km.
[11] Observed values of Q for seismic body wave in the

inner core can provide another constraint for scale lengths.
Figure 4 contours the apparent Q�1 at 1 Hz as a function of
velocity perturbation and scale length. From this figure and
assuming a range of Q�1 at 1 Hz of 0.001 to 0.02, we
constrained the lower bound of scale length to 0.4 km. We
note from Figure 4 that there can be two quite different
values of scale length at each fixed value of velocity
perturbation that produce the same apparent attenuation.
This bimodal behavior of optimal solutions for a parameter
is similar to the bimodal behavior of the low or high
frequency relaxation time parameters of viscoelasticity dis-
cussed in paper 1. Unlike the ambiguity in the corner
frequencies of viscoelasticity, however, we found that the
ambiguity in predicted attenuation can sometimes resolved
by the quite different dispersive properties of scattering
versus viscoelasticity.
[12] The searching grid is equally spaced for velocity

perturbation and spaced as a geometric series for scale

Figure 1. Velocity dispersion for a three-dimensional scattering model showing the dependence on
scale length and velocity perturbation. The legend for scale length inset in the plot at the lower right is in
units of km.
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length (as in equation (5) of paper 1, but with x as scale
length). Because it is time consuming to calculate the
scattering attenuation operators, the probability density
function for the an L2 norm fit to waveforms is mapped

for only 10 discrete scale lengths and for 20 discrete
velocity perturbations.
[13] Under North America, where the ray paths are rela-

tively dense, a regional analysis can be performed. A regional

Figure 2. Apparent attenuation, Q�1, in the seismic band for a three-dimensional scattering model
showing dependence on scale length and velocity perturbation.

Figure 3. Forward scattering operators convolved with given wavelets. The travel distance is
comparable to the diameter of the inner core. Amplitudes are normalized to that of the wavelet. (a)
Wavelet has 1 s duration; (b) wavelet has 3 s duration.
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analysis of scattering in the inner core beneath eastern Asia is
not possible because of the fewer number of available ray
paths.

3. Results

3.1. One-Dimensional Model

[14] In a previous study [Cormier et al., 1998], wave-
forms were synthesized in a 1-D vertically varying medium,
assuming a normally incident P wave, using a reflectivity
approach as described by Richards and Menke [1983]. From
our 1-D modeling, we suggested that the fabric needed to
explain the observed attenuation completely by scattering
may consist of disorder among either single or groups of
ordered intrinsically anisotropic crystals. We concluded that
such crystals must have P velocity differences of at least 5%
and as much as 12% between two crystallographic axes at
scale lengths of 0.5 to 2 km. The 1-D model layered medium

was chosen for modeling primarily because it was simple to
compute, but it implicitly assumes an anisotropic distribu-
tion of scale lengths, in which the horizontal scale length is
much larger than then the vertical scale length in the
direction perpendicular to the Fresnel volume surrounding
a PKIKP ray. Hence, one would like to check the validity of
the 1-D estimates using a theory for 3-D heterogeneity
having an isotropic distribution of scale lengths.

3.2. Three-Dimensional Model

[15] The attenuation operator for a 3-D scattering model
can be obtained by using a non-self-consistent theory for
complex wave number [Kaelin and Johnson, 1998], as
described in section 2. The inverse method and postprocess-
ing are similar to those for intrinsic attenuation, except
rather than a corner frequency and attenuation at 1 Hz the
two model parameters are scale length and velocity pertur-
bation. The final results are given in Figures 5 and 6. Good

Figure 4. Contours of apparent Q�1(1 Hz) as a function of velocity perturbation and scale length in a
three-dimensional scattering model. To model observed PKIKP pulse attenuation by scattering, a
reasonable searching range for scale length of heterogeneity is estimated to be 0.4 km to several 10’s of
kms assuming a maximum P velocity perturbation of 20%.
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spatial coherence is seen in velocity perturbation (Figure 5),
but less so in scale length (Figure 6). This suggests that the
dispersive properties of scattering cannot always success-
fully remove the ambiguity in scale length as shown in
Figure 4.
[16] The average scale length for all the 262 available

results is 9.8 ± 2.4 km, and the average velocity perturba-
tion is 8.4% ± 1.8% for the inner core from the center to

about 1000 km radius. The magnitude of velocity pertur-
bation is consistent with that estimated from the 1-D
model, but the scale length is much larger. This difference
may be due to fundamental differences in pulse broad-
ening caused by 1-D versus 3-D heterogeneity or it may
be due to the narrower searching band of scale lengths
used in the 1-D study. The band of searched scale lengths
may not have been broad enough to include the two

Figure 5. Global distribution of inverted velocity perturbation plotted at turning points of PKIKP ray
paths. The arrow on each result is the ray direction at the turning point.

