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[1] It is remarkable that the permeability k and electrical conductivity s of saturated, fractured
rock exhibit a power law relationship with exponent r as pressure is applied to the rock. To
understand this behavior, the fracture network is viewed as a collection of connected, planar
fractures. This allows the construction of algebraic expressions for the transport properties of the
fracture network, in which the local effective properties, namely, the hydraulic aperture dh and the
electric aperture de of the representative planar fracture (the ‘‘equivalent channel’’), are
distinguished from the network properties (e.g., fracture connectivity) parameterized by the
tortuosity factors th and te. This ‘‘equivalent channel network model’’ reproduces the observed
power law behavior on the conditions that dh

3 / de
r and th / te

r over the range of applied pressures.
The first condition is met, as demonstrated by calculations for a variety of simulated planar fractures
using the Reynolds equations for fluid and current flow. The value of the exponent r is found to
indicate the degree to which the fracture resembles a porous medium but cannot otherwise identify
fracture surface or aperture characteristics. No direct evidence currently exists to support the second
condition; however, such a power law relationship has been demonstrated elsewhere for simulated
porous media. INDEX TERMS: 5104 Physical Properties of Rocks: Fracture and flow; 5139
Physical Properties of Rocks: Transport properties; 5109 Physical Properties of Rocks: Magnetic
and electrical properties; 1829 Hydrology: Groundwater hydrology; KEYWORDS: fracture(s),
network(s), conductivity, permeability, flow, equivalent channel

1. Introduction

[2] The transport properties of fractured rock are determined by
the connected void space, that is, by the locally planar fracture
segments that comprise the fracture network and by the structure of
that network. Fluid and electrical current flow in response to
applied fluid pressure and electrical potential gradients, respec-
tively, are thus effectively confined to channels through the rock.
The distribution of flux among the channels in the two cases will
be different of course, as the electrical current distribution is that
which minimizes the total power dissipation (the irreversible
conversion of electrical energy into heat) [Van Baak, 1999], while
there is no corresponding global minimization principle for fluid
flow.
[3] Thus it is remarkable that the permeability k and the

electrical conductivity s of fractured rock exhibit a simple power
law relationship with exponent r as mechanical pressure is applied
to the rock. Single-sample measurements made by various
researchers and collected by Walsh and Brace [1984] give expo-
nent values over the range 1.5 � r � 2.8 for confining pressures
causing elastic deformation. In similar measurements on granite
samples, Bernabe [1988] obtained r values very close to 2. This
same power law relationship with exponent very close to 2 is
evident in plots made by Katsube and Walsh [1987] of the
permeability and electrical conductivity of a number of granite
samples collected from the same geological site. Clearly, these
results contain information about the fracture network. However,
because both the permeability and the electrical conductivity are
unknown functionals of the fracture morphology and network
topology, these experimental results can only be interpreted with
the aid of a model.

[4] An ‘‘equivalent channel’’ model was provided by Walsh and
Brace [1984] for this purpose. In essence, the fractured rock is
represented by a single, smooth channel whose aperture a is
effectively reduced for fluid flow. This produces the relations
k = (m2/b) (f/t2) and s = s0 f/t

2, where m is the hydraulic radius,
b is a shape factor that equals 3 for cracks, f is the porosity of the
sample, t is the tortuosity of the equivalent channel, and s0 is the
electrical conductivity of the fluid. With the assumptions that (1)
k( p) and s( p) are related by a power law with unknown exponent r
(the dependence of k and s on the applied mechanical pressure p is
made explicit here) and (2) a change in the aperture a( p) gives rise
to a proportional change in the hydraulic radius m( p), the model
yields the relation

t pð Þ2

t20
¼ a pð Þ

a0

� �� 3�rð Þ= r�1ð Þ
; ð1Þ

where the subscript zero refers to some reference pressure. The
exponent r is therefore restricted to the range 1 � r � 3, just as is
seen experimentally; this nice coincidence accounts for the
widespread use of this model. Evidently, the observed value of r
reflects a sample-specific relationship between the fracture
apertures and the network tortuosity as pressure is applied. (Walsh
and Brace [1984, pp. 9428–9429] conclude that ‘‘r is a measure of
the sensitivity of the tortuosity to changes in crack aperture: as r
approaches 3, tortuosity is nearly independent of aperture, whereas
small changes in aperture result in very large changes in tortuosity
for samples where r is near unity.’’)
[5] More recently, research has shown that the fluid and

