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[1] Although complex rheological models have been used to study the evolution of
orogenic wedges, many features of simple models remain to be fully explained. Here,
we analyze the plane strain evolution of model orogenic wedges under simple
boundary and rheological conditions. The uniform linear viscosity wedge is driven by
motion of a basal boundary at a constant velocity. Three main analysis techniques are
used: analytical (algebraic analysis of scales involved), semianalytical (thin sheet
approximation), and a complete numerical approach. Application of this variety of
approaches provides a better understanding of the underlying physics and outlines the
advantages and disadvantages of the different techniques. The evolution of wedges can
be divided into three phases. Initially, wedge growth is mainly vertical and
symmetrical and depends little on the viscosity. The second phase exhibits almost self-
similar growth with the appearance of surface extension, within an otherwise
compressional system, and development of asymmetry. The last phase involves
widening of wedge and further development of asymmetry and surface extension, the
average slope of wedge decreases during this phase. The Ramberg number, the ratio of
characteristic gravitational to shear stress, defines the duration of each phase. Several
parameters introduced here (mean surface slope, asymmetry of the wedge, surface
extension, and near-surface strain history) allow observations from natural wedges to
be linked to the bulk viscosity of the model wedges. Analysis shows that the thin
sheet approximation does not correctly describe the initial stages of wedge
evolution. INDEX TERMS: 8020 Structural Geology: Mechanics; 8102 Tectonophysics: Continental

contractional orogenic belts; 8122 Tectonophysics: Dynamics, gravity and tectonics; 8164 Tectonophysics:

Stresses—crust and lithosphere; KEYWORDS: orogenic wedge, thin-sheet approximation, numerical

modelling, scaling analysis, extension, contraction

1. Introduction

[2] The behavior of viscous models of the lithosphere in
the context of plate tectonic convergence provides some
insights into the dynamics of the growth of orogenic
wedges. In previous work, viscous material has been used
in analogue models [Buck and Sokoutis, 1994] and various
numerical [Ellis et al., 1995; Royden, 1996; Willett, 1999;
Shen et al., 2001] and analytical [Emerman and Turcotte,
1983; Platt, 1986, 1993, 2000; Buck and Sokoutis, 1994;
Ellis, 1996] investigations. Several interpretations based on
field studies of accretionary prisms emphasize the relevance
of the viscous model for the internal deformation of wedges
[Ring and Brandon, 1999; Feehan and Brandon, 1999].
Buck and Sokoutis [1994], Royden [1996], and Willett
[1999] demonstrated that a uniform linear-viscous orogenic
wedge can exhibit surface extension as the result of the
convergent basal boundary motion, which may explain

normal sense shear features of several orogenic zones (see
examples from Willett [1999]).
[3] Even though many studies have modeled the evolu-

tion of orogenic wedges using more complex rheologies
[e.g., Beaumont et al., 1994, 1996, 2000; Ellis et al., 1998],
some features of the underlying simple models remain
unclear. The purpose of present work is to improve our
understanding of the behavior of uniform linear viscous
wedges by identifying analytically the key parameters
controlling their growth.
[4] The boundary and initial conditions for the formation

of an asymmetric doubly-vergent wedge (Figure 1a) were
chosen for analysis owing to their simplicity and because
they are the same as those used by Buck and Sokoutis
[1994] and Willett [1999]. By choosing uniform linear
viscosity and time-invariant boundary conditions we limit
the problem to only a few free parameters listed in the first
part of Table 1.
[5] In simplifying the model some processes that accom-

pany orogenesis, such as isostasy and erosion, have been
neglected. The time range at which the approach can be
used is also limited. The boundary conditions chosen also
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preclude direct application of this model to accretionary
wedges, where a basal decollement and/or rear backstop
significantly influence the evolution [e.g., Platt, 1993].
Although the complexities of natural systems restrict direct
quantitative comparison with the model results, qualitative
similarities exist [e.g., Royden, 1996; Willett, 1999].
[6] We investigate the evolution of several wedge proper-

ties that can be compared directly to geological observations
and data, such as shape of the wedge (rate of growth,
average slopes, and asymmetry), and the instantaneous
and finite surface strains (Figure 1b and Table 1). Several
approaches are used for analysis and modeling:
1. Scaling analysis roughly estimates forces acting in the

system and the mass balance. Two analytical models are
presented in this work: AM1 (section 2.1) and AM2/AM2h
(section 3.4).
2. Details of the evolution cannot be obtained analyti-

cally; therefore numerical models are needed. The simplest
possible numerical model is based on the thin sheet
approximation, the SS approach (‘‘simple shear,’’ following
classification presented by Medvedev and Podladchikov
[1999a]). Although this approach has been used before to
describe orogenesis [Emerman and Turcotte, 1983; Lob-
kovsky and Kerchman, 1991; Buck and Sokoutis, 1994],
some new insights into this approach are discussed here
(section 2.2).
3. The results and conclusions based on the approximate

techniques listed above are tested by reference to a more
complete numerical model based on the finite element
approach containing the complete balance of forces, the PS
approach (‘‘plane strain’’ [Fullsack, 1995], section 2.3).

[7] Application of these different approaches not only
provides a better understanding the physical processes
controlling the evolution of wedges but also allows insight
into the limitations of different approaches. The main
emphasis here is on the SS approach, which is widely used
in geodynamics. However, the major simplifications
implicit in this method require a more systematic inves-
tigation of the consequent limitations and applicability than
has been done to date [Royden, 1996; Medvedev and
Podladchikov, 1999a, 1999b].
[8] The first part of the paper presents approaches used to

investigate the model. The second part concerns the evolu-
tion of wedge shape and classification of the different
phases of evolution. The third part presents the evolution
of surface strains and strain rates.

2. Methods

2.1. Analytical Model (AM1): Scaling Analysis

[9] The model described here is based on rough estima-
tions of forces and mass balance. The horizontal force
balance in the wedge for the case of a horizontal base and
stress-free upper surface is

�F1 þ F2 � Ft ¼ 0; ð1Þ

where the forces are shown on Figure 2. The forces in
equation (1) can be estimated from the bulk stresses in the
wedge:

F1 ¼
Z h0

0

sxxjx¼1dz � 1

2
rgh20;

F2 ¼
Z h0þ�h

0

sxxjx¼0
dz � 1

2
rg h0 þ�hð Þ2 þ 2m

V

l
eh; ð2Þ

Ft ¼
Z x1

0

sxzjz¼0
dx � 1

2
m
Veh l;

where indexed s denotes the components of the stress
tensor and eh = h0 + 0.5�h is the average thickness of the
wedge assuming a triangular geometry. The averaged
horizontal strain rate can be estimated as V/l, which is
then used to estimate the viscous part of F2.
[10] An estimation of basal shear stress used in the

expression for Ft is made as follows. First, the averaged
vertical variation of horizontal velocity was estimated as a
difference between basal velocity, V, and the average
velocity at the top surface of the prowedge (V/2). This
variation divided by averaged thickness of wedge, eh, and
multiplied by viscosity results in averaged shear stress in the
prowedge. As shear stress is zero at the top surface, the
shear stress along the base can be estimated as twice the
average.
[11] Substitution of equation (2) into equation (1) gives

rg�h
ehþ 2mV

eh
l
� 1

2
m
V leh ¼ 0;

or ð3Þ
Fg þ Fn � Ft ¼ 0;

Figure 1. (a) Basic wedge model. Initial and boundary
conditions include stress-free upper surface and basal
velocity, V(x), which is constant (V+ or V�) and has
singularity at x = 0. The base is horizontal and fixed. Lateral
boundaries extend beyond the deformation. Initial layer
thickness is h0, and layer material has constant vis-cosity, m,
and density, r (Table 1). (b) Deformed wedge. Length scale
of deformation, l, is divided to l+ and l� representing
scales for two sides of the wedge; wedge shape is measured
by thickness, h(x, t), and maximum uplift,�h = max (h� h0)
located at xmax. See Table 1 for other parameters.
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where Fg approximates the gravity forces acting in the
wedge (this term relates to the gradient of potential
energy [Jones et al., 1996]); Fn estimates the influence of
horizontal compressional viscous stresses in the system
due to advection of mass into the wedge; and Ft
represents shear stresses acting along the base of the
wedge. The dimensionless ratio, the Ramberg number
[after Ramberg, 1981; Weijemars and Schmeling, 1986],

Rm ¼ rgh20=mV ð4Þ

is used to relate gravitational stresses acting in the model
to the basal shear stress (see Table 1). Elsewhere, this
ratio was termed the Argand number in other basally
driven wedge problems [Buck and Sokoutis, 1994; Willett,
1999]. However, the Argand number was introduced by
England and McKenzie [1982] as ratio of gravitational
(buoyancy) to horizontal compressional stresses, not shear
stresses. Rm is used here to distinguish the difference in
the physics behind these numbers. To illustrate this
difference, we also construct the Argand number (Table 1)
according to the England and McKenzie [1982] defini-
tion, but it is related to a horizontal length scale l, which
cannot be readily estimated from the initial and/or
boundary conditions and in further developments we do
not refer to values of Ar.