Figure 6. Global distribution of inverted scale length at turning points of PKIKP ray paths. The arrow
on each result is the ray direction at the turning point.
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separate domains of scale lengths that can produce the
same apparent attenuation as discussed in section 2.3 and
shown in Figure 4.
[17] From the a stack of PKiKP coda waves, Vidale and

Earle [2000] obtained a scale length of 2 km and elastic
moduli variation of 1.2% across the outer 300 km of the
inner core. Even though the investigated waveforms (back-
scattered versus forward scattered) and distance ranges
(58–73� versus >150�) differ from our study, the large
differences between our results and their results needs to be
understood. Vidale and Earle assumed a viscoelastic Q of
about 300 before generating the synthetic envelopes to fit
backscattered coda envelope data, while we assume all
attenuation to be caused by scattering. Thus their result
for velocity perturbation can be considered to be a minimum
estimate and our results a maximum estimate. Our results
also represent averages over the whole inner core, while
Vidale and Earle’s time window of coda samples only the
outer 300 km of the inner core. When we plot our results for
scale length versus ray bottoming depth Figures 7a and 7b),
we see evidence of small scale lengths (1–5 km), similar to
Vidale and Earle’s estimates, in the upper inner core beneath
North America, which is the same region sampled by their
study.

[18] Figures 8a and 8b plot the variation of the obtained
velocity perturbation versus radius and ray direction at the
turning point of PKIKP ray path for global data and North
American data. The results show a clear depth-dependence
for global and North American data. Small velocity pertur-
bation tends to appear in the deep inner core, while high
velocity perturbation tends to appear at the uppermost region
of the inner core. For radii in the range of 600 � 800 km,
there seems to be a jump in the velocity perturbation. In the
lower inner core, velocity perturbations are less than 6%,
while in the upper inner core most results are greater than
8%. This behavior is not confined to North America. From
Figure 5, we can see it exists globally. The narrow depth
range of this transition might be consistent with a specula-
tion of Song and Helmberger [1998] to explain coda com-
plexities of long period PKIKP waves as the result of a sharp,
laterally varying, boundary between a more intensely scat-
tering and less intensely scattering region.
[19] The results for North America (Figure 8b) show clear

anisotropy in addition to depth dependence. At ray direc-
tions close to the rotation axis at the ray turning point, the
velocity perturbation tends to become large. This tendency,
however, is relatively weak for the global data (Figure 8a),
implying that the magnitude of the anisotropy is relatively

Figure 7. Scale length as a function of radius and ray direction at the turning point of the PKIKP ray
path, for (a) global and (b) North American data. Note the positive direction of scale length is downward.
Depth dependence and anisotropy can be seen in North American data.
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small compared to that of the lateral variations and depth
dependence of attenuation. This suggests that only region-
alized bins of data may be capable of resolving the
anisotropy of attenuation.
[20] After obtaining the velocity perturbation and scale

length, the corresponding apparent Q�1 at 1 Hz can be
calculated. Its variation versus radius and ray direction at
the turning point is shown in Figures 9a and 9b. The mean
value of Q at 1 Hz is 259. The behavior with radius and
turning point of inverted scattering attenuation generally
agrees well with that of inverted viscoelastic attenuation
(Figures 9a and 9b of paper 1). They are both depth-
dependent and anisotropic and have significant differences
in values for radii above and below 600 km. The scattering
model predicts a much more abrupt rise in attenuation in the
shallower inner core. At radii less than 600 km, Q�1 at 1 Hz
is generally less than 0.003 and the mean value is 0.0025,
while at radii larger than 600 km, values of Q�1 at 1 Hz
increase significantly and are often larger than 0.006,
having a mean value of 0.0048. Since there is no associated
depth dependence of scale length in at least global data, we
suggest that the pattern of depth dependent attenuation is
primarily the result of changes in velocity perturbation. If
the velocity perturbation is the result of changes in align-
ment of crystallographic axes across the boundaries of
anisotropic crystals, then depth dependence could be sat-

isfied by an increasing degree of alignment of fast crystallo-
graphic axes with depth without significantly changing the
size of crystals.

