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[1] The analytical formulation of the theories of nutation and wobble reveals the combinations of
basic Earth parameters that govern the nutation-wobble response of the Earth to gravitational (tidal)
forcing by heavenly bodies and makes it possible to estimate several of them through a least
squares fit of the theoretical expressions to the high-precision data now available. This paper
presents the essentials of the theoretical framework, the procedure that we used for least squares
estimation of basic Earth parameters through a fit of theory to nutation-precession data derived
from an up-to-date very long baseline interferometry data set, the results of the estimation and their
geophysical interpretation, and the nutation series constructed using the estimated values of the
parameters. The theoretical formulation used here differs from earlier ones in the incorporation of
anelasticity and ocean tide effects into the basic structure of the dynamical equations of the theory
and in the inclusion of electromagnetic couplings of the mantle and the solid inner core to the fluid
outer core, though this generalization comes at the cost of making some of the system parameters
complex and frequency dependent; it is also more complete, as it takes account of nonlinear terms
in these equations, including effects of the time-dependent deformations produced by zonal and
sectorial tides, which had been traditionally neglected in nonrigid Earth theories. Among the
geophysical results obtained from our fit are estimates for the dynamic ellipticity e of the Earth
(e = 0.0032845479 with an uncertainty of 12 in the last digit), for the dynamical ellipticity ef of the
fluid core (3.8% higher than its hydrostatic equilibrium value, rather than �5% as hitherto), and for
the two complex electromagnetic coupling constants. Our best estimates for the RMS radial
magnetic fields at the core mantle boundary and at the inner core boundary, based on the estimates
for these coupling constants, are ~6.9 and 72 gauss, respectively, when the magnetic field
configurations are restricted to certain simple classes. The field strength needed at the inner core
boundary could be lower if the density of the core fluid at this boundary or the ellipticity of the
solid inner core were lower than that for the Preliminary Reference Earth Model. Our estimate for
the resonance frequency of the prograde free core nutation mode, with an uncertainty of �10%,
constitutes the first firm detection of the resonance associated with this mode; the period found is
�1025 days, double that with electromagnetic couplings ignored. (Throughout this work, ‘‘days,’’
referring to periods, stands for ‘‘mean solar days.’’) A new nutation series (MHB2000) is
constructed by direct solution of the linearized dynamical equations (with our best fit values
adopted for all the estimated Earth parameters) for each forcing frequency, and adding on the
contributions from the nonlinear terms and other effects not included in the linearized equations.
This series gives a considerably better fit to the nutation data than any of the earlier series based on
geophysical theory. In particular, the residuals in the out of phase amplitudes of the retrograde 18.6
year and annual nutations, which had long remained at �0.5 milliseconds of arc (mas), are now
reduced to the level of the uncertainties in the observational estimates, thanks mainly to the role
played by the electromagnetic couplings. The largest remaining discrepancy is that in the out of
phase prograde 18.6 year nutation, of �72 microseconds of arc (mas). The frequency dependence of
the nutation amplitudes cannot be exactly represented through a resonance formula, nor may the
resonance frequencies themselves be interpreted as the eigenfrequencies of free modes because of
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the presence of complex and frequency-dependent system parameters. Nevertheless, we have
constructed a new resonance formula which reproduces our nutation series accurately for almost all
nutation frequencies; for the few remaining frequencies, a listing is given of the corrections to be
applied in order to reproduce the exact results of the direct solution. INDEX TERMS: 1239
Geodesy and Gravity: Rotational variations; 1213 Geodesy and Gravity: Earth’s interior—dynamics
(8115, 8120); 1223Geodesy andGravity:Ocean/Earth/atmosphere interactions (3339); 1255Geodesy
and Gravity: Tides—ocean (4560); KEYWORDS: nutation series, precession rate, nutation resonance
parameters, dynamical ellipticities, core electromagnetic couplings, boundary magnetic fields

1. Introduction

[2] Accurate knowledge of the variations in Earth orientation is
of importance for studies in astronomy and geophysics as well as in
space navigation. Space geodetic observations by techniques such
as very long baseline interferometry (VLBI), lunar laser ranging
(LLR), and Global Positioning System (GPS) now provide the
capability to measure Earth orientation with a high precision that
has improved rapidly over the past several years. Formation of a
theoretical model that is accurate enough to account for the results
of the measurements to within their current levels of precision
would serve two purposes: to enable accurate prediction of Earth
orientation and to gain information about those dynamical pro-
cesses and properties of the earth, including its deep interior, that
influence Earth orientation.
[3] This paper deals with one aspect of Earth orientation

variations, namely, nutation. We present a new nutation series
based on geophysical theory which is in much closer agreement
with observational data than earlier series. The new series is based
on an enhanced version of the analytical theory of Mathews et al.
[1991a] and makes use of estimated values of seven of the
parameters appearing in the theory, obtained from a least squares
fit of the theory to an up-to-date nutation data set. Despite use of
observational data we refer to the nutation series and amplitudes
which comprise the series as ‘‘theoretical,’’ for convenience. In any
case, as far as we are able to judge, five of our ‘‘best fit’’
parameters are not obtainable at present from any independent
measurements with a precision anywhere near that needed for a
close fit to nutation observations, and until and unless that becomes
possible, any nutation series based on geophysical theory will have
to rely on the use of a few parameter estimates from fits to
nutation-precession data to enable the computed values to be close
to observations at the level of the uncertainty in the observations.
The parameters that we have estimated include the imaginary parts
of two newly introduced complex parameters and certain combi-
nations of their real parts with other basic Earth parameters. The
complex parameters under reference are the Core-mantle boundary
(CMB) and inner core boundary (ICB) electromagnetic coupling
constants, so called because they characterize the couplings pro-
duced between the fluid outer core (FOC) and the neighboring
solid regions, namely, the solid inner core (SIC) and the mantle, by
the magnetic fields present at these boundaries. The estimates
obtained lead to valuable new insights into deep Earth properties.
[4] Forced nutation is almost entirely due to periodic spectral

components of the torques resulting from the gravitational action of
celestial bodies (the Sun, the Moon, and to a minor extent, the
planets) on the equatorial bulge of the Earth, though changes in
matter distribution (e.g., atmospheric pressure variations) and
variations in angular momentum of fluid regions relative to the
solid Earth (e.g., winds) also play a small role. However, the
gravitational torques are not employed directly in most approaches
to the study of nutations of the nonrigid Earth. Instead, one uses a
proxy, the so called rigid Earth nutation series representing the
action of these torques on a hypothetical rigid Earth having the
same moments of inertia and higher-order moments (as determined
from observations) as the real Earth. The precision to which the
amplitudes of the spectral components of rigid Earth nutation have
been computed has increased by over 2 orders of magnitude in the

past few years. Compared to the accuracy of 0.01 milliseconds of
arc (mas) to which the series of Kinoshita and Souchay [1990] has
been tabulated, the recent series REN-2000 of Souchay et al.
[1999] and RDAN of Roosbeek and Dehant [1998] are computed
to 0.1 mas, and the SMART series of Bretagnon et al. [1997, 1998]
is computed to 0.01 mas. Over the same period, the precision of
estimates obtainable for the Earth orientation parameters through
space geodetic methods has increased greatly. This fact, combined
with the increased volume and the longer time span of the data sets
now available, has made it possible to estimate from these data sets
the amplitudes of a rather large number of circular nutations as well
as the precession rate, with uncertainties that are almost an order of
magnitude smaller than those of the early years of this decade. These
developments provided the necessary wherewithal as well as the
motivation to attempt significant improvements in nutation theory.
[5] The nutation series of Wahr [1981a, 1981c] which was

adopted as the International Astronomical Union (IAU) 1980
nutation series [Seidelmann, 1982], has been the standard of
reference ever since. This series was computed by solving the
equations for the field of displacements produced by the action of
the tide-generating potential (TGP) throughout the Earth, as
applied to an oceanless, elastic, ellipsoidal Earth model derived
under the assumption of hydrostatic equilibrium from the Earth
model 1066A of Gilbert and Dziewonski [1975]; nutational
changes in Earth orientation along with rotation rate variations
and tidal deformations are encompassed in the solutions for the
displacement field. The predictions of the Wahr theory have since
been found to differ from observational data obtained through
VLBI data analysis by much more than the uncertainties in the
data. A series for practical use (referred to hereinafter as the
IERS96 series) which gives close agreement to the data is now
available in the International Earth Rotation Service (IERS) Con-
ventions [McCarthy, 1996; see also Herring, 1995]. Shirai and
Fukushima [2000a, 2000b] have constructed an improved and
updated version of this series, supplemented by an estimated
exponentially decaying free core nutation amplitude. Both these
series are purely empirical in nature and express the nutation
amplitudes in terms of a resonance formula for the transfer function
in the form given by (32) and (33) of Mathews et al. [1991a]. The
parameters in the resonance formula are determined by the basic
Earth parameters (BEP) which appear in the theory, and several of
the BEP are estimated through a least squares fit of the theoretical
predictions to nutation amplitude estimated from the VLBI nuta-
tion time series. (The transfer function is the ratio of the function of
frequency describing the amplitudes of circular nutations of the
‘‘real’’ Earth to the corresponding function for the rigid Earth.)
Physical considerations show that the parameters in this resonance
formula must obey two sum rules [see, e.g., Mathews and Dehant,
1995]. The sum rules were not used in the construction of the IERS
series because at that time, the degradation of the fit resulting from
the enforcement of the sum rules was of an extent that detracted
from the primary aim of generating a series which matched the data
well; they are not enforced in the Shirai-Fukushima series either.
The values obtained for the resonance parameters from these fits do
not therefore admit interpretation in geophysical terms.
[6] A major step toward a better geophysical accounting of

nutation was already taken by Gwinn et al. [1986] and Herring et
al. [1986], with their finding that a value �5% higher than that of
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the hydrostatic equilibrium state is needed for the dynamical
ellipticity of the fluid core to close the gap of �2 mas found
between the observed and the IAU 1980 values for the in phase
part of the amplitude of the retrograde annual nutation. Modeling
and numerical computations of the effects of ocean tides [Sasao
and Wahr, 1981; Wahr and Sasao, 1981] and of mantle anelasticity
[Wahr and Bergen, 1986] were other important contributions to
nutation theory. Detailed Earth models with nonhydrostatic equi-
librium structure have been constructed recently, and their nuta-
tions were computed [Dehant and Defraigne, 1997; Schastok,
1997] using an approach similar to that of Wahr [1981a, 1981c].
In the model of Defraigne [1997], employed in the first of these
works, mantle convection was invoked for generating the extra
(nonhydrostatic) ellipticity, while the dynamical mechanism
responsible is not spelled out in Schastok’s work which incorpo-
rates ocean tide excitation too into the model. A systematic
presentation of the formalism and comparisons of numerical results
with those of others are given by Huang et al. [2001], whose
approach is similar to Schastok’s.
[7] A different approach based on the torque equations for the

ellipsoidally stratified deformable Earth and its core regions,
pioneered by Molodensky [1961], reformulated elegantly by Sasao
et al. [1980], and generalized by Mathews et al. [1991a] to include
the dynamics of the inner core, encapsulates those properties of the
Earth that are relevant to nutations in a set of ellipticity, compliance,
and other parameters. The torque equations and an accompanying
kinematical equation reduce, in the frequency domain, to a set of
simultaneous linear algebraic equations in which the role of the
abovementioned parameters is entirely transparent. The insight
provided by such parameterization was crucial for the inference
of nonhydrostatic ellipticity, referred to above, and in the use
(by Buffett [1992]) of an electromagnetic coupling at the core mantle
boundary to account for the residual of �0.4 mas that remained in
the out of phase part of the retrograde annual amplitude after taking
account of anelasticity (AE) and ocean tide (OT) effects.
[8] Yet another approach, developed and pursued by J. Getino,

J. M. Ferrandiz, and collaborators in numerous papers over the past
several years [see Getino and Ferrandiz, 1999, 2000a, 2000b, and
references therein], is based on the canonical formalism of Kinosh-
ita [1977] with modifications to take account of the nonrigidity of
the Earth and the presence of its core regions. The last of these
papers claims a better fit to the IERS96 nutation series (not to the
observationally estimated series) than all other existing theories and
states that the computed values are for a nonrigid Earth comprising
a mantle, FOC, and SIC, with a delay in the elastic response
allowed for and with oceanic corrections added on; no particulars
are given of the theory or of any parameter fit done for optimizing
the agreement with the IERS96 series. No publication giving the
essential details of the work leading to the stated result (the
theoretical framework and the Earth model employed, the identity
and physical meaning of the parameters adjusted in the fitting
process, and the estimates obtained from the fit for these parameters
and their physical interpretation) has appeared yet, to our knowl-
edge, nor has any preprint been available to us. Therefore we base
our discussion of the approach of these authors on the work of
Getino and Ferrandiz [1999], which provides some details,
although like Getino and Ferrandiz [2000a], it employs a two-
layer Earth model lacking in some essential features: the mantle is
treated as rigid in the latter, while ocean tide effects (which are up to
2 orders of magnitude larger than current uncertainties in the
amplitudes estimated from nutation data) are left out altogether in
the former work in fitting the theory to the IERS96 series. A major
problem with the fits stems from the parameters chosen for adjust-
ment. Three of the critical parameters, which are independently
adjusted, are the scale parameters kM and kS of Kinoshita [1977]
representing the respective abilities of the Moon and the Sun to
exert torques on the Earth and the ratio (Ac/Am) of the moments of
inertia of the core and the mantle. Apart from rescaling the relative

magnitude of the lunar and solar terms in the nutation series, the
adjustment of kM and kS leads to estimated values that are
incompatible with the precisely known values of the astronomical
parameters in terms of which they are defined, as will be shown
later. For a recent review of observational and theoretical aspects of
nutations, see Dehant et al. [1999].
[9] In the present work, the dynamical equations of Mathews et

al. [1991a] are modified by including in their basic structure (1) the
effects of mantle anelasticity, (2) the effects of ocean tides, (3) the
electromagnetic couplings produced between the FOC, on the one
hand, and the mantle and the SIC, on the other hand, at the
frequencies of the wobbles, because of magnetic fields crossing the
CMB and the ICB, and (4) nonlinear terms which have hitherto
been ignored in this type of formulation. After an overview, at the
beginning of the section 2, of the salient features of the unmodified
theory including the representation of nutation amplitudes in terms
of resonance formulae in different forms, the modeling of the
abovementioned effects is explained, including, in particular, the
procedure adopted for construction of empirical ocean loading and
current admittance functions needed for this purpose. The manner
in which the various effects are integrated into the theory is
elucidated, and the important fact that several of the system
parameters become complex and frequency dependent in this
process is pointed out. The nature of the dependence of nutation
amplitudes on the basic parameters of the theory is discussed next,
and those parameters that are most appropriate for estimation
through a least squares fit to data are identified. Treatment of the
nonlinear terms in the dynamical equation and their contributions
is left to Appendix A. The dominant nonlinear terms represent the
effects of the nearly diurnal tidal potential on the time-dependent
deformations due to the zonal potential, first considered by
Souchay and Folgueira [2000], and on those due to the sectorial
potential, not considered before.
[10] We introduce in section 3 the nutation-precession data set

used in our study. Details regarding the VLBI data set from which
these are derived and the data analysis procedures used may be
found in the accompanying paper by Herring et al. [2002]. The
procedure employed for our least squares fit is briefly outlined next,
following a discussion of steps to take account of effects not
included in the theoretical expressions that are used for the fitting.
Presentation of the values found for the various basic Earth
parameters estimated through the fit and discussion and interpreta-
tion of the estimates are done in section 4. The reader whose primary
interest is in the geophysical aspect of our results may want to
proceed directly to section 4 and return to earlier sections as needed.
[11] Given the values of the basic Earth parameters, one can use

the method explained in Appendix B to compute the corresponding
values for the parameters in a reduced resonance formula of the form
given in section 2. The numerical values obtained thus for the
resonance parameters are presented and discussed in section 5.
The seemingly unrealistic values obtained for both the real and the
imaginary parts of the Chandler resonance frequency are shown to be
a consequence of the complex and frequency dependent value of the
relevant compliance parameter of the anelastic Earth with oceans.
The considerations involved are discussed on the basis of general
physical principles in Appendices C and D, which are essential
reading to avoid being led by the unfamiliar aspects of some of our
results into misinterpreting them in physical terms. In section 6, we
explain the construction of our new nutation series MHB2000 by
direct solution of the linearized dynamical equations with the use of
values obtained from the least squares fit for those Earth parameters
that are estimated; the series includes corrections for effects not
included in these equations. We proceed then to present a new
resonance formula, (42), which reproduces this series exactly except
for a few frequencies; for these frequencies the corrections to be
applied to the resonance formula results are listed.We conclude with
remarks in section 7 on a few points to supplement the discussion in
the earlier sections.
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[12] The highlights of the geophysical results reported in the
present work, which go hand in hand with the new nutation
series, are the following: Strong evidence has been found for the
first time for the prograde free core nutation mode which had
been theoretically predicted by Mathews et al. [1991a, 1991b]
and de Vries and Wahr [1991] as a consequence of the role of the
SIC in nutation dynamics. The evidence comes from the asso-
ciated resonance in the forced nutations, with a period of �1025
days, double what was predicted by the above authors; the
difference is understood in terms of the effects of the magnetic
field at the ICB. For the Chandler resonance we find a period of
�383 days; while this value is surprising at first sight, we have
shown that it does lead to a period of 430 days for the free
Chandler wobble, in agreement with observations, when one
takes quantitative account of the difference between the values
of the anelastic and ocean tide response parameters at widely
differing frequencies: the nearly diurnal tidal frequencies respon-
sible for nutations, on the one hand, and the low frequency of the
free Chandler wobble, on the other hand. An estimate of
3.2845479 � 10�3 with an uncertainty of under 0.4 parts per
million has been obtained for the dynamical ellipticity e � (C �
A)/A of the Earth, where C and A are the polar and mean
equatorial principal moments of inertia of the Earth respectively.
The corresponding value of Hd � (C � A)/C is 3.2737949 �
10�3. The smallness of the uncertainty is attributable to the use,
in the estimation process, of a large number of quantities
sensitive to the value of e: the amplitudes of all the nutations
used for our analysis, as well as the precession rate. We have also
obtained estimates for the RMS values of the radial component of
the magnetic fields at the CMB and the ICB (�6.9 and 72 gauss,
respectively) and for the dynamic ellipticity of the fluid core
(3.8% in excess over the hydrostatic equilibrium value). These
have been inferred from the estimates obtained for the imaginary
parts of the CMB and ICB electromagnetic coupling constants
and for their real parts in combination with certain other Earth
parameters. A general relation connecting the real and imaginary
parts of the electromagnetic coupling constants has been made
use of in this process, with evaluation of the relation done only
for certain restricted classes of configurations of the magnetic
field. Also employed was information from Magsat data about the
dipole component of the CMB magnetic field. The existence of a
mantle bottom layer of conductivity equal to that of the core fluid
and of thickness �210 m was assumed; if the thickness or
the conductivity were lower, the CMB field strength called for
by the observed coupling would be higher. In respect of the ICB,
the ellipticity of the SIC and the density of the core fluid as well
as the density contrast at the ICB were taken to be the same as
for a hydrostatic equilibrium Earth. A discussion of the extent to
which estimates for the magnetic field strength (especially at the
ICB) could be modified by changes in the assumed values may
be found in section 7.
[13] Figures referred to herein as the ‘‘uncertainties’’ in the

quantities estimated on the basis of our least squares fit are the
respective formal standard deviations scaled up by 2.8. The reason
for the scaling is that the realistic uncertainties in our input data are
larger than their formal sigmas (see section 3.1 and Herring et al.
[2002]). The scale factor has been chosen as the square root of the
chi squared per degree of freedom obtained for the fit between
theory and data.