electrical current flow paths through fractured and porous hetero-
geneous media are not identical [e.g., Brown, 1989; Thompson and
Brown, 1991; David, 1993; Zhang and Knackstedt, 1995]; that is,
the hydraulic tortuosity th is not in general equal to the electric
tortuosity te. BecauseWalsh and Brace [1984] rely on a common t
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to connect their expressions for k and s, their model is fundamen-
tally flawed and its consequences may not be correct. In addition, it
is a simple matter to reproduce the experimental results for a single,
planar fracture by assuming k � hd 3i and s � hdi, where the hdni
are moments of the fracture aperture distribution. Calculations
for a wide variety of fractures produce the power law relation
hd 3i � hdis, with the value of the exponent s decreasing from 3
toward 1 as the fracture percolation threshold is approached. For
these and other reasons (e.g., the questionable validity of assumption
2 above), it is desirable to construct an improved equivalent channel
model for fractured rock, the goal being to understand the origin of
the observed power law relationship between k( p) and s( p).
[6] Section 2 presents the ‘‘equivalent channel network’’ model,

which represents the fracture network as a collection of connected,
locally planar fractures. The network connectivity is parameterized
by the tortuosity factors th and te, while the locally planar (but not
‘‘parallel-plate’’) fractures are characterized by effective hydraulic
and electric apertures dh and de, respectively. This is an equivalent
channel approach in that these single-valued quantities are taken to
be representative of the fracture network as a whole.
[7] Separate models for permeability and electrical conductivity

are produced, reflecting the lack of any fundamental relationship
between k( p) and s( p). However, the observed power law relation-
ship is reproduced when dh

3 / de
r and th / te

r. To assess the
validity of the first condition (relating the effective apertures),
section 3 presents stochastic calculations of the transport properties
of single, planar fractures characterized by average aperture,
fracture surface roughness, and fracture surface height variance.
Section 4 addresses the second condition (relating the network
tortuosity factors) and provides some last comments.

2. Derivation of the Equivalent Channel
Network Model

[8] The electrical conductance g1 of a single, fluid-filled, planar
fracture of width w and length L is given by

g1 ¼ s0
dew

L
; ð2Þ

where de is the aperture of a parallel-plate fracture that produces
the same current as the planar fracture for a given potential
difference applied across the length of the fracture (this is, in fact,
the definition of the electric aperture), and s0 is the conductivity of
the fluid. Then the electrical conductivity s1 of the single, planar
fracture is

s1 ¼
g1L

dh iw
¼ s0

de

dh i
; ð3Þ

where hdi is the average aperture of the planar fracture. As expected,
s1 = s0 for a fracture with smooth, parallel surfaces (de = hdi).
[9] Now consider a network of such fractures in a configuration

where all are oriented parallel to an applied potential gradient. The
electrical conductivity of this system is f0 s1, where f0 is the
volume fraction of this set of planar fractures. (Note that a fracture
network necessarily includes the medium in which the fractures are
embedded; this is in contrast to the ‘‘disembodied’’ single fracture
having electrical conductivity s1 and permeability k1.)
[10] A more realistic fracture network is created by relaxing this

restriction on the fracture orientation and, additionally, allowing
the fractures to bend while remaining locally planar. The conduc-
tivity s of the network is then reduced to

s ¼ f0s1
t

¼ s0f0

t
de

dh i ; ð4Þ

where the factor t accounts for the increased current path lengths.
This expression for s should be compared with that derived by
Walsh and Brace [1984].
[11] It is now convenient to use the relation NA = f0 /(hdi w),

where NA is the areal number density of fractures intersecting a
cross section of the material perpendicular to the applied potential
gradient (this assumes all fractures run the length of the sample; NA

is reduced when this is not the case). Of importance to this
derivation is the fact that NA is independent of the fracture
geometry and network topology and hence independent of applied
pressure. The electrical conductivity of the fracture network is then

s ¼ NAs0
dew

te
: ð5Þ

In equation (5) the electric aperture de is characteristic of the
locally planar fracture segments comprising the network, and te
may be regarded as a current path tortuosity factor determined by
the network structure (since te = 1 for a network composed of
planar fractures oriented parallel to an applied electric field and
increases for increasingly complex fracture networks).
[12] An analogous expression may be derived for the perme-

ability k of the fracture network. In this case, the hydraulic
conductance h1 of a single, planar fracture is given by

h1 ¼
d3hw

12L
; ð6Þ

where dh is the aperture of a parallel-plate fracture that produces
the same volume flow rate as the planar fracture for a given fluid
pressure difference applied across the length of the fracture. Then
the hydraulic conductivity k1 of the fracture is