4. Discussion and Conclusions

4.1. Depth-Dependent and Anisotropic Attenuation:
Its Meaning for Fabric

[21] Nearly all recent studies explain the observed elastic
anisotropy from the preferred alignment of iron crystals
with the fast direction nearly parallel to the rotation axis. At
inner core temperature and pressure, iron is thought to have
either a hcp (hexagonal close packed) or a fcc (face centered
cubic) lattice. Many studies predict that the fastest P wave
speed lies along the direction of either the h001i (c-axis) of
hcp iron or the h111i of fcc iron [Jeanloz, 1990; Stixrude
and Cohen, 1995; Saxena et al., 1995]. Recent first-princi-
ples calculations by Steinle-Neumann et al. [2001], how-
ever, predict that the sense of anisotropy is reversed at high
temperature in hcp iron, with P wave speed along the basal
plane faster than along the c axis. The mechanisms to
produce the preferred alignment of iron crystals vary from
1) growth of a single crystal [Stixrude and Cohen, 1995]; 2)
deformation-induced texturing during thermal convection
[Jeanloz and Wenk, 1988; Wenk et al., 1988, 2000]; 3)
growth in a strong magnetic field [Kanato, 1993; McSwee-

Figure 7. (continued)
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ney et al., 1997]; 4) solidification texturing of crystals
aligned by heat flow [Bergman, 1997]; and 5) growth in a
latitude-dependent stress field [Yoshida et al., 1996; Karato,
1999; Buffett and Wenk, 2001]. The existence of the inner
core as a gigantic single crystal model could not easily
explain the depth dependence of elastic anisotropy observed
in seismic data [Vinnik et al., 1994; Shearer, 1994; Su and
Dziewonski, 1995; Song, 1996]. It is also no longer neces-
sary to invoke a single crystal to explain the magnitude of
the observed seismic anisotropy [Steinle-Neumann et al.,
2001]. Yoshida et al [1996] rule out alignment by convec-
tion due to the high thermal conductivity of and probable
lack of significant radiogenic heat in the inner core. They
also rule out alignment by growth in a magnetic field due to
its prediction of increasing rather than decreasing anisotropy
near the ICB. Hence, we will just discuss two possibilities
here: growth and solidification texturing by either heat flow
or latitude-dependent stress.
4.1.1. Solidification Texturing by Heat Flow
[22] Without considering the effects of flow and deforma-

tion, Bergman [1997] has described a solidification texturing
resulting from a cylindrical heat flow driven by the tangent
cylinders of outer core convection cells. Extraction of heat
primarily perpendicular to the rotation axis will cause

growth of dendrites elongated in the cylindrically radial
direction (Figure 10). For the hcp phase, the solidification-
texturing mechanism Bergman predicts that the h210i crystal
axes will lie in the cylindrically radial direction, with the
h001i, h010i axes lying in any perpendicular direction (no
preferential alignment). This model successfully explains an
attenuation anisotropy, with attenuation greater for P waves
propagating parallel to the rotation axis. The columnar
crystals elongated in the cylindrically radial direction may
be responsible for an attenuation anisotropy, with a greater
attenuation for P waves propagating nearly parallel to the
rotation axis. For a given turning radius, these polar P waves
generally will cross more crystal boundaries than will
equatorial waves propagating perpendicular to the rotation
axis. Scattering attenuation occurs due to the velocity con-
trast between the differently oriented h001i and h010i axes
across the crystal boundaries. Since many more crystal
boundaries are crossed per unit distance travel in the polar
direction than in other directions, the aggregate scale length
inferred from pulse broadening should be relatively smaller
in the polar directions. For waves propagating in equatorial
directions, higher attenuation and smaller apparent scale
length will be inferred from shallow penetrating rays, but
the attenuation will decrease and the apparent scale length