2. Theoretical Considerations and Outline
of Formalism

[14] The analytic formulation given by Mathews et al. [1991a]
for the theory of wobbles and nutations of an oceanless, elastic,
axially symmetric ellipsoidal Earth with a mantle, FOC, and SIC
(hereinafter referred to as the ‘‘basic Earth’’) was a development of

the torque equations for the Earth and its core regions together with
a kinematic equation relating the variations in orientation of the
SIC to its angular velocity variations. These equations are intrinsi-
cally nonlinear, but a linear approximation was traditionally
employed in the past, as the effect of the nonlinear terms was
deemed to be too small to merit attention.
[15] However, preliminary studies by one of us (P.M.M.)

together with Pierre Bretagnon indicated that the neglected terms
could have nonnegligible effects on nutations, and the recent
work of Souchay and Folgueira [2000] on the effect of zonal
deformations on the nutations of an otherwise rigid Earth has
shown that this is indeed the case. The effects of deviations from
the linearized theory are dealt with in Appendix A, where an
expression is derived for the resulting contribution to nutation
amplitudes.
[16] The torque equations determine the wobbles (and spin rate

variations), which may be viewed as the terrestrial manifestation of
nutation and axial rotation variation in space. These celestial
motions are related to the terrestrial ones through kinematic
equations which are independent of the structure and properties
of the Earth. The kinematic relations in their full nonlinear form are
given by Bretagnon et al. [1997]. The only appreciable effect
resulting from the nonlinearities in these relations is on the
obliquity, through the role of spin rate variations (or, equivalently,
UT1 variations); it is rather large, having an amplitude of �0.7 mas
with an 18.6 year period, as shown by Bretagnon et al. [2000].
However, on account of the way in which UT1 variations are
incorporated into the transformation matrix relating terrestrial and
celestial reference frames in the algorithm for VLBI data analysis
[see, e.g., McCarthy, 1996], this effect does not show up in the
nutation series resulting from the analysis. For this reason, it is
quite sufficient to use the linearized version of the kinematic
relation, and we shall do so.
[17] The linearized approximation to our formulation for the

torque equations including AE and OT effects and electromagnetic
couplings is outlined in sections 2.1–2.5. Electromagnetic torques
at the nearly diurnal frequencies of the wobbles arise because
Lorentz forces are brought into play by magnetic fields crossing
the boundaries of the FOC when differential rotations between the
FOC and the other regions take place as a concomitant of nutation.
The electromagnetic coupling parameters are complex, and ane-
lasticity is represented through complex increments to deform-
ability parameters of the different regions of the Earth. Both these
sets of parameters vary only very slightly over the diurnal
frequency band. If this variation is ignored, the structures of the
theoretical expressions that appear in our treatment, such as
resonance formulae and approximate expressions for resonance
frequencies and coefficients, will remain unaffected by these
effects, although a number of real parameters get replaced by
complex ones. The inclusion of ocean tide effects, also done
through complex increments to deformability parameters, is more
problematic, for the simple reason that the OT admittance has a
large variation with frequency within the diurnal band. (By
‘‘admittance’’ we mean the amplitude of the spherical harmonic
degree 2 and order 1 part of the ocean tide per unit amplitude of
the TGP component that excites the tide.) The variation is caused
both by the strong frequency dependence associated with the free
core nutation (FCN) resonance in the diurnal ocean tides and by
ocean dynamic factors unconnected with the FCN, like ocean
geometry and bathymetry. We use an empirical formula, deduced
as explained in section 2.5, to represent the frequency dependence
of the admittance. Resonance formulae for the transfer function
and limitations on it are discussed in this context. Section 2.6
deals with the accounting of contributions to nutations from
sources unrelated to the TGP. Developments in the nutation theory
for the rigid Earth are considered in section 2.7. We then go on to
a discussion, in section 2.8, of the parameters that may be
expected to have a significant influence on nutations. Our ana-
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lytical formalism makes possible the identification of such param-
eters, which is a prerequisite to the fitting of a dynamical theory to
observational data.

2.1. Analytical Formulation for the Basic Earth:
Linear Approximation

[18] Consider a forced or free nutation having an angular
frequency of t cycles per sidereal day (cpsd) in space, 1 cpsd
being the frequency of the mean diurnal rotation of the Earth with
an angular velocity V0 = 7.292115 � 10�5 rad s�1. The nutation is
accompanied by a wobble of the Earth’s mantle, i.e., a circular
motion of its rotation axis around its geometric axis, with fre-
quency s cpsd as seen from the rotating Earth, where

s ¼ t� 1: ð1Þ

(The term ‘‘geometric axis’’ or ‘‘symmetry axis’’ will be used
herein to refer to the direction of the principal axis of maximum
moment of inertia, with tidal deformations ignored, in an axially
symmetric approximation for the Earth.) The amplitude ~m sð Þ of
this wobble, the amplitudes ~mf sð Þ and ~ms sð Þ of accompanying
wobbles relative to the mantle of the FOC and SIC, and the
amplitude ñs(s) of the offset of the polar axis of the SIC from that
of the mantle are the dynamical variables of the wobble-nutation
problem in the frequency domain.
[19] It was shown by Mathews et al. [1991a] in the linearized

approximation that the four-component column x(s) having these
dynamical variables as elements obeys a matrix equation

M sð Þx sð Þ ¼ ~f sð Þy sð Þ; ð2Þ

where ~f sð Þ is the amplitude in nondimensional form of the
relevant spectral component of the TGP. Equation (2) contains in
succinct form the equatorial components of the equations of
angular momentum balance for the whole Earth, the FOC, and the
SIC together with the kinematic equation which relates the
instantaneous orientation of the symmetry axis of the SIC to that
of its rotation axis. Equation (2) will be referred to in the following
as the linearized dynamical equation (LDE) of the wobble-nutation
problem since small terms that are nonlinear in the dynamical
variables were neglected in writing it down.
[20] As may be seen from (26) of Mathews et al. [1991a], the

dynamical matrix M and the column vector y have the forms

M ¼ F þ sG; y ¼ yc þ syt; ð3Þ

where the elements of the 4 � 4 matrices F and G and of the
columns yc and yt are simple combinations of certain basic Earth
parameters (BEP). In the theory of Mathews et al. [1991a] for the
basic Earth, the BEP, which were all real, consisted of the
dynamical ellipticities, e, ef, and es and the mean equatorial
moments of inertia A, Af, and As of the Earth, the FOC, and the
SIC, the compliance parameters k, g, x, b, . . ., representing the
deformabilities of the Earth and of its core regions under different
types of forcing, the density rf of the outer core fluid at the inner
core boundary (ICB), and certain other parameters (ag, A

0, and e0)
needed for characterization of the gravitational coupling between
the SIC and the rest of the Earth. Axial symmetry of the Earth has
been invariably assumed in the literature of nutations of the
nonrigid Earth. Against this background, A will be taken in this
paper to stand for the mean of the two principal equatorial
moments of inertia, (A + B)/2; similar meanings are taken for Af

and As. With this understanding the Earth’s dynamical ellipticity or
dynamical flattening is e = (C � A)/A, with similar notation for ef
and es of the core regions. Triaxiality, i.e, inequality of A and B,
gives rise to semidiurnal nutations, which will be considered in a
separate publication. Diurnal nutations due to higher moments of
the Earth’s structure will also be considered separately.

[21] The reader is referred to Mathews et al. [1991a] for precise
definitions of the various parameters, derivations, and other details.
It may be noted that the Love number k with the deformational
effects of wobbles excluded is directly related to the compliance k
[see Mathews et al., 1995]:

k ¼ �2
0a

5

3GA
k nwð Þ;

where the superscript nw means ‘‘no wobbles.’’ It represents the
deformability of the whole Earth (and g, that of the fluid core
region alone) under degree 2 tidal forcing, while b characterizes the
deformability of the FOC under the centrifugal forcing associated
with the wobble of the FOC relative to the mantle.
[22] Given the values of the BEP, solution of (2) yields the

amplitudes ~mf sð Þ; ~ms sð Þ, and ~ns sð Þ produced by the given spectral
component of the TGP. In particular,

~m sð Þ ¼ M�1 sð Þy sð Þ
� �

1
~f sð Þ; ð4Þ

wherein the quantity in brackets is a four-component column
vector, and the subscript 1 indicates the first element of this vector.
[23] The dynamical ellipticity e is the only parameter relevant to

the free (Eulerian) and forced wobbles of a hypothetical rigid Earth
(ellipsoidal, with axial symmetry). The wobble amplitude ~mR sð Þ
(subscript R for ‘‘rigid’’) has the simple expression

~mR sð Þ ¼ e

e� s
~f sð Þ: ð5Þ

This result follows trivially from the explicit form of (2) when the
compliances are set equal to zero in M and y.
[24] The amplitude ~h sð Þ of the nutation associated with the

wobble of frequency s cpsd is related to ~m sð Þ by

~h sð Þ ¼ � ~m sð Þ
1þ s

: ð6Þ

This is the linearized approximation [Ooe and Sasao, 1974] to
the kinematic relation referred to earlier, which holds irrespective
of the Earth’s structure and elastic properties. It follows then that
the transfer function T(s; e) from the amplitude for the rigid Earth
to that of the nonrigid Earth is the same for the wobble and the
corresponding nutation:

T s; eð Þ � ~h sð Þ
~hR sð Þ ¼

~m sð Þ
~mR sð Þ ¼ e� s

e
M�1 sð Þy sð Þ
� �

1
: ð7Þ

[25] The transfer function T(s; e) has a resonance expansion
[Mathews et al., 1991a] of the form,

T s; eð Þ ¼ Rþ R0 1þ sð Þ þ
X
a

Ra

s� sa
: ð8Þ

The resonance frequencies sa are associated with four free
nutation/wobble modes: the Chandler wobble (CW), two free core
nutations (FCN or RFCN, which is the retrograde nutation induced
by the ellipticity of the fluid core, and PFCN, a prograde nutation
which owes its existence to the presence of an elliptical solid inner
core) and a free wobble of the inner core (ICW). The sa are
obtained by solving the homogenous equation Mx = 0, or
equivalently, the eigenvalue equation Lx = sx, where L = F�1G.
The existence of the resonance expansion, (8), follows solely form
the linear dependence of the Mij and the yi on s, mentioned earlier,
and that of 1=~mR sð Þ, evident from (5). The nature of the
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dependence of these quantities on the BEP is not relevant for this
purpose.
[26] The explicit forms of M and y [see Mathews et al., 1991a]

imply also that at s = �1 (corresponding to zero frequency, t = 0,
in inertial space) the wobble amplitude of the nonrigid Earth is just
the same as for a rigid Earth having the same ellipticity e:

~m �1ð Þ ¼ ~mR �1ð Þ; implying T �1; eð Þ ¼ 1: ð9Þ

(This is the property that Poincaré [1910] designated as ‘‘gyrostatic
rigidity.’’) We also note that by virtue of the definition (7) of T(s; e)
and the form (5) of ~mR sð Þ,

T s; eð Þ ¼ 0 at s ¼ e: ð10Þ

Equations (9) and (10) lead to two sum rules for the set of
parameters appearing in (8):

R ¼ 1þ
X
a

Ra

1þ sa

R0 1þ eð Þ ¼ �R�
X
a

Ra

e� sa
:

These may be used to express R and R0 in terms of the resonance
frequencies sa and coefficients Ra. The result is a new form for the
resonance formula:

T s; eð Þ ¼ e� s
eþ 1

1þ 1þ sð Þ
X4
a¼1

Na

s� sa

 !
: ð12Þ

[27] When the ellipticity e is one of the parameters to be
estimated by fitting theoretical expressions to VLBI estimates of
both the precession rate and the amplitudes of a set of circular
nutations, one has to allow for a possible difference between the
eventual estimate for e and the value eR assumed in the con-
struction of the rigid Earth series. In such a situation it is
necessary to consider a generalized transfer function T(s;e|eR)
from the amplitude ~hR s; eRð Þ for a rigid Earth of ellipticity eR to
the amplitude ~h s; eð Þ of a nonrigid Earth with a different ellip-
ticity e. Explicitly,

~h s; eð Þ ¼ T s; ejeRð Þ ~hR s; eRð Þ

T s; ejeRð Þ ¼ 1� s=eRð Þ M�1 sð Þy sð Þ
� �

1
:

ð13Þ

The last expression is obtained by dividing (4) by (5), with e
replaced by eR in the latter.
[28] The transfer function (13) may be expressed as an explicit

analytic function of s and the BEP by inversion of the 4 � 4 matrix
M(s), and the function can be separated into terms of different
orders in the BEP. However, terms beyond the first order are too
complicated to be really enlightening, and direct numerical eval-
uation of M�1(s) is far simpler than evaluation of such an
analytical expression.
[29] It is easy to show that the generalized transfer function may

be expressed in the form

T s; ejeRð Þ ¼ eR � s
eR þ 1

� N0 1þ 1þ sð Þ
X4
a¼1

Na

s� sa

 !
:

ð14Þ

The term ‘‘reduced resonance formula’’ (RRF) will hereinafter
refer to (14), while (8) with parameters not constrained to obey the

sum rules (11) will be referred to as the unconstrained resonance
formula (URF). The value of N0 and the relations between the
resonance coefficients in (8) and (14) are as follows:

N0 ¼
Hd

HdR

� e= 1þ eð Þ
eR= 1þ eRð Þ

Ra ¼ eR � sað Þ
1þ eRð Þ 1þ sað ÞN0Na;

ð15Þ

where Hd � e/(1 + e) is what is referred to in the literature of
astronomy as the dynamical ellipticity of the Earth. For the
generalized transfer function, the sum rules (11) get replaced by

R ¼ N0 þ
X
a

Ra

1þ sa

R0 1þ eRð Þ ¼ �R�
X
a

Ra

e� sa
:

ð16Þ

2.2. Inclusion of Various Effects: General Remarks

[30] We show in sections (2.3)–(2.5) how the formalism just
presented, which assumes the BEP to be frequency independent,
may be generalized to incorporate anelasticity and ocean tide effects
and electromagnetic couplings. The last of these introduces com-
plex coupling parameters into the dynamical matrix, and complex
increments to the compliances arise from the other two effects.
Furthermore, the increments due to the ocean tides depend strongly
on the excitation frequency s. While complexification does not
affect the above formalism except to make the sa and Na complex,
frequency dependence of parameters in F and G (and hence in L)
has the important consequence that an eigenvalue sa of L will not,
in general, be the frequency of a free wobble mode. The reason for
this seemingly radical departure from the familiar picture is simple
enough. In a wobble normal mode the centrifugal perturbation due
to the wobble and the deformation caused by it have the same
frequency as the wobble itself; therefore the compliances, which
characterize the extent and phase of the deformations, must neces-
sarily appear with values pertaining to the frequency of the free
mode in the homogeneous equation to be solved for determining
that frequency, namely, (2), with ~f set equal to zero, or equivalently,
Lua = sau

a (see Appendix B). Stated differently, a particular
eigenvalue of L, say s1, can be the physical eigenfrequency of a
free wobble only if L is constructed with values appropriate to the
frequency s1 itself in the first place, and when this is done, the other
sa, a 6¼ 1, are not the frequencies of any free wobble modes. From
the mathematical point of view, these strange features are a con-
sequence of the fact that Lua = sau

a is not a linear eigenvalue
problem when the matrix L itself is frequency dependent. If L is
evaluated at some forcing frequency s0 in the retrograde diurnal
band, its eigenvalue s1 having real part near 1/400 cannot be the
frequency of the free Chandler mode because the values used for the
compliances present in L do not pertain to this frequency. There can
be no free mode associated with this s1: otherwise, there would be a
host of ‘‘free Chandler wobbles,’’ one associated with each of the
distinct values of s1 that would result from different choices of s0.
One can proceed, of course, as in Appendix B, to construct a
resonance formula in terms of the eigenvalues sa and eigenvectors
ua and ~va pertaining to L evaluated at some forcing frequency s0 in
the retrograde diurnal band, ignoring thereafter the fact that these
quantities vary with the s0. The sa clearly play the role of resonance
frequencies in (8), though the formula cannot be exact for any
forcing frequency other than s0. The exact solution is given by
(13), and it is by numerically evaluating this solution for every
frequency of interest and fitting the results to the data after taking
account of terms and effects not incorporated into the LDE that we

ð11Þ
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gain the most information relevant to the geophysical interpreta-
tion of nutations. Nevertheless, the approximate analytical expres-
sions available for the eigenvalues play a vital role in the least
squares fitting process, as we shall see.
[31] One might wonder why it is worthwhile to invite such

complications by incorporating all the effects into the dynamical
equations. The answer lies in the fact that the results obtained on
including all the effects together differ from the sum of the
contributions, separately evaluated, from the individual effects.
We find, for instance, that the individual contributions from
anelasticity, ocean tidal loading, currents, and CMB and ICB
couplings to the out of phase retrograde 18.6 year nutation are
�0.155, 0.986, �0.020, 0.249, and 0.278 mas, respectively, adding
up to 1.339 mas in all, while the combined effect is 1.358 mas. As
another example, the corresponding numbers for the in-phase
retrograde annual nutation are 0.267, 0.174, 0.000, �0.450, and
�0.012, for a total of �0.021 mas, compared to the combined
effect of �0.048 mas; for the out of phase part the sum of the
individual contributions is 0.304 mas, while the combined effect is
0.331 mas. The need for an integrated approach when dealing with
high-precision data is thus evident.
[32] In computing the frequencies sa and strength parameters Na

presented in section 5, the ocean tide contributions to the compliance
parameters inM have been assigned values pertaining to the forcing
frequency sR18 (�1.0001467 cpsd), very close to the median
frequency of the diurnal tidal band, which corresponds to the
retrograde 18.6 year (R18) nutation. The ocean tide contributions
to nutation amplitudes are, according to the theoretical estimates, of
the order of one part in a thousand or less, and the nonconstancy of
the ocean tide admittance is responsible only for a part of these
contributions. There is also a very minor but not entirely negligible
variation across the diurnal band due to the w dependence of the
electromagnetic coupling, seen from (19), and that of the anelasticity
factor F of (17b). These have been taken into account in our final fits
and in the evaluation of the exact solutions.