[12] The range of values of Rm used in the further
analyses is illustrated in Table 2. Values of Rm higher
than 20 result in very wide wedges, while geological
situations with Rm lower than 1 are unlikely. We now
scale all parameters to be dimensionless using the scales

Table 1. Parameters of the Viscous Wedge Problem

Parameter Definition, Comments
SI Units

[Dimensional Scale]
Variations Analyzed
[Range of Results]

Setup Parameters
H* length scale, H* = h0 m 5–40 km
g acceleration due to gravity m/s2 10 m/s2

V* velocity, V* = abs(V+ � V�) m/s 0.1–4 cm/yr
m* viscosity Pa s 1020–1023Pa s
r* density kg/m3 (2�3.3) 	 103 kg/m3

Characteristic Values
s*g gravitational stress Pa r*gH*
s*t shear stress Pa m*V*/H*
s*n normal stress Pa m*V*/l
t* convergence time, time needed to converge the system by

horizontal distance of one characteristic length scale (H*)
s H*/V*

t*e evolution time (equation (12)) s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m*=r*gV*

p
Dimensionless Complexes

Rm = s*g/s*t Ramberg number, ratio of gravity to shear stresses (equation (4), Table 2) – 1–20
Ar = s*g/s*n Argand number, ratio of gravity to normal stresses – –

Variablesa

h(x, t) actual thickness of the layer (Figure 1b) [H*] [1–3]
L(t) width of zone of finite extension along the top surface (Figure 11b) [H*] [0–5]
t dimensional time [t*], [te*]

t0 = t/t* dimensionless time corresponding to the total convergence in units of
the initial thickness h0

– 0–30

t0e = t/t*e dimensionless time corresponding to stages of evolution (equation (12),
Figure 14)

– 0–30

V(x) basal velocity: V = 0 for x < 0 and V = �V* for x > 0 (Figure 1a) [V*] 0–V*
xmax(t) horizontal position of maximum uplift of wedge (Figure 7b) [H*] [0–1]ea(t) tangent of mean slope of wedge (equation (11), Figure 5) – [0–0.3]
�h(t) maximum uplift in the system, max(h � h0) (Figure 3b and 3d) [H*] [0–2]
e(x, t) surface strain, positive e indicates finite extension – [up to 100%]
e(i, t) strain evolution of certain, ith, Lagrangian element (Figure 12) – [up to 100%]
l width of wedge, horizontal length scale of deformation (equation (6)) [H*] [2–80]

l+(t), l�(t) widths of prowedge and retrowedge, l+ + l� = l (Figure 7a) [H*]
aDimensionless variables are marked by primes. They can be rescaled to dimensional equivalents by multiplying by the dimensional scales from this table.

Figure 2. Horizontal forces acting on the prowedge.
Wedge is assumed to be geometrically symmetric (l+ �
l� � l/2). Region x � x1 is undeformed; therefore no
viscous stresses contribute to force F1. Average thickness of
the wedge is eh � h0 + �h/2, and mean slope is ~a = �h/l+.
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presented in the Table 1. For example, the averaged thick-
ness of the wedge becomes eh0 = 1 + �0

h/2. Equation (3) then
becomes

Rm
�0

h

l0 þ 2

l0ð Þ2
� 1

2 eh0� �2 ¼ 0; ð5Þ

demonstrating the control of the force balance by Rm.
[13] Assuming that the wedge has a triangular shape, the

total mass balance can be expressed in dimensional and
[dimensionless] forms:

�hl=2 � tVh0; �0
hl

0=2 � t0
� �

ð6Þ

where dimensionless time t0 characterizes the amount of
advected material (see Table 1). The system of equations
(5) and (6) for the first analytical model, AM1, has two
unknowns, l(t) and �h(t) that can be calculated analyti-
cally and used to predict the evolution of the most general
properties such as height and width of the wedge, and
averaged forces acting in the wedge (see section 3.3 and
section 4.2). The main limitation of AM1 is that the
geometry and boundary conditions are symmetric about
x = 0.

2.2. Thin Sheet Approximation (Model SS):
Semianalytical Approach

[14] Semianalytical methods used to investigate the evo-
lution of a wedge include so-called thin sheet approxima-
tions. These models attempt to calculate analytically the
vertical distributions of stresses based on the geometric
assumption that the ratio of the vertical to horizontal length
scales in the model is small.
[15] The SS (‘‘simple shear’’) approach is based on the

lubrication approximation to the Stokes equations. Applied
to the problem of this work, Stokes equations of motion in
dimensionless form give

Rm
@P 0

@x 0
� @2v 0x

@ z 0ð Þ2
� @2v 0x

@ x 0ð Þ2

" #
¼ 0

Rm
@p0

@z0
þ 1

� �
� @2v 0z

@ x 0ð Þ2
þ @2v 0z

@ z 0ð Þ2

" #
¼ 0;

ð7Þ

where primes indicate dimensionless values (Table 1), P is
the pressure, and vx(x, z) and vz(x, z) are horizontal and
vertical velocities. Scaling the mass forces (rg) in the second
equation results in the ‘‘1.’’ The SS approach assumes that
variations in the horizontal direction are much smaller than
in the vertical direction and that the vertical velocity is
smaller than horizontal velocity. This results in neglecting

the terms in brackets, which means neglecting the normal
viscous stresses in the horizontal balance of forces and
assuming pressure to be lithostatic (see complete asymptotic
analysis by Zanemonetz et al. [1976]; Lobkovsky and
Kerchman [1991]; Medvedev [1993]; and Medvedev and
Podladchikov [1999b]). After omitting terms in brackets,
equations (7) represent the lubrication approximation
[Schlichting, 1979; Emerman and Turcotte, 1983]. Integra-
tion of the simplified equations (7) gives a parabolic
variation of horizontal velocity with depth:

v0x x0; z0ð Þ ¼ V 0 � Rm
z0 2h0 � z0ð Þ

2

@h0

@x0
; ð8Þ

see Table 1 for definition of terms. Combining the integrated
velocity profile with mass conservation results in a simple
description of wedge evolution by a single equation [e.g.,
Buck and Sokoutis, 1994]:

@h0

@t0
þ @

@x0
V 0h0ð Þ � Rm

@

@x0
h0ð Þ3

3

@h0

@x0

 !
¼ 0: ð9Þ

Note that the form of the SS approach presented by
equations (8) and (9) assumes a fixed, flat base (z = 0).
The essence of the physics behind this approach is that the
gravitational spreading of the wedge is balanced by the shear
stress in the layer.
[16] Our analytical model AM1 (section 2.1, equation

(5)) includes three types of forces in the balance; gravita-
tional, normal viscous, and shear viscous. The SS approach
neglects normal viscous stresses. Thus AM1 can be recog-
nized as more complete qualitatively but cannot handle any
detailed analysis. Numerical treatment based on the SS
approach can give detailed results, but the implications of
the assumptions behind this approach should be tested. The
SS approximation is believed to be acceptable if the
horizontal length scale of the problem is much greater than
the vertical scale [Zanemonetz et al., 1976; Medvedev,
1993]. In the next sections we will investigate the accuracy
of this assumption.