k1 ¼
h1L

dh iw
¼ d3h

12 dh i
: ð7Þ

The analogue of equation (4) is the relation

k ¼ f0

t
d3h

12 dh i ; ð8Þ

which should be compared with the expression for k derived by
Walsh and Brace [1984], while the analogue of equation (5) is the
relation

k ¼ NA

d3hw

12tn
: ð9Þ

In equation (9) the hydraulic aperture dh is characteristic of the
locally planar fracture segments comprising the network, and th
may be regarded as a fluid flow path tortuosity factor determined
by the network structure. The factors th and te will not, in general,
be equal, since the distributions of fluid and electric flux among the
flow paths through a complex fracture network are different.
[13] Equations (5) and (9) for s and k, respectively, can be

combined to give the identity

k / sr
d3h
dre

tre
th

; ð10Þ

where the proportionality constant containing s0, NA, and w is
unaffected by pressure. Then k( p) / s( p)r when both ratios dh

3/de
r

and te
r/th are slowly varying over the range of applied pressures.

Section 3 shows that the first condition is indeed met for single,
planar fractures and relates the value of the exponent r to the
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fracture geometry. (Both conditions are obviously met with r = 3
for the special case of a network consisting of a single, parallel-
plate fracture.)

3. Calculation of the Transport Properties
of Planar Fractures

[14] The fluid permeability and electrical conductivity of single,
computer-generated fractures may be straightforwardly obtained by
solving the Navier-Stokes equations [Mourzenko et al., 1995;
Zhang et al., 1996] and the Laplace equation [Volik et al., 1997;
Mourzenko et al., 1999], respectively, over the three-dimensional
interior space of the fracture. However, these calculations are
computationally intensive, which severely limits the number of
fractures that can be considered and the length scale over which
surface roughness can be created.
[15] The approach taken here is inspired by the parallel-plate

model for a fracture. For this model, where the fracture surfaces are
smooth and parallel, the steady state solution of the Navier-Stokes
equations for laminar flow yields the ‘‘cubic law’’; that is, the
volume flow rate q is proportional to the cube of the aperture d. For
planar fractures with rough surfaces, this cubic law is assumed to
hold locally:

q rð Þ ¼ �d
d rð Þ3

12m
rp rð Þ; ð11Þ

where the two-dimensional vector r lies in the plane of the fracture,
q(r) is the volume of fluid discharged per unit time through the
cross-sectional area d d(r), m is the fluid viscosity, and p is the fluid
pressure. The condition of fluid incompressibility, r � q(r) = 0,
then leads to the Reynolds equation for fluid flow,

r� d3rp
� �

¼ 0: ð12Þ

Two observations may be made. First, equation (12) is simply a
steady state diffusion equation with a spatially dependent diffusion
coefficient, and so can be solved by a variety of conventional
methods. Second, equation (11) may be regarded as a microscopic
counterpart to Darcy’s law,

Q ¼ �K

m
rP; ð13Þ

which expresses the linear relationship between the macroscopic
volumetric flow rate Q through a porous system and the applied
fluid pressure gradient r P. The proportionality constant K, which
is here the effective permeability k1 of the planar fracture, is to be
determined.
[16] This Reynolds equation approach to obtaining flow proper-

ties of rough fractures has been used by Patir and Cheng [1978],
Brown [1987], Moreno et al. [1988], Brown [1989], Thompson and
Brown [1991], and Zimmerman et al. [1991], who solved equation
(12) for the local fluid pressures by a finite difference method.
More recent consideration of this approach has centered on the
validity of the ‘‘local cubic law’’ (equation (11)) governing fluid
flow through rough fractures. Brown et al. [1995], Mourzenko et
al. [1995], and Oron and Berkowitz [1998] found that use of the
two-dimensional Reynolds equation gives significantly higher flow
rates than are obtained by solving the three-dimensional Navier-
Stokes equations. Nicholl et al. [1999] confirmed this general
computational result by comparing the measured flow rates of
analog fractures with flow rates calculated by the Reynolds
equation. However, no consensus has emerged on the limits of
applicability of the local cubic law (this issue is reviewed by
Zimmerman and Bodvarsson [1996]). Of course, a fundamental