2.3. Inclusion of Anelasticity Effects

[33] Mantle anelasticity causes a small frequency-dependent
phase lag in the Earth’s response to periodic forcing besides
altering the magnitude of the response. Stated differently, anelas-
ticity causes the shear and bulk moduli (at any point within the
mantle) to become complex and frequency dependent. In the
anelasticity models with no bulk dissipation proposed by Sailor
and Dziewonski [1978] and Sipkin and Jordan [1980] and in
variants of them treated in detail by Wahr and Bergen [1986],
the variation of the shear modulus with the excitation frequency w
is represented by

R w; rð Þ � dm w; rð Þ
m0 rð Þ ¼ F w;wm;að Þ

Qm wm; rð Þ ð17aÞ

F w;wm;að Þ ¼ cot
ap
2

�
1� wm

w

�a� o
� isw

wm

w

� �a
;

n�
ð17bÞ

where m0(r) is the real part of the shear modulus of the anelastic
Earth at the radial position r at the reference frequency wm in the
seismic frequency range, a is the index of the assumed power
law variation of the quality factor Qm of mantle dissipation, and
dm(w, r) = m(w, r) � m0(r). The appearance of sw � (w/|w|) has to
do with the choice of sign convention for tidal frequencies (see
Appendix C). Clearly, dm depends on the values chosen for the
parameters wm and a, although we have not explicitly indicated this
in the notation. It is assumed by Sailor and Dziewonski, Sipkin and
Jordan, and Wahr and Bergen, that Qm has constant values within
the upper mantle and within the lower mantle. Other models of
mantle Q which allow for variation within each of these regions are
available [e.g., Widmer et al., 1991]. The function m0(r) is

determined from seismic data, and wm is an average frequency
which is representative of the range of frequencies to which the
seismic data used pertain. Note that the imaginary part of the shear
modulus m(wm, r) at the reference frequency is included in dm as
given by the above formula: Im dm(wm, r) = �swm0/Qm(wm, r).
[34] The compliances appearing in nutation theory are com-

puted initially for an elastic Earth model, such as Preliminary
Reference Earth Model (PREM) of Dziewonski and Anderson
[1981], by integrating the equations of tidal deformation (see, for
instance, Buffett et al. [1993], who consider also the small
contributions to the compliances from the Earth’s ellipticity and
from the Coriolis force due to Earth rotation as well as from
differential rotations of the FOC and SIC relative to the mantle).
The anelasticity contributions to the compliances at the median
frequency wd of the diurnal band (i.e., the 1 cpsd frequency of the
K1 tide) are computed from the same deformation equations by
evaluation of the changes in deformations resulting from replace-
ment of m0(r) by m0(r) + Re dm(wd, r) and, again, by m0(r) + Im
dm(wd, r) and then taking the complex combination of the two.
(dm(wd, r) is obtained, of course, by introducing (17b) in (17a).)
The default option that we use for the anelasticity model has
a = 0.15 and a reference period of 200 s (wm = 2p/200), with
rheology as given by Dziewonski and Anderson [1981]. The effect
of switching to other values for these parameters or even to other
anelasticity models is just to change the real and imaginary parts of
F by appropriate factors fr and fi. These changes simply cause the
real parts of the anelasticity contributions to all the compliances to
be multiplied by the common factor fr and the imaginary parts to be
multiplied by the common factor fi. The two compliances to which
the nutations are most sensitive, namely, k and g, are estimated
during our least squares fitting procedure (see section 2.8); there-
fore any change in fr would merely alias into changes in the
estimates obtained for these parameters and would not lead to an
improvement in the quality of the fit. We have explored how the fit
is affected on changing fi from unity. We found that the fit
improves initially with increasing fi but degrades rapidly beyond
a point. The optimum value was fi = 1.09. We have incorporated
this scaling into what we call the default model hereafter.

2.4. Inclusion of Electromagnetic Couplings

[35] Buffett [1992] computed the contribution to nutations from
the diurnally varying torque produced between the differentially
wobbling FOC and mantle by the magnetic field present at the
CMB. This torque is proportional to mf, and that between the FOC
and the SIC, caused by the magnetic field at the ICB, is propor-
tional to (mf � ms). Therefore their presence modifies the coef-
ficients of ~mf and ~ms in the angular momentum balance equations
for the FOC and the SIC and hence the corresponding elements of
the dynamical matrix M. There are four such elements. The
expressions given in (26b) of Mathews et al. [1991a] for these
elements are now to be modified as follows:

M22 ! M22 þ KCMB þ KICBAs



Af ; ð18aÞ

M23 ! M23 � KICBAs



Af ; ð18bÞ

M32 ! M32 � KICB; ð18cÞ

M33 ! M33 þ KICB; ð18dÞ

wherein KCMB and K ICB are complex coupling strength parameters
representing the influence of the respective torques. They are to be
counted henceforth among the BEP.
[36] KCMB in the ~mf term (M22) of the equation for the FOC

and K ICB in the ~ms term (M33) of the equation for the SIC have
parallel roles and should be expected to have the same sign for

MATHEWS ET AL.: NEW NUTATION SERIES AND THE EARTH’S INTERIOR ETG 3 - 7



their real parts. This sign is positive, as has been found for Re KCMB

in the work by Buffett [1992]. This is indeed what one expects on
physical grounds: ef in M22, which represents the inertial coupling
between the core and the mantle due to the ellipticity of the CMB,
appears with a positive sign, and Re KCMB should have the same
sign since the presence of a magnetic field is expected to strengthen
the coupling. As for the imaginary parts of the K parameters, their
signs should be such as to represent dissipation and should therefore
be the same as the signs of imaginary parts arising from the
compliances already present in M22 and M33.
[37] The theory which enables one to interpret the estimates

obtained for the electromagnetic coupling parameters in geophys-
ical terms is presented by Buffett et al. [2002], who discuss the
assumptions and approximations made; that paper may be con-
sulted for all details. The salient points are reproduced here for
convenience. The conducting material of the mantle, FOC, and SIC
undergoes motion relative to the main magnetic field B(r) in the
course of the differential wobbles of these regions. The current
which gets generated then by electromagnetic induction and the
induced magnetic field b(r) due to this current distribution oscillate
with the nearly diurnal frequency of the wobble motion. The
Lorentz force exerted on the current-carrying elements of matter
perturbs the fluid flow near the CMB and the ICB, and this
perturbation, in turn, affects the current induced. Therefore the
induction equation and the equation governing the perturbation of
the fluid flow (in which the Coriolis force plays a nontrivial role)
constitute a coupled system. Solution of this system, subject to the
usual continuity conditions on the magnetic field and boundary
conditions relating the fluid velocity to the differential wobbles,
leads to expressions for the induced fields b(r) at the CMB and
ICB and hence for the integrated torques on the FOC and SIC at
the wobble frequency due to the Lorentz force. If the radial
component of the main field B(r) is denoted by Br and the complex
combination (�1 + i�2) of the equatorial components of the
electromagnetic torque is denoted by ~�, one obtains,

~� bð Þ sð Þ ¼ �ia2bV0

8m0

1

2�hb wj j

� �1=2

� ~mð Þb Ib; ð19Þ

where m0 is the magnetic permeability of the vacuum and w = V0s.
Here b refers to the boundary in question (b = c for the CMB and s
for the ICB), ab is the radius of the boundary, assumed to be
spherical (ab = ac for the CMB and as for the ICB), and Ib is the
integral of Br

2, weighted by a certain factor, over the boundary.
The weight factor depends, in general, on Br

2 and on cosq, where q
is the colatitude. As for �~mð Þb, it is the difference in wobble
amplitudes between the FOC and the solid region across the
boundary b, and �hb is defined by

2�h1=2b ¼ h1=2f þ h1=2m

� �

2�h1=2b ¼ h1=2f þ h1=2s

� � ð20Þ

for CMB and ICB, respectively, where h represents magnetic
diffusivity and the subscript ( f, s, or m) indicates the region (FOC,
SIC or mantle layer) to which it pertains:

h ¼ s elð Þm0
� ��1

; ð21Þ

s(el) being the electrical conductivity. The term ‘‘mantle layer’’
refers here to a layer at the bottom of the mantle, assumed to have a
constant conductivity s(el) throughout and to have a thickness D
exceeding the ‘‘skin thickness,’’ i.e., the distance d from the
boundary to which the oscillatory induced fields penetrate. It may

be safely said that the conductivity sm
(el) of this layer cannot exceed

that of the fluid core and hence that hm � �h � hf. Since d is the
reciprocal of the decay constant characterizing the exponential
decay of the induced field b(r) with distance from the CMB within
the mantle layer, d = (2hm/|w|)

1/2. The two inequalities D � d and
hm � hf then imply that our assumption of uniform conductivity for
the mantle layer requires that

D �
2hf
wj j

� �1=2

: ð22Þ

Since m0 = 4p � 10�7, this condition yields D � 209 m on taking
the frequency to be �1 cpsd, the median frequency of the diurnal
tidal band, and using the generally accepted value 5 � 105 S m�1

for the conductivity of the core fluid. The conductance of the layer
must therefore exceed 108 S. If the conductivity of the mantle layer
were less than the bound we used or not uniform, the thickness
needed for the layer would be higher.
[38] We return now to (19). With the use of parameters

appropriate to the relevant boundary, it gives the torque ~�CMB on
the FOC due to the magnetic field at the CMB on setting�~m ¼ ~mf

and ~�ICB on the SIC due to the field at the ICB on taking
�~m ¼ ~ms � ~mf

 �
. A torque (�~�ICB) is, of course, exerted on the

FOC by the SIC. The coupling constants KCMB and K ICB are
related to these torques by

KCMB ¼
~� CMBð Þ

i�2
0
Af ~mf

KICB ¼
~� ICBð Þ

i�2
0
As ~ms�~mfð Þ :

ð23Þ

[39] To get an idea of the kind of information that one can get,
given an estimate for KCMB, we consider the approximation in
which Coriolis effects are neglected. The strength of the coupling
between the induction equation and the fluid flow equation is then
characterized by a parameter

R ¼ B2
r

m0r�h wj j : ð24Þ

If the magnetic field is weak enough that R � 1, the fluid flow
remains practically unperturbed by the Lorentz force. In this weak
field limit the integral Ib over the CMB reduces to

Ib ¼ �2 sþ ið Þ
Z

B2
r 1þ cos2q
 �

ds ¼ �4pa2c sþ ið Þq B2
r

� �
; ð25Þ

where s = s/|s| and q is a factor which depends on the
configuration of the field B(r). In particular, q = 16/5 for a dipole
field (Br = B0cosq), and q = 8/3 for a hypothetical ‘‘uniform’’ field,
defined to be one for which Br is constant over the whole CMB.
The latter is not very realistic, but it may be taken as an
approximation to a field which is rich in spherical harmonics up to
very high orders.
[40] For the forced wobbles, s = �1, and we then have from

(23) with (19) and (25)

KCMB ¼ 1� ið ÞkCMB q
B2
r

� �
�h1=2

� �

kCMB ¼ pa4c
m0�0Af

1

2 wj j

� �1=2

;

ð26Þ
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with �h given by the first of the expressions in (20). The signs of the
real and imaginary parts of (26) are in keeping with the
expectations from physical considerations, noted earlier.
[41] Equation (26) shows that the combination B2

r

� �

�h1=2

 �
is

known once an estimate is obtained for KCMB. It leads directly to a
lower bound on hBr

2i when the already stated inequality �h � h f is
introduced in (26):

B2
r

� �
¼ �Im KCMB

q kCMB
�h1=2 � �Im KCMB

q kCMB
h1=2f : ð27Þ

If the thickness D of the mantle layer were less than the skin depth,
hBr

2i would have to be even higher, as may be seen from the work
of Buffett [1992].
[42] In the weak field approximation on which the above

discussion is based, the real and imaginary parts of the coupling
constant (KCMB or K ICB) should be of equal magnitude, as (26)
shows. Outside the weak field regime, Ib of (19) has to be
evaluated by numerical integration. Computations show that with
the Coriolis force taken into account, the ratio of the imaginary part
of the coupling constant to its real part keeps on decreasing in
magnitude as the field strength is increased, and both parts fail to
increase as fast as hBr

2i. The reader is referred to Buffett et al.
[2002] for further details of the treatment and for a discussion of
the approximations and assumptions made.

2.5. Inclusion of Ocean Tide Effects

[43] Ocean tides affect nutations through changes in the inertia
tensors of the Earth and its core regions due to loading of the crust
and through the contribution of ocean tides to the angular momen-
tum of the Earth. The tidal changes in the inertia tensors of the
whole Earth and of the fluid core enter into the simplified
dynamical equations for an Earth without an inner core [Sasao
and Wahr, 1981] through

~c3 ¼ �A k ~f� ~m
 �

� x ~mf

� �
þ ~cO3 ð28aÞ

~c f
3 ¼ �Af g ~f� ~m

 �
� b~mf

� �
þ ~c f O

3 ; ð28bÞ

where ~c3 stands for the complex combination (c13 + ic23) of
elements of the inertia tensor of the whole Earth and ~c f

3 is the
corresponding combination for the fluid core; the superscript O
identifies the contributions from ocean loading. According to
Sasao and Wahr [1981],

~cO3 ¼ �A t� cð ÞfL; ~c f O
3 ¼ Af hfL; ð28cÞ

where fL is a potential, in dimensionless units, representing the
amplitude of the surface load. Parameters t, c, and h are those of
Wahr and Sasao [1981] and are unrelated to the same symbols
used elsewhere in this work. Here t = (V0

2a5/3GA), and (�c/t) is
simply the load Love number k0 with the contributions from
wobbles turned off. Thus ~cO3 is made up of two parts: the direct
contribution ~cOd3 to the inertia tensor from the ocean tide mass and
the contribution due to load-induced deformation.
[44] It is clear from the above expressions that ocean loading

(OL), in effect, increments the compliances k and g by

�kOL � �~cO3


A ~f� ~m
 �� �

�gOL � �~c f O
3

.
Af

~f� ~m
 �� �

;
ð29Þ

respectively. When the presence of the inner core is taken into
account, one more compliance parameter (q of Mathews et al.
[1991a]) gets incremented, but the effect is very small.

[45] Observational estimates for the angular momentum ~cOd3V0

are available for the largest few tides such as K1, P1, O1, and Q1

in the diurnal band [see, e.g., Chao et al., 1996]. On multiplying
these by (t � c)/(tV0), one gets the corresponding ~cO3 and hence
the �kOL for the respective tides from the first equation in (29).
Since ~c fO

3 ¼ �Af



A

 �
h= t� cð Þ½ �~cO3 according to (28c), it fol-

lows that

�gOL ¼ � h= t� cð Þ½ ��kOL: ð30Þ

[46] The values thus obtained for �g
OL and �kOL exhibit

considerable variation from one tide to another. This variation is a
reflection of the well-known frequency dependence of the ocean
tide admittance that we have referred to earlier. We need a
formula expressing this dependence so that the ocean tide
contribution to the compliances can be calculated for any desired
s. Our approach to the derivation of such a formula is empirical
and makes essential use of a separation of the ocean loading
admittance into a product of two factors, following Wahr and
Sasao [1981]. One factor expresses the frequency dependence
due to the FCN resonance; it may be taken to be real for all
practical purposes. The second factor, which is complex, repre-
sents the effect of other ocean dynamic (OD) factors. Since ~cO3 is
proportional to the amplitude of the ocean tide height function,
~cO3



~f� ~m
 �� �

differs from the admittance function only by a
constant factor (it being noted that ~m/~f varies only from �0.0032
to 0.0044 over the tidal frequencies that we consider and is
practically ignorable in comparison with unity in this context). It
will therefore have the same kind of factorized form as the
admittance. Thus we take

~cO3



A~f
 �

¼ fFCN fOD: ð31Þ

[47] Values of fFCN have been given recently by Desai and
Wahr [1995] for a set of 11 tidal components, updating the values
first obtained by Wahr and Sasao [1981]. We have found that these
can be well fitted by an expression that is linear in Ae(s), the
admittance function for a uniform global self-consistent equili-
brium ocean:

fFCN sð Þ ¼ c0 þ c1Ae sð Þ: ð32Þ

As shown by Dahlen [1976],

Ae sð Þ ¼ 1þ k sð Þ � h sð Þ
1� 3rw=5rEð Þ 1þ k 0 sð Þ � h0 sð Þ½ � ; ð33Þ

where k and h are body tide Love numbers for excitation by a degree
2 order 1 potential, k0 and h0 are the corresponding load Love
numbers for the solid Earth, and rw and rE are the density of seawater
and the mean density of the Earth, respectively. To determine Ae(s)
as a function of frequency, we used the formulae of Mathews et al.
[1995] expressing the body tide Love numbers as linear combina-
tions of wobble admittances and counterparts of those formulae for
the load Love numbers. The coefficients in these combinations were
taken from computations by B. A. Buffett (unpublished work,
1995) and the wobble admittances themselves were obtained as
functions of s by solving the dynamical equation (2) for each tidal
frequency of interest. The coefficients c1 and c2 were then estimated
by a least squares fit of (32) to the values of Desai and Wahr [1995].
We find that with c1 = 0.1732 and c2 = 0.9687, the fit is good to a
fraction of 1%.
[48] The behavior of the factor fOD(s) representing ocean

dynamic effects is expected to be smooth for low spherical

MATHEWS ET AL.: NEW NUTATION SERIES AND THE EARTH’S INTERIOR ETG 3 - 9



harmonic orders [see, e.g., Wahr and Sasao, 1981]. Assuming
linear forms

f
R;I
OD sð Þ ¼ d

R;I
0 þ d

R;I
1 s ð34Þ

for the real (superscript R) and imaginary (superscript I ) parts of
this factor, we make least squares fits of these to the values found
for the real and imaginary parts of ~cO3



A ~f fFCN
 �� �

from the ocean
mass angular momentum estimates of Chao et al. [1996]. The
resulting values of the d parameters are d0

R = 1.017 � 10�3, d0
I =

�6.287 � 10�4, d1
R = 8.704 � 10�4, and d1

I = �4.681 � 10�4. On
using these as well as the values given above for c1 and c2, we have
in (31)–(34) the empirical formula needed for the frequency
dependence of ~cO3



A~f

 �
. The effective increments to k and g due

to ocean loading are then obtainable from (29) and (30) for any
tidal frequency of interest. One may, for the sake of completeness,
determine also the increment to the compliance parameter q
relating to the inner core in a similar way, though its effect on
nutations is negligible.
[49] The next concern is about the role of the angular

momentum ~h carried by the ocean tidal current. As shown by
Wahr and Sasao [1981], this angular momentum enters into the
dynamical equation simply through the replacement of ~cO3 by
~cO3 þ ~h



V0

 �
. The ~h term, in effect, adds a further increment

�kOC to k while leaving all other compliances unaffected:

�kOC � � ~h


�0

 �

A ~f� ~m
 �� �

: ð35Þ

To derive an empirical formula from which this increment may be
evaluated for any tidal constituent, we adopt essentially the same
procedure as was described above for ocean loading. The only
difference is that we now use the Chao et al. [1996] values of ~h
instead of those of ~cO3V0. With this replacement and with the
retention of the same fFCN as before one obtains the frequency
dependent ocean dynamic factor for tidal currents. We find the d
parameters in this case to be d0

R = 4.606 � 10�4, d0
I = 1.049 �

10�4, d1
R = 4.215 � 10�4, and d1

I = 2.534 � 10�4. One obtains now
the overall admittance for ocean tidal currents on multiplying by
fFCN the fOD thus determined.
[50] The scope for varying the ocean tide admittance models

developed above is limited. We have examined how independ-
ent scaling of the load admittance and the current admittance
functions by constant factors affects the results of our fit. It was
found that the least squares fit is significantly worse if the scale
factor for the load admittance function is not very close to
unity, but a scale factor of �0.70 is optimal for the current
admittance function. Accurate computation of the ocean current
angular momentum from ocean tide maps is known to be
difficult because of the large contributions to this quantity from
small areas where the ocean is very deep. Considering therefore
that a scaling of the computed angular momenta by this factor
might not be unreasonable, we have incorporated this factor
into what we call hereafter the default model for ocean tide
effects.
[51] We use the tilde hereafter to identify the (complex) com-

pliances that include the increments due to anelasticity as well as
ocean loading and currents effects. For example,

~k ¼ kþ�k; �k � �kAE þ�kOL þ�kOC ; ð36Þ

where the superscripts AE, OL, and OC refer to anelasticity, ocean
loading, and ocean currents, respectively. Compliances without the
tilde will refer strictly to an oceanless elastic Earth. Incorporation
of ocean tide and anelastic effects into the theory is accomplished
by using the incremented compliances ~k, ~�, etc., in the dynamical
equations.