Figure 8. Velocity perturbation as a function of radius and ray direction at the turning point of the
PKIKP ray path for (a) global and (b) North American data. Strong depth dependence can be observed in
both data sets, while anisotropy can be seen in the North American data set.
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will increase for more deeply penetrating rays. This is just
what we observed in Figure 7b for North American data, in
which the scale length is small for rays having either a
shallow turning depth or a propagation direction parallel to
the rotation axis. Thus this model at least partially explains
the depth-dependent attenuation we observe. For polar
waves propagating parallel to the rotation axis, however,
shallow rays will cross almost the same number of crystal
boundaries per unit distance as the deeper rays. Thus, depth-
independent attenuation will be predicted for the case of rays
propagating in polar planes, and depth-dependent attenua-
tion will be predicted for rays propagating in the equatorial
planes. This is inconsistent with observations (Figure 9),
which find depth-dependent attenuation along both polar and
equatorial directions. If the predictions of Steinle-Neumann
et al. [2001] are accepted, in which the h001i (c axis) is no
longer the fast axis as originally assumed by Bergman
[1997], then the predicted elastic anisotropy of the Bergman
fabric will also be inconsistent with observations.
4.1.2. Texturing by a Latitude-Dependent Stress Field
[23] A latitude-dependent stress field may originate by

any one effect or combination of effects, including aspher-
ical growth of the inner core [Yoshida et al., 1996], gravita-
tional coupling with the mantle [Buffett, 1997], or Maxwell
stresses created by the Earth’s magnetic field [Karato, 1999;

Buffett and Wenk, 2001]. Regardless of the origin of a
latitude-dependent stress field and the mechanisms of
deformation and possible recrystallization, all of the flow-
textured models predict a layer near the ICB in which the
preferred alignments are small. This prediction agrees with
observations of weak anisotropy in the uppermost inner
core [e.g., Song and Helmberger, 1995]. In the shallow
inner core, where with the solidification is occurring,
crystals will be relatively too young to reach to their final
orientation state under the changing stress state. In this
region, the greater disorder of crystals having the high
intrinsic anisotropy (12%) predicted by Steinle-Neumann
et al. [2001] will result in a greater amount of scattering
attenuation. In agreement with observations, the attenuation
will exhibit strong depth dependence along both equatorial
and polar paths. With increasing time and depth in the inner
core, a final state of alignment will be achieved, depending
on the dominant direction of flow. For a polar dominated
flow, Steinle-Neumann et al. [2001] predict that the easiest
glide planes (basal planes of hcp iron) will tend to align
with the rotation axis. Their predicted elastic constants
require that only about 1/3 of the basal planes of hcp iron
be aligned with the rotation axis in the deeper region of the
inner core to satisfy the observed anisotropy of PKIKP
travel times.

Figure 8. (continued)
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4.1.3. Combining Constraints
[24] A more complex fabric may exist in a the shallow

inner core, where the effects of crystal growth in the cylin-
drical radial direction combine with a flow field driven by a
latitude-dependent stress field. In this region, deformation
and recrystallization may not have completely finished due to
the short time history after its solidification. Crystal orienta-
tion will generally be more random in the shallower inner
core than in the deeper inner core, resulting in high scattering
attenuation due to the large velocity perturbations across
grain boundaries in most directions. The effects of radial
growth on orienting the h210i axes in the shallowest regions
of the inner core may contribute to a higher level of scattering
attenuation along polar paths. The magnitude of intrinsic
elastic anisotropy of each grain, and consequently the size of
velocity discontinuities at grain boundaries, might also be
enhanced near the ICB by the higher homologous temper-
ature in this region [Fisher and Renken, 1964].
[25] In the deep inner core, solidification, deformation

and recrystallization have completely finished. In this
region, flow has aligned crystals along their fast direction,

independent of whether the fast direction is the basal plane
direction or the c axis. To reduce the effects of scattering
along both polar and equatorial paths in the deep inner core,
either the intensity of intrinsic anisotropy must decrease or
the alignment is such as to reduce the effective velocity
contrasts across crystal boundaries.
[26] To account for the relatively sharp jump in scattering

attenuation near 600 km radius (Figure 9), a strong effective
velocity change may be required by composite medium
theories. Indeed, Song and Helmberger [1998] have sug-
gested the possibility of and reviewed evidence for either a
discontinuity or a rapid change in elastic moduli in a
laterally varying transition region between the upper and
lower inner core.
[27] One possibility for explaining the observed sharpness

in the fabric transition may be the existence of a partially
molten zone [Fearn et al., 1981; Loper and Fearn, 1983].
Metallurgic experiments [e.g., Copley et al., 1970] suggest
that this mushy zone could exist between the liquid outer core
and solid inner core. The dendrites and fluid inclusions in the
mushy zone can produce additional velocity perturbations

Figure 9. Q�1 (1 Hz) as a function of radius and ray direction at the turning point of the PKIKP ray
path for (a) global and (b) North American data. A steep rise at radius of 600 km is visible in both sets of
data.