2.3. Numerical Approach: Plane Strain Finite Element
Method (PS)

[17] This method is based on the finite element discreti-
zation of the complete balance of forces, its formulation
does not imply any simplifying assumptions. Therefore this
method is used as a reference, and all our conclusions have
been tested against this approach.
[18] The numerical code involves an arbitrary Lagran-

gian-Eulerian formulation. The finite element calculation of
velocities is performed on an Eulerian grid that undergoes
little distortion as the wedge grows. The Lagrangian grid is
used to track deformations and to advect material properties
[Fullsack, 1995]. This code [Fullsack, 1995] has been tested
and used extensively [e.g., Beaumont et al., 1994, 1996,
2000; Willett, 1999]. Several types of finite element inter-
polations (e.g., bilinear 4 nodes, quadratic 9 nodes, Crou-
zeix-Raviart 7 nodes and Pian-Sumihara 4 nodes [Cuvelier
et al., 1986; Zienkiewicz and Taylor, 1989]) have been
implemented and tested against analytical solutions, and
results for different elements were compared to ensure

Table 2. Limiting Parameter Values Used to Calculate Range of

Rm

Rm
r,

kg/m3
h0,
km

V,
cm/yr

m,
Pa s

Strong crust 1 3100 35 1 1023

Sediments 20 2800 5 1 1020
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correctness (P. Fullsack, personal communications, 1999–
2000).

3. Results

[19] Results presented here are the solutions for the
problem described by Figure 1 for the asymmetric
doubly-vergent wedge. The ideas and solutions of ana-
lytical (AM1 and AM2) and semianalytical (SS)
approaches are tested by comparison with numerical
results of the full finite element approach (PS). Figures
present results obtained by the PS approach unless
otherwise specified.

3.1. Evolution of Wedge Shape: Dependence on Rm

[20] Initially, for small uplift (�h � h0), equation (5)
concludes that l is nether much smaller nor much greater
than h0 and that the first term of equation (5) is much
smaller than the other two. Thus the solution is only
weakly dependent on Rm. This conclusion is supported
by the PS numerical results (Figures 3a and 3b). This
initial stage is shorter the larger the Rm (equation (5)), and
it can be seen (Figures 3b and 3d) that the results are
distinct for the range of Rm used here when t0 � 0.4,
where t0 (Table 1) is the dimensionless time. More evolved
models (Figures 3c and 3d) exhibit large differences in
styles depending on Rm.
[21] The width of deformation can be estimated by l0(t)

 2t0/�0
h (equation (6)) using Figures 3b and 3d. This gives

l � 5h0 for the initial stage (t
0 = 0.1 to 0.3) independent of

Rm and with a very low dependence on time (Figure 3a).
During the later stages the width, l, varies with time and

Rm. For example, the width ranges from 8h0 to 25h0 at t
0 = 4

depending on Rm (Figure 3c).

3.2. Comparison With Thin Sheet Approximations

[22] In this section we compare results of the complete PS
modeling approach with results obtained by the SS thin
sheet approximation and analyze this comparison using
other approaches. The accuracy of thin sheet approxima-
tions is directly related to the smallness of the vertical to
horizontal length-scale ratio [Zanemonetz et al., 1976;
Medvedev, 1993], which is usually defined by the initial
and/or boundary conditions of a problem. However, the
problem considered here does not have predefined horizon-
tal length scale (Figure 1a). To estimate the accuracy, we
compare the AM1 and SS approaches. The term neglected
by the SS approach in the horizontal balance of forces
(equations (7)) corresponds to the term Fn from the inte-
grated balance included in the AM1 approach (equation
(5)). Dividing equation (5) by Fn and using the dimension-
less form of equation (6) gives the following form of the
horizontal force balance:

1

2
Rm t0 þ 1� l0=2eh0� �2

¼ 0 ð10Þ

Here the term neglected by the SS approach appears as ‘‘1,’’
and therefore the SS approximation can be valid only if both
the first and the third terms in equation (10) are much
greater than 1. The latter condition corresponds to the
traditional criteria for thin sheet approximations that the
width of deformation is much larger than the height.
However, this condition applies to the results of finite

Figure 3. Topography and thickness of wedges with different Rm. In the initial phase (Figures 3a and
3b) the dependence on Rm is low, which contrasts with the later phases (Figures 3c and 3d). (a and c)
Nondimensional topography versus position at nondimensional time shown by dashed line (Figures 3b
and 3d). (b and d) Normalized maximum elevation versus time. Note vertical exaggeration (Figures 3a
and 3c).
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deformation and these length scales are not predefined. The
ratio l0/eh0 does, however, grow with time and the accuracy
of thin sheet approximation therefore increases (see
comparison for Rm = 1 on Figure 4d).
[23] The condition Rm t0 � 1 also results in accuracy

increasing with time but requires special consideration
during the initial phase. When t0 � 0, the SS approxima-
tion is inaccurate because the first term of equation (10) is
also �0. This phase is, however, short for high Rm. Hence
the accuracy is poor for low Rm (Rm = 1, Figures 4a, 4b,
and 4d) but is good for large Rm (Rm =10, Figures 4c and
4d; see also comparison of the SS approach with an
analogue experiment of Buck and Sokoutis [1994] where
Rm = 10).

3.3. Evolution of Mean Slope

[24] How slopes of the wedge evolve with convergence is
a characteristic property of the wedge. Investigations in this
section are based on the ‘‘mean slope,’’ ea, of the wedge;
defined as the ratio of the characteristic uplift of the system,
�h, to half of the characteristic width, l/2 (Figures 2 and
5a). Using equation (6), ea can be estimated for a symmetric
wedge by

ea ¼ �h

l=2
¼

�0
h

� �2
t0

¼ �2
h

th0V
: ð11Þ

Applying this equation to asymmetric wedges results results
in ea as an average value of the two slopes in the wedge.

[25] For AM1, equations (5) and (6) can be used to
estimate time dependence of the mean slope analytically.
The result for Rm = 1 (Figure 5a) shows three phases: I,
initially the wedge growth is mostly vertical, thereby
increasing ea; II, wedge growth is almost self-similar with
near constant ea; III, finally, the wedge spreads horizontally
and ea decreases.
[26] AM1 results predict that as Rm is increased, the

maximum ea is reached earlier (the same behavior is also
shown by PS results, Figure 5b). The time when the slope is
a maximum, tmax, can be estimated with good accuracy
from the empirical condition tmax

ffiffiffiffiffiffiffi
Rm

p
 const. This allows

us to introduce the characteristic evolution time for the
wedge, t*e, as

t*e ¼ t*
. ffiffiffiffiffiffiffi

Rm
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m*

r*gV*

s
ð12Þ

and the new dimensionless evolution time, te = t0
ffiffiffiffiffiffiffi
Rm

p
.