[52] At this point, the dynamical equations including the above
effects and electromagnetic couplings are fully determined, given
the values assigned to the BEP, provided one knows the ocean tide
admittances. This proviso is not trivial. The reason is the interplay
of the wobbles, solid Earth tides, and ocean tides (see Mathews
[2001] for a schematic depiction). The ocean tide admittances for
(nm) = (21) are dependent on both the body tide and load Love
numbers of the solid Earth, whose dependence on frequency is
determined by the wobble admittances of the mantle, the FOC, and
the SIC [see, e.g., Mathews et al., 1995] which, in turn, have to be
found by solution of the wobble-nutation dynamical equations, the
very equations that we are trying to set up. We get over this
circularity problem by the use of an iterative process: start with
available resonance formulae for the (nm) = (21) Love numbers,
from Wahr and Sasao [1981], for example, then compute the
equilibrium ocean admittance from (33), determine the constants in
(32), and then, for both ocean loading and currents, the constants in
(34), use the OT load and current admittance functions thus
obtained to compute the frequency dependent ocean tide correc-
tions to the compliances in the manner described above, introduce
into the dynamical equation the values thus found for the correc-
tions, execute the least squares fitting procedure (to be explained in
section 3.3) to estimate the best values for the BEP, solve the
dynamical equation with the use of these values to obtain solutions
for the wobble admittance functions, and use them to compute the
Love number functions. The whole process is iterated until con-
vergence is achieved, making all the functions involved (ocean tide
admittances, Love numbers, wobble admittances, etc.) mutually
consistent. This iterative process is part of the overall procedure
that we have employed.

2.6. Inclusion of Non-TGP Excitations

[53] Atmospheric loading and wind effects on nutations have
been discussed in the literature [see, e.g., Dehant et al., 1996;
Bizouard et al., 1998; de Viron et al., 1999; Yseboodt et al., 2002].
The atmospheric tides due to the TGP constituents are quite small
and are overshadowed by the tides due to heating by the Sun, the
largest of these being the solar S1 thermal tide which affects the
prograde annual nutation. Modulation of the amplitude of this tide
due to seasonal effects leads one to expect smaller contributions at
the prograde semiannual and 121.75 day periods and at the
retrograde annual period. There is also a contribution at the K1

tidal period corresponding to zero frequency in space. Sparseness
of atmospheric pressure and wind data (at 12 hour or, at best,
6 hour intervals) and other problems have resulted in wide
variations in the theoretical estimates of atmospheric contributions
to nutations. Yseboodt et al. [2002], analyzing a number of
different atmospheric data sets and their subsets, arrive at results
as disparate as (18, 114) mas (in phase, out of phase) from one data
set and (�65, 10) mas from another for the atmospheric contribu-
tion to the prograde annual nutation; the numbers obtained are
similarly varied for other nutations too. An additional problem in
regard to the prograde annual nutation is that other ‘‘Sun-synchro-
nous’’ effects (having 24 hour periodicity), such as solar heating of
VLBI antennas, could affect the observed amplitude. A study of
such effects is reported by Herring et al. [1991]; it was prompted
by the observation of a residual somewhat over 0.1 mas relative to
theory (as it was then) in this nutation. A similar residual is found
in the present study. In the absence of a reliable means for
theoretical estimation of these effects, we have chosen to eliminate
the residual by applying the appropriate ‘‘correction’’ to the VLBI
estimate for the prograde annual amplitude (in phase and out of
phase) before the final fit to theory is done; the role of this nutation
in the fit is thus, in effect, nullified.
[54] A contribution to nutations at the annual, semiannual, and

18.6 year periods arises from a general relativistic effect: the
geodesic nutation [Fukushima, 1991], which accompanies the
better known geodesic precession. The geodesic nutation contri-
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butions depend only on the parameters of the Earth’s orbital motion
and are virtually unaffected by the internal dynamics of the Earth.
They are therefore the same for the deformable Earth as for the
rigid one. Consequently, in using the transfer function to compute
the nutation amplitudes for the nonrigid Earth, the geodesic
nutation contribution is to be added only to the result obtained
by multiplying the relevant rigid Earth amplitude by the value of
T(s; e|eR) corresponding to the frequency involved (and is not to be
included in the rigid Earth amplitude).

2.7. Rigid Earth Nutation Amplitudes

[55] In order to use (13) to compute the theoretical values of the
nutation amplitudes for fitting to data, one needs to know the rigid
Earth nutation amplitudes hR(s; eR). The computation of the value
of Hd � e/(e + 1), given the precession rate, is a necessary first step
in the construction of rigid Earth nutation series. The rate of
‘‘general precession,’’ which is generally used as the starting point
for the evaluation of HdR, is made up of two parts: (1) the
‘‘physical’’ precession (often referred to as the lunisolar preces-
sion) consisting of the precessional motion in space of the Earth’s
principal axis of maximum moment of inertia (not counting the
temporally varying tidal deformations) and (2) a contribution due
to the motion of the ecliptic in space. It is the rate of the physical
precession, which we denote simply by P, that is estimated from
VLBI time delay data. It is composed, in turn, of a motion due to
relativistic effects, namely, the geodesic precession, and a ‘‘classi-
cal’’ (i.e., nonrelativistic) precession due to the gravitational action
of celestial bodies on the Earth through Hd and higher moments
(J3, J4). The equations which govern the classical part of the
physical precession and nutation [see, e.g., Bretagnon et al., 1997]
have to be solved iteratively, starting with a trial value of Hd, in
order to achieve agreement between the observational estimates
and the precession rate predicted by these equations, taken together
with the geodesic precession. (In reality, the observed precession
includes a small contribution due to the nonrigidity of the Earth, a
fact which is getting recognized only now.) Williams [1994]
adopted the value 50287.7 mas yr�1 for the rate of general
precession from his assessment of the best available observational
data. This value has been the uniform starting point for the
computation of Hd in all subsequent works on the nutations of a
rigid Earth. Nevertheless, the values obtained for Hd by different
authors are unequal: Bretagnon et al. [1997] find Hd =
0.0032737668, while Souchay and Kinoshita [1997] have
0.0032737548 and Roosbeek and Dehant [1998] have
0.0032737674. These are the values employed for HdR in the
construction of the respective rigid Earth nutation series. The
reasons for the differences among them, small though they are,
are not really transparent. The rigid Earth series presented by these
authors and a more recent series of Hartmann et al. [1999] are all
of much higher precision than the earlier series of Kinoshita and
Souchay [1990] [see also Souchay and Kinoshita, 1996, 1997;
Souchay et al., 1999; Bretagnon et al., 1998]. Intercomparisons of
the different series in the frequency domain are not easy because
the sets of fundamental arguments employed by different authors
are not identical. However, comparisons in the time domain appear
to show close agreement between the different series.
[56] Williams [1994] observed for the first time that the 18.6

and 9.3 year terms in the rigid Earth series, having purely
lunisolar arguments, nevertheless have out of phase parts due to
planetary effects. Inclusion of these parts in our fits do help to
reduce the c2. All the recent nutation series show out of phase
parts for a number of other terms whose arguments include
planetary parts. It may be noted, incidentally, that the geodesic
nutation contributions to the nutations in longitude are included
in the rigid Earth series of Roosbeek and Dehant [1997] but not
in Souchay and Kinoshita [1999].
[57] All the rigid Earth nutation series present the coefficients of

nutation in longitude and obliquity, which have to be transformed

into amplitudes (in general, complex) of the associated circular
nutations for use in the context of geophysical theory. A recent
formal presentation of the transformation formulae is given by
Defraigne et al. [1995], though they may also be found in a
number of earlier works, e.g., Herring et al. [1991] and Mathews
and Shapiro [1992]. The formulae involve the sine of the mean
obliquity, for which we have used the updated value, sin e0 =
0.3977769687, adopted by the International Earth Rotation Service
for the IERS Conventions 2000.

2.8. Dependence of Nutation Amplitudes on the BEP

[58] In order to identify the BEP other than e that have
dominant roles in determining the nutation amplitude ~h sð Þ it is
helpful to examine approximate analytical expressions for the
eigenfrequency and resonance strength parameters that appear in
the RRF. In doing so, we ignore, for now, the frequency depend-
ence of some of the BEP discussed in section 2.5.
[59] Expressions for the CW, FCN, and PFCN eigenfrequen-

cies, good to O(e) (e � 1/300 being typical of the ellipticities
involved in the problem), have been given by Mathews et al.
[1991a]. Placing tilde symbols over the compliances to indicate
inclusion of OT and AE effects, we have

s1 ¼
A
Am

e� ~kð Þ;

s2 ¼ � A
Am

ef � ~b
 �

� 1;

s3 ¼ a2es þ ~nð Þ � 1;

ð37Þ

where (As/Am) � 0.0007 has been neglected in comparison with
unity.
[60] We observe now that ef � ~�

 �
is simply the value of M22

of Mathews et al. [1991a] for s = �1, and a2es þ ~vð Þ is that of
(�M33 � M34). Since the inclusion of electromagnetic couplings is
accomplished by the replacements in (18), it becomes evident that
the eigenvalues in the presence of CMB and ICB magnetic fields
may be obtained by making the replacements

ef � ~b
 �

! ef � ~bþ KCMB þ KICBAs



Af

 �
a2es þ ~nð Þ ! a2es þ ~n� KICB

 � ð38Þ

in (37). As for the strengths of the CW and FCN resonances, they
are given by

N1 ¼ � s1
e
¼ � A

Am

1� ~k
e

� �

N2 ¼
Af

Am

1� ~g

e

� � ð39Þ

to O(e). They remain unaffected by the electromagnetic couplings.
The dependence of the PFCN resonance strength N3 on the BEP is
complicated and not particularly revealing. The ICW term in the
resonance formula may be ignored because its contribution to ~h sð Þ
is entirely negligible.
[61] It is clear from the considerations of the last two paragraphs

that at the stated level of approximation, the locations and strengths
of the resonances in the nutation amplitude are determined pri-
marily by e and by a limited number of the BEP appearing through
the following combinations:

p1 ¼ A=Amð Þ e� ~kð Þ;
p2 ¼ Af



Am

 �
e� ~gð Þ;

p3 ¼ A=Amð Þ ef � ~bþ KCMB þ KICBAs



Af

 �
;

p4 ¼ a2es þ ~n� KICB
 �

:

ð40Þ
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These are the parameters to which the nutation amplitudes are most
sensitive, apart from the most important of all, namely, e, which
occurs as an overall factor in T(s; e|eR). Clearly, p1, p3, and p4 are
approximations to s1, (�s2 � 1), and s3, respectively, and p2
approximates eN2. These along with e are the parameters most
suitable for estimation from data.
[62] In setting up the algorithm for least squares fitting, we

begin by assigning the values pertaining to Earth model PREM to
the moment of inertia ratios that appear in the first three of the pi.
We note that the AE and OT corrections that constitute the
differences (~k � k), (~g � g), etc., are themselves small and that
the errors in the values computed for them in the manner outlined
in sections 2.3 and 2.5 are much smaller. It will be presumed
therefore that there is no scope for separate adjustment of the OT
and AE contributions to k and g in the process of making a least
squares fit. In particular, the imaginary parts of p1 and p2 will not
be among the parameters to be estimated through the least squares
procedure. (Possible modifications to the anelasticity/ocean tide
models, which would affect the contributions to the whole set of
compliances, were considered in sections 2.3 and 2.5.) The com-
pliances k and g of the basic Earth which appear in Re p1 and Re

p2 will, however, be taken for estimation, recognizing that their
values could be in error as a consequence of possible errors (for
which no estimates are available) in Earth model PREM. In Im p4,
Im K ICB is the only parameter available for adjustment, and Im p3
yields another parameter for estimation, namely, Im KCMB. It may
be recalled here that the crucial role of Im KCMB in accounting for
the out of phase part of the retrograde annual nutation amplitude
has been established already by Buffett [1992]. Considering next
the real part of p4, which is the eigenfrequency of the PFCNmode in
space, we observe that it involves the combination [a2es + Re (n �
K ICB)]. In order to obtain an estimate for Re K ICB, one would need
to assume a value for a2es. (The compliance n is very small, and no
significant correction to it is expected.) To begin with, we assign to
this quantity the hydrostatic equilibrium value based on PREM.
Whether this assignment needs to be changed will have to be
considered after examining whether the estimate thus obtained for
Re K ICB and the estimate for Im K ICB are mutually compatible in
the light of requirements from the theory of the electromagnetic
coupling [see Buffett et al., 2002]. The case of Re p3, which is the
magnitude of the frequency of the FCN in space, is similar. It
involves the sum of Re (KCMB + K ICBAs/Af) and (ef � Re b). The

Table 1. Nutation Amplitudes and Precession Rate: VLBI Estimates

Period,
days

Rigid Earth VLBI Estimates Sigma

Re Im Re Im Re Im

Nutation Amplitudes
�6798.38 �8050.866 0.078 �8024.825 1.454 0.0095 0.0093
6798.38 �1177.044 0.074 �1180.497 �0.033 0.0095 0.0093

�3399.19 86.742 0.000 86.121 �0.017 0.0045 0.0046
3399.19 3.595 0.003 3.586 0.008 0.0045 0.0046

�1615.75 �0.005 0.000 �0.004 0.020 0.0035 0.0035
1615.75 �0.126 0.000 �0.105 0.005 0.0034 0.0034

�1305.48 0.306 0.000 0.303 0.021 0.0040 0.0040
1305.48 2.099 0.000 2.126 0.020 0.0039 0.0039

�1095.18 0.221 0.000 0.226 0.004 0.0033 0.0033
1095.18 �0.221 0.000 �0.224 0.008 0.0032 0.0032
�386.00 �0.100 0.000 �0.158 0.004 0.0119 0.0007
386.00 �0.689 0.000 �0.709 �0.010 0.0031 0.0031

�365.26 �24.894 0.000 �33.039 0.339 0.0056 0.0067
365.26 25.029 0.000 25.645 0.131 0.0036 0.0036

�346.64 �0.456 0.000 �0.565 �0.003 0.044 0.0040
346.64 �0.067 0.000 �0.063 �0.012 0.0033 0.0034

�182.62 �22.592 0.000 �24.568 �0.059 0.0025 0.0025
182.62 �530.742 0.000 �548.471 �0.499 0.0025 0.0025

�121.75 �0.878 0.000 �0.941 �0.002 0.0025 0.0025
121.75 �20.742 0.000 �21.502 �0.015 0.0025 0.0025
�31.81 �2.882 0.000 �3.059 �0.008 0.0025 0.0025
31.81 3.068 0.000 3.185 0.003 0.0025 0.0025

�27.55 �12.992 0.000 �13.798 �0.050 0.0025 0.0025
27.55 13.964 0.000 14.484 �0.002 0.0025 0.0025

�23.94 0.045 0.000 0.046 �0.007 0.0025 0.0025
23.94 1.144 0.000 1.189 �0.004 0.0025 0.0025

�14.77 �1.121 0.000 �1.200 �0.012 0.0025 0.0025
14.77 1.282 0.000 1.324 �0.003 0.0025 0.0025

�13.78 �0.515 0.000 �0.545 0.000 0.0025 0.0025
13.78 0.595 0.000 0.613 �0.002 0.0025 0.0025

�13.66 �3.404 0.000 �3.639 �0.025 0.0025 0.0025
13.66 �91.517 0.000 �94.196 0.120 0.0025 0.0025
�9.56 �0.084 0.000 �0.085 0.001 0.0025 0.0025
9.56 �2.410 0.000 �2.464 0.014 0.0025 0.0025

�9.13 �0.421 0.000 �0.452 �0.006 0.0029 0.0029
9.13 �12.189 0.000 �12.449 0.035 0.0029 0.0029

�9.12 �0.270 0.000 �0.289 �0.007 0.0029 0.0029
9.12 �2.296 0.000 �2.346 0.011 0.0029 0.0029

�7.10 .0.051 0.000 �0.054 �0.002 0.0025 0.0025
7.10 �1.567 0.000 �1.593 0.003 0.0029 0.0029

�6.86 �0.041 0.000 �0.040 �0.001 0.0029 0.0029
6.86 �1.262 0.000 �1.280 �0.002 0.0029 0.0029

Precession Rate Correction (mas/yr)
�2.9601 0.0076
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fact that estimates from observational data give an excess value for
p3 relative to values computed from typical Earth models has been
interpreted in the past purely in terms of an excess value for ef and
hence for the CMB flattening; but part of the excess in p3 could be
attributable to electromagnetic coupling, in which case earlier
inferences regarding the excess CMB flattening would be over-
estimates.
[63] It is of considerable interest to note here that ICB mag-

netic coupling decreases the eigenfrequency p3 of the PFCN since
Re K ICB is positive, as noted earlier. Such a decrease, which would
move the eigenperiod from around 475 days [Mathews et al.,
1991b] toward longer periods, could cause a noticeable resonant
enhancement of the long-period nutations (especially the large 18.6
year nutation), and in this situation, the effect of Im K ICB could also
be significant. The results of the least squares fit, presented in
section 5, show that these expectations are indeed borne out.
[64] It may be appropriate to observe here that the use of

astronomical parameters like kM and kS [Kinoshita, 1977] as
adjustable parameters by Getino and Ferrandiz [1999, 2000a] is
in marked contrast to our choice of parameters, though they also
employ a number of geophysical parameters including the ratio
(Ac/Am) of the core and mantle moments of inertia, a number of
deformability and ‘‘dissipation’’ parameters, and the eigenfre-
quency of the FCN mode which is really a function of other basic
Earth parameters. We shall remark briefly in section 7 on the
estimates that they obtain for some of these parameters and their
implications.