CORMIER AND LI: INNER CORE ATTENUATION: SCATTERING ESE 14 - 11



and scattering as well as viscoelastic attenuation [Cormier,
1981; Singh et al., 2000]. An apparent discontinuity in elastic
moduli might exist somewhere near but not necessarily
coincident with the depth in which the last amount of liquid
vanishes. Similar to the suggestion by Herrmann and Ber-
nabe [2001] for the nature of the upper mantle phase
transitions, there might exist a critical point near the bottom
of the mushy zone where at least the first depth derivative of
the composite elastic moduli is discontinuous. Whether such
a mushy zone could extend 600 km or deeper into the inner
core, however, may be doubtful. Fearn et al. [1981] suggest
that a mushy zone may extend throughout the entire inner
core, but Sumita et al. [1995, 1996] argue that the melt would
be less dense than its surrounding solid matrix and would be
buoyantly squeezed out of the inner core.
[28] It would seem that the alternative process of solid-

ification-texturing and recrystallization with insignificant
amounts of partial melt would occur smoothly with depth
and be incapable of producing such a sharp transition in
fabric. Like partial melt, however, it may be possible to
induce a sharp transition in fabric properties and the long-
wavelength composite modulus when a critical point has
been reached in the concentration of a particular orientation
of iron crystals.
[29] In summary, the depth dependence and anisotropy of

attenuation in the inner core can be explained by the

combination of a growth and solidification model with a
possible mushy zone in the upper half of inner core. An
increase in the preferred alignments of individual iron
crystals with depth in inner core can predict both the global
variation of PKIKP pulse widths as well as the observed
depth dependence of the elastic anisotropy of the composite
elastic moduli. We thus argue that scattering by a hetero-
geneous fabric would be the predominant contribution to
attenuation in the inner core in the frequency band of body
waves. Figure 11 illustrates a possible the fabric to account
for the depth-dependent attenuation observed in this study.
In the deep part of the inner core, the iron crystals have been
perfectly aligned under solidification texturing and isostatic
adjustment in the history of its formation. The near perfect
alignment accounts for the strong elastic anisotropy and
small attenuation in the deeper part of inner core. In the
upper part of the inner core, the alignment of iron crystals is
incomplete. A mushy zone may exist in the upper inner
core, contributing to an abrupt jump of attenuation between
the lower and upper inner core. As discussed in section 4.2
of this paper, a mushy zone may also be required to account
for observations of differential rotation of the inner core.
[30] A model having a sharp depth transition in fabric is

similar to one proposed by Song and Helmberger [1998] to
explain the pulse-broadening of long-period PKIKP wave-
forms and complexity observed in some short-period

Figure 9. (continued)
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PKIKP waveforms. They suggest a sharp P velocity jump of
3.5% � 5% at 200 � 300 km from ICB. Our interpretation,
however, is simply a jump or rapid transition in the
statistical parameters describing velocity perturbation rather
than in the velocity itself. Observations of long period pulse
broadening can be explained by scattering in this layer (e.g.,
Figure 3b). The waveform complexities seen in short period
data could also be explained by an increase in scale lengths
of iron crystals under the mushy zone. In fact, we see
evidence that at 400 km beneath ICB, the scale length may
increase to several ten’s of kilometers (Figure 7b) as
suggested in Song and Helmberger’s paper.

4.2. Implications of Scale Length Distribution

[31] The scale lengths or grains sizes in the inner core
have implications for the viscosity of the inner core. The
viscosity affects the gravitational coupling of the inner core
to mass inhomogeneities in the mantle [Buffett, 1997].
Using Buffett’s upper viscosity bound of 1016 Pa-s for
gravitational coupling, Bergman [1998] estimates that grain
sizes higher than 5 mm will prevent differential rotation
rates as high as the 1–3� yr�1 suggested by secular
variations of PKIKP travel times [Song and Richards,
1996; Su et al., 1996]. Assuming that differential rotation
rates even as low as 0.1–0.2� yr�1 [Vidale et al., 2000]
withstand continued scrutiny, our >1 km estimates of scale
length suggest that a mechanism other than grain boundary
diffusion must be invoked to sufficiently lower the viscosity
of the inner core to allow its differential rotation. Bergman
[1998] lists the existence of a low viscosity mushy zone in
the upper inner core as one possible mechanism. Another
mechanism could be the enhancement of dislocation glide

along the basal planes of hcp iron at high temperature [Wenk
et al., 2000a, 2000b; Steinle-Neumann et al., 2001].