The robustness of the evolution time is illustrated by the
fact that the scaled times of maximum slope (indicated by
arrow heads on Figure 5c) for different Rm occur in the
interval te  4.3–5.3. Using the scaling parameters pre-
sented in Table 2, the corresponding dimensional time tmax

varies from �1 Myr for ‘‘sediments’’ to �10 Myr for
‘‘strong crust’’ models.
[27] The SS approach results in monotonically decreasing

mean slope (Figure 5a, the initial part, for t0 < 2, of this
curve is out of scale of the graph). This slope can, however,

Figure 4. Comparison of wedge results obtained by the PS (solid line) and SS (dashed line) approaches
for different phases of convergence: (a and b) initial and (c and d) developed shown as in Figure 3. For
Rm = 1 the SS approach at the initial stages (Figures 4a and 4b) is inaccurate, while it improves for larger
t0 = t/t* (Figures 4c and 4d). Accuracy of SS also depends on Rm: higher values give better agreement
with accurate PS solutions (Figures 4c and 4d). Note also that in the SS solution the point of maximum
uplift is always at x = 0, while the PS solution demonstrates retroward shift.
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be estimated analytically for the initial phases of evolution.
The x integration of equation (9) over a small region across
the discontinuity point, x = 0, in the limit that the width of
the region of integration tends to zero, leads to the condition

@h

@x
jx¼�0 �

@h

@x
jx¼þ0 ¼

3

Rm

h0

h0 þ�h

� �2

; ð13Þ

where subscripts ±0 indicate the difference in right- and left-
hand limits for slope in x = 0. Thus the SS approach
responds to the discontinuous boundary conditions by
discontinuity of slope, @h/@x at x = 0 (see SS approach on
Figures 4a and 4c at x = 0). This result was also illustrated
by case 1 from Royden [1996], although it was not
discussed from this point of view there. Initially, when �h

� 0, the tangent of the slope estimated by the SS approach
is 1.5/Rm, half of the discontinuity across the transition
point x = 0 (equation (13)). That the slope depends on Rm
again illustrates the inconsistency of the SS approach during
the initial phase of evolution (compare with section 3.1
which concluded that initial phase of wedge evolution does
not depend on Rm).
[28] Buck and Sokoutis [1994] presented an analytical

solution of a simplified version of the SS model (equation
(9)) and predicted an asymptotic averaged slope of�0.5/Rm.
The simplification includes linearization of equation (9),
which is only valid for initial phase (when h � h0). As
discussed above, however, the SS approach does not predict
correctly the initial phase, and the estimation of slope
behavior provided by Buck and Sokoutis [1994] does not
match to actual results. Analysis provided by AM1 and
supported by long-time PS runs (up to t0 = 30) shows that
the long-term asymptotic value for the mean slope is 0 and is
independent of Rm. However, the characteristic time to
approach this value is so large that we cannot expect to
examine this limit in nature (characteristic time is tens of
millions of years for sediments, or hundreds of millions of
years for crust, using Table 2).

3.4. Asymmetry of a Wedge

[29] Consider horizontal forces acting on a complete
asymmetric wedge system (Figure 6). The equilibrium of
horizontal forces results in the simple condition Ft+ = Ft�,
which is the main equation of the second analytical model,

AM2. In order to estimate the basal traction force we
assume a parabolic profile of velocity with depth, (vx(x, z)
= C2(x)z

2 + C1(x)z + C0(x)), which is predicted by the SS
approach. The parameters Ci(x) are determined by the
boundary conditions: (1) no slip at the base, and; (2) shear
stress free at the top surface, and (3) a linear decrease of the
total mass flux from the V*h0 at the left toe (x = l+) to 0 at
the right toe of the wedge (x = �l�) (Figure 6). The first
condition means that the velocity reaches the boundary
velocity at the base (0 or �V*, depending on position with
respect to the transition point, x = 0). The second condition
results in @v/@z = 0 at z = h, where h(x) is the thickness of
the simplified triangular wedge. The third condition means
that the wedge is assumed to grow uniformly along its
length.
[30] These conditions allow an analytical solution for

velocity in the wedge. Integration of the viscous shear
stresses along the base of the wedge results in estimates
of Ft+ and Ft�, which depend (nonlinearly) on two hori-
zontal length scales, l+ and l�, the lengths of the two sides
of the wedge. Equilibrium of the horizontal forces results in
the simple relation between these two length scales:

l� ¼ max hð Þ
h0

lþ ¼ 1þ�h

h0

� �
lþ: ð14Þ

To a first approximation, the AM2 approach explains wedge
asymmetry by more intense resistance from the shear stress

Figure 6. Analysis of wedge asymmetry using AM2. The
lateral forces at the toes of the wedge (F1) are estimated
from the lithostatic pressure and are equal in value. A
parabolic profile of the distribution of horizontal part of
velocity, vx, with depth is assumed within the wedge.

Figure 5. Mean slope, ~a (equation (11)), versus nondimensional time obtained by (a) AM1 and SS for
Rm = 1, and (b and c) accurate numerical PS approach for different Rm. Three phases of growth (I–III)
shown in Figure 5a. Points of maximum ~a shown by arrow heads. Figures 5b and 5c show corresponding
results but for different scaling of time. The characteristic evolutionary time, t*e (equation (12)), depends
on Rm and scaling by t*e aligns the time of maximum ~� for different Rm (compare Figures 5b and 5c).
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in the prowedge than in the retrowedge. The kinematics
behind the AM2 approach results in the average velocity,
�v(x) = F/h (where F(x) is the flux across the wedge),
which decreases faster in the prowedge (due to
increasing thickness) than in the retrowedge (where
thickness decreases). This results in �v < V/2 at x = 0 in
the asymmetric wedge (compare with AM1 where �v =
V/2 is used). Shear stress in the prowedge can be
estimate as proportional to V � �v, and it is more intense
than basal traction in the retrowedge, which is propor-
tional to �v (basal velocity is 0 there). Thus the length
scale of the retrowedge is wider than the prowedge, l+
< l�, to compensate for difference in intensity of basal
stresses.
[31] The purpose of the AM2 approach is not to inves-

tigate the complete wedge evolution but to understand
sources of the wedge asymmetry. Therefore, unlike AM1,
AM2 analysis is not completed here. Instead, the results of
the PS numerical calculations are used to check the
validity of the inferred causes of asymmetry derived from
AM2. Equation (14) predicts that the retroside should be
the wider from the outset (Figure 7a, AM2). However, the
results of PS numerical calculations do not show this
behavior at the initial stages, but rather the opposite
(Figure 7a, PS, Rm = 1).
[32] The results show (Figure 7a) that the evolution of

wedge asymmetry can be divided into two phases with
certain properties: (1) an initial low-asymmetry phase,
which lasts longer for low Rm, and (2) a developed
asymmetric phase, in which the asymmetry grows faster
for low Rm. The low asymmetry property of the first phase
is similar to relationship between the point of maximum
mean slope and Rm (Figure 5b), which was revealed by
introducing evolution timescale, te* (Figure 5c). The prop-
erty of the second phase is similar to the AM2 behavior.
These properties suggest a hybrid model AM2h in which
the evolution of wedge asymmetry is divided into two

phases with different relations between the widths of pro-
side and retroside:

Phase 1 symmetric; t0e < t0að Þ l� ¼ lþ

Phase 2 asymmetric; t0e > t0að Þ l� ¼ lþ þ�h ��a

h0
lþ;

ð15Þ

where�a =�h(t = ta) is the uplift of the wedge at the end of
phase 1 and the dimensionless evolution time t0a separates
two phases. The results presented in Figure 7a for AM2h are
based on t0a = 3.9 (which can be reformulated via the
convergence time as ta/t

* = 3.9/
ffiffiffiffiffiffiffi
Rm

p
using equation (12)).

AM2h provides a first-order explanation of the development
of asymmetry in the wedge and demonstrates the source of
asymmetry during phase 2.
[33] The second asymmetry property is the shift of the

point of maximum uplift, xmax, from the singularity in
the boundary conditions, x = 0 (Figure 7b). This para-
meter also demonstrates a two-phase evolution. During
phase 1, xmax moves retroward velocity �V/4, whereas
in phase 2, xmax is stable or even retreats slightly. The
transition time between these phases is well approxi-
mated by evolution time t0a = 3.9, the same timescale
that applies to the growth of topographical asymmetry
(equation (15)).
[34] This property also demonstrates the inaccuracy of

thin sheet approximations, which always give xmax = 0.
Although the shift remains relatively small in an absolute
sense (e.g., 1/14 of the wedge width for t0 = 8, Rm = 1) and
even smaller for Rm > 1, this displacement is a characteristic
property of wedge growth.
[35] In summary, the development of asymmetry param-

eters divides wedge evolution into two phases. While the
geometry of the second phase is quite understandable and
can be modeled by simple approaches (AM2 and SS), the
first (initial) phase is less clear and requires more inves-
tigation.