3. Data and Least Squares Fit

3.1. Data

[65] In this work, the term ‘‘input data’’ or simply ‘‘data’’ will,
unless otherwise specified, refer to estimates together with the
covariance matrix of the estimates for the first-order lunisolar
precession rate and the complex amplitudes of a rather large
number of prograde and retrograde nutations. These quantities will
be referred to herein as the ‘‘observables.’’ The estimates for the
observables are obtained by analysis of a combination of two
nutation time series: one from the Goddard Space Flight Center
(GSFC) and the other from the U.S. Naval Observatory (USNO),
which are derived from raw data sets from largely overlapping
series of VLBI experiments. Our input data set is shown in Table 1.
The formal standard deviations of the estimated values are shown
in the sigma columns. Herring et al. [2002] find from intercom-
parisons of analyses made with distinct data sets and from other
tests that the realistic uncertainties should be about twice the
formal sigmas for nutation periods under 400 days and consid-
erably higher for periods above 1000 days, probably 4 sigmas for
the 18.6 year nutations. Details of the procedures used for and
considerations involved in the choice and analysis of VLBI data for
generation of our input data may be found in that work.
[66] Note that the rigid Earth nutation series contains several

sets of terms having apparently equal periods. However, the argu-
ments of all the terms within any such set are not necessarily the
same. Where multiple terms having one of the periods appearing in
Table 1 exist in the rigid Earth series, the rigid Earth amplitude
shown in Table 1 is the sum of the amplitudes of those members of
the multiplet that have identical arguments of lunar-solar origin
(i.e., with no planetary component). The observational estimates,
of course, include only this subset of terms.
[67] Our estimation process is one of simultaneous least squares

fitting of the theoretical expressions for the precession rate P and
the nutation amplitude ~h sð Þ to their observational estimates (the
input data set), taking into account the standard deviations and
correlations embodied in the variance-covariance matrix forming
part of the data set. The quantities to be varied in order to achieve
the best fit are the BEP subset identified in section 2.8. What we
denote by P here is the ‘‘physical’’ precession rate referred to in

section 2.7. The IAU value of P, from the rate of general
precession (50290.966 mas yr�1) based on Lieske et al. [1977]
and Lieske et al.’s value (�96.818 mas yr�1) for the ecliptic
motion contribution, is PIAU = 50387.784 mas yr�1. The correction
to this value as estimated from VLBI data is part of our input data
set, presented in Table 1; it is close to �3 mas yr�1. One obtains
the observational estimate Pobs on adding this correction to PIAU.
[68] Geodesic nutations, contributions from nonlinear terms

present in the full equations of the theory, and contributions from
atmospheric tides and other unidentified sources are contained in
the observed nutation amplitudes but are not included in our
theoretical expressions based on the LDE. The fitting has to be
done therefore after removing all such contributions from the input
data. The theoretical geodesic nutation contributions are �0.0304,
�0.0004, and 0.0001 mas to the prograde annual, semiannual, and
18.6 year nutations, respectively, and 0.0304, 0.0004, and 0.0013
mas to the corresponding retrograde ones. The nonlinear terms
contribute �0.0336 and �0.0002 mas to the prograde 18.6 and 9.3
year nutation amplitudes, respectively, and 0.0037 and �0.0022
mas, to the retrograde ones (all in phase). These are subtracted out
from the VLBI estimates. (Excluding the sectorial contribution, we
find the nonlinear effects on the prograde and retrograde 18.6 year
nutations to be �0.0246 and 0.0157 mas respectively, compared to
the zonal tide contribution of about �0.038 and 0.028 mas found
by Souchay and Folgueira [2000] on the basis of a greatly
simplified Earth model.)
[69] Another effect not included in our theory is that of

atmospheric variations. From a study of atmospheric pressure
and angular momentum data, Bizouard et al. [1998] have estimated
that the effect on the prograde semiannual nutation should be �20
mas in phase and 35 out of phase; these numbers are in the middle
of the range of values found by Yseboodt et al. [2002]. However,
our fit with atmospheric effects ignored leaves residuals well under
the uncertainties for this nutation: the atmospheric effect has
perhaps been cancelled out by some other seasonal effect. In
contrast, residuals of somewhat over 100 mas have been persis-
tently found in the prograde annual nutation. We chose, finally, to
interpret the residual found from the present data set in this
nutation as the contribution of the S1 thermal atmospheric tide
and other Sun-synchronous effects and removed it (�0.0104 mas
in phase and 0.1082 mas out of phase) from the observational data
before the final least squares fits, so as to reduce the residual to
zero. This contribution and the geodesic nutation and nonlinearity
contributions were, of course, added to the postfit theoretical
values to arrive at the final nutation series. Theoretical estimates
of the atmospheric effect on the retrograde annual nutation from
studies using different atmospheric angular momentum data sets
varied wildly, and we decided to ignore any contribution to this
nutation as well as to the prograde semiannual one.

3.2. Theoretical Representation

[70] The precession rate P(Hd) of the (deformable) Earth with
Hd not too far from the value HdR assumed in the rigid Earth theory
may be written as

P Hdð Þ ¼ PR Hdð Þ þ P nrð Þ ¼ PR HdRð Þ

þ dPR=dHdRð Þ Hd � HdRð Þ þ P nrð Þ:
ð41Þ

The ‘‘nonrigidity contribution’’ P(nr) is due to nonlinear terms in
the torque equations, representing the action of spectral
components (with s 6¼ �1) of the tesseral tides on the periodic
terms in the time-dependent increment to Hd resulting from
deformations produced by the zonal and sectorial tides (see
Appendix A). Our calculations yielded P (nr) = �0.2015 mas yr�1.
The residual�P�Pobs�P(Hd), withPobs obtained as in section 3.1,
is one of the quantities to be minimized during the least squares fit.
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[71] Equation (41) gives the theoretical relation between �P
and e since Hd = e/(1 + e). In order to make use of this relation in
our least squares procedure we need the value of the partial dPR/
dHdR, which is not provided in any of the works on rigid Earth
nutation series. This lacuna has been filled through a computation
by P. Bretagnon (private communication, 1999), wherein the first-
order part of the precession due to Hd alone was isolated and its
rate of change with Hd was determined. The value thus found is
dPR/dHdR = 15397060 mas yr�1.
[72] As for the nutation amplitude, its theoretical representa-

tion may be done at one of two levels: either directly in terms
of the solution of the dynamical equation or in terms of one of
the resonance formulae presented earlier. The latter course offers
the attraction of great simplicity of form, but it has to be
remembered that the general validity of resonance formulae rests
on the assumption of frequency independence of the basic Earth
parameters, an assumption which is not really valid because of
ocean tide effects, as already noted. For this reason, we chose to
obtain the nutation amplitudes ~h sð Þ by direct solution of the
dynamical equations, i.e, by computing [M�1(s)y(s)]1 and then
using (13), for each frequency of interest. Default models for
anelasticity and ocean tide effects were, of course, incorporated
into the dynamical matrix M in the manner described earlier, as
were the electromagnetic coupling terms represented simply by
the complex free parameters KCMB and K ICB, but not any other
effects.

3.3. Fitting of Theory to Data

[73] The observables Oa used in our analysis consist of the
correction to the IAU value of the precession rate and the real and
imaginary parts of the amplitudes of k pairs of prograde and
retrograde nutations. The total number of real observables is thus
N = (4k + 1), O4k + 1 being the precession rate correction and each
Oa, a = 1, . . ., 4k, being either the real part or the imaginary part of
the amplitude ~h sð Þ of a circular nutation of some particular
frequency t = (1 + s) cpsd in space. Our input data set (Table 1)
has k = 21, so that N = 85. The full 85 � 85 covariance matrix is
used in the computations. The number n of real parameters Pi to be
estimated is 7, as mentioned earlier.
[74] Besides the input data the least squares procedure calls for

the matrix B of partials @Oa/@Pi. The Pi chosen for estimation, in
the light of the discussion in section 2.8, are e, ef, k, g, Im KCMB, Re
K ICB and Im K ICB. Values based on PREM in hydrostatic equili-
brium are adopted for all the other BEP and also for the starting
values of e, ef, k, and g. Suitable starting values for the electro-
magnetic coupling constants are chosen by trial and error. The
values of the parameters which are being estimated are updated, of
course, at successive stages of the iterative process to be now
outlined. At each stage, the matrix M(s) and the vector y(s) in the
dynamical equation (2) are evaluated for one frequency s at a time,
and the solution ~h sð Þ given by (13) is computed. The real and
imaginary parts of ~h sð Þ for a particular s constitute one pair of Oa.
Computation of the partials of this pair is done by making small
increments, one at a time, to the values assigned to the various Pi,
and reevaluating ~h sð Þ each time, thereby enabling us to find the
rate of change of ~h sð Þ with respect to each of the Pi. The process
is repeated for all the frequencies s included in the data set. The
partials of the precession rate are trivial; the only nonvanishing
one, that with respect to e, follows immediately from (41).
[75] Once the matrix B of partials is computed, the corrections

to be applied to the initial values of the Pi are obtained through the
familiar least squares fitting procedure, and the c2 for the fit is
evaluated. The initial values are then updated by adding a suitable
fraction of these corrections to the earlier values. The whole
process is repeated until c2 converges to within a predetermined
tolerance. The iterative process for the consistent computation of
ocean tide contributions, outlined in the penultimate para of section
2.5, then follows.

[76] The updated values of the Pi at the end of the final iteration
are the best estimates for these parameters. The standard deviations
and mutual correlations of the estimates are also evaluated at this
stage. The values of the ~h sð Þ at the final stage are, for all the s
comprised in the data set, our theoretical values for the nutation
amplitudes. Along with these we also have the theoretical value for
the precession rate correction, namely, the final value of O4k + 1.

4. Least Squares Estimates for the BEP
and Residuals of Nutations

[77] We present in Table 2 the values obtained from our fit for
the seven estimated parameters (listed in column 1 of the first part
of the table) when hydrostatic PREM values are retained for all the
other BEP and the default models are employed for anelasticity and
ocean tide effects. The adjustment column shows the difference
between the values in the estimate column and the corresponding
values from hydrostatic equilibrium PREM. The uncertainties
shown have been scaled as stated at the end of section 1. The c2

per degree of freedom (df ) was 7.89, and its square root, 2.80, was
the scale factor. The rather high value of c2/df is a reflection of the
fact that the formal sigmas on the VLBI estimates of the nutation
amplitudes underestimate the realistic uncertainties by factors of 2
to 4, as discussed in detail by Herring et al. [2002].
[78] It may be noted from the second part of Table 2 that the

RMS of the postfit residuals of the 84 (in phase and out of phase)
nutation amplitudes is 0.0132 mas compared to 0.0039 for the
RMS of the formal sigmas of these amplitudes in the input data set.
When it is recalled from section 3.1 that the realistic sigmas are
over twice the formal sigmas, it becomes evident that the RMS of
postfit residuals differs from the former by less than a factor of 2.
In fact, one finds that the RMS of the 64 residuals relating to the
nutations with periods under 400 days is just 0.0055 mas, not even
twice the RMS of the formal sigmas of the same nutations, which is
0.0033 mas. It is the longer-period nutations which contribute the
major share of the RMS of residuals, and this circumstance may be
largely a reflection of a large disparity between the formal sigmas of
the estimates for such nutations and their realistic uncertainties.
[79] Comparisons have been made between the time series of

nutations in longitude and obliquity (�y(t) and �e(t)) of the
NEOS data set and the time series constructed using the full series
of nutation coefficients obtained by direct solution of our dynam-
ical equation. It has been found (D. McCarthy, private communi-
cation, 2001) that the weighted RMS of residuals between the two
series is 0.182 mas in �y sin e and 0.184 mas in �e. These are an
order of magnitude higher than the RMS of postfit residuals of the
major spectral components of nutation used in our analysis. This
fact suggests that the VLBI nutation time series contains aliased
contributions from inadequacies in modeling of other processes
affecting the VLBI, e.g., solid Earth and ocean tides.

4.1. Compliance and Ellipticity Parameters
and Precession Rate

[80] It is clear from Table 2 (more specifically, from a compar-
ison of the adjustments with the uncertainties in the estimates
column) that the estimates for k and g are quite consistent with
the values computed from PREM. One can be reasonably confident
then that the other compliances (in particular, b and n, appearing in
p3 and p4 of (40)) also do not differ significantly from their default
values. With the anelasticity and ocean tide contributions to the
compliances also treated as fixed and with the term a2es in p4
assigned its default value as explained in section 2.8, the least
squares process gives us the estimates shown in Table 2 for Re K ICB

and Im K ICB. Leaving the discussion of the physical implications of
these values to section 4.2,we note that the part of p3 that still remains
unknown is (ef + Re KCMB). The second term in this combination
needs to be known if we are to obtain an estimate for the ellipticity ef
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of the fluid core. As we shall see below, it is not possible to come up
with a unique estimate for Re KCMB. However, it appears plau-
sible, for reasons outlined in section 4.2, that its value lies between
1.95 � 10�5 and 2.54 � 10�5. The estimate shown in Table 2 for ef
corresponds to the choice of the median value of this range for Re
KCMB. If the extreme limits above are considered, the estimates for
ef lie between 0.0026426 and 0.0026485. The excess over the
hydrostatic equilibrium value for ef and, correspondingly, for the
CMB flattening is then between 3.7% and 3.9%, instead of �5%
as had been concluded from earlier interpretations of the FCN
period inferred from observational data, beginning with Gwinn et
al. [1986] and Herring et al. [1986]. The difference arises, of
course, from the fact that the magnetic coupling at the CMB
accounts for a part of the deviation of the FCN period from values
computed from hydrostatic models with no magnetic couplings.
[81] Our estimate for the dynamic ellipticity e of the whole

Earth, shown in Table 2, corresponds to Hd = 0.0032737949,
which is slightly larger (by �12 ppm) than the HdR employed in
the rigid Earth theory of Souchay and Kinoshita [1997]. The

uncertainty in the estimate is under four parts in 107. This estimate
leads to P = 50384.788 ± 0.018 mas yr�1. Adding to it the
updated value �96.865 mas yr�1 from Simon et al. [1994] for the
ecliptic motion contribution, we obtain the estimate 50287.923 ±
0.018 mas yr�1 for the rate of general precession. This is slightly
higher than the Williams [1994] value, namely, 50287.7 mas yr�1.

4.2. Electromagnetic Coupling Constants

[82] The first question that we address is the following: what
can we say about the magnetic field at the CMB and about the real
part of KCMB, given the estimate of (�1.85 ± 0.14) � 10�5 found
for Im KCMB? A rough idea about the magnetic field may be
obtained from (27) by employing the simple weak field approx-
imation with the neglect of the Coriolis force, considered in section
2.4; one finds that a minimum RMS radial field of somewhere
between 4.1 and 4.5 gauss would be needed to account for this
coupling if the magnetic field were assumed to be some mix of the
uniform and dipole types. The actual field at the CMB is, of course,
not that simple. According to estimates by Langel and Estes [1982]
on the basis of Magsat data, the magnetic field at the CMB has a
dipole part with (Br)RMS = 2.64 gauss; the contributions of higher
multipoles have also been estimated by these authors and by
Walker and Backus [1997]. Pending an investigation of the relation
between the RMS field strength and KCMB for magnetic fields with
arbitrary spherical harmonic structure, we limit our consideration
here to fields which are mixes of the dipole and uniform types.
Computations were done for various proportions of the mix, using
(23) and (19) together with the general expression given by Buffett
et al. [2002] for Ib; all of these were evaluated at the CMB. The
curves in Figure 1 show the behavior of Re KCMB and Im KCMB as
functions of the overall (Br)RMS for three different mixes of fields
of the dipole and uniform types. One of these, in which the ratio of
(Br)RMS of the dipole part to that of the uniform part is 0.412, is

Table 2. Estimates for BEP From Least Squares Fit

BEP Estimate Adjustment

ef 0.0026456 ± 20a 0.0000973
k 0.0010340 ± 92 �0.0000043
g 0.0019662 ± 14 0.0000007
e 0.0032845479 ± 12 0.000037
Im KCMB �0.0000185 ± 14 . . .
Re KICB 0.00111 ± 10 . . .
Im KICB �0.00078 ± 13 . . .