restriction is that the streamlines be smooth with no eddies (so low
Reynolds number), which requires the fracture surface profiles to
be strongly correlated (for example, a self-affine fracture surface
should have roughness exponent z closer to 1 than to 0). The
present work is intended to obtain an algebraic relation between the
hydraulic and electric apertures of rough fractures, where the latter
are determined by a local flux equation analogous to equation (11)
but with d(r)3 replaced by d(r). Volik et al. [1997] found this
electric analogue to produce a larger effective conductivity than the
three-dimensional Laplace equation. Thus, despite possibly poor
values for dh and de obtained from the two-dimensional Reynolds
equation approach, it is reasonable to expect that a relation found
between the two does indeed describe the transport properties of
planar fractures.
[17] The Reynolds equation (12) is treated here by the walker

diffusion method (WDM) [Van Siclen, 1999a] rather than solved
by the finite difference method (FDM). The latter technique
requires that a macroscopic fluid pressure difference be applied
across the system in order to calculate transport properties; thus the
FDM actually gives components of a permeability tensor, for
example. However, while the flow properties of a rough fracture
are indeed anisotropic (and become increasingly so as the fracture
closes), there is no expected correlation between this anisotropy
and the direction of the applied fluid pressure gradient; thus
effective rather than tensor properties are desired for the present
application. The WDM does not assume a macroscopic flow
direction and so naturally gives effective transport properties. (It
is evident from the WDM formalism that the effective permeability
of a periodic planar fracture is the arithmetic average of the two
permeability values for macroscopic transport in the two orthog-
onal directions of periodicity.) Other practical differences between
the methods are that the FDM requires a discretization of the
Reynolds equation that is effectively offset from that of the
aperture field [e.g., Romeu and Noetinger, 1995; Nicholl et al.,
1999], while the WDM works directly with the given field; and the
FDM is computer memory intensive while the WDM is CPU
intensive.
[18] The walker diffusion method exploits the isomorphism

between the Reynolds equation (12), with ‘‘local transport coef-
ficients’’ d(r)3, and the diffusion equation for a collection of
noninteracting random walkers in the presence of a driving force.
The walker density at each point r on a two-dimensional surface
(corresponding to the plane of the fracture) is thus given by the
value d(r)3. The equilibrium population densities are maintained
by the principle of detailed balance, which provides the following
rule for walker diffusion over a digitized (square grid) surface: a
walker at site (or pixel) i attempts a move to a randomly chosen
adjacent site j during the time interval t = 1/8; this move is
successful with probability pij = dj

3/(di
3 + dj

3), where di and dj are
the fracture apertures at sites i and j, respectively. The path of a
walker thus reflects the spatial variation of the fracture aperture and
may be described by a diffusion coefficient Dh � 1 that is related to
a ‘‘macroscopic transport coefficient’’ k by

k ¼ d rð Þ3
D E

Dh: ð14Þ

The diffusion coefficient is calculated from the standard relation
Dh = hR2i/(4t), where the set {R} of walker displacements, each
occurring over the time interval t, comprises a Gaussian
distribution that must necessarily be centered well beyond the
permeability correlation length for the fracture [Van Siclen,
1999b].
[19] The significance of the quantity k is that it satisfies the

macroscopic relation

q rð Þh i ¼ �d
k
12m

rp rð Þh i; ð15Þ
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which may be written in the more suggestive form

Q ¼ � k
12m d rð Þh irP; ð16Þ

where Q = hq(r)i/(dhd(r)i) is the volumetric flow rate of the
fracture (this relation is derived in Appendix A). As equation (16)
resembles Darcy’s law (equation (13)), the quantity k/(12hd(r)i) is
identified with the permeability k1. Thus

k1 ¼
d rð Þ3

D E
12 d rð Þh iDh; ð17Þ

and the hydraulic aperture dh is given by

d3h ¼ d rð Þ3
D E

Dh: ð18Þ

Equation (18) shows that the quantity dh
3 is simply the effective

value of the field composed of the local values d(r)3. Combining
equations (9) and (18) then gives k / hd 3i Dh, where Dh accounts
for the local fracture geometry (e.g., the spatial correlation of the
fracture surface heights). The problem of determining the flow
properties of a planar fracture is thus reduced to that of calculating
the diffusion coefficient Dh of a random walker.
[20] The electrical properties of a fluid-filled planar fracture are

found in similar manner. The local transport equation correspond-
ing to the cubic law (equation (11)) is

i rð Þ ¼ �dd rð Þs0rv rð Þ; ð19Þ

where i(r) and v(r) are the local electrical current and potential,
respectively. The conservation of flux then gives the two-
dimensional Reynolds-type equation:

r� drvð Þ ¼ 0: ð20Þ

The electrical analogue of equation (14) is

� ¼ d rð Þh iDe; ð21Þ

where the walker diffusion coefficient De � 1 is determined in
similar manner to Dh but with pij = dj/(di + dj). The quantity
� satisfies the macroscopic relation

i rð Þh i ¼ �d�s0 rv rð Þh i; ð22Þ

which may be written in the form

J ¼ � �s0
d rð Þh i

rV ; ð23Þ

where J = hi(r)i/(d hd(r)i) is the current density flux and rV is the
applied potential gradient. This is just Ohm’s law, so the quantity
� s0/hd(r)i is identified with the effective conductivity s1 of a
planar fracture. Thus

s1 ¼ s0De ð24Þ

and the electric aperture of the fracture is

de ¼ d rð Þh iDe: ð25Þ

Equation (25) shows that de is simply the effective value of the
aperture field. Combining equations (5) and (25) then gives s /
hdi De. Equation (24) reflects the fact that both the electrical
conductivity s1 and the walker diffusion coefficient obtained from
the WDM are scale-invariant [Van Siclen, 1999b]. It may be
noticed, particularly from the form of equation (24), that Dh and
De are inversely related to the tortuosity of the fluid flow and
electrical current streamlines, respectively, through a planar
fracture; however, these tortuosities are subsumed in the effective
apertures dh and de and should not be confused with th and te
above.
[21] Equations (17) and (24) for k1 and s1, respectively, suggest

no fundamental relationship between the permeability and the
electrical conductivity of a planar fracture, despite the intentional
similarity of their derivations. Thus it is necessary to calculate (or
measure) the transport properties of a variety of planar fractures
with different geometries to discover any phenomenological rela-
tionship.
[22] The planar fractures considered here are created from self-

affine surfaces characterized by values for the roughness exponent
z (this is just the Hurst exponent H, which is related to the fractal
dimension D of the surface by D = 3 � H) and the variance sh(L)

2

of the distribution of surface heights, where L2 is the planar area of
a surface (note that the quantity sh(L)/L

z, but not sh(L)
2, is surface

size-independent). A typical z value for a real fracture surface is
0.8 [e.g., Brown and Scholz, 1985; Schmittbuhl et al., 1995;
Bouchaud, 1997].
[23] The computer-generated fracture surfaces are produced by

the ‘‘successive random additions’’ method described by Voss
[1985]. The two surfaces composing a fracture are periodic (with
period L) and statistically identical and are uncorrelated with one
another. Where they overlap (as the fracture closes), the mass is
removed rather than redistributed. An example of a fracture with
surfaces having z = 0.8 is given in Figure 1. The view is normal to
the fracture plane, with the black regions indicating where the two
surfaces touch and the contours of increasingly lighter shading
signifying increasingly greater aperture (the fractures used in the

Figure 1. Example of a rough, planar fracture created from two
self-affine surfaces having z = 0.8. The view is normal to the
fracture plane, with the black regions indicating where the two
surfaces touch and the contours of increasingly lighter shading
signifying increasingly greater aperture.
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calculations were not contoured, of course). The connected regions
of relatively large aperture constitute flow channels through the
fracture. In this regard it is interesting to note that Figure 1 is
unchanged when the fracture surface height variance sh(L)

2 is
changed: the contour values are simply scaled by the ratio
g = sh

new/sh
old. Thus the walker diffusion coefficients Dh and

De, being scale-invariant, are unchanged by the change in fracture
surface height variance, while the aperture moments hdni are
scaled by the factor gn. Evidently, Dh and De are functionals of
the fracture surface roughness exponent z and the areal fraction
SA < 1 of the fracture plane that is accessible to the walkers
(which is simply a measure of the degree of fracture closure) but
not of the moments of the fracture surface height or aperture
width distributions.
[24] For a given fracture a walker is placed at a random location

on the fracture plane and allowed to diffuse according to the rules
given above for a specified time t. This is repeated many times in
order to obtain a large set {R} of walker displacements from which
the walker diffusion coefficient Dw (i.e., Dh or De) is calculated.
(The variable residence time algorithm [Van Siclen, 1999a] was
used to increase the computational efficiency of the walks.) The
only complication to this simple scheme lies in ensuring that the set
{R} is taken in the Gaussian diffusion regime; that is, that the
displacements R are much greater than the correlation length x for
the system (x is specific to the transport property, so in general
xh 6¼ xe). This was done by three ways, as illustrated in Figure 2.
First, the Gaussian regime is identified as that region of the ln hR2i
versus ln t plot where the data points fall on a straight line of slope

