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[1] High-frequency S wave seismogram envelopes are broadened with increasing travel distance
due to diffraction and scattering. The basic mechanism of the broadening has been studied on
the basis of the scattering theory with the parabolic approximation for the scalar wave equation in
random media. However, conventional models are not realistic enough since the plane wave
modeling is too simple and the Gaussian autocorrelation function (ACF) is far from the reality
to represent the inhomogeneity in the Earth. Focusing on the early part of envelopes, we formulated
the envelope broadening of spherically outgoing scalar waves in three-dimensional von Kármán-
type random media, of which the spectra decay according to a power law at large wave numbers.
Random media are characterized by three parameters: RMS fractional velocity fluctuation e,
correlation distance a, and order k that controls the gradient of the power law spectra. This model
predicts that the envelope duration increases with both travel distance and frequency when
short-wavelength components are rich in random media, while the duration is independent of
frequency when short-wavelength components are poor. Introducing phenomenological attenuation
Q, we developed a method for estimating the parameters of inhomogeneity and attenuation from the
envelope duration. Applying this method to S wave seismogram envelopes for the frequency
range from 2 to 32 Hz in northeastern Honshu Japan, we estimated the random inhomogeneity
parameters as k = 0.6, e2.2a�1 � 10�3.6 [km�1] and f /Q = 0.0095 [s�1], where f is frequency. The
power law portion of the estimated power spectral density function is P(m) � 0.01 m�4.2 [km3],
where m is wave number. INDEX TERMS: 7203 Seismology: Body wave propagation; 7218
Seismology: Lithosphere and upper mantle; 7260 Seismology: Theory and modeling; KEYWORDS:
envelope, inhomogeneity, scattering, parabolic approximation, lithosphere

1. Introduction

[2] For the study of seismic wave propagation for frequencies
higher than 1 Hz the velocity structure of the lithosphere cannot
be simply modeled by horizontal layers. Aki and Chouet [1975]
first showed that coda waves of local earthquakes are composed
of scattered body waves by distributed scatterers in the litho-
sphere and that random inhomogeneity in elastic properties is the
most probable origin of scattering. Sato [1989] proposed that the
envelope broadening of S wave seismograms with increasing
travel distance could be a powerful tool for the quantitative
study of random velocity inhomogeneity in the lithosphere. For
the incidence of scalar plane wave to random media extending in
a half-space, Lee and Jokipii [1975] and Sreenivasiah et al.
[1976] proposed a method to synthesize mean square (MS)
envelope based on the Markov approximation for the parabolic
wave equation when the random media is characterized by a
Gaussian autocorrelation function (ACF) and the characteristic
scale of inhomogeneity is much larger than the wavelength of
incident waves. Their model predicts that diffraction and multi-
ple forward scattering cause the envelope broadening. This
Markov approximation method is an extension of the phase
screen method for synthesizing waveforms to the stochastic
synthesis of MS envelopes. Comparing the envelope simulation
with the numerical waveform simulation based on the finite
difference method, Fehler et al. [2000] recently confirmed the
validity of both the Markov approximation method and the
phase screen method for the synthesis of waveforms except

latter coda in two-dimensional random media characterized by a
Gaussian ACF. Introducing an attenuation factor in the Markov
approximation method, Sato [1989] and Scherbaum and Sato
[1991] quantitatively estimated the ACF of random velocity
inhomogeneity in the lithosphere beneath the Kanto region,
Japan, from the envelope analysis of small-earthquake records.
Their simulations can basically explain the envelope-broadening
phenomenon. However, if we apply the above scattering model
to observed seismogram envelopes, it is better to use not plane
waves but spherical waves. Therefore we need to develop
mathematics for modeling envelope of spherically outgoing
waves radiated from a point source.
[3] Analyzing seismic coda waves, Wu and Aki [1985] found

that the spectral characteristics of velocity fluctuation obey a power
law. In order to explain the frequency dependence of S wave
attenuation and coda excitation, Sato [1990] proposed a scattering-
loss model to use the von Kármán-type ACF for describing the
random inhomogeneity which has power law spectra at large wave
numbers. The spectral structure of random inhomogeneity was also
studied by the correlation analysis of teleseismic waves based on
the parabolic approximation for scalar wave equation [Aki, 1973;
Capon, 1974]. Flatté and Wu [1988] developed this method and
analyzed seismic array data at NORSAR. They proposed a two-
overlapping-layer model that has power law spectra. Gusev and
Abubakirov [1996] simulated not only coda part but also full
envelopes in random media by using the Monte Carlo simulation
method based on the radiative transfer theory with a scattering
coefficient derived from the Born approximation. They concluded
that simulated envelopes qualitatively well explain observed seis-
mogram envelopes when the PSDF has power law spectra with its
power being �3.5 to �4 for large wave numbers. Shiomi et al.
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[1997] reported that the small-scale inhomogeneity in the shallow
crust is random by examining elastic wave velocities and density
from well log data at various sites. They concluded that its power
spectral density function (PSDF) has power law spectra. From
these studies we get to know that the velocity inhomogeneity of the
real earth medium is random in space and its statistical character is
well represented by PSDF having power law spectra. For the
simulation of envelopes, Obara and Sato [1995] introduced an
exponential-like function for the longitudinal integral of ACF and
attempted to explain the frequency dependence of envelope broad-
ening characteristics observed in Kanto-Tokai area in Japan, but
the corresponding ACF was not mathematically defined yet.
Therefore we need to develop mathematics to synthesize envelopes
in random media of which the PSDF has power law spectra. The
von Kármán-type ACF is one of the simplest functions that have
power law spectra at large wave numbers.
[4] In this paper, we develop mathematics to simulate the

envelope of spherically outgoing scalar waves radiated from a
point source in three-dimensional (3-D) random media that are
characterized by the von Kármán-type ACF. Shishov [1974]
solved a similar problem, but his result is limited to the case
of Gaussian ACF only. On the basis of this new model we
propose a method to estimate the PSDF characterizing the
random inhomogeneity and the attenuation factor from the travel
distance dependence and the frequency dependence of envelope
broadening. As an application of this method, we quantitatively
estimate the PSDF of random velocity inhomogeneity of the
lithosphere beneath northeastern Honshu, Japan, from the analysis
of S wave seismogram envelopes of small earthquakes recorded
at a single station.

2. Envelope Synthesis in Random Media

[5] We imagine that waves radiated from a point source spheri-
cally propagate through a 3-D inhomogeneous medium as sche-
matically illustrated in Figure 1. Velocity inhomogeneities cause
scattering and diffraction effects on the waves. As a result, waves,
which are impulsive at the source, are distorted, and the duration
gets longer as the propagation distance increases. Here we focus on
the envelope broadening phenomenon and study mathematically
the physical mechanism. The wave velocity inhomogeneity is
written as V(x) = V0{1 + x(x)}, where V0 is the background

velocity and fractional fluctuation x(x) is a spatially random
function. We introduce an ensemble of random function {x(x)},
where hx(x)i = 0. The angle brackets indicate the ensemble
average. We assume that the randomness is statistically homoge-
neous and isotropic. The random media can be characterized by the
ACF of fractional velocity fluctuation R(x) � hx(x + x0) x(x0)i. The
magnitude of inhomogeneity is given by the MS fractional fluctu-
ation e2 � R(0) = hx(0)2i, and the characteristic scale is given by
the correlation distance a.