RMS (sd)input 0.0039 . . .
RMS residuals 0.0132 . . .

aSee text for a discussion of the estimate.
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Figure 1. Variation of Re KCMB and Im KCMB with the RMS radial magnetic field (Br)RMS at the CMB for
(Br)RMS

(dipole)/(Br)RMS
(uniform) = 0.412 (solid curves), 0.5 (dashed curves), and 0.3 (dash-dotted curves). KCMB is shown in

units of 10�5. Im KCMB agrees with our estimate of �1.85 � 10�5 in the first case when (Br)RMS
(dipole) =2.64 gauss, the

Langel and Estes [1982] estimate. The solid horizontal line in the lower half of Figure 1 shows the estimate for Im
KCMB and its intersection with the solid curve yields the estimate of 6.93 gauss for (Br)RMS at the CMB; the
accompanying dashed lines show the uncertainty limits on Im KCMB. The intersections of these dashed lines with the
curves for (Br)RMS

(dipole)/(Br)RMS
(uniform) = 0.5 and 0.3 provide plausible outer limits on (Br)RMS and corresponding limits on

Re KCMB. See text for details.
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represented by the solid lines in Figure 1. This mix yields our
estimated value for Im KCMB when the dipole part has the Langel
and Estes value; the corresponding overall (Br)RMS is 6.93 gauss.
(The estimate for Im KCMB is indicated by a horizontal solid line in
the lower part of Figure 1, flanked by dashed lines which represent
the uncertainty limits on the estimate.) We have shown in Figure 1
two additional cases corresponding to the values 0.3 and 0.5 for the
ratio (Br)RMS

(dipole)/(Br)RMS
(uniform). Both the real and imaginary branches

of the former (dash-dotted curves) lie below the respective solid
curves. The dashed curves represent the other case. The overall
(Br)RMS for which Im KCMB agrees with our estimate is �6.79
gauss in the first of these cases and 7.04 gauss in the other. Clearly,
the overall field strength needed to account for the observed Im
KCMB varies little even when the mix of the two types of fields is
changed considerably. In view of this insensitivity, we consider it
likely that even for more general types of fields containing a dipole
part of strength close to the Langel and Estes estimate, the overall
(Br)RMS needed to generate our value for Im KCMB would be
somewhere within the bounds set by the curves in Figure 1. When
the uncertainty in the estimate of Im KCMB is taken into account,
these bounds are at 6.5 and 7.4 gauss and are shown by the outer
two of the three vertical lines. The intersections of these vertical
lines with the real branches of the three curves provide what we
consider to be the plausible limits on Re KCMB: 1.95 � 10�5 and
2.54 � 10�5.
[83] Turning now to the coupling at the ICB, we show in

Figure 2 the variation of the real and imaginary parts of K ICB

with (Br)RMS at the ICB. The estimates given in Table 2 for these
quantities are represented by solid horizontal lines in Figure 2,
flanked by dashed lines showing the uncertainty limits on each
part. It is assumed, as already mentioned, that the other param-
eters in p4 have their default values. In Figure 2, as in Figure 1,
the transition from a quadratic dependence of the coupling

constant on the RMS field strength at weak fields to a linear
increase for strong fields is evident. It is also evident that the
estimate of (�78 ± 13) � 10�5 for Im K ICB and (111 ± 10) �
10�5 for Re K ICB are not mutually compatible for any value of
(Br)RMS if the field is of either of the pure types (dipole,
represented by the dashed curves, or uniform, represented by
the dash-dotted curves). However, a mix of the two types with
(Br)RMS

(dipole)/(Br)RMS
(uniform) = 0.757, shown by the solid curves in

Figure 2, enables both Re K ICB and Im K ICB to match our
estimates for them. The matching occurs when the RMS values
of the radial fields for the uniform and dipole parts are 57.2 and
43.3 gauss, respectively. The overall RMS field is then 71.7
gauss, which is high compared to the field strengths (in the range
of 20–35 gauss) that dynamo models appear to lead to. The field
strength required could be lowered to �46 gauss (dashed vertical
line) by taking a value at the lower end of the uncertainty range
for Im K ICB and assuming the field to be of the pure uniform
type, provided the value needed for Re K ICB could be made
substantially lower. In order to do this, however, we would have
to lower the value of (a2es + v) correspondingly since it is the
difference between the two, appearing in the combination p4, that
influences (and is determined by) nutations. Discussion of the
possibilities of accomplishing such a reduction will be deferred to
section 7. We go on now to consider a different kind of scenario.
[84] Could it be that the electromagnetic coupling between the

FOC and neighboring solid regions is not solely due to the
differential wobbles and that we are overestimating the magnetic
field strength by attributing the entire electromagnetic torque to
this one mechanism? One possibility that might be suggested is
that variations in the main field B(r) caused by dynamo action
associated with chaotic convectional motion in the fluid core could
produce torques comparable to those due to the differential
wobbles. In considering this possibility, it is necessary to keep in
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Figure 2. Variation of Re K ICB and Im K ICB with the RMS radial magnetic field (Br)RMS at the ICB for (Br)RMS
(dipole)/

(Br)RMS
(uniform) = 0.757 (solid curves) and for uniform radial fields and pure dipole fields (dash-dotted and dashed

curves, respectively). K ICB is shown in units of 10�5. The horizontal solid lines in the upper and lower halves of
Figure 2 show the estimated values of Re KCMB and Im KCMB, respectively; the accompanying dashed lines show
the uncertainty limits. The estimate for (Br)RMS at the ICB is 71.7 gauss, shown by the vertical solid line. The lowest
value of (Br)RMS consistent with the uncertainty limits on Im K ICB is 46 gauss as shown by the dashed vertical line;
it calls for a field of the uniform radial type and for a lowered values of 79 � 10�5 for Re K ICB. See text for
discussion.
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mind (1) that the low-frequency nutations that we are dealing with
are caused by the torques due to spectral components of the tesseral
tidal potential with frequencies in the retrograde diurnal band in the
terrestrial reference frame, (2) that these discrete frequencies lie in
a very narrow range between about �0.9 and �1.1 cpsd, and (3)
that no spectral frequencies that may be present in the torque other
than those present in the line spectrum of these tides are of
relevance to the low-frequency nutations. The nature of the high-
frequency spectrum of the main field (in the nearly diurnal range)
is then the key issue. It seems unlikely that the dynamo mechanism
could generate much power at such short periods, although B(r)
does undoubtedly vary on long timescales, perhaps down to
periods of several years. In any case, it is to be expected that the
spectrum within the very narrow (0.2 cpsd wide) range of interest
in the diurnal band is smooth and essentially flat. Consequently, the
contributions to the torques at the different tidal frequencies within
in this range would be essentially uniform (quite unlike those from
the tidally driven differential wobbles which are proportional to the
respective tidal amplitudes and so differ from one another by a few
orders of magnitude), and their phases would be quite uncorrelated
to those of the tidal components. Thus, if the torque between the
FOC and the SIC due to the dynamo-generated field is large
enough at the frequency sR18 to affect the retrograde 18.6 year
nutation to an extent comparable to the contribution (�101 mas in
phase and 278 mas out of phase) from the differential wobble, its
effect at other frequencies would totally swamp the contribution
from the differental wobbles. That would have seriously degraded
our fit.
[85] To sum up, both theoretical considerations and the evi-

dence from our fit suggest that variations of B(r) are ignorable in
the present context. We do not believe that inaccuracies in our
treatment of the electromagnetic torques are responsible for the
large estimate for the poloidal field strength at the ICB (or at the
CMB), although it is not inconceivable that some relevant physical
process has been overlooked in our theory.

5. Resonance Frequencies and Strength
Parameters

[86] In constructing an approximate resonance formula in the
reduced form (14), we assigned to the ocean tide admittances
entering into the dynamical matrix fixed values appropriate to the
forcing frequency sR18 which gives rise to the retrograde 18.6 year
nutation. The best fit values (from the least squares fit already
described) were used for the estimated parameters, while all the
other parameters were given the respective default values as before.

The RRF was then constructed using the method outlined in
Appendix B after solving the complex eigenvalue equations
M(s)u = 0 and ~vM(s) = 0, where u and v are four-component
columns. (The tilde symbol is used in this particular context to
indicate transposition.) The values obtained for the complex
frequencies sa of the resonances are shown in Table 3a. The
corresponding periods are also shown, but the Q factors are listed
only for two of the modes, for reasons that will become clear later.
The periods shown are, as usual, in the terrestrial frame for the CW
and the ICW and in space for the FCN and PFCN. The coefficients
Na of the RRF are given in Table 3b. The RRF may, of course, be
recast into an exactly equivalent formula having the unreduced
form (8), with the coefficients Ra calculated using the second
equation of (15) and R and R0 computed then from the sum rules
(16). These coefficients are also shown in Table 3b. The numbers
in Table 3b do not call for much comment, except for a remainder
that N0 measures the deviation of our estimated value for Hd from
the value HdR used in the rigid Earth theory [Souchay and
Kinoshita, 1997] that we employed. We proceed therefore to a
consideration of the estimates for the eigenfrequencies.
[87] The period of �430.20 ± 0.28 days found for the retro-

grade free core nutation comes as no surprise, except, perhaps, for
the smallness of the uncertainty. The imaginary part of the RFCN
resonance frequency, which arises primarily from the dissipative
part of the electromagnetic torque, is small enough to lead to a high
Q of 20000 for the resonance. However, the effect of this torque,
enhanced by the resonance, is large enough to produce a contri-
bution of 0.44 mas to the out of phase amplitude of the retrograde
annual nutation and 0.27 mas to that of the retrograde 18.6 year
nutation.
[88] The frequency estimate obtained for the PFCN is impor-

tant in that it provides the first strong observational evidence for
the existence of this mode which was predicted on theoretical
grounds by Mathews et al. [1991a, 1991b] and de Vries and Wahr
[1991]. According to our estimate, the real part of the PFCN
frequency in space, Re s3 + 1, is 0.00097 cpsd, which is about
half of what was predicted in those works; the uncertainty in the
estimate (0.00010 cpsd) is quite small, being �10%. The close
proximity of this frequency to those of the 18.6 year nutations causes
the effect of the PFCN resonance on the amplitudes of these
nutations to be significant. The imaginary part of the PFCN fre-
quency, arising primarily from the dissipative part of the strong ICB
electromagnetic coupling, is rather large and results in a relatively
low Q of�680; Im N3 is also large, being about one third of the real
part in magnitude (see Table 3b). These factors together with the
proximity of the PFCN resonance lead to a surprisingly large

Table 3a. Resonance Frequencies, Periods (Uncertainty Limits), and Qa

Mode Re sa Im sa Period Q

1 (CW) 0.002601 ± 10 �0.0001361489 ± 28 (381.9, 385.0) . . .

2 (RFCN) �1.0023181 ± 15 0.0000250 ± 15 (�429.93, �430.48) 20000
3 (PFCN) �0.99903 ± 10 0.00078 ± 13 (930, 1140) 677
4 (ICW) 0.000413471 ± 42 0.000000319 ± 53 (2411.7, 2412.2) . . .

aAll sa values and the CW and ICW periods are in the terrestrial frame; the other two periods are in space.
Frequencies are in cpsd, and periods are in mean solar days.

Table 3b. Coefficients in the Resonance Formulaa

a Re Na Im Na Re Ra Im Ra

0 1.0000122 � 10� . . . 4.87871 � 10�2 1.45661 � 10�3

p . . . . . . �2.56699 � 10�1 �4.28424 � 10�2

1 �7.91653 � 10�1 4.14503 � 10�2 �5.46425 � 10�4 �7.93218 � 10�5

2 4.89108 � 10�2 1.62916 � 10�3 �1.13686 � 10�4 �2.55494 � 10�6

3 2.95844 � 10�4 �9.57707 � 10�5 3.62650 � 10�7 1.37204 � 10�7

4 �1.50928 � 10�5 �1.06026 � 10�6 �4.32089 � 10�8 �3.03060 � 10�9

aRow 0 shows N0, and R0 = (R � 1); row P shows the value of R0.
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contribution of 0.28 mas from the ICB electromagnetic coupling to
the out of phase part of the retrograde 18.6 year amplitude.
[89] We turn now to the estimate s1 given in Table 3a for the

Chandler frequency. We shall refer to this estimate as (s1)
R18 to

call attention to the fact that it was obtained as an eigenvalue of the
matrix L with elements evaluated using compliance values pertain-
ing to the excitation frequency corresponding to the retrograde 18.6
year (R18) nutation. This estimate is notable in two respects: the
large difference between its real part and the observed Chandler
frequency and the negative sign of its imaginary part. The latter
feature makes it appear that the free Chandler wobble, given a time
dependence eis1V0t , would grow exponentially with time instead of
decreasing. The key to the resolution of this apparent paradox lies
in the observation that (s1)

R18 is not the physical eigenfrequency,
i.e., the frequency of the free wobble, but is a resonance frequency:
it characterizes the response of the system to excitations in a
frequency range (nearly diurnal and retrograde, in the present case)
which is far from the frequency of the free mode (�1/430 cycles
per day and prograde). A resonance frequency is not coincident
with the frequency of the free mode, in general, when the system
has parameters that are frequency dependent. In the present
instance, contributions from both anelasticity and ocean tides to
compliance parameters at the observed Chandler frequency are
substantially different from those at retrograde diurnal frequencies;
see Appendix D for the numerical values of the contributions to k.
The Chandler period is, to a very good approximation, inversely
proportional to (e � Re ~k). The differing values of this quantity at
sR18 and at low frequencies may therefore be used to calculate the
complex eigenfrequency sCW of the free Chandler period, starting
from our estimate (s1)

R18 for the resonance frequency to which the
seemingly strange period of 383.4 days corresponds. The relation
to be used for this purpose is given by (D5). As shown in
Appendix D, the free Chandler frequency thus calculated is
(2.3175 + 0.0131i) 10�3 cpsd. The corresponding period is
430.3 days, which is consistent with observations.
[90] As for the negative sign found for the imaginary part of the

estimated Chandler resonance frequency (s1)
R18, it is indeed what

it should be. This statement is based on general physical consid-
erations, discussed at some length in Appendix C, which lead one
to conclude that the imaginary parts of primary response param-
eters such as compliances must have signs opposite to the sign of
the excitation frequency. For the free Chandler wobble, which has
a positive frequency, the consequence is that Im sCW must be
positive. This is indeed true of the value shown in the preceding
paragraph, which was calculated starting from Im (s1)

R18. The
value obtained for Q of the Chandler wobble from the complex
sCW is 88, which is compatible with recent estimates by Kuehne
et al. [1996] and Furuya and Chao [1996], as noted at the end of
Appendix D.
[91] The ICW frequency, to the first order, is (1 � a2) es, where

a2 is a real parameter independent of any compliances [see
Mathews et al., 1991a, equation (30)]. Therefore the imaginary
part of sICW has to come from second-order terms involving
complex compliances and/or the electromagnetic coupling con-
stants. The sign of the imaginary part is determined by the structure
of such second-order terms. In the absence of explicit expressions
for these terms, there is no obvious way to draw any conclusion as
to what the sign should be. There is no incentive to explore this
question further, as the ICW resonance term is much too small to
make a detectable contribution to nutations.
[92] For the RFCN and PFCN modes the eigenfrequencies lie

within the band of excitation frequencies. Consequently, there is no
distinction between them and the corresponding resonance fre-
quencies, which unlike s1, do not vary with the forcing frequency:
the compliances b and v on which they depend are not affected by
ocean tides and are therefore effectively frequency independent.
The imaginary parts of sFCN � s2 and sPFCN � s3 (Table 3a) are
both positive, ensuring that the amplitudes of the free modes

decrease with time as they should. The approximate expression
for s2 given in (37), with the replacement indicated in (38), shows
that Im s2 � (A/Am) Im (b � KCMB � K ICBAs/Af). The imaginary
part of the compliance b has to be positive for negative frequencies
as explained in Appendix C, and Im KCMB and Im K ICB are both
negative (see Table 2). The reason for the positive sign found for
Im s2 is therefore evident. The positive sign of Im s3 is a
consequence of that of the imaginary part of the compliance v. It
is important to note that for the negative frequency (retrograde
diurnal) range considered, the signs implied by our Im sa for the
imaginary parts of all three compliances, k, b, and v are identical,
which is as it should be.

6. Theoretical Nutation Series

6.1. Series Obtained by Direct Solution of the Dynamical
Equation

[93] The new theoretical nutation series for the nonrigid Earth
that emerges from our studies is not given by a simple expression
like a resonance formula. It is to be constructed by computing the
nutation amplitudes in the linearized approximation by the use of
(13) and then adding on the contributions from the nonlinear terms
in the full dynamical equation and those from non-TGP effects,
detailed in section 3.1. The rigid Earth series of Souchay et al.
[1999] is to be used for ~hR (s; eR) in (13), and M�1(s) y(s) is to be
evaluated with the use of values from the estimate column of Table 2
for the estimated parameters appearing in M and y and the default
values for all other parameters. Anelasticity, ocean tide, and electro-
magnetic coupling effects are, of course, to be included in the
manner described in sections 2.3–2.5. The RMS of residuals
between the observations and the new series, which gives an idea
of the quality of the overall fit between the two, has already been
discussed in the introductory part of section 4.
[94] Table 4 lists our theoretical values for the real and imag-

inary parts of the amplitudes of a number of nutations. Also shown
are the residuals (observed minus theory) and, for comparison, the
scaled standard deviations of the corresponding observational
estimates. The list includes the 18.6 year, 9.3 year, annual, semi-
annual, and fortnightly nutations, which are the most prominent,
and all other prograde and retrograde nutations for which the
residual in the real or the imaginary part is more than twice the
scaled formal standard deviation of the corresponding observatio-
nal estimate. It may be observed that only two of the 64 in-phase
and out of phase residuals pertaining to nutations with periods
shorter than 1000 days are in this ‘‘large’’ category, while 57 are
within the respective scaled sigmas.
[95] The extent to which anelasticity or other effects influence

nutations is of some interest. The individual contributions to some
of the prominent nutations are listed in Table 5. As has been
already noted, the combined contribution from all the effects does
differ in some cases from the total of the individual contributions.

6.2. Nutation Series Expressed in Terms of a New Resonance
Formula

[96] The representation of the nutation amplitudes in terms of a
resonance formula is obtained by introducing in the first equation
of (13) the expression (14) for the generalized transfer function,
with parameter values taken from Tables 3a and 3b. The geodesic
nutations and other corrections mentioned in section 3.1 are added
to the number computed using this representation as well. The
theoretical values thus obtained do not fit the observations as well
as those of section 6.1. The reason, of course, is the neglect of the
frequency dependence of ocean tide admittances, which affects the
retrograde annual nutation most of all. The residuals in the real and
imaginary parts of this amplitude shoot up to �0.083 and 0.118
mas, respectively. The prograde semiannual nutation is another
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with a considerably increased residual for the imaginary part
(0.016 mas) relative to the resonance formula.
[97] Despite such problems the simplicity of a formula of the

resonance type for practical use is enticing enough that it was felt
necessary to seek a modified formula which gives as close a fit as
possible to the exact results of section 6.1. We found that by
allowing the parameters Na an sa in (14) to vary linearly with
frequency across the diurnal band, the exact results could be
reproduced to within 5 mas except for the semiannual, retrograde
annual, and prograde fortnightly nutations. Formula (14) with such
a modification can be recast into the following convenient form,
which differs only slightly from (14).

T s; ejeRð Þ¼eR � s
eR þ 1

N0 1þ 1þ sð Þ Q0 þ
X4
a¼1

Qa

s� sa

 !" #
: ð42Þ

[98] The procedure for obtaining the new nutation series is then
as follows: (1) Take the transfer function T(s; e|eR) in (13) to be
given by (42) with coefficients as in Table 6. (2) Using this transfer
function, which is not exact, evaluate the first of the expressions in
(13), taking the rigid Earth amplitudes from the series of Souchay
et al. [1999]. (3) Add the corrections listed in columns 6 and 7 in
Table 7 to arrive at the exact values obtainable by direct solution of
the LDE. (4) Add the geodesic nutation and other corrections stated
in section 3.1 as well as the contributions from the nonlinear terms
in the full dynamical equation, all of which are listed in columns
2–5 in Table 7. The end result of this procedure is our new
nutation series. All the corrections are shown to 0.0001 mas,
although the final precision aimed at for the nutation amplitudes
is no more than at the 1 mas level. Terms in which the corrections
belonging to the last two columns are under 0.5 mas are not
included in Table 7, excepting a few for which other corrections
need to be applied. However, all corrections down to 0.1 mas may

be found together with programs for computing the new nutation
series at http://www-gpsg.mit.edu/~tah/mhb2000. The nonrigidity
correction given in the last row of Table 7 is already included in the
precession rate estimate given in section 4.1.