Figure 7. Dependence of the evolution of wedge asymmetry on Rm. (a) Ratio, l+/l�, of two horizontal
length scales of deformation. AM2 approach (dash-dotted line) predicts monotonically increasing
asymmetry. PS results have an initial phase with low asymmetry and a second phase with increasing
asymmetry. The timescale of these phases and rate of development of asymmetry depend on Rm (see also
AM2h approach, equation (15)). (b) PS predicted shift of location of maximum topography (xmax) with
respect to x = 0. This shift is more significant for low Rm (higher viscosity of layer or faster boundary
velocity). Note that SS approximation predicts no shift.
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3.5. Internal Deformation

[36] The distributions of internal mechanical fields illus-
trate the differences between two consecutive stages of PS
wedge evolution (Figure 8). For t0  0 (Figure 8a) the style
is a ‘‘plug’’ mode with two conjugate high horizontal strain
rate, _exx, zones. The relatively low deformed central part of
the embryonic wedge moves up and retroward, preserving
symmetry at the surface. Thus the plug mode is compatible
with two features of the initial phase asymmetry described
in section 3.4 (length scales ratio and the shift of point of
maximum uplift, Figure 7). This mode occurs for all Rm at
the initial stages and persists longer for low Rm, similar to
the phases of asymmetry. For t0 = 4 (Figure 8b), deformation
is no longer symmetric and the _exx focused compressional
zone in the retroside is diminished.
[37] The simple rheological model allows the strain rate

contours to be converted to stresses tij = 2m _eij, where tij are
the components of the viscous stress tensor. For Rm = 1
(Figure 8) the viscous stress in some parts of wedge (black
area, Figure 8) is higher than the characteristic gravitational
stress sg* = rgh0 (Table 1). Following Medvedev and
Podladchikov [1999a], the total pressure in the system can
be approximated dimensionally and [dimensionless] as

P x; zð Þ  rg h� zð Þ � 2m _exx

P0 x0; z0ð Þ  Rm h0 � z0ð Þ � 2 _e0xx½ �
ð16Þ

and the dynamic (viscous) part of the pressure can exceed
the lithostatic part of pressure for low Rm especially at the

initial stages (Figure 8a, see also Petrini and Podladchikov
[2000]). During later stages the relative influence of the
dynamic part decreases owing to defocusing of the high
strain rates zones (Figure 8b) and increasing lithostatic
pressure as the wedge grows (equation (16)).
[38] The PS results (Figure 8) also provide a way of

estimating the forces used to build the AM1 approach
(equations (2) and (3)). The normal viscous force, Fn, is
estimated by integrating the viscous stress 2m _exx in the
vertical direction at x = 0. The contours show significant
strain rate variations and, therefore, stress variations along
this integration path at time t0 = 0, while by time t0 = 4 these
stress variations have decreased significantly. The basal
shear, Ft, results from integrating the shear stress along
the base from x = 0 over the region of active shear. Contours
for _exz change much less with time, a property that is used in
section 4.2.

4. Evolution of the Surface Deformation

[39] Buck and Sokoutis [1994] pointed to the existence of
regions of surface extension in viscous wedges subjected to
compression by basal traction. Aspects of this behavior can
be explained by using the approaches discussed earlier in
which the surface strains are measured by the change in
length, ‘(x0, t), of small Lagrangian segments of the upper
surface:

e x; tð Þ ¼ ‘ x0 x; tð Þ; tð Þ � ‘0ð Þ=‘0 ð17Þ

Figure 8. Internal mechanics in an Rm = 1 PS wedge at two phases. From top to bottom, deformations
of passive marker lines (with undeformed markers shown on the left); velocity field (arrows) and
boundary conditions; contour plots of absolute values of horizontal strain rate, _exx; shear strain rate, _exz;
and second invariant of strain rate tensor, _e2. Note that the three bottom panels are scaled by thickness of
wedge, which maps the wedge to a rectangle of dimensionless thickness 1.
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where ‘0 is the initial length of the small segment. This
approach differs from that used by Willett [1999], who only
take horizontal changes into account. The main difference is
seen in the extension for low Rm, which can be negligible
when only the horizontal component is used.

4.1. Surface Strain Rates

[40] A necessary condition for finite surface extension is
an extensional strain rate along the surface. Variations of
surface strain rates for conditions similar to those presented
here and for different rheologies and boundary conditions
are given by Royden [1996] and Willett [1999]. Here we
emphasize only one property of the surface (z = h) strain
rates derived from the SS approach (equation (8)):

_exxjz¼h ¼ @v0 x; hð Þ
@x

: ¼ �Rm
h0ð Þ2

2

@2h0

@ x0ð Þ2
� Rm h0

@h0

@x0

� �2

;

ð18Þ

which shows that the SS approach predicts extensional
strain rate ( _exx > 0) only if the curvature of the upper surface
is negative (@2h/@x2 < 0). Given that the second term of
(equation (18)) is of second order for low slopes, the SS
model directly relates extensional strain rate regions to
zones with negative curvature of topography.
[41] A test of this SS prediction using the complete PS

approach (Figure 9) shows a poor correlation of extension
and curvature initially (Figure 9a), which is explained by
the strong initial influence of the normal compressive
stresses that are ignored in SS. The results of Figure 9b
and, corresponding results for different Rm and time, exhibit
a good correlation. Therefore negative curvature is a first-
order predictor of the location of extensional surface strain
rates in wedges beyond the initial growth phase.
[42] The SS approach is also inaccurate in estimating

surface strain rates above x = 0. This is because the
discontinuity in the horizontal derivative of layer thick-
ness at x = 0 (equation (13)) results in a discontinuity of
surface strain rate (equation (18), see also Buck and
Sokoutis [1994]). The discontinuity is an artifact that is
caused by the failure of the SS model to handle
correctly the discontinuous boundary conditions. Failure

to recognize this artifact of the SS approach in modeling
surface strain rates can lead to the mistaken interpreta-
tion of this discontinuity as an extensional regime (see,
for example, the misinterpretation in Royden’s [1996,
Figure 5] case 1).

4.2. Finite Surface Strains

[43] In AM1, symmetric wedge behavior is considered
in terms of the balance of three main forces which also
determine the surface strains. Considering surface defor-
mation, we will not take into account basal traction, Ft,
which does not affect surface strains directly because the
the surface is free of shear stress. Fn integrates the normal
viscous stress responsible for compression along the hor-
izontal axis. The gravitational force, Fg, acts to spread the
wedge horizontally, which can lead to extension on the top
surface. The evolution of the force balance in the wedge
(Figure 10a) estimated by the AM1 approach (see section
2.1) shows that gravitational force starts at 0 and grows
with time while the normal viscous force decreases. After
a certain time the gravitational force dominates.
[44] In Figure 10b the wedge evolution predicted by

AM1 is divided into domains depending on Rm, thereby
outlining which of the forces (Fn or Fg) dominates. Exten-
sion is expected when Fg > Fn. Although the AM1 approach
is highly simplified, it predicts an onset of extension in good
agreement with the complete PS results (compare solid line
and dots on Figure 10b), which gives credence to the
assumptions used in the AM1 model. These results clearly
imply that surface extension is driven by the gravitational
force, while the initial delay in the onset of surface exten-
sion is due to the strong influence of normal viscous stress
during initial stages of evolution.
[45] The finite surface strains, calculated from the defor-

mation of surface Lagrangian PS elements (Figure 11), show
that both intensity (Figure 11a) and the width of zones of
extension (Figure 11b) increase with increasing Rm. Note
that Willett [1999] used only horizontal strains and therefore
his results for low Rm wedges, with high slope and low-
amplitude extension, differ from complete surface strains
used here. Long-time PS results for low Rm (Figure 11a)

Figure 9. Comparison of regions of positive surface strain
rates (_e) > 0 and regions with negative surface curvature
(x = @2h/@x2 < 0) using the PS model. The correlation
predicted by the SS approach is poor for initial phase (Figure
9a), but improves later (Figure 9b). Thus negative curvature
is a predictor of surface extension after finite growth.
Vertical scale is arbitrary.