2.1. Markov Approximation for the Parabolic Wave
Equation

[6] We assume that the wavelength l(= 2p/k) is shorter than the
correlation distance a of the random inhomogeneity (ak � 1),
where k is the wave number. Neglecting conversion scattering
between P and S waves in such a case, it is justified to describe the
principal characteristics of elastic wave propagation by using the
wave equation for scalar wave field u(x, t):

�� 1

V xð Þ2
@2

@t2

 !
u x; tð Þ ¼ 0; ð1Þ

where � is Laplacian. When the fractional velocity fluctuation is
small, |x(x)| � 1, the wave equation (1) is written as

�� 1

V 2
0

@2

@t2

� �
u x; tð Þ þ 2

V 2
0

x xð Þ @
2

@t2
u x; tð Þ ¼ 0: ð2Þ

We study the propagation of spherically outgoing waves radiated
from a point source located at the origin. Therefore we introduce
polar coordinates (r, q, f), where angle q is measured from the
direction of a receiver. We may write the scalar wave field as a
superposition of harmonic spherical waves of angular frequency w
as

u x; tð Þ ¼ 1

2p

Z1
�1

U r; q;f;wð Þ
r

ei kr�wtð Þdw; ð3Þ

where k = w/V0 and r = |x|. The Laplacian in (2) is written as

� ¼ 1

r2
@

@r
r2

@

@r

� �
þ 1

r2
�?; ð4Þ

where the angular part of Laplacian �? is given by

�?¼
1

sin q
@

@ q
sin q

@

@ q

� �
þ 1

sin q2
@ 2

@ f2
: ð5Þ

When ak � 1, substituting equations (3) and (4) into (2) and
neglecting the second derivative with respect to r, we obtain the
parabolic wave equation:

2ik
@

@r
U r; q;f;wð Þ þ 1

r2
�?U r; q;f;wð Þ

�2k2x r; q;fð ÞU r; q;f;wð Þ ¼ 0: ð6Þ

The parabolic approximation neglecting large-angle scattering is
considered to be applicable only when the medium has poor
short-wavelength components. However, the parabolic wave
equation would be able to predict at least early part of waveforms
quantitatively even when random media have rich short-
wavelength components because the early part is mainly

Figure 1. Schematic illustration of spherically outgoing waves
radiated from a point source and their envelopes in a randomly
inhomogeneous medium. Waves, which are impulsive at the source
radiation, are distorted, and the duration gets longer with increasing
propagation distance.
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composed of waves scattered within narrow angles around the
receiver direction. By comparing waveforms numerically calcu-
lated from the wave equation and those from the parabolic wave
equation, Liu and Wu [1994] confirmed the validity of the
parabolic approximation in von Kármán-type random media with
the order of 0.5 and in flicker-noise random media when the
fractional velocity fluctuation is <10%.
[7] For the case of ak � 1, small-angle scattering dominates.

Therefore we use the local Cartesian coordinate system in a small
volume at a large distance r from the source (r � a), where one
axis is chosen to be in the receiver direction and the other two axes
are in the transverse plane which is tangent to the sphere of radius r

(see Figure 2). According to Ishimaru [1978] we define the two-
frequency mutual coherence function (TMCF) on the transverse
plane at distance r, which means the correlation between different
locations r?1 and r?2 on the transverse plane and different angular
frequencies w1 and w2,

�2 r? 1; r? 2; r;w1;w2ð Þ � U r; r? 1;w1ð ÞU* r; r? 2;w2ð Þh i; ð7Þ

where the asterisk indicates complex conjugate. Since the random
media are statistically homogeneous, �2 depends only on the
difference between r?1 and r?2. For quasi-monochromatic waves,
that is, w1 � w2, we can get the master equation for �2 from (6)
as

@

@r
�2 þ i

kd

2k2c

1

r2
@2

@ q2d
þ 1

qd

@

@ qd

 !
�2

þ k2c A 0ð Þ � A r qdð Þ½ ��2 þ
k2d
2
A 0ð Þ�2 ¼ 0; ð8Þ

where the difference transverse coordinate is defined as r?d �
r?1 � r?2 and the difference angle is defined as qd � |r?d|/r. The
derivation is given in Appendix A. Note that we assume no
backscattering. This derivation is called the Markov approxima-
tion [Tatarskii, 1971]. This approximation puts a focus on strong
forward scattering and diffraction effect. We introduce the center
of mass and difference coordinates in the wave number space as
kc = (k1 + k2)/2 and kd = k1 � k2 (kd � kc), respectively.
Corresponding coordinates for angular frequency will also be
used. The effect of inhomogeneity is included in the longitudinal
integral of ACF:

A r?dð Þ ¼ A r?dð Þ �
Z1
�1

dzR r?d; zð Þ; ð9Þ

where z is the radial coordinate in ACF and r?d = |r?d|. The last
term in (8) does not affect the broadening of individual wave
packets but shows the wandering effect, which is the travel time
fluctuation over different rays for each element of ensemble [Lee

Figure 2. At a large distance r from the source (r � a) we take
the local Cartesian coordinates in a small volume, where the one
axis is in the direction of a receiver and the other two axes are in
the transverse plane which is tangent to the sphere of radius r.
Angle q is measured from the receiver direction.

Figure 3. Plots of (a) von Kármán-type autocorrelation function and (b) the corresponding power spectral density
function for different values of order k. The power spectral density function decays according to a power law m�2k�3

for large wave number.
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and Jokipii, 1975]. Therefore, removing the last term, we get the
master equation as

@

@r
0�2 þ i

kd

2k2c

1

r2
@2

@ q2d
þ 1

qd

@

@ qd

 !
0�2

þ k2c A 0ð Þ � A r qdð Þ½ �0�2 ¼ 0; ð10Þ

where we use the symbol 0�2 instead of �2 in the following.
Equation (10) corresponds to equation (8) of Shishov [1974]. The
above derivation is analogous to that for plane waves [Ishimaru,
1978; Sato, 1989; Sato and Fehler, 1998].
[8] We define the intensity of waves at radial distance r and

lapse time t as an ensemble average of wave’s power:

I0 r; tð Þ � u r; r?; tð Þu* r; r?; tð Þh i

¼ 1

2pð Þ2
1

r2

Z1
�

Z
1

dwddwc

� 0�2 q ¼ d0; r;wd ;wcð Þe�iwd t�r=V0ð Þ

¼ 1

2p

Z1
�1

dwcÎ0 r; t;wcð Þ: ð11Þ

The intensity spectral density (ISD) Î0 is written as the inverse
Fourier transform of the TMCF with respect to difference angular
frequency:

Î0 r; t;wcð Þ ¼ 1

2p r2

Z1
�1

0�2 qd ¼ 0; r;wd ;wcð Þe�iwd t�r=V0ð Þdwd: ð12Þ

It corresponds to the mean square of a band-pass-filtered trace
having center angular-frequency wc, that is, the MS envelope. Its
square root gives the RMS envelope. When we take 0�2 to be
nondimensional for a unit source radiation,

0�2 qd ; r ¼ 0;wd;wcð Þ ¼ 1=4p; ð13Þ

as the initial condition for coherent isotropic radiation from the
point source, the ISD has a dimension of flux density and satisfies

Î0 r ! 0; t;wcð Þ ¼ 1

4p r2
d t � r

V0

� �
: ð14Þ

2.2. MS Envelopes in von Kármán-Type Random Media

2.2.1. The von Kármán-type random media. [9] A von
Kármán-type ACF (Figure 3a) is given by

R yð Þ ¼ R yð Þ ¼ e221�k

� kð Þ
y

a

� �k
Kk

y

a

� �
; ð15Þ

where y = |y|, � is the gamma function and Kk is the modified
Bessel function of the second kind of order k. The corresponding
PSDF (Figure 3b) is

P mð Þ ¼ P mð Þ ¼
8p

3
2e2a3� kþ 3

2

� 	
� kð Þ 1þ a2m2ð Þkþ

3
2

�
8p

3
2� kþ 3

2

� 	
e1=k
a

� �2k
� kð Þ m�2k�3 am � 1: ð16Þ

Figure 4. Comparison between the function B(x) given by equation (19) (solid curve) and its approximation form
given by equation (20) (dashed line) for various k values for 10�4 < x < 10�1. Coefficients used in the approximation
form are listed in Table 1.

Table 1. C(k) and p(k) in Equation (20) Estimated for 10�4 <

x < 10�1

k C(k) p(k)

0.1 0.56 1.19
0.2 1.06 1.38
0.3 1.56 1.56
0.4 2.00 1.71
0.5 2.28 1.83
0.6 2.31 1.91
0.7 2.14 1.95
0.8 1.90 1.98
0.9 1.68 1.99
1.0 1.50 1.99
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The PSDF obeys the power law for large wave numbers, and
the power is given by �2k � 3. It means that short-wavelength
components of random media increase with decreasing the
order k. In this study, we restrict the range of k to be between
0 and 1.

2.2.2. ISD for the von Kármán-type random media.
[10] For the von Kármán-type random media we can calculate
the longitudinal integral of ACF A (see equation (9)) from the
PSDF as

A r?dð Þ ¼
Z1
�1

dz
1

2pð Þ3
Z Z1

�1

Z
P mð Þeim r?dþzezð Þdm

¼ 2�kþ3=2 ffiffiffi
p

p
e2a

� kð Þ
r?d

a

� �kþ1=2
Kkþ1=2

r?d

a

� �
; ð17Þ

by using integral formulas [Abramowitz and Stegun, 1970]. Then
we need to get the representation of difference A(0) � A(r qd)
appearing in equation (10). We may write that as

A 0ð Þ � A r qdð Þ ¼ e2a B
r qd
a

; k
� �

; ð18Þ

where

B x; kð Þ � 2�kþ3
2

ffiffiffi
p

p

� kð Þ lim
x!0

xkþ
1
2Kkþ1

2
xð Þ

� �
� xkþ

1
2Kkþ1

2
xð Þ

� �
: ð19Þ

At a long travel distance from the source the correlation of wave
field at two points spatially separated on a transverse plane rapidly
decreases to zero with increasing lag distance [Sato and Fehler,
1998], and as a result, 0�2 gets close to zero with increasing lag
distance. Therefore the contribution from a small transverse
distance r?d � a is dominant. That is, the contribution of B(x;
k) for x � 1 is important. We may approximate as

B x; kð Þ � C kð Þx p kð Þ x � 1: ð20Þ

Using an expansion formula for B(x;k) given by equation (19)
[Abramowitz and Stegun, 1970], except for k = 1/2, we get the
approximation form as

B x; kð Þ � 2�kþ1
2p

3
2

� kð Þcos kp � 2k�
3
2

� 3
2
� k

� 	 x2 þ 2�k�1
2

� 3
2
þ k

� 	 x2kþ1

( )
x � 1:

ð21Þ

For the case of k � 1/2 and the case of k � 1/2, the leading term
in equation (21) is dominant:

B
r?d

a
; k

� �
� 2�kþ1

2p
3
2

� kð Þcos kp
�2�k�1

2

� 3=2þ kð Þ
r?d

a

� �2kþ1

( )
ð22aÞ

Figure 5. Plots of power index p(k) against k for 10�4 <
x < 10�1. Dashed line shows the asymptote 2k +1 for k� 0.5. The
asymptotic value for k � 0.5 is 2.

Figure 6. Plots of real and imaginary parts of 0�2 against
difference angular frequency numerically calculated for different p
values.

Figure 7. Temporal change in ISD calculated numerically for
different p values.
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for k � 1/2, and

B
r?d

a
; k

� �
� 2�kþ1

2p
3
2

� kð Þcos kp
2k�

3
2

� 3=2� kð Þ
r?d

a

� �2( )
ð22bÞ

for k � 1/2. Thus we get to know the asymptotical behavior of B
for x � 1 in the cases of small and large k values.
[11] These asymptotic solutions, however, are not available

when k is close to 1/2, so that we take advantage of numerical
evaluation. Varying k from 0.1 to 1.0 by 0.1 step in equation (19),
we numerically estimate p(k) and C(k) in equation (20). In Figure 4
the approximation form (equation (20)) is plotted by a dashed line
together with its original form (equation (19)) by a solid line for the
x range from 10�4 to 10�1 in logarithmic scale for different k
values. For the corresponding x range, we can approximate the
function B(x; k) within 15% error. The estimated p(k) and C(k) are
listed in Table 1. Plot of p(k) against k is given in Figure 5. Value
p(k) increases and the gradient decreases as k increases. At k = 0.1
and 1.0, p(k) is nearly 1.2 and 2.0, respectively, as predicted by
analytical asymptotic solutions.
[12] Substituting equations (18) and (20) into (10), we get

@

@r0
�2 þ i

kd

2k2c

1

r2
@2

@ q2d
þ 1

qd

@

@qd

 !
0�2

þ k2c e
2aC kð Þ r qd

a

� �p

0�2 ¼ 0: ð23Þ

We define the characteristic time as

tM ¼ C kð Þ
2
pe

4
pa

2V0

aw
V0

� ��2pþ4
p r 0

a

� �pþ2
p

¼ C kð Þ
2
pV

p�4
p

0

2
e

1
p�1a�1

� �2p�2
p

w
�2pþ4

p r
pþ2
p

0 ; ð24Þ

and the nondimensional propagation distance t and the transverse
distance c as

t ¼ r=r 0; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0V0k2c tM

q
qd : ð25Þ

Using equations (24) and (25), we may write (23) in nondimen-
sional form as

@

@t 0�2 þ itMwd

1

t2
@2

@c2
þ 1

c
@

@c

� �
0�2 þ tpcp

0�2 ¼ 0: ð26Þ

Additionally, introducing new parameters m and v as

m ¼ tMwdð Þp= pþ2ð Þt v ¼ tMwdð Þ� pþ1ð Þ= pþ2ð Þc; ð27Þ

we rewrite equation (26) as

@

@m 0�2 þ i
1

m2
@2

@v2
þ 1

v

@

@v

� �
0�2 þ mpv p

0�2 ¼ 0: ð28Þ

For the case p = 2, we can get an analytical solution of equation
(26). Substituting the solution into equation (12), we get analytical
solution for ISD at a distance r0 as