7. Discussion and Concluding Remarks

[99] A few remarks may be in order regarding our best fit
estimates for e and the corresponding estimate for the precession
rate. The amplitudes of all circular nutations depend strongly on the
value of e, just as the precession rate does. Consequently, the
observed values of each and every nutation amplitude is of relevance
to an estimation of e. Our least squares procedure takes advantage of
this fact by making use of all the nutation amplitudes estimated from
VLBI data together with the precession rate estimate for the
estimation of e (along with other BEP). We believe therefore that
our result for e is more robust than earlier estimates which have
almost always relied solely on the precession rate estimate obtained
from VLBI data.
[100] The paper of Buffett et al. [2002] sets forth the assumptions

and approximations made while deriving the expression which
relates the electromagnetic coupling constant to the magnetic field
at and the conductivity properties of themedia on the two sides of the
CMB or the ICB; we do not reproduce them here. In applying their
theory to the present work, we have restricted our considerations to
special types of magnetic fields. We have assumed, furthermore, that
there exists, at the bottom of the mantle, a conducting layer of
uniform conductivity equal to that of the core fluid, with thicknessD
not less than the penetration depth (d� 210m). Our ‘‘best estimate’’
for (Br)RMS, with the dipole part required to be 2.64 gauss
[Langel and Estes, 1982], was 6.9 gauss; it is already somewhat
higher than these authors’ estimate of (4.43 ± 2.03) gauss. If the
conducting layer were not as thick or were not of uniform
conductivity, the magnetic field strength needed to account for

Table 5. Contributions (Re, Im) to Nutations From Individual Effectsa

Period Anelasticity OT Load OT Current CMB emc ICB emc

�6798.38 (�0.351, �0.155) (�0.920, 0.986) (0.005,�0.020) (�0.328, 0.249) (�0.101, 0.278)
6798.38 (0.047, 0.021) (0.117, �0.126) (�0.001, 0.003) (0.037, �0.029) (0.010, �0.049)
�365.26 (0.267, 0.094) (0.174,�0.216) (0.000,�0.001) (�0.450, 0.411) (�0.012, 0.017)
365.26 (�0.010, �0.004) (�0.021, 0.023) (0.000,�0.001) (�0.0003, 0.003) (�0.014, 0.003)

�182.62 (0.034, 0.015) (0.061,�0.069) (0.001,�0.002) (�0.016, 0.012) (0.000, 0.000)
182.62 (0.287, 0.126) (0.574, �0615) (�0.014, 0.050) (0.061, �0.047) (0.026, �0.013)
�13.66 (0.002, 0.001) (0.006,�0.009) (0.000,�0.005) (0.000, 0.000) (0.000, 0.000)
13.66 (0.095, 0.041) (0.021,�0.019) (�0.056, 0.104) (0.002, �0.001) (0.000, 0.000)

aUnits are in mas.

Table 4. Theoretical Values From Estimated Parameters and Residualsa

Period,
days

Real Part Nutation Amplitudes, mas Imaginary Part Nutation Amplitudes, mas

Theory Residual Uncertainty Theory Residual Uncertainty

�6798.38 �8024.775 �0.050 0.027 1.433 0.022 0.026
6798.38 �1180.459 �0.038 0.027 �0.105 0.072 0.026

�3399.19 86.135 �0.014 0.013 �0.028 0.012 0.013
3399.19 3.614 �0.028 0.013 0.001 0.007 0.013

�1615.75 �0.005 0.001 0.010 0.000 0.020 0.010
1615.75 0.127 0.022 0.010 0.000 0.005 0.010
�365.26 �33.047 0.008 0.016 0.331 0.008 0.019
365.26 25.645 0.000 0.010 0.131 0.000 0.010

�182.62 �24.563 �0.005 0.008 �0.043 �0.016 0.008
182.62 �548.471 �0.000 0.008 �0.502 0.003 0.008
�27.55 �13.807 0.009 0.008 �0.035 �0.015 0.008
�13.66 �3.648 0.009 0.008 �0.013 �0.012 0.008
13.66 �94.198 0.002 0.008 0.124 �0.004 0.008

aThe estimated correction to PIAU from our fit is �2.997 mas/yr, its residual relative to the observational estimate (with uncertainty of 0.018 mas/yr) is
0.036 mas/yr.
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our estimated value of Im KCMB would be even higher. Variations
about our best estimate scenario, considered in section 4.2 as
proxies for more general field configurations that are yet to be
investigated in detail, do not bring the estimated (Br)RMS down to
within the Langel and Estes range. We are inclined to believe
therefore, pending a complete investigation for arbitrary magnetic
field configurations, that there is more power in the higher
spherical harmonic components of the field at the CMB than
has been suggested in interpretations of Magsat data.
[101] Turning now to the ICB, we recall that one cannot estimate

Re K ICB by itself but only the difference (a2es + v) � Re K ICB.
Therefore, if the actual value of (a2es + v) happens to differ by a
certain amount from the default value that we have assumed, the
estimate given in Table 2 for Re K ICB would stand altered by the
same amount. In view of this, we could lower the estimate for
(Br)RMS from the value given in section 4.2 and thus bring it closer to
the range figuring in dynamo theories, if a lower value for (a2es + v)
could be justified. Examination of the curves in Figure 2 shows that
one could bring the estimate for (Br)RMS down to�46 gauss (but no
lower) by adopting the lowest magnitude (�64.6 � 10�5) in the
uncertainty range for Im K ICB and taking the ICB magnetic field to

be of the purely uniform type, provided that the value of Re K ICB

could be reduced to the value appropriate for this field, 78.6� 10�5.
In order to accomplish this, one would have to have (a2es + v) lower
than its default value by 32.2� 10�5.We examine the possibilities in
this regard now.
[102] Consider first the compliance v. It has been suggested in

recent years that the material of the SIC might be in a viscoelastic
rather than elastic state. If the deviation from elastic behavior were
significant on diurnal timescales, the compliance v would be
complex, and its real part would be larger than the default value
of 8 � 10�5; the result would be a correspondingly higher estimate
for Re K ICB, which is not what we were seeking. The next
candidate is the ellipticity es of the SIC. To produce the needed
reduction in (a2es + v), es would have to be �16% smaller than in
hydrostatic equilibrium, given a2 = 0.8294 [Mathews et al.,
1991b]. A mechanism that would produce a decrease of this
magnitude in the flattening is hard to find. A third possibility is
to have a lower value for a2, which is given by the expression

a2 ¼
A0e0

Ases
1þ ag

 �
� ag; ð43Þ

where ag is a measure of the strength of the gravitational torque
between a tilted inner core and the rest of the Earth [see Mathews
et al., 1991a, equation (18)] and A0 and e0 are the equatorial
moment of inertia and dynamical ellipticity, respectively, of a
homogeneous ellipsoid of the same dimensions as the SIC but
having the same density rf as the core fluid at the ICB. Clearly, A0

is proportional to rf, and 1 � (A0/As) is a measure of the fractional
density contrast between the inner core and the core fluid at the
ICB. Furthermore, ag is linear in rf. A simple computation shows
that a reduction of rf by �4.6% (i.e., �560 kg m�3) from its
PREM value would lead to a reduction of the magnitude called
for above in the value of (a2es + v).

Table 6. Parameters for Use in New Resonance Formula

Re Part Im Part

N0 1 + 1.224 � 10�5 . . .

s1 3.11279 � 10�3 3.76098 � 10�4

s2 �1 � 2.31811 � 10�3 2.50607 � 10�5

s3 �1 + 9.73555 � 10�4 7.78663 � 10�4

s4 4.1324 � 10�4 9.28220 � 10�8

Q0 �1.65291 � 10�1 3.18995 � 10�2

Q1 �9.48081 � 10�1 6.78857 � 10�2

Q2 4.89324 � 10�2 1.61700 � 10�3

Q3 2.96114 � 10�4 �9.56740 � 10�5

Q4 �1.10856 � 10�5 �1.22654 � 10�6

Table 7. Additions and Corrections to (42) and Precession Ratea

Period,
days

Geodesic
nutation

Sun-synchronous Nonlinear
Terms

Additional

Re Im Re Im

�6798.38 0.0013 . . . . . . 0.0037 �0.0002 . . .

6798.38 0.0001 . . . . . . �0.0336 �0.0007 0.0009
�3339.19 . . . . . . . . . �0.0022 0.0001 �0.0001
3399.19 . . . . . . . . . �0.0002 . . . . . .

�439.33 . . . . . . . . . . . . 0.0014 0.0012
�416.69 . . . . . . . . . . . . 0.0005 0.0002
�411.78 . . . . . . . . . . . . 0.0013 �0.0024
�398.88 . . . . . . . . . . . . 0.0003 �0.0005
�386.00 . . . . . . . . . . . . �0.0007 0.0009
�365.26 0.0304 . . . . . . . . . �0.0866 0.1072
365.26 �0.0304 �0.0104 0.1082 . . . 0.0006 �0.0007

�365.23 . . . . . . . . . . . . 0.0013 �0.0016
�346.64 . . . . . . . . . . . . �0.0010 0.0012
�182.62 0.0004 . . . . . . . . . �0.0064 0.0073
182.62 �0.0004 . . . . . . . . . �0.0223 0.0231
121.75 . . . . . . . . . . . . �0.0010 0.0010
�31.81 . . . . . . . . . . . . �0.0004 0.0005
�27.55 . . . . . . . . . . . . �0.0020 0.0026
27.55 . . . . . . . . . . . . 0.0005 �0.0002

�27.44 . . . . . . . . . . . . �0.0004 0.0005
�13.66 . . . . . . . . . . . . �0.0007 �0.0010
13.66 . . . . . . . . . . . . 0.0010 �0.0064

�13.63 . . . . . . . . . . . . �0.0004 0.0006
13.63 . . . . . . . . . . . . 0.0002 �0.0012
9.13 . . . . . . . . . . . . 0.0008 �0.0019

Precession Rate Correction (mas/yr)
. . . . . . . . . . . . �0.2105 . . . . . .

aThe corrections to nutation amplitudes under Geodesic Nutation and Nonlinear Terms columns are to the real Parts of the amplitudes; corrections shown
under the Additional column make up for the inexactitude of the resonance formula (42).
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[103] To sum up, the estimate from nutation data for the RMS
radial field at the ICB is considerably higher than what dynamo
theories appear to suggest, and the difference between the estimate
and the dynamo regime can be reduced, though not eliminated, by
adopting lower values than in hydrostatic equilibrium PREM for
the ellipticity of the SIC and/or the density of the core fluid at the
ICB. The density rf is of relevance to other phenomena like the
translational oscillation modes (Slichter modes) of the SIC, and the
Slichter modes will also be influenced by magnetic fields of the
order that we are contemplating. Any constraints on rf or relating rf
and hBr

2i that may be obtained in future from such phenomena
would help to constrain the ICB magnetic field further.
[104] We expect to complete our treatment of the CMB and ICB

electromagnetic couplings through computations of the coupling
constants due to magnetic fields of arbitrary spherical harmonic
structure. We do not consider it likely that such computations
would necessitate any significant changes to the picture that we
have presented here.
[105] It may not be out of place to comment here on the fits to

nutation data carried out by J. Getino, J. M. Ferrandiz, and
collaborators. In the absence of information about fits involving
a more complete Earth model, we base our discussion on Getino
and Ferrandiz [1999]. Two of the critical parameters in their fit
were the astronomical parameters kM and kS. The value obtained by
these authors for ratio kS/kM is 0.459194, which is larger than that
of Kinoshita and Souchay [1990] by one part in 104. But this ratio
is essentially a measure of the ratio of the lunar mass to the mass of
the Moon-Earth system (the other quantities involved, namely, the
mean motions of the Moon and the Sun, being known with much
greater precision), and this mass ratio is known to better than one
part in 109 (see chapter 4 of the IERS Conventions 1996 [McCar-
thy, 1996]). Therefore an adjustment of kM/kS to the extent called
for by Getino and Ferrandiz seems inadmissible. Again, their
estimate of 0.123147 for the ratio Ac/Am of the moments of inertia
of the core and the mantle differs from the PREM value of 0.12758
[see, e.g., Mathews et al., 1991b] by �3.5%; this difference, if
interpreted in terms of a change in radius of the CMB, would
require a change of over 25 km, as can be readily shown. It is
extremely implausible that the seismologically determined CMB
radius is open to an adjustment of that order. If the eventual final
nutation series by these authors is based on similar parameter fits,
the soundness of its astrophysical/geophysical basis would be open
to doubt, though it might very well provide an empirical series for
practical use if the agreement with observations is good enough.

Appendix A: Nonlinear Terms in the Torque
Equation

[106] The torque equation for the whole Earth is

dH

dt
þ ��H ¼ �; ðA1Þ

where H is the Earth’s angular momentum and � is the torque. The
equatorial parts of H and � may be represented by

~H � H1 þ iH2; ~� ¼ �1 þ i�2: ðA2Þ

~h, H3, and ~� and hence the torque equation may be separated into
parts of different orders in the wobble ~m, the spin rate perturbation
m3, and the tidal potential:

~H ¼ ~H ð1Þ þ ~H ð2Þ;

H3 ¼ H
ð0Þ
3 þ H

ð1Þ
3 þ H

ð2Þ
3 ;

~� ¼ ~�ð1Þ þ ~�ð2Þ;

ðA3Þ

d ~H ð1Þ

dt
þ i ~H ð1Þ � H

ð0Þ
3 ~m

� �
V0 ¼ ~�ð1Þ þ ~�ð2Þ; ðA4Þ

where all the second-order terms are gathered into ~� 2ð Þ:

~�ð2Þ ¼ ~�ð2Þ � d ~H ð2Þ

dt
þ iV0

~H ð2Þ
� �

�i�0
~H ð1Þm3 � H

ð1Þ
3 ~m

� �
: ðA5Þ

All the quantities here are taken in the time domain.
[107] Evaluation of the torque may be done directly from its

basic definition,

� ¼ �
Z

r rð Þr�rf r; tð ÞdV ; ðA6Þ

where the integral is over the volume of the Earth and r(r) and f(r;
t) are the density and the tidal potential, respectively, at the position
r. One obtains the familiar expression �i(C � A)~f for ~� 1ð Þ, where
~f represents the tesseral part of the potential, while ~� 2ð Þ is found to
be given by

~�ð2Þ ¼ �i�2
0 c

ðZÞ
11 � c33

� �
~fþ c

ðSÞ
11 � ic12

� �
~f*

h i
; ðA7Þ

where c11
(Z ) and c11

(S ) are the perturbations of the first diagonal
element of the Earth’s inertia tensor by the zonal and sectorial tidal
potentials, respectively. The zonal potential alone is responsible for
c33, while c12 is due solely to the sectorial part. Note that the
spectra of all the terms in (A7) are in the retrograde diurnal band,
since the respective spectra of ~f and ~f* are retrograde and
prograde diurnal and the spectra of the zonal and sectorial
contributions to the inertia tensor are in the low-frequency and
retrograde semidiurnal bands, respectively.
[108] Expressions for the angular momentum quantities herein

(of both first and second orders) may be obtained from the defining
relations given by Mathews et al. [1991a] for H and for the inertia
tensors of the Earth, the FOC, and the SIC. One finds that

~H ð1Þ ¼ �0 A~mþ Af ~mf þ As ~ms þ ~c3
 �

; ðA8aÞ

H
ð0Þ
3 ¼ �0 C; ðA8bÞ

H
ð1Þ
3 ¼ �0 Cm3 þ Cf mf 3 þ Csms3 þ c33

 �
; ðA8cÞ

where V0mf3 and V0ms3 are the axial components of the angular
velocities of the FOC and SIC relative to the mantle. The LDE
given explicitly by Mathews et al. is the result when one passes
over to the frequency domain after introducing such expressions
into equation (A4) with the nonlinear part ~� 2ð Þ excluded.
[109] Since ~� 2ð Þ is expected to contribute only a few tens of mas

to nutation amplitudes, one can drop the inner core terms and make
other simplifications. In particular, the two ~H 2ð Þ terms in ~� 2ð Þ,
which combine into (1 + s) ~H 2ð Þ(s) in the frequency domain, can be
ignored. They yield a negligible contribution because of the factor
(1 + s), which is very small for the 18.6 and 9.3 year nutations, and
because ~H 2ð Þ(s) itself is too small to be of interest for other
frequencies. For similar reasons, the left-hand side of (A4) may
be approximated by

d ~H ð1Þ

dt
þ ið ~H ð1Þ � H

ð0Þ
3 ~mÞV0 ! iV2

0A s� eð Þ~m ðA9Þ

in the frequency domain for the limited purpose of computing the
contribution to ~m from ~� 2ð Þ.
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[110] Finally, we observe that on account of the decoupling of
the core from the mantle in axial rotation variations, mf3 = �m3

and m3 = �(c33)m/Cm (with the subscript m referring to the mantle).
One can then see that

c33 ¼ �2c
ðZÞ
11 ¼ �Ceff m3

Ceff ¼ Cm



1� gCf



kC

 �
;

ðA10aÞ

as a consequence of the fact that the radial structure of the
deformation of the Earth is the same for zonal, tesseral, and
sectorial excitations. The same fact enables us to conclude that

c
ðSÞ
11 þ ic12 ¼ �2kA~fðSÞ; ðA10bÞ

where the dimensionless sectorial potential ~f Sð Þ is defined in a
manner similar to the Mathews et al. [1991a] definition of ~f for the
tesseral potential. On using these results in the expression for ~� 2ð Þ,
we obtain, to an adequate degree of approximation,

~�ð2Þ¼�i�2
0 3=2ð Þ Ceff � kAð Þm3

~f� 2kA~fðSÞ~f*
h

þ Cf þ Ceff

 �
m3 ~m

þAf m3 ~mf

i
: ðA11Þ

The low-frequency components of m3 in the products m3
~f and

m3 ~m evidently give rise to retrograde diurnal terms in ~� 2ð Þ. One
sees also from the spectral expansions

~f Sð Þ ¼
X
s0

~f Sð Þ s0ð Þeis0�0 t

~f* ¼
X
s00

~f* s00ð Þe�is00�0 t
ðA12Þ

that the frequencies (s0 � s00) in the product ~f Sð Þ~f* are near �1
cpsd since the s0 and s00 of the sectorial and tesserial tides are close
to �2 and �1 cpsd, respectively.
[111] The correction d~m(s) to ~m(s) owing to the nonlinear terms

may now be obtained by equating to ~� 2ð Þ(s) the corresponding
increment to the left-hand side of (A4), which is given, in view of
the approximation (A9), by i�2

0A s� eð Þd~m sð Þ. For any s 6¼ �1,
division of this d~m by �(1 + s) yields the correction to the
corresponding nutation amplitude. The term with s = �1 leads
to a correction to the precession rate, which may be shown to be

��0 ~m �1ð Þ=sin e0, where e0 � 23�.5 is the mean obliquity of the
Earth’s polar axis. Details of the derivations and of justifications
for the approximations stated above will be presented elsewhere.
[112] Tables of the axial spin rate variations V0m3, denoted by

(w � wS), are available in the IERS Conventions 1996 [McCarthy,
1996], and those of tesseral and sectorial tides are available in the
work by Cartwright and Tayler [1971]. These, taken together with
solutions of the LDE, would suffice now for computation of the
contributions from the nonlinear terms to nutations.