Figure 10. Analysis of the evolution of averaged forces
(Fn, Fg, Ft) in the wedge and their relation to surface
strains. (a) AM1 balance of forces. Fg and Fn evolve in
opposite directions, and Fg dominates over Fn after some
time. (b) Results of PS modeling (dots) showing that finite
extension appears at the surface shortly after Fg exceeds Fn

(solid line).
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indicate a temporary disappearance of surface extension,
which will be discussed in section 4.3.

4.3. Incremental Surface Strains

[46] In addition, it is important to investigate how strains
of the surface Lagrangian elements evolve with time. Willett
[1999] explained several features by roughly considering
this evolution. Here we provide a more systematic analysis
based on the example of of an Rm = 2 wedge.

[47] There are four types of surface elements (Figure 12)
characterized by different extension/contraction histories,
and this division depends on initial position of the elements.
Type 1 elements initially located in the retroside (x0 < 0,
e.g., elements 1 and 10 on Figure 12) gradually contract and
never exhibit intervals of extension. Type 2 elements
initially located in the proside (x0 > 0, e.g., element 2 on
Figure 12) undergo an interval of extension following a
short period of compression. Even though points 10 and 2

Figure 11. Analysis of PS finite surface strain (equation (17)) for different Rm. (a) Evolution of
maximum surface strain (intensity of extension). When the maximum strain is negative (e.g., for Rm = 1
for t0 > 3.5), there is no finite extension. (b) Evolution of the width, L, of the region exhibiting finite
surface extension. (c) Finite surface strain distribution at time t0 = 5 for different Rm.

Figure 12. Evolution of small Lagrangian surface segments for an Rm = 2 PS wedge. (a) Motion of the
segments (solid lines) as topography (dashed lines) evolves (t0 = 3, 6, . . ., 21). (b) Evolution of the surface
strains, ei(t

0), of the segments as they are translated horizontally. (c) Evolution of surface strains of the
segments with time (t0).
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are initially located close to each other (Figure 12a), their
strain evolution differs significantly (especially during the
initial stages). The initial position of element 2 inside the
plug (similar to the one described for Rm = 1 on Figure 8)
results in almost no initial compression, and further uplift
stretches this segment giving finite extension (Figures 12b
and 12c).
[48] Type 3 Lagrangian segments (e.g., element 3 on

Figure 12) are located within the initial compressional zone
(Figure 8, _exx). This results in early fast and intensive
contraction. The later stage of extension is insufficient to
offset the contraction, and this type of segment never
exhibits finite extension (Figures 12b and 12c). When type
3 elements dominate the wedge surface, replacing the type 2
(e.g., t0 = 6. . .9, Figure 12a), the zone of finite extension
disappears.
[49] As the wedge grows, the relative influence of the

compressional zones decreases, and zone of instantaneous
extension surrounding the maximum uplift becomes more
significant. This results in the reappearance of the zone of
the finite extension for the type 4 Lagrangian surface
segment (e.g., segments 4, 40, and 400). These segments
were initially located far from the point x = 0. They
accumulate a significant amount of surface-parallel short-
ening but enter the central part of wedge late when the
gravitational spreading becomes dominant. Superposition of
cumulative extension results in finite extension (Figures 12b
and 12c), which distinguishes type 4 segments from type 3.
[50] Unlike Rm = 2 (Figure 12), wedges with Rm > 2.5

have lower-intensity and shorter-duration contractional
zones, and type 3 Lagrangian segments no longer occur.
For such wedges, there are only two types of surface strain
evolution corresponding to types 1 and 4.
[51] The relationship between zones of instantaneous and

finite surface strains is illustrated by segment 4 (Figure 12).
Prior to t 01 � 4.5 (Figures 12b and 12c) this segment is
shortened in the proside compressional zone. It is then
advected into the extending zone and gradually increases
its length between t 01 and t 02 � 15. It then enters the retroside
compressional zone, and the length again decreases. Thus
the strain at t0 = t 02 records the maximum cumulative
extension of the segment. This evolutionary path demon-
strates why finite extension is found mainly on the retroside
(see Figure 11c) despite the almost symmetric distribution
of the zone of instantaneous extension about the maximum
uplift in the system (xmax � 0.5). Figure 12a also illustrates
the conclusion of the section 4.1 because segment 4 is
located on the part of the topography with visible negative
curvature for t0 = 6, 9, 12, which spans the time when it is
subjected to extension (Figure 12c).
[52] The evolution of Lagrangian elements can be gen-

erally characterized by several parameters: the evolution of
the absolute maximum of the strain (Figure 11a) and the
incremental extension �e = max(ei) � min+(ei) (subscript +
here refers to the prowedge compressional zone, Figure
12b), which illustrates the maximum superimposed exten-
sion of segment i regardless of the initial contraction in the
prowedge compression zone (min+(ei)), evaluated over all
wedge elements as a function of time and Rm (Figure 13).
The results demonstrate that for high Rm the zone of
extension can stretch the surface segments by up to 100%
of their initial length (�e > 1 for Rm = 20). This parameter

grows with time and can reach high values even for low Rm
(e.g., segment 400 exhibits �e = 0.15 � (�0.6) = 0.75 at t0 =
22, Figure 12c).
[53] The results presented in this section demonstrate that

surface strains accumulate in an asymmetric way during
advection. The total strain tends to be dominated by the
prowedge contraction as shown by the PS model. The
simplifications behind the AM1 approach (l+ = l� and
complete symmetry of the sides in regard to advecting
material) do not take into account these asymmetries, and
this explains why AM1 fails to accurately predict the
relation between forces and strains in wedges with low
Rm. In contrast, the SS approach predicts better the evolu-
tion of finite surface strains, as was demonstrated by results
of Buck and Sokoutis [1994].

5. Discussion and Conclusions

5.1. Evolutionary Phases of Viscous Orogenic Wedges

[54] As predicted by the scaling analytical model AM1
and supported by numerical calculations (Figure 5), the
evolution of viscous wedges is not linear and can be divided
into three phases. Figure 14 separates these phases by their
different styles of wedge growth comparing rates of thick-
ening and widening the wedge and introducing zones A and
C that separate the three phases and zone B with self-similar
growth of the wedge (see Figure 14 caption for details).
There are also several features that differentiate phases.
[55] Phase one is characterized by mostly vertical, plug-

like (Figure 8a), growth of the wedge above the zone of
transition in boundary conditions (x = 0, where the basal
velocity changes). This phase can be described as geometric
since the evolution is relatively insensitive to the rheology
and boundary velocity (Figures 3a and 3b). The main forces
during this period are horizontal viscous, Fn, and basal
shear, Ft (Figure 10).

Figure 13. Evolution of maximum incremental extension
of Lagrangian surface segments, max(�e), for different Rm.
�e is calculated for each surface segment as difference
between its maximum strain, max(ei), and minimum strain
acquired in the proside compressional zone, min+(ei)
(Figure 12b); and the maximum among all segments is
plotted depending on time.
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[56] Phase two is transitional and is marked by a change
in the orientation of preferred growth from vertical to
horizontal (with some period of close to self-similar growth,
zone B on Figure 14) and by a change of the style of
asymmetry development (the separation point between two
phases of asymmetry development estimated in section 3.4
(Figure 7) is located in proximity to the zone B on Figure
14). One of the main characteristics of this phase is the
onset of finite surface extension The gravitational potential
energy grows during the initial phase such that all three
forces described in the AM1 approach (equation (3))
become important in phase 2 (Figure 10a).
[57] Although the wedge grows continuously, the mean

slope of the wedge decreases during the third phase. The
influence of the normal horizontal viscous stress decreases
asymptotically during this phase, and the evolution is driven
by the equilibrium between gravitational spreading and
shear traction along the base. By analogy with the model
of wedge evolution presented by Platt [1986], phase 3 can
be described as underthrusting (underplating).
[58] Along with the dimensionless convergence time

(Table 1), the evolution time was introduced (equation
(12)). The latter parameter includes rheological and boun-
dary conditions of wedge evolution, and it demonstrates the
scaling between the real time of evolution and the phases of
evolution (Figure 14). Equation (12) shows also that a
wedge evolves through these phases faster if it is charac-
terized by relatively lower viscosity and/or higher conver-
gence velocity and/or higher density.
[59] Feehan and Brandon [1999] present a conceptual

model of different modes of steady state accretionry

wedges: ‘‘thickening’’ (described by mainly surface con-
traction), ‘‘mixed,’’ and ‘‘thinning’’ (described by signifi-
cant surface extension). The properties of these modes are
linked to the three phases presented here: the first phase of
wedge evolution is characterized by both rapid thickening
and surface compression; the third (final) stage is charac-
terized mainly by widening of the wedge and broadening
the zone of finite surface extension; the transition phase has
mixed characteristics of the two end phases. Thus the modes
of steady state wedges described by Feehan and Brandon
[1999] can be a result of reaching the stationary states at
different phases of wedge evolution.