Î0 r 0; tð Þ ¼ 1

4p r20
H t � r 0

V0

� �
p2

2tM

�
X1
n¼1

�1ð Þnþ1
n2exp � n2p2 t � r0=V0ð Þ

4tM

� �
ð29Þ

for p = 2, where H(t) is a step function. Representation (29) is the
same as the solution for random media characterized by a
Gaussian ACF, except for the definition of characteristic time,

Figure 8. Temporal change in ISD for three different frequencies at a distance r0 = 100 km for von Kármán-type
random media without attenuation. High-frequency envelopes are more broaden than low-frequency ones in the case
of k = 0.1 and k = 0.5. For k = 0.1, envelope becomes independent of frequency.

Figure 9. Temporal change in ISD at r0 = 150 km at the 6 Hz
band for different values of b in the presence of attenuation. Each
trace is normalized by the maximum amplitude.
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which was originally solved by Shishov [1974] (see Appendix B).
For the case p 6¼ 2 it is difficult to solve equation (28) analytically.
We can numerically solve equation (28) under the initial condition

0�2(v, m = 0) = 1/4p. We use the Crank-Nicholson method [Press
et al., 1987], where m is developed by 0.01 step and the interval in
the v space (0, 10) is divided into 600 segments. Then we
transform 0�2(v, m) into 0�2(c,t; tMwd). Figure 6 shows resultant

0�2(c = 0, t = 1; tMwd) for various p values. We numerically
simulate the ISD for different p values using the Fourier transform of

0�2 with respect to tMwd. Synthesized ISDs for various p values are
illustrated in Figure 7 after the correction of geometrical spreading.
Reduced time t � r0/V0 is scaled by characteristic time tM. We see
that envelope ‘‘shape’’ for larger p has apparently longer duration in
the scaled time in Figure 7 but note that we need to take not only
envelope shape but also characteristic time tM (equation (24)) into
account when we evaluate envelope duration in time.

2.2.3. Travel distance dependence and wave frequency
dependence of ISD. [13] In the definition of characteristic time
(see equation (24)) the power of travel distance is 1 + 2/p, and p
increases with k (see Figure 5). It means that the travel distance
dependence of the ISD is strong when the inhomogeneity spectra
have rich short-wavelength components (small k), while the
dependence is weak when the spectra have poor short-wavelength
components (large k). The power of angular frequency is �2 + 4/p.
This means that there is no frequency dependence of ISD for the case
p = 2, that is, poor in short-wavelength component (k� 1.0). On the
other hand, the frequency dependence increases as short-wavelength
components of random media increase (k or p value decreases). As
an example, Figure 8 shows the frequency dependence of the ISD at
r0 = 100 km for various k values, where e = 0.05, a = 5 km, V0 = 4
km/s. For randommedia with k = 0.1 the envelope strongly depends
on frequency. High-frequency envelopes are more broaden than
low-frequency ones. For random media with k = 0.5, which have
less short-wavelength components, the frequency dependence
becomes weak, and for k = 1.0 the envelope is independent of
frequency. Previous studies [Sato, 1989; Scherbaum and Sato,
1991; Obara and Sato, 1995] mentioned that the frequency
independence of envelope broadening is the result of a Gaussian
ACF. However, our result indicates that the frequency
independence is not proper to the Gaussian ACF random media,
and the envelope broadening becomes independent of frequency
even for von Kármán-type random media when short-wavelength
components are poor as k � 1.0.

2.2.4. Contribution of intrinsic absorption and large-angle
scattering. [14] In the model we developed above, we have

neglected attenuation due to intrinsic absorption and large-angle
scattering due to small-scale inhomogeneity. Large-angle scattering
works mainly as attenuation in early part of envelopes. To include
the attenuation due to large-angle scattering and also intrinsic
absorption, we phenomenologically multiply exp (�bt) to the
ISD Î0 as

Î0 r; t;wcð Þe�bt; ð30Þ

where the relation between attenuation coefficient b and quality
factor Q is

b ¼ 2p f Q�1: ð31Þ

For frequencies higher than 1 Hz we assume that b takes a constant
value, since Q for S waves is nearly proportional to wave
frequency f in the lithosphere [Sato, 1984]. Figure 9 shows the ISD
at r0 = 150 km in the 6-Hz band for different values of b. Each
envelope, normalized by the maximum amplitude, is calculated for
k = 0.5, e = 0.05, a = 5 km, V0 = 4 km/s. Figure 9 shows that the
envelope duration decreases with increasing attenuation (large b)
because amplitudes attenuate more rapidly with increasing lapse
time.

3. Estimation of the Power Spectra of
Random Inhomogeneity

[15] For random media having rich short-wavelength compo-
nents our model would fail to predict the later part of envelope, or

Table 2. List of Coefficients Aq and Bq in Equation (32) for 0.5

s < tq < 30 s

b Aq Bq

p = 1.2
0 �0.222 1

0.045 �0.180 0.858
0.09 �0.144 0.752
0.18 �0.101 0.620
0.36 �0.153 0.581

p = 1.4
0 �0.132 1

0.045 �0.103 0.872
0.09 �0.088 0.790
0.18 �0.057 0.662
0.36 �0.104 0.624

p = 1.6
0 �0.070 1

0.045 �0.058 0.901
0.09 �0.052 0.829
0.18 �0.016 0.705
0.36 �0.049 0.650

p = 1.8
0 �0.022 1

0.045 �0.011 0.907
0.09 �0.013 0.855
0.18 �0.005 0.754
0.36 �0.026 0.684

p = 2.0
0 0. 016 1

0.045 0.022 0.925
0.09 0.025 0.862
0.18 0.026 0.781
0.36 0.007 0.711

Figure 10. Duration tq is defined as the time lag between the
onset and the time when the root-mean-square (RMS) envelope
decays to the half of the maximum value.
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coda, because the parabolic approximation neglect large-angle
scattering. Therefore we will focus on the early part of envelope
characterized by its duration as follows. The duration tq is defined
as the time lag between the onset time and the time when RMS
envelope decays to the half of the maximum amplitude (Figure 10).
That is, the ISD decays to the quarter of the maximum peak value.
The duration can be used as a measure of inhomogeneity from
recorded wave traces. First, we show a theoretical relation between
tq value and the inhomogeneity parameters, and then we develop a
method for estimating the inhomogeneity from measured tq values
of S wave seismogram envelopes of small earthquakes.