Appendix B: Evaluation of Parameters in the RRF

[113] Construction of the resonance formula starts with the
dynamical matrix M wherein the values of the compliances are
made constant by assigning fixed values to the ocean tide admit-
tances as explained in the text. Then M is linear in s; so we may
write it as

M ¼ Fs� G; ðB1Þ

where F and G are constant matrices with complex elements. The
matrix F is nonsingular. The eigenvalues sa of our problem, which

are known to be nondegenerate, are to be determined from either of
the eigenvalue equations

Fsa�Gð Þua ¼ 0; ~va Fsa�Gð Þ ¼ 0; a¼ 1; � � � 4; ðB2Þ

where ~va are row eigenvectors and ua are column eigenvectors.
Expressing M as

M ¼ F s I � Lð Þ; L ¼ F�1 G; ðB3Þ

where I is the unit matrix, we rewrite (B2) in the usual form for
eigenvalue equations:

~vaL ¼ sa ~va; Lua ¼ saua: ðB4Þ

The matrix L is not symmetric or hermitian, but it does have
complete sets of row and column eigenvectors since the
eigenvalues are nondegenerate. The two sets are mutually
orthogonal and may be so normalized as to make

~vaub ¼ dab: ðB5Þ

The completeness property then states that

X
a

ua~va ¼ I : ðB6Þ

[114] Once the solution of the eigenvalue equations, (B4), is
carried out, one can express the solution of the forced nutation
problem in terms of the eigenvalues and eigenvectors. We start
with the spectral expansion

s I � Lð Þ�1¼
X
a

ua
1

s� sa
~va: ðB7Þ

The problem we seek to solve is Mx = y, where the column vector
y, being linear in s, may be written as yc + syt. Since M

�1 = (sI �
L)�1F�1, we obtain the solution of this inhomogeneous equation
with the aid of the spectral expansion (B7) and the completeness
relation (B6) as

M�1y ¼ F�1yt þ
X
a

ua~vaF
�1 yc þ saytð Þ
s� sa

: ðB8Þ

Each term in (B8) is a four-component column. The first of the
elements of the column M�1y is, in view of the dynamical equation
(2), the wobble admittance ~w � ~m



~f. We thus have the resonance

expansion

~w sð Þ ¼ w0 þ
X
a

wa

s� sa
ðB9Þ

with

w0 ¼ F�1yt
� �

1
; wa ¼ ua1 ~vaF

�1 yc þ sa ytð Þ
� �

; ðB10Þ

where [F�1yt] and ua1 are the first elements of the four-component
columns F�1yt and ua, respectively. The second element of the
column in (B8) yields the resonance expansion for ~mf



~f

 �
and so

on.
[115] Now, we know that the value of ~w at s = �1 is the same as

for the rigid Earth, namely, e/(e + 1). This property can be used to
eliminate w0 from (B9), leading to the reduced form
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~w sð Þ ¼ e

eþ 1
þ 1þ sð Þ

X
a

wa

1þ sa

1

s� sa
: ðB11Þ

Finally, on dividing by the wobble admittance for the rigid Earth,
~wR sð Þ ¼ eR= eR � sð Þ, we obtain the reduced resonance formula
for the transfer function given in (12), with

Na ¼ eþ 1

e

wa

1þ sa
: ðB12Þ

The expression given in equation (B10) for the wa enables the
resonance coefficients Na to be evaluated.

Appendix C: Sign Conventions and Imaginary
Parts

C1. Tide-Generating Potential (TGP): Conventions

[116] The convention used in the definition of a constituent of
spherical harmonic type (m, n) of the TGP is of special relevance in
the representation of the effects of the TGP on a dissipative Earth.
In analytic formulations of nutation theory [e.g., Sasao et al., 1980;
Mathews et al., 1991a, 1991b], a tidal constituent is expressed as
the real part of

fðwÞ
nm

* r; tð Þ � FðwÞ
nm rð ÞYm*

n q; lð Þ eiwtþicðwÞ; m � 0ð Þ; ðC1Þ

where Fnm
(w)(r) is real and proportional to rn and the asterisk

denotes complex conjugation. In approaches where nutations are
treated and computed as part of the complete displacement field
produced by the TGP [e.g., Smith, 1974; Wahr, 1981a, 1981b,
1981c] the convention of Cartwright and Tayler [1971] is
employed. It differs from that of (C1) in that the space-time
dependence is through

fðw0Þ
nm r; tð Þ � FðwÞ

nm rð ÞYm
n q;lð Þ eiwtþic0ðw0Þ: ðC2Þ

In either case, the spherical harmonic is defined by

Ym
n q; lð Þ ¼ NnmP

m
n cosqð Þeiml; ðC3Þ

where Pn
m is the associated Legendre function. Since the real part is

to be the same in both cases for a given constituent of the TGP, it is
clear that each of the above forms has to be the complex conjugate
of the other and hence that

w0 ¼ �w; c0 w0ð Þ ¼ �c wð Þ: ðC4Þ

The expressions to be used for the nutational and other tidal
responses when the TGP is taken in the form (C2) must clearly be
complex conjugates of the corresponding expressions that go with
(C1).
[117] In the following, we refer to (C1) and (C2) as the (Y*, +)

and (Y, +) representations, respectively, of the TGP. The plus signs
here refer to the fact that the time evolution is through e+iwt and
e+iw

0t. The signs of w and w0 are determined by the sense of motion
of the potential wave. For retrograde motion, the surfaces of
constant phase must move westward. With the phase being
(wt � ml) in the (Y*, +) representation, it is clear that w has to
be negative for the motion to be retrograde; in the other represen-
tation, with the phase being (w0t + ml), retrograde motion requires

that w0 be positive. For prograde waves, the signs are reversed.
Thus, in the (Y*, +) representation,

w < 0; w > 0; ðC5Þ

for retrograde and prograde, respectively, while in the (Y, +)
representation,

w0 > 0; rw0 < 0; ðC6Þ

for retrograde and prograde, respectively.
[118] Tidal waves (except the standing waves for m = 0) are all

retrograde. There exist, however, a prograde potential wave due to
the centrifugal perturbation associated with the Chandler wobble
motion which is prograde and others due to the prograde compo-
nents of ocean tides.
[119] These facts, though elementary, have an important bearing

on the representation of the Earth’s responses to forcing.

C2. Responses to the Tidal Potential: Conventions

[120] The nutation H(t) is the time-dependent offset of the polar
axis i3 of a suitably defined terrestrial reference system from its
mean direction I3 which undergoes secular motion because of
precession. For an axially symmetric Earth, nutation is due to the
periodic components of the (2, 1) part of the TGP. The nutation due
to the potential (C1) with m = 2, n = 1 has the complex
representation

~h tð Þ ¼ i~h sð Þ I1 � iI2ð ÞeinV0tþicN ðnÞ; ðC7Þ

where I1 and I2 along with I3 constitute a right-handed reference
system in space and

n ¼ 1þ s; s ¼ w=�0: ðC8Þ

The tidal Love number parameters, the compliance parameters
characterizing the deformabilities of the Earth in response to tidal
and centrifugal perturbations, and the nutation amplitude ~h are
complex quantities, primarily as a consequence of various
dissipative processes: mantle anelasticity, electromagnetic cou-
plings, dissipation in the oceans which affects the ocean tides and
their effects on the solid Earth, etc.
[121] A clearly stated convention for the representation of

these complex numbers is a matter of importance, as will become
evident from the considerations to follow. We adopt the con-
vention that if the (Y*, +) representation is used for the potential
wave, then each of the complex response parameters, say R, will
be written as

R ¼ Rin þ iRout: ðC9Þ

In particular, ~h will be expressed as hin + ihout; the Love
numbers, for which we use the generic symbol L, will be written
as Lin + iLout, etc. It should be self-evident that if we switch to
the conjugate representation (C2) for the TGP, the response
parameter must be the complex conjugate of (C9); that is, it must
be

R* � Rin � iRout: ðC10Þ

Thus the imaginary part of the response parameter changes from
Rout to �Rout on switching from (C1) to (C2), while Rout itself
remains unchanged. In particular, the nutation amplitude would
switch to hin � ihout. For the remainder of Appendix C we adhere
to the (Y*, +) representation.
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C3. Responses of Dissipative Earth: Phase Lag

[122] We have used the term ‘‘response’’ above in a very
general sense, encompassing both primary and secondary
responses. The deformation caused directly by a constituent of
the TGP is a primary response; the deformations due to the
periodic perturbation of the centrifugal potential caused by the
wobbles excited by the TGP are a primary response to the
centrifugal perturbation but are a secondary response to the TGP.
The compliances appearing in nutation theory are primary defor-
mational response parameters; the Love numbers are not since they
include secondary effects due to the wobbles. The wobbles of the
mantle and core regions themselves depend in a complicated way
on the (primary) compliance parameters and so do the nutations;
these are to be classed then as ‘‘secondary.’’ The concept of a phase
lag in the response of a dissipative Earth to the driving potential is
clearly applicable to primary responses, but the phases of the
secondary responses are determined by their functional relationship
to the primary response parameters and need not always appear as
a lag, especially in the neighborhood of resonances. So the
considerations below are restricted to primary responses.
[123] For an excitation of frequency w, if the response

Reiwt ¼ Rj jei	ðwÞeiwt ¼ Rj jeiw tþ	ðwÞ=w½ � ðC11Þ

is to be lagging, it is clearly necessary that

z wð Þ=w < 0 and hence Im R=w < 0: ðC12Þ

Thus Im R must have the sign opposite that of the frequency w. It is
of interest to note that Tromp and Dahlen [1990] have taken such a
link to be self-evident in their analysis of a harmonic oscillator with
a complex spring constant, considered as a simple analogy to the
anelastic Earth.
[124] Consider the implications of (C12) for the complex

compliance ~k. The perturbation of the inertia tensor as well as
that of the gravitational potential at the surface of the Earth due to
the deformation caused by either the direct action of the tidal
potential or by the centrifugal perturbation accompanying the
wobble of the whole Earth is directly proportional to k [see, e.g.,
Sasao et al., 1980; Mathews et al., 1995]. In the dynamical
equations for forced nutation, the tidal forcing frequencies, say
wT (the subscript T indicating ‘‘tidal’’), are retrograde (wT < 0). The
lag condition then requires that the ~k relevant to forced nutation
have

Im ~k wTð Þ > 0: ðC13Þ

For the potential change or perturbation of the inertia tensor due to
the centrifugal deformation accompanying the free Chandler
wobble, on the other hand, one must have

Im ~k wCWð Þ < 0 ðC14Þ

since wCW > 0.
[125] These observations have the interesting consequence,

apparently unsuspected hitherto, that the free Chandler wobble,
which is an oscillation with a positive frequency, must have a
positive sign for the imaginary part of its complex eigenfrequency,
while the Chandler resonance frequency determined by the
response to forcing at the retrograde diurnal frequencies wT must
have a negative imaginary part. Both frequencies are given by the
same expression,

A=Amð Þ e� ~kð Þ �0;

but ~k wCWð Þ has to be used for the compliance in the first case, and
~k wTð Þ has to be used in the second. It is a matter for satisfaction
that the imaginary part of the Chandler resonance frequency

estimated by us from the fit to VLBI data does have a negative
sign, in conformity with the above expectation.

C4. Decay of Free Modes

[126] The property (C14) is demanded also by the requirement
that the amplitude of a free wobble of a dissipative Earth be a
decreasing function of time. The time evolution of any free wobble
being through the factor eiwat, where wa is the eigenfrequency of
the wobble, a decreasing amplitude for the wobble clearly demands
that Im wa > 0. In the case of the Chandler wobble, given the
expression A=Amð Þ e� ~kð ÞV0 for wCW, this requirement translates
to Im ~k wCWð Þ < 0, in agreement with the conclusion (C14) from
the lag condition. The same considerations applied to the FCN,
taken together with the expression �1� A=Amð Þ ef � ~b

 �� �
�0 for

wFCN, lead to the requirement that Im ~b > 0, which is in agreement
with the demands of the lag condition, Re wFCN being negative.
[127] Finally, it is important to recognize that we arrived at

identical signs for the imaginary parts of k and b for retrograde
diurnal (negative) frequencies from different considerations: from
the lag condition for the former, and from the decay condition on
the free RCFN mode for the latter. It would evidently be strange if
different compliances behaved differently at one and the same
frequency. It needs to be mentioned in the present context that the
signs shown for the imaginary parts of resonance frequencies in a
report on an early stage of the efforts to account for the observed
nutations [Mathews and Shapiro, 1995] are incorrect and should be
reversed.

Appendix D: Frequency-Dependent Parameters,
Resonance and Eigenfrequencies

[128] We have been concentrating our attention so far on the
sign of the imaginary part. We need to consider now other aspects,
the importance of which is strikingly illustrated by the consequen-
ces of frequency dependence of the magnitudes of the compliances
due to anelasticity and ocean tide effects.
[129] Consider the ocean tide produced by a degree 2 tesseral

constitutent of frequency s cpsd and amplitude ~f of the TGP.
Nutations are influenced by the deformation due to the loading of
the Earth’s crust by the (nm) = (21) component, of amplitude t2

1, of
the ocean tide. This deformation enters nutation theory through its
contributions to ~c3 and ~c3f which represent the off-diagonal
components, arising from the direct or indirect action of the
TGP, of the inertia tensors of the whole Earth and the FOC,
respectively. Ocean loading causes the following replacement of
the terms proportional to ~f� ~m

 �
in the expressions given by

Sasao et al. [1980] for these quantities:

k ~f� ~m
 �

! k ~f� ~m
 �

þ kL~fL ðD1aÞ

g ~f� ~m
 �

! g ~f� ~m
 �

þ gL
~fL; ðD1bÞ

where ~fL represents the ocean load:

~fL ¼ 12pGrw
5V2

0a
t12 : ðD2Þ

Here rw is the density of seawater, and the loading compliances kL
and gL are the quantities denoted by t � c and �h by Sasao and
Wahr [1981].
[130] Now we define the dimensionless admittance

A sð Þ ¼ 3

�2
0a

2

�gt12
~f� ~m

; ðD3Þ

where �g is the acceleration due to gravity at the mean Earth radius.
On substituting (D2) together with (D3) in (D1a) and (D1b) their
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right-hand sides become kþ�kð Þ ~f� ~m
 �

and gþ�gð Þ ~f� ~m
 �

,
respectively, where

�k ¼ 4pGrwa
5�g

kLA sð Þ

�g ¼ 4pGrwa
5�g

gLA sð Þ:

These are the ocean loading contributions to the compliances. In a
treatment which includes the dynamics of the solid inner core [e.g.,
Mathews et al., 1991a], there is an extra parameter relating to the
inner core which gets similarly modified, but its impact is very small.
[131] The ocean response to forcing at low frequencies like sCW

of the Chandler wobble is expected to be of equilibrium nature.
The equilibrium admittance is real and is �0.561 according to a
computation by C. Bizouard (private communication, 1997). Sub-
stitution in (D4) leads to �k = 1.51 � 10�4; it is equivalent to an
ocean contribution to the Love number k of �0.044, which is just
about the value obtained by Smith and Dahlen [1981]. A positive
�k causes the CW eigenperiod to increase.
[132] Consider now the ocean response to tidal forces in the

diurnal band. Ocean tide maps constructed using satellite tracking
and altimetry data are available for a few of the prominent diurnal
tides (K1, P1, O1 and Q1), and spherical harmonic analyses of these
maps yield, among other things, the amplitudes t2

1 for each of
these tides. All these amplitudes lag behind the tidal potential by
�135�. Using the admittances computed as described in the text,
we find that at the frequency �1.0001467 cpsd of the tidal
constituent responsible for the retrograde 18.6 year nutation, the
increment to k from ocean loading is �kOL = (�5.456 + 5.976i) �
10�5 while that due to the ocean current, after scaling by the factor
0.70 employed for optimization of the data fit (see section 2.5), is
�kOC = (�1.448 + 5.515i) � 10�5. The total increment to k from
the ocean tide at this frequency is then �kOT = (�6.904 + 11.491i)
� 10�5. The negative sign of the real part is important: it causes
the period of the Chandler resonance to be lower than for the
oceanless Earth.
[133] As for anelasticity, Buffett (unpublished work, 1995) has

computed its contributions to the Earth’s deformations and hence to
the compliances. With the use of the frequency dependence given
by (17a) and (17b), one finds that �kAE is (4.381 � 1.205i) � 10�5

for excitation at a period of 430 days, while�kAE = (1.258 + 0.529i)
� 10�5 at our retrograde nearly diurnal frequency after scaling of
the imaginary part by the factor 1.09 used while fitting the nutation
data (see end of section 2.3).
[134] We see from the above numbers that the combined incre-

ment from anelasticity and ocean tide effects to k is �k(sR18) =
(�5.646 + 12.020i) � 10�5 at the frequency sR18, while at the
period (� 430 days) of the free Chandler wobble it is �k(sCW) =
(19.481 � 1.205i) � 10�5. Given these numbers, it becomes
possible to infer the frequency sCW of the free Chandler mode,
starting from our estimate for the resonance frequency (s1)

R18

given in Table 3a, since

sCW ¼ s1ð ÞR18þ A=Amð Þ �k sR18ð Þ ��k sCWð Þ½ �: ðD5Þ

The estimate thus obtained for sCW is (2.3175 + .0131i) � 10�3,
which implies a period of 430.3 days and a Q of 88.4.
[135] It is gratifying that the period thus inferred for the free

Chandler wobble is just about what is estimated directly from polar
motion data. The value obtained for Q is not unrealistic either,
considering the recent estimates by Kuehne et al. [1996] (Q = 72 or
77, from two different analyses) and by Furuya and Chao [1996]
whose preferred value is 42 but with a one sigma range (33, 100).
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