5.2. Variations on the Simple Model

[60] The problem considered in this study is highly
simplified, and direct application of the results to tectonic
wedges may be limited. However, analyzing the simple
model can help to understand and even predict some results
of variations of this model or more complicated models.
[61] The boundary conditions used in this study to model

the wedge evolution include a discontinuity in basal veloc-
ity at the point x = 0 (Figure 1a) or a corresponding rapid
transition in the PS models. This kind of boundary con-
dition corresponds to asymmetric basal subduction or
underthrusting. Although it results in significant simplifica-
tion of the analytical models, other boundary conditions
may also prevail. We have also investigated several numer-
ical PS models in which the basal boundary velocity is a
continuous function with broad transition. The results are
qualitatively similar to those described earlier. Moreover,
the AM1 approach can be extended to models with finite

Figure 14. Phases of viscous wedge growth demonstrated by the evolution of mean slope, ea (equation
(11)). The three phases are I, initial, growth is mostly vertical; II, developed, growth is close to self-similar;
and III, final, the wedge spreads horizontally. The size of arrows on bottom panels illustrates these relative
styles. These stages are separated by the asymptotic behavior of the growth of �h and l with time. The
mass balance (equation (6)) relates these parameters and the convergence time as (�h

0 l0 = 2t0), which can
be rewritten as proportional relation (�h

0 l0 / t0). Thus, if growth of the maximum elevation scales with
time as (�h

0 / (t0)b), the deformations width scales as (l0 / (t)(1 � b)). During the initial phase,�h / t0 and
b  1, while l  const. Parameter b decreases with evolution of wedge. Zone A separates the first and
second phases with the condition b  0.83. Zone B represents self-similar growth of the wedge with
b  0.5 (note also that condition b = 0.5 is equivalent to condition of maximum mean slope). Zone C
indicates the onset of the third phase with b  0.4. In each of these zones (A, B, and C) the exact match to
the parameter value (b = 0.83, 0.5 and 0.4 correspondingly) is shown by the dashed line.
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width transition zones, and the same three-phase evolution
is predicted because the relationships among three driving
forces evolve in the same manner. Our recent numerical
experiments [Medvedev et al., 2000] show that the crustal
wedge with local (Airy) isostasy evolves with the same,
three-phase, pattern. The evolution of the wedge taper (the
analogue of the mean slope in this case) corresponds closely
to the results presented in Figure 5 if Rm is scaled by the
isostatic amplification factor (� = 1 � r/rm, where rm is the
density of mantle).
[62] The link between the superposition of average forces

and surface extension presented by the AM1 approach
(Figure 10) can be extended to Coulomb wedges. In critical
tapered Coulomb wedges, horizontal stresses are always
higher than vertical stresses [Dahlen, 1990], and no finite
surface extension can be expected according to AM1. This
supports conclusions made by Willett [1999].

5.3. Relations Among the Different Approaches

[63] The interrelationships among the analytical and
numerical models used here is summarized in Table 3.
The purpose of Table 3 is to show what aspects of the
complete solution are predicted by the analytical models
and the insights concerning scaling and phases of the
evolution that can be derived from the analytical models.
[64] The relative strengths and weaknesses of the models

can also be compared. For example, the AM1 approach
models the initial phase of wedge evolution with good
accuracy (Figure 5). Why then is the more sophisticated
AM2 approach unable to model this phase with any
accuracy? The difference is that AM1 averages forces acting
in the wedge to a much higher extent than AM2, for
example, estimating shear stress by averaging over the
thickness of the entire layer. AM2 assumes a particular
form of the distribution of velocities inside the wedge and

bases the whole analysis on this assumption. Comparison of
AM1 and AM2 leads to the conclusion that the shear stress
is indeed the driving force but that velocities are not uni-
form inside the wedge. This insight leads to the idea of the
initial phase in the form of a plug with deformation
accommodated within the bounding compressional zones.
This mode is both predicted by the PS approach and easily
examined by this technique (Figure 8).
[65] An additional important result is that thin sheet

approximations can lead to inaccurate results for the prob-
lem described here. Even the AM approaches give superior
results for some cases. The PS approach provides an
accurate two-dimensional vertical cross-section model and
allows the approximations of the other methods to be
avoided. In three dimensions, however, the full numerical
solution is computationally expensive and the use of thin
sheet approximations is one of the few simple alternatives.
Nevertheless, the limitations of the SS approach described
here are fundamental and must be taken into account.

5.4. Cautions Concerning Comparisons With Natural
Wedges

[66] Several parameters introduced here allow observa-
tions from natural wedges to be linked to the bulk viscosity
of the model wedges. These links, however, are not linear,
and the parameters should be analyzed with caution.
[67] The mean slope, ea, introduced in section 3.3 can be

easily estimated for natural wedges. However, the analysis
described here shows that this parameter cannot be directly
related to bulk viscosity and/or Rm. Unlike the taper for
critical Coulomb wedges, the parameter ea is time-depend-
ent. For example, ea can characterize wedge with Rm = 2 at
dimensionless time 3 and Rm = 1 at time 30 (Figure 5).
[68] Section 3.4 introduces two parameters of asymmetry,

l+/l� and xmax. The first parameter, the ratio of proward/

Table 3. Model Approaches Used in This Study and Their Interrelationshipsa

Model

Influenced by

AM1 AM2 (AM2h) SS PS

AM1 (analytical model 1:
scaling analysis of forces,
section 2.1)

estimates evolution of
the most general para-
meters (has analytical
solution)

supports conclusions
on evolution of the
mean slope (Figure 5)

controls applicability
of the approach

AM2 (analytical model 2: kinematic
approach to force balance,
section 3.4)

shows a need in velo-
city profile to describe
asymmetry of wedge

estimates asymmetry
of wedges (has analy-
tical solution)

similar analytical
resolving of the verti-
cal profiles of the
velocity field

controls applicability
of the approach

SS (simple shear: thin sheet
approximation, section 2.2)

shows possible applic-
ability of thin sheet
approximation to the
problem and outlines
limitations of the SS
approach during the
initial stages

parabolic dependence
of velocity with depth
defined by topography
describes initial stage of
evolution incorrectly

numerical simulations
based on approximate
solution of depth
dependence

outlines applicability
of the method; Rm
and time dependence
of accuracy (Figure 4)