3.1. Relation Between Envelope Duration and Parameters
Characterizing Random Media

[16] We plot tq against tM from the ISD numerically simulated
for a given set of b and p values. Assuming

log tq ¼ Aq p; bð Þ þ Bq p; bð Þlog tM ; ð32Þ

we estimate Aq and Bq values by using the least squares method for
different sets of b and p values in the tq range from 0.5 to 30 s (see
Table 2). For examples, plots for the cases of p = 2 for various b
values are shown in Figure 11. For small b values, the relation
between tq and tM is well represented by equation (32) for a wide
range of tq. Equation (32) will provide a simple relation between tq
and random media parameters as follows.
[17] Substituting tM of equation (24) into (32), we get a relation

between tq and parameters characterizing random media:

log tq ¼ Bqr p; bð Þlog r 0 þ Bq f p; bð Þlogf

þBq p; bð ÞD p; e; að Þ þ Aq p; bð Þ; ð33Þ

where coefficients are

Bqr p; bð Þ ¼ Bq p; bð Þ pþ 2

p
; Bqf p; bð Þ ¼ Bq p; bð Þ�2pþ 4

p
;

D p; e; að Þ ¼ log
C k pð Þ½ �

2
p

2
2pð Þ

�2pþ4
p V

p�4
p

0 e
2

p�1a�1
� �2p�2

p

" #
: ð34Þ

In the following, we use the dimension of each parameter as
follows: r0 in km, f in Hz, V0 in km s�1, a in km, and b in s�1. From
equation (34) we can get a relation between Bqr and Bqf for various b
and p(k) values as plotted by fine dashed lines in Figure 12. It shows
that Bqr values, which represent the dependence of tq on r0, decrease
with increasing b values, and Bqf values, which represent the
dependence of tq on f, decrease with increasing p(k) values. In
Figure 13 we plot tq against r0 for several sets of b and f values as
examples for the case of V0 = 4 km s�1, a = 5 km, e = 0.05, and
k = 0.3. The gradient Bqr becomes smaller with increasing

Figure 11. Plots of envelope duration tq (dots) against characteristic time tM in the case p = 2 for various attenuation
coefficients b. The solid line is the regression line given by equation (32).

Figure 12. Dashed lines show the relation between Bqr and Bqf

for various b and p(k) values numerically calculated. Star
indicates the average observed values in northeastern Honshu,
Japan, �Bqr

obs = 1.79 and �Bq f
obs = 0.08. The hatched area

corresponds to the range evaluated from the square root of
variances, 1.66 < Bqr < 1.89 and �0.24 < Bqf < 0.40.
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attenuation coefficient b for the same frequency band. The
duration tq becomes larger with increasing frequency for the same
b value.

3.2. Estimation of Random Inhomogeneity Parameters From
the Measurements of tq Values

[18] Considering the travel distance dependence and the fre-
quency dependence of envelope durations, we estimate the param-
eters of the random media as follows. At step 1 we investigate how
tq depends on r0. Plotting tq values against hypocentral distance r0
for many events in each wave frequency band, we get the best fit
regression line:

log tq ¼ Aobs
qf þ Bobs

qf log r 0: ð35Þ

We calculate �Bqf
obs by averaging Bqf

obs over all frequency bands. At
step 2 we investigate how tq values depend on frequency f. Plotting
tq values against f for each event, we get the best fit regression line:

log tq ¼ Aobs
qf þ Bobs

qf log f : ð36Þ

We calculate �Bqf
obs by averaging Bqr

obs over all events. At step 3 we
estimate parameters b and p from �Bqr

obs and �Bqf
obs using the

theoretical relation between Bqr and Bqf in Figure 12. Then the
order k is estimated from p value using the relation in Figure 5. At
step 4 we estimate e2/(Pest�1)a�1, so that the theoretical relation
(33) agrees with the observed regression line (35) where pest is
the estimated p value in step 3.

4. Analysis of Observed S Wave Seismogram
Envelopes

4.1. Data

[19] Applying the method developed above to S wave seismo-
grams of small earthquakes, we estimate the PSDF of random
inhomogeneity of lithosphere beneath northeastern Honshu, Japan.
The data we use are velocity seismograms recorded at the Tsuyama
station (TYM) located at northeastern Honshu, Japan (38.66
N,
141.37
E, altitude 100 m) (see Figure 14), where a broadband
seismometer STS-2 is installed on hard rock. Seismograms are
digitized with the sampling frequency of 80 Hz. We selected events
for the analysis by the following criteria: the focal depth is deeper
than 35 km to avoid crustal reflections, and the magnitude is from
3 to 5 to satisfy the condition that the source duration time is short
enough. Figure 14 shows the hypocenter distribution of 328
earthquakes that we used. Station TYM is shown by a triangle.
Hypocenter locations were automatically determined by the
Research Center for Prediction of Earthquakes and Volcanic
Eruptions, Tohoku University. Hypocentral distances analyzed in
this study range from 60 to 400 km.

[20] Velocity seismograms in transverse component are calcu-
lated from two horizontal component seismograms. Then we make
band-pass-filtered traces for four octave width frequency bands 2–
4, 4– 8, 8–16, and 16– 32 Hz. Squared band-pass-filtered traces
are smoothed by applying a moving time window of which the
width is one half of the center period of each frequency band. We
refer to the square root of these traces as RMS envelopes. Except
for studies on backscattered coda waves and well log data in the
shallow crust, many researches reported that the correlation dis-
tance ranges larger than a 10-km as shown in Figure 1 of Wu and
Aki [1988]. Therefore we may apply the envelope model developed

Figure 13. Plots of tq against r0 for different values of b for V0 = 4 km s�1, a = 5 km, e = 0.05, k = 0.3: (a) f = 3 Hz,
(b) f = 6 Hz, (c) f = 12 Hz, and (d) f = 24 Hz.

Figure 14. Distribution of 328 small earthquakes that were
observed at station TYM (triangle) in northeastern Honshu, Japan.
Hypocenter locations were automatically determined by the
Research Center for Prediction of Earthquakes and Volcanic
Eruptions, Tohoku University.
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in this study to S waveform data in our frequency ranges. Figure 15
shows an example of records and RMS envelopes of an earthquake
(M4.4, 37.00
N, 141.11
E, depth 78 km). Upper three traces are
velocity seismograms for vertical, radial, and transverse compo-
nents. The lower five traces are RMS envelopes of transverse
component for frequency bands, 1– 32, 2– 4, 4–8, 8– 16, and
16–32 Hz. Dashed vertical line shows the S wave onset time. We
manually read the onset time and the time when the RMS envelope
decays to the half of the peak value (solid triangle) for each
frequency band. The lag time shown by a horizontal arrow
represents the envelope duration tq.