5. Reconciliation With Free Oscillation
Measurements

[32] Across the complete frequency band of seismic
measurements, inner core attenuation can be explained by
a combination of viscoelastic and scattering effects. Since
the PKiKP coda wave modeling of Vidale and Earle [2000]
have clearly established the existence of a scattering com-
ponent to inner core attenuation, future studies of inner core
attenuation should attempt to carefully examine the trade-
offs between viscoelastic and scattering attenuation for
observations body wave band of frequencies. Nonetheless,
some bounds on the relative contributions of viscoelasticity
and scattering can be established from our current study as
well previous studies. Expressed quantitatively, the total
attenuation Q�1 = QA

�1 + QS
�1, where the first term accounts

for viscoelastic attenuation and second one for scattering
attenuation. The viscoelastic attenuation, QA

�1, of a P wave
can be also expressed as a linear combination of pure shear
attenuation Qm

�1 and pure bulk attenuation Qk
�1:

Q�1
A ¼ 4

3
VS=VPð Þ2Q�1

m þ 1� 4

3
VS=VPð Þ2

� �
Q�1

k ð4Þ

[Anderson and Hart, 1978], where VS and VP are S- and P
wave velocity respectively. Widmer et al. [1991] found from
free oscillation data with frequencies in the band of 0.001 �
0.007 Hz that the shear attenuation factor Qm in the inner
core is 110. If the shear attenuation is due to a viscoelastic
mechanism extrapolated at constant strength into the band
of body waves, it will contribute only 0.00128 to the total
Q�1 [Cormier et al., 1998]. This value is much less than the

Figure 10. Polar and equatorial cross sections through a
model of inner core texture based on Bergman’s [1997]
model of inner core solidification. For visibility, spatial
scales of variations are exaggerated by a factor of 10 or
more compared to those inferred from inverted PKIKP
waveforms.

Figure 11. A schematic inner core structure to account for
the depth-dependent attenuation observed in this study. This
structure will account for the strong elastic anisotropy and
small attenuation in the deep part of the inner core.
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values of Q�1 of 0.0025 � 0.005 commonly found in this
and all other preceding studies of body wave attenuation.
The additional P attenuation in the body wave band can be
reconciled by either 1) frequency-dependent viscoelastic
shear attenuation, 2) scattering attenuation in the high
frequency band of body waves, or 3) viscoelastic bulk
attenuation. If shear viscoelastic attenuation increases with
frequency at its fastest allowable rate (proportional to
frequency) into the higher frequency band of body waves
(0.02 to 2Hz), it can explain the total attenuation, but it would
require a physically unrealistic modulus defect in shear.
[33] Alternatively, the second or third possibilities (either

viscoelastic bulk or scattering attenuation) is an easy way to
reconcile the free oscillation measurements. As suggested
by Loper and Fearn [1983], if there is a partially molten
zone in upper inner core, the bulk attenuation induced by
thermal and material diffusion will be considerable. More-
over if the volume fraction of liquid is as large as 0.5, the
bulk attenuation itself can be responsible for the observed
high attenuation at body wave frequencies in the upper
inner core. As we noted previously, however, a large amount
of liquid is likely to be buoyantly expelled into the outer core,
with the remaining volume of liquid expected to be very
small. Scattering attenuation in the inner core is consistent
both with the backscattered PKiKP coda observed by Vidale
and Earle [2000] and with the forward scattering analysis of
PKIKP pulse broadening of this study. A comparison of
Figure 2 with Vidale and Earle’s estimates of velocity
perturbation (1.2%) and scale length (2 km), which we take
as lower bounds to the true values, suggests that at least 25%
of the observed attenuation in the body wave band can be
explained by scattering. Elastic anisotropy, its depth depend-
ence, and dispersion with frequency, and the depth depend-
ence, and anisotropy of observed attenuation agree with that
predicted by the scale lengths and velocity perturbations of
disordered, elastically anisotropic iron crystals. We thus
suggest that scattering attenuation is not a small fraction
but rather the predominant mechanism of attenuation in the
inner core in the 0.02 to 2 Hz frequency band.
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