PS (plane strain: complete numerical
model, section 2.3), evolution
of the wedge

outlines phases of
wedge evolution Fig-
ure 5), introduces di-
mensionless time of
evolution (equation (12))
speculative explana-
tion of finite surface
extension (Figure 10)

gives insights into the
first phase of evolution,
and estimates evolution
of asymmetry during the
later stages (Figure 7)

estimates surface ex-
tension [Buck and So-
koutis, 1994], relates
surface curvature and
surface strain rate
(Figure 9)

acts as reference mod-
el, to test and support
conclusions of this
study

aThe model column presents the approaches and their general descriptions. The underlined diagonal cells outline aims of each approach. The PS row
outlines results of applications of different approaches by comparing with the reference PS approach.
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retroward length scales, shares properties of the mean slope:
it can be directly estimated from topography of natural
orogens, and it is time-/phase-dependent. Figure 7a shows
that model wedges with different bulk rheologies can be
characterized by the same value of l+/l�.
[69] The second asymmetry parameter, the shift of the

point of maximum uplift, xmax (Figure 7b), can be estimated
from the comparison of the topography with the seismicity
distribution in active orogens [e.g., Cahill and Isacks,
1992]. Two characteristics of this parameter make it impor-
tant: (1) after a short initial phase it reaches stable value
directly related to Rm; and (2) this parameter is a distinct
characteristics of viscous wedges because frictional-brittle
wedges result in xmax � 0 for wedges with the same
boundary conditions [Vanderhaeghe et al., 1998; Willett,
1999].
[70] The parameters of surface extension discussed in

section 4 can be compared with distribution of normal faults
often observed along the natural wedges. The strain history
of surface segments considered in section 4.3 clearly
illustrates the zonation of surface strains in orogens. These
predictions can be tested by well-established methods of
structural geology [e.g., Ramsay and Huber, 1983].
[71] Although each parameter separately cannot provide

unique link between observations and the model, the set of
parameters presented can draw a clear picture of bulk
rheology and dynamic conditions of natural wedges. Once
the simple model described here becomes clear, more
complicated models can be built and tested using the similar
pattern of descriptive parameters.
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Beaumont, C., J. A. Muñoz, J. Hamilton, and P. Fullsack, Factors control-
ling the Alpine evolution of the central Pyrenees inferred from a compar-
ison of observation and geodynamical models, J. Geophys. Res., 105,
8121–8145, 2000.

Buck, W. R., and D. Sokoutis, Analogue model of gravitational collapse
and surface extension during continental convergence, Nature, 369, 737–
740, 1994.

Cahill, T., and B. L. Isacks, Seismicity and shape of the subducted Nazca
Plate, J. Geophys. Res., 97, 17,503–17,529, 1992.

Cuvelier, C., A. Segal, and A. A. Steenhoven, Finite Element Methods and
Navier-Stokes Equations, 483 pp., D. Reidel, Norwell, Mass., 1986.

Dahlen, F. A., Critical taper model of fold-and-thrust belts and accretionary
wedges, Annu. Rev. Earth Planet. Sci., 18, 55–99, 1990.

Ellis, S., Forces driving continental collision: Reconciling indentation and
mantle subduction tectonics, Geology, 24, 699–702, 1996.

Ellis, S., P. Fullsack, and C. Beaumont, Oblique convergence of the
crust driven by basal forcing: Implication for length-scales of deforma-
tion and strain partitioning in orogens, Geophys. J. Int., 120, 24–44,
1995.

Ellis, S., C. Beaumont, R. Jamieson, and G. Quinlan, Continental collision
including a weak zone—The vise model and its application to the New-
foundland Appalachians, Can. J. Earth Sci., 35, 1323–1346, 1998.

Emerman, S. H., and D. L. Turcotte, A fluid model for the shape of accre-
tionary wedges, Earth Planet. Sci. Lett., 63, 379–384, 1983.

England, P., and D. McKenzie, A thin viscous sheet model for continental
deformation, Geophys. J. R. Astron. Soc., 70, 295–321, 1982.

Feehan, J., and M. Brandon, Contribution of ductile flow to exhumation of
a thrust wedge, San Juan –Cascade nappes, NW Washington State,
J. Geophys. Res., 104, 10,883–10,902, 1999.

Fullsack, P., An arbitrary Lagrangian-Eulerian formulation for creeping
flows and applications in tectonic models, Geophys. J. Int., 120, 1–23,
1995.

Jones, C. H., J. R. Unrih, and L. J. Sonder, The role of gravitational
potential energy in active deformation in the southwestern United States,
Nature, 381, 37–41, 1996.

Lobkovsky, L. I., and V. I. Kerchman, A two-level concept of plate tectonics:
Application to geodynamics, Tectonophysics, 199, 343–374, 1991.

Medvedev, S. E., Computer simulation of sedimentary cover evolution, in
Computerized Basin Analysis: The Prognosis of energy and Mineral
Resources, edited by J. Harff and D. F. Merriam, pp. 1–10, Plenum,
New York, 1993.

Medvedev, S. E., and Y. Y. Podladchikov, New extended thin sheet approx-
imation for geodynamic applications I, Model formulation, Geophys.
J. Int., 136, 567–585, 1999a.

Medvedev, S. E., and Y. Y. Podladchikov, New extended thin sheet approx-
imation for geodynamic applications, II, 2D examples, Geophys. J. Int.,
136, 586–608, 1999b.

Medvedev, S., C. Beaumont, O. Vanderhaeghe, P. Fullsack, and R. A.
Jamieson, Evolution of continental plateaus: Insights from thermal-me-
chanical modeling (abstract), Eos Trans. AGU, 81(48), Fall Meet. Suppl.,
Abstract T52B-17, 2000.

Petrini, K., and Y. Podladchikov, Lithospheric pressure-depth relationship
in compressive regions of thickened crust, J. Metamorph. Geol., 18, 67–
78, 2000.

Platt, J. P., Dynamics of orogenic wedges and the uplift of high-pressure
metamotphic rocks, Geol. Soc. Am. Bull., 97, 1037–1053, 1986.

Platt, J. P., Mechanics of oblique convergence, J. Geophys. Res., 98,
16,232–16,256, 1993.

Platt, J. P., Calibrating the bulk rheology of active obliquely convergent
thrust belts and forearc wedges from surface profiles and velocity dis-
tributions, Tectonics, 19, 529–548, 2000.

Ramberg, H., Gravity, Deformation and the Earth’s Crust, 2nd ed., 452 p.,
Academic, San Diego, Calif., 1981.

Ramsay, J. G., and M. I. Huber, The Techniques of Modern Structural
Geology, vol. 1, Strain Analysis, 307 pp., Academic, San Diego, Calif.,
1983.

Ring, U., M. T. Brandon, Ductile strain, coaxial deformation and mass loss
in the Franciscan complex: Implications for exhumation processes in
subduction zones, in Exhumation Processes: Normal Faulting, Ductile
Flow and Erosion, edited by U. Ring et al., Geol. Soc. Spec. Publ., 154,
55–86, 1999

Royden, L., Coupling and decoupling of crust and mantle in convergent
orogens: Implications for strain partitioning in the crust, J. Geophys. Res.,
101, 17,679–17,705, 1996.

Schlichting, G., Boundary-Layer Theory, 7th ed., McGraw-Hill, New York,
1979.

Shen, F., L. H. Royden, and B. B. Clark, Large-scale crustal deformation of
the Tibetan Plateau, J. Geophys. Res., 106, 6793–6816, 2001.

Vanderhaeghe, O., C. Beaumont, P. Fullsack, S. Medvedev, and R. A.
Jamieson, Thermal-mechanical modelling of convergent orogens: The
role of rheology, isostasy and temperature, in ECSOOT 73rd Transect
Meeting, edited by R. Wardle and J. Hall, 44–85, Lithoprobe Secretariat,
Vancouver, B. C., Canada, 1998.

Weijemars, R., and H. Schmeling, Scaling of newtonian and non newtonian
fluid dynamics without inertia for quantative modelling of rock flow due
to gravity (including the concept of rheological similarity), Phys. Earth
Planet. Inter., 43, 938–954, 1986.

Willett, S. D., Rheological dependence of extension in wedge models of
convergent orogens, Tectonophysics, 305, 419–435, 1999.

Zanemonetz, V. B., V. O. Mikhajlov, and V. P. Myasnikov, Mechanical
model of block folding formation, Phys. Solid Earth, 12, 631–635, 1976.

Zienkiewicz, O. C., and R. L. Taylor, The Finite Element Method, 4th ed.,
1400 pp., McGraw-Hill, New York, 1989.

�����������
S. Medvedev, Department of Oceanography, Dalhousie University,

Halifax, Nova Scotia, Canada B3H 4J1. (sergei@adder.ocean.dal.ca)

MEDVEDEV: MECHANICS OF VISCOUS WEDGES ETG 9 - 15