4.2. Results

[21] Following the procedure given in section 3.2, we estimate
the von Kármán’s parameters and attenuation coefficient.
[22] For step 1, in Figure 16, triangles show plots of observed

envelope duration tq against hypocentral distance r0 in logarithmic
scale for each frequency band, where dashed lines are regression
lines. These plots show that tq increases with increasing r0 as
predicted by our model. Regression coefficients Aqr

obs and Bqr
obs and

their square root of variances are given at the right bottom of each
bin, where STD is the standard deviation of observed data from the
regression line. The average value of Bqr

obs over all frequency bands
is �Bqr

obs = 1.79. We evaluate the range of Bqr
obs from 1.66 to 1.89,

taking the square root of variances for all frequency bands into
consideration.
[23] In step 2, we investigate the relation between envelope

duration tq and wave frequency f by calculating regression line
(36) for each event. The histogram of Bqf

obs is plotted in Figure 17.
The average value of Bqf

obs over all events is �Bqf
obs = 0.08 and its

standard deviation is 0.32.
[24] In step 3, we estimate b and k from �Bqr

obs = 1.79 and
�Bqf
obs = 0.08. In Figure 12 the star indicates observed �Bqr

obs and �Bqf
obs

values, and the hatched area corresponds to their variation range,
1.66 < �Bqr

obs < 1.89 and �0.24 < �Bqf
obs<0.40. From this plot we

estimate that pest = 1.9 and best = 0.06 s�1. The pest value obtained

corresponds to kest = 0.6. The ranges of parameters here estimated
are roughly k > 0.3 and 0.02 s�1 < b < 0.18 s�1.
[25] In step 4, by using the value kest = 0.6 ( pest = 1.9), we

estimate e2/(Pest�1)a�1 as 10�3.52 [km�1], 10�3.61 [km�1], 10�3.61

[km�1], and 10�3.53 [km�1] for frequency bands 2–4, 4–8, 8–16,
and 16–32 Hz, respectively, under the assumption of V0 = 4 km
s�1. Taking average over all frequency bands, we get e2.2a�1 �
10�3.57 km�1. We cannot delimit the variation range of the
parameter e2/(Pest�1)a�1 because the maximum value of k is not
well constrained in our data set.
[26] In summary, best estimates of model parameters are

e2.2a�1 � 10�3.57 [km�1], b = 0.06 [s�1] (Qs
�1 = 0.0095f �1) and

k = 0.6. Our method cannot estimate e and a independently.
Considering the approximation range e � 1 and ka � 1, we can
choose e and a as (e, a) = (0.051, 5 km), (0.070, 10 km), and (0.096,
20 km), for example. Substituting these parameters of von Kármán-
type ACF into equation (16), we plot the PSDF (solid bold line) in
Figure 18. In that case the asymptote of the PSDF for large wave
numbers becomes P(m)� 0.01m�4.2. Substituting estimated param-
eters into equation (33), we get the relation between tq [s], r0 [km],
and f [Hz] as

log tq ¼ 1:82 log r 0 þ 0:09 log f � 3:43: ð37Þ

Solid lines in Figure 16 show the theoretical predictions from
equation (37). We see that the theoretical predictions and the
observed regression lines are in good agreement for all frequency
bands.

5. Discussion

[27] In previous studies [Sato, 1989; Scherbaum and Sato,
1991; Obara and Sato, 1995], observed S wave envelopes of
small earthquakes were analyzed on the basis of a theoretical
envelope model for plane waves. In the analysis of this paper we
used the theoretical envelope model for spherically outgoing waves

Figure 15. Example of observed seismogram at TYM. Upper three traces are raw velocity seismograms. Lower five
traces are transverse component RMS envelopes for frequency bands 1–32, 2– 4, 4–8, 8–16, and 16–32 Hz. The
vertical dashed line shows the S wave onset time, and each triangle shows the time when RMS amplitude decays to
the half of the maximum amplitude for each frequency band.
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radiated from a point source, which accurately represents a geo-
metrical spreading effect in 3-D media. We examine the difference
between the envelopes derived from above two models. The solid
curve in Figure 19 shows ISD, which correspond to the MS
envelope, of spherically outgoing waves in random media charac-
terized by a Gaussian ACF without attenuation, where the charac-
teristic time tM =

ffiffiffi
p

p
e2r0

2 /(2V0a). The exact derivation is given in
Appendix B. The envelope duration tq � 1.05tM for ISD of
spherically outgoing waves, while tq � 3.11tM for ISD of plane
waves as drawn by a dashed curve [after Sato, 1989]. We may say
that the envelope duration of spherically outgoing waves is about
1/3 as long as that of plane waves for a given randomness. It means
that the ratio e2/a estimated from observed envelope durations

based on the plane wave model is systematically underestimated.
Such a difference in envelope durations occurs for von Kármán-
type random media as well.
[28] Our observational results show that the frequency depend-

ence of envelopes is weak but clear, as shown in Figure 17. In the
case of random media having Gaussian ACF, envelopes are
independent of wave frequency. Envelopes for von Kármán-type
random media change with wave frequency. Observed envelopes,
in general, change with wave frequency as was reported by Obara
and Sato [1995]. They introduce parameter p [Obara and Sato,
1995, equation (3)] to generalize an exponential function for the
longitudinal integral of ACF to represent the frequency dependence
of envelopes; however, they could not derive the corresponding

Figure 16. Plots of envelope duration tq observed (triangle) against hypocentral distance r0 in logarithmic scale.
Dashed lines are regression lines given by equation (35). Regression coefficients Aqr

obs and Bqr
obs and standard

deviation of observed data from each regression line are shown at the right bottom. Solid lines are theoretically
predicted by our model equation (37).
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ACF. Our formulation succeeded in relating p value with the order
k of von Kármán-type ACF by using both analytical and numerical
simulations (see Figure 5). We note that p(k) and C(k) values
estimated in equation (20) slightly vary when we choose a different
x range. The variation of these values estimated from different x
ranges is the largest around k = 0.5. For example, when k = 0.5, the
p value is 1.80 for the range 10�5 � 10�1, while the p value is 1.85
for the range 10�3 � 10�1. As examples, we plot RMS envelopes
at 8 Hz at distance 150 km for different choices of x range in
Figure 20, where we take V0 = 4 km s�1, e = 0.05, and a = 5 km.
The scatter of these traces is within 3% of the maximum peak, and

the scatter of measured envelope duration tq is within 10% error.
The variation of p(k) and C(k) depending on the x range means that
both frequency and travel distance dependencies of envelope
broadening slightly vary with travel distance. However, the differ-
ence is very small in synthesized envelopes.
[29] We cannot estimate independently parameters e, a, and k

characterizing PSDF of random media, so that we cannot
measure the corner of PSDF curve that corresponds to the
reciprocal of the correlation distance. However, the PSDFs in
high wave numbers (beyond the corner wave number) take
almost the same value for possible combinations of e and a as
shown in Figure 18. That is, we cannot discuss the corner, but

Figure 17. Histogram of Bqf
obs for all events. The average of Bqf

obs

is 0.08, and its standard deviation is 0.32.

Figure 18. Plots of two von Kármán-type PSDFs estimated in
northeastern Honshu, Japan (solid curves): (e, a, k) = (0.051, 5 km,
0.6), (0.070, 10 km, 0.6) and (0.096, 20 km, 0.6). Dashed curve
shows the PSDF estimated from the frequency dependence of S
wave attenuation and coda excitation by Sato [1990] (e = 0.08, a =
2.1 km, k = 0.35) as a reference. The vertical dashed line shows
twice the maximum wave frequency used in this study.

Figure 19. Comparison of the ISD for spherically outgoing
waves (solid curve) and that for plane waves (dashed curve) in 3-D
random media characterized by a Gaussian ACF without
attenuation. Each trace is normalized by the peak value.

Figure 20. RMS envelopes for different approximation forms of
B(x) for k = 0.5.
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we can discuss the power index and the level of PSDF for high
wave numbers. In the Born approximation [see Sato and Fehler,
1998] the maximum wave number contributing to scattering
amplitudes is twice the incident wave number. The corresponding
frequency, which is twice the maximum wave frequency 32 Hz,
is shown by the vertical dotted line in Figure 18. Our estimation
of the power index is �4.2 (k = 0.6) and its variation range is
less than �3.6 (k > 0.3). Gusev and Abubakirov [1996] concluded
that the power index of PSDF to be �3.5 � �4 for explaining
qualitative character of observed envelopes. Our result is consistent
with their results. There have been a few studies on the estimation of
von Kármán’s parameters in Japan. From the analysis of frequency
dependence of attenuation as scattering loss and coda excitation in
the lithosphere, Sato [1990] estimated as e = 0.08, a = 2.1 [km], and
k = 0.35. The estimated PSDFs from these values are also shown by
the dashed curve in Figure 18 with our results. Our PSDF contains
less short-wavelength components than that of Sato [1990]. One
reason for the difference might come from the difference of the
envelope models: this study assumed multiple forward scattering
discarding backscattering and analyzed early part of envelopes,
while Sato [1990]assumed single scattering of elastic waves and
examined frequency dependencies of both attenuation and coda
excitation.
[30] In this study, we included the contribution of large-angle

scattering only as an attenuation factor in equation (30). Large-
angle scattering, however, would cause not only attenuation of the
early part of envelope but also later coda excitation. It also has
small influence on envelope broadening. We will have to include
such a contribution of large-angle scattering because of short-
wavelength inhomogeneities in the envelope synthesis in future.
We will measure how large-angle scattering contributes to seismo-
gram envelopes in von Kármán-type random media by comparing
envelopes of finite difference simulations and those of the Markov
approximation method. For more precise modeling of seismogram
envelopes from onset to later coda, we need to take not only
forward scattering but also large-angle scattering into account. We
will be able to establish this task by combining the Markov
approximation method and the radiative transfer theory.

6. Conclusion

[31] Using the Markov approximation for the parabolic wave
equation, we theoretically derived the MS envelope of spherically
outgoing scalar waves radiated from a point source in 3-D random
media characterized by a von Kármán-type ACF. This model
predicts that the envelope duration is proportional to the second
to third power of travel distance and is proportional to the zeroth to
second power of wave frequency. When the short-wavelength
components are rich in random media, the envelope duration
increases with both distance and frequency, while the duration is
independent of frequency and is proportional to the square of travel
distance when the random inhomogeneity is poor in short-wave-
length components. We note that the frequency independence of
envelope duration is not a unique consequence of Gaussian ACF,
as was suggested in previous studies. For modeling the early part
of envelope more realistically, the attenuation coefficient b was
phenomenologically introduced as a sum of large-angle scattering
loss and intrinsic absorption. On the basis of the theoretical model
we established a method for estimating parameters characterizing
random media by analyzing the travel distance dependence and
wave frequency dependence of envelope durations. Applying this
method to S wave envelopes of 328 small earthquakes recorded at a
single station in northeastern Honshu, Japan, we estimated the
PSDF of the random inhomogeneity of the lithosphere for the
frequency range from 2 to 32 Hz. A positive correlation between
the envelope duration and travel distance was confirmed as
predicted, and the parameters are estimated as k = 0.6, e2.2a�1 �
10�3.57 [km�1], and b = 0.06 [s�1] (Qs

�1 = 0.0095f �1). In that

case, the power law portion of the estimated PSDF becomes P(m)
� 0.01m�4.2 [km3].

Appendix A: Derivation of the Differential
Equation for Two-Frequency Mutual Coherence
Function

[32] For spherically outgoing scalar waves in 3-D random
media the differential equation for two-frequency mutual coher-
ence function (TMCF) was given by Shishov [1974]. Here we
reproduce the derivation of the differential equation.
[33] Taking an ensemble average of a product of wave fields

governed by equation (6), we obtain

2i
@

@r
�2 þ

1

r2
�?1

k1
��?2

k2

� �
�2 � 2 k1x1 � k2x2ð ÞU1U2

*
D E

¼ 0:

ðA1Þ

Here subscript i means that arguments are (r, qi, fi, wi), �?i is the
angular part of Laplacian for qi and fi, and ki = wi/V0 for i = 1 and 2.
The last term can be rewritten by using the longitudinal integral of
ACF along the global ray from the source to the receiver A(r?d)
and TMCF:

k1x1 � k2x2ð ÞU1U2
*

D E
¼ � i

2
k21 þ k22
� 	

A 0ð Þ � 2k1k2A r?dð Þ
� �

�2:

ðA2Þ

The procedure to derive equation (A2) is the same as in the case of
plane waves [see Sato and Fehler, 1998, equation (8.54)]. Then,
equation (A1) is written as

2i
@

@r
�2 þ

1

r2
�?1

k1
��?2

k2

� �
�2

þ i k21 þ k22
� 	

A 0ð Þ � 2k1k2A r?dð Þ
� �

�2 ¼ 0: ðA3Þ

For scattering within a small angle around the receiver direction,
Laplacian for qi and fi can be written as

�?i �
1

qi

@

@ qi
qi

@

@ qi

� �
þ 1

q2i

@

@f2
i

qi � 1: ðA4Þ

Interpreting qi and fi as polar coordinates on the transverse plane
and introducing nondimensional Cartesian coordinates:

hxi ¼ qi cosfi; hyi ¼ qi sinfi; ðA5Þ

we rewrite equation (A4) as

�?i ¼
@2

@ h2xi
þ @2

@ h2yi
qi � 1: ðA6Þ

Introducing center-of-mass and difference coordinates for two
points at Hi = (h xi, h yi) on the transverse plane

Hc ¼ H1 þ H2ð Þ=2; Hd ¼ H1 � H2; ðA7Þ

we can write equation (A4) as

�?1 ¼
1

4
r?c þr?cr?d þ�?d ;

�?2 ¼
1

4
r?c �r?cr?d þ�?d ;

ðA8Þ

SAITO ET AL.: ENVELOPE BROADENING IN RANDOM MEDIA ESE 3 - 13



where r?c and �?c are for Hc, and r?d and �?d are for Hd.
Laplacian for Hd is written by using polar coordinates (qd, fd)
as

�?d ¼
1

qd

@

@ qd
qd

@

@ qd

� �
þ 1

q2d

@2

@f2
d

: ðA9Þ

The dimensional difference of two points on the transverse
plane r?d = r?d is written as

r?d ¼ r qd � ðA10Þ

We note that �2 is independent of center-of-mass coordinate hc
and angle fd because random media is statistically homo-
geneous and isotropic: �c�2 = 0 and @�2/@fd = 0. For the case
of quasi-monochromatic waves (k1 � k2), we may write
equation (A3) as

@

@r
�2 þ i

kd

2k2c

1

r2
@2

@ q2d
þ 1

qd

@

@ qd

 !
�2

þ k2c A 0ð Þ � A r qdð Þ½ ��2 þ
k2d
2
A 0ð Þ�2 ¼ 0; ðA11Þ

where kc = (k1 + k2)/2 and kd = k1 � k2. This is the master
equation for TMCF.

Appendix B: MS Envelopes in Random Media
Having Gaussian ACF

[34] For spherically outgoing waves in 3-D random media
having Gaussian ACF, analytical representation of intensity spec-
tral density (ISD) was first obtained by Shishov [1974]. Here we
reproduce the derivation in the following. The Gaussian ACF is
given by

R xð Þ ¼ e2exp �r2
�
a2

� 	
: ðB1Þ

Its longitudinal integral A (see equation (9)) becomes

A r?dð Þ ¼
ffiffiffi
p

p
e2ae�r2?d=a

2 �
ffiffiffi
p

p
e2a 1� r?d=að Þ2
n o

r?d � a:

ðB2Þ

Substituting equation (B2) in (10), we get the differential equation
for 0�2 as
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for qd � 1. Introducing the characteristic time as

tM ¼
ffiffiffi
p

p
e2a

2V0

r 0

a

� �2
; ðB4Þ

nondimensional propagation distance t and the transverse distance
c as given by equation (25), we get a nondimensional form of
equation (B3) as

@

@t 0�2 þ itMwd

1

t2
@

@c2
þ 1

c
@

@c

� �
0�2 þ t2c2

0�2 ¼ 0: ðB5Þ

Writing the solution a priori in the form as

0�2 c; tð Þ ¼ ev tð Þt2c2

w tð Þ ðB6Þ

and substituting it into equation (B5), we get two different
equations:

v0 þ 2v

t
þ s20v

2 þ 1 ¼ 0; ðB7Þ

s20v�
w0

w
¼ 0; ðB8Þ

where s0 = 2eip/4
ffiffiffiffiffiffiffiffiffiffi
tMwd

p
. Equation (B7) is a Riccati equation.

Solutions of these equations are

v ¼ 1

s0
cot s0tþ c1ð Þ � 1

s20t
; ðB9Þ

w ¼ c2 sin s0tþ c1ð Þ
s0t

: ðB10Þ

Under the initial condition (13), we obtain the analytical solution

0�2 ¼
1

4p
s0t

sin s0t
exp

t2

s0
cot s0t�

t
s20

� �
c2

� �
: ðB11Þ

Substituting equation (B11) into (12), we obtain the ISD at a
distance r0 as

Î0 r0; t;wcð Þ¼ 1

2pr20

Z1
�1

0�2 t ¼ 1;c ¼ 0; tMwdð Þe�iwd t�r0=V0ð Þdwd

¼ 1

2pr20

Z1
�1

1

4p
2eip=4

ffiffiffiffiffiffiffiffiffiffi
tMwd

p

sin 2eip=4
ffiffiffiffiffiffiffiffiffiffi
tMwd

p
f g

e
�iwd t�r0=V0ð Þ

dwd

Figure B1. Temporal change in ISD for spherically outgoing
waves in random media characterized by a Gaussian ACF without
attenuation, where the characteristic time is tM = (

ffiffiffi
p

p
e2r20)/2V0a.
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¼ 1

4pr20
H t � r0

V0

� �
p2

2tM

X1
n¼1

�1ð Þnþ1
n2e

�n2 r2 t�r0=V0ð Þ
4tM

ðB12Þ

where H(t) is a step function. This analytic representation is given
by equation (34) of Shishov [1974]. Figure B1 shows the temporal
change in the ISD.
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[1] In the paper ‘‘Envelope broadening of spherically
outgoing waves in three-dimensional random media having
power law spectra’’ by Tatsuhiko Saito, Haruo Sato, and
Masakazu Ohtake (Journal of Geophysical Research,
107(B5), 10.1029/2001JB000264, 2002), equations (11),
(22a), (22b), (35), (36) and (B12) contained typographical
errors.

1. Equation (11)

[2] On the right-hand side of the second part of equation
(11), qd is mistyped and the integration symbol should be
corrected as follows:

I0 r; tð Þ � hu r; r?; tð Þu� r; r?; tð Þi

¼ 1

ð2pÞ2
1

r2

Z1

1

Z1

1

dwd dwc

� 0�2 �d ¼ 0; r;wd;wcð Þe
iwd t
r=V0ð Þ

¼ 1

2p

Z1

1

dwcÎ0 r; t;wcð Þ: ð11Þ

2. Equations (22a) and (22b)

[3] The corrected version of equations (22a) and (22b) is
as follows:

B
r?d

a
; k

� �
� 2
kþ1

2p
3
2

� kð Þcos kp
2
k
1

2

� 3=2þ kð Þ
r?d

a

� �2kþ1

( )
ð22aÞ

B
r?d

a
; k

� �
� 2
kþ1

2p
3
2

� kð Þcos kp

2k


3
2

� 3=2
 kð Þ
r?d

a

� �2( )
ð22bÞ

3. Equations (35) and (36)

[4] The correct version of equations (35), (36), and terms
in the following text is as follows:

log tq ¼ Aobs
qr þ Bobs

qr log r0: ð35Þ

We calculate B obs
qr by averaging Bqr

obs over all frequency
bands. At step 2 we investigate how tq values depend on
frequency f. Plotting tq values against f for each event, we
get the best fit regression line,

log tq ¼ Aobs
qf þ Bobs

qf log f : ð36Þ

We calculate B obs
qf by averaging Bqf

obs over all events. At
step 3 we estimate parameters b and p from B obs

qr and
B obs

qf using the theoretical relation between Bqr and Bqf in
Figure 12.

4. Equation (B12)

[5] On the right-hand side of the third part of equation
(B12) the superscript of e is wrong. The correct version is as
follows:

Î0 r0; t;wcð Þ

¼ 1

2pr20

Z1

1

0�2 t ¼ 1;c ¼ 0; tMwdð Þ e
iwd t
r0=V0ð Þdwd

¼ 1

2pr20

Z1

1

1

4p
2eip=4

ffiffiffiffiffiffiffiffiffiffi
tMwd

p

sin 2eip=4
ffiffiffiffiffiffiffiffiffiffi
tMwd

p
f g

e
iwd t
r0=V0ð Þdwd

¼ 1

4pr20
H t 
 r0

V0

� �
p2

2tM

X1
n¼1


1ð Þnþ1
n2 e


n2p2 t
r0=V0ð Þ
4tM ðB12Þ
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