1. (Incidentally, that line has y intercept ln (4Dw).) Second, for
these periodic fractures with x � L, the number S(t) of different
sites visited by the walker over the time t must equal the number of
accessible sites in the system (and so will have a constant value).
Third, the Gaussian regime produces a constant value for Dw (those
values for Dw calculated in the anomalous diffusion regime (R < x)
are meaningless).
[25] Results of computations of de and dh

3 for a variety of
simulated, planar fractures are plotted in Figure 3. Each symbol
identifies a set of fractures, where successive members of the set
are obtained by further reducing the aperture of an initial fracture.
Thus the data points of a set, going from right to left, correspond to
a planar fracture under increasing pressure, and the slope of a curve
drawn through those data points gives the value of the power law
exponent r for that fracture. The straight lines with slopes 3, 2, and
1 are included in the log-log plot to show that r ! 3 for fractures
with well separated surfaces (i.e., large aperture) and that 1 � r � 3
in agreement with experimental observations. The slope r is clearly
not constant for a set of fractures but decreases slowly with
decreasing aperture (increasing pressure). However, r is effectively
constant over the much narrower range of pressures that can be
achieved experimentally (i.e., below the threshold pressure at
which the rock responds inelastically). For reference, the first data
point in each set corresponds to a fracture with SA between 0.9 and
1, while the last data point corresponds to a fracture with SA
between 0.5 and 0.7 (for comparison, the two-dimensional site
percolation threshold for a disordered conductor-insulator system
occurs at SA = 0.59275). The fact that all the data points lie on or
above the superposed lines with slopes 3 and 2 indicates that
de � dh � hdi in general, in agreement with Brown [1989].
[26] These results are consistent with those obtained in the

computational studies of planar fractures referenced above. Brown
[1989, Figure 12] shows a plot similar to Figure 3 where the slope r
is found to decrease from 3 to 2 as a planar fracture with z = 0.5 is
closed.
[27] The most striking feature of Figure 3 is the alignment of

data points with slope 2. The significance of the slope (or power

Figure 2. Typical data obtained by the walker diffusion method,
in this case for a (periodic) planar fracture of size L2 = 256 � 256
and having surface roughness exponent z = 0.8. The solid and open
circles correspond to ln hR2i and ln hSi values, respectively, and
the open triangles correspond to Dh values. Each data point is the
average over 104 walks, each walk of duration t. To check the
variability of the data, eight sets of 104 walks were taken for each
of the two largest times t; in every case the eight data points
overlap within the resolution of this plot. The coincidence of the
solid circles with the solid line of slope 1 at the largest walk times t
shows that the Gaussian regime has indeed been reached for the
largest walker displacements R. The transition from the anomalous
diffusion regime to the Gaussian regime occurs at the permeability
correlation length xh, which here is seen to approximately equal the
periodicity L of the fracture. The coincidence of the solid circles
with the dotted line of slope 1 (and y intercept ln 4) at the smallest
walk times t indicates that the two fracture surfaces are locally
parallel, reflecting the high degree of surface height correlation
(z = 0.8). The flattening of the curve of open circles at large walk
times t indicates that essentially all the accessible sites (SAL

2) were
visited by the walker during the largest time interval t.

Figure 3. Computational results obtained for a variety of
simulated, planar fractures with periodicity L = 256. The squares
and triangles (circles) are data points for fractures with fracture
surface roughness exponent z = 0.8 (0). The solid (open) symbols
indicate fractures created with a small (large) fracture surface
height variance. The crosses are data points for fractures created
from surfaces that are uncorrelated (i.e., surface heights are
assigned randomly from a Gaussian distribution) and have a small
height variance.
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law exponent) 2 becomes apparent when the partially closed
fracture is regarded as a three-dimensional porous material; that
is, as a collection of connected pores all lying in the fracture plane
(Figure 1 can certainly be viewed in this way). An equivalent
channel network model for porous media (derived in Appendix B)
yields the transport properties s / re

2 and k / rh
2 hr 2i for this

configuration, where phr2i is the average cross-sectional area of
the equivalent channel (or flow tube), and re and rh are the electric
and hydraulic radii, respectively. The proportionality constants,
which contain the electric and hydraulic tortuosity factors, are little
affected by a decrease in the fracture aperture. Use of the Reynolds
approximation for linear flow tubes gives the additional relation
re = rh. Then for the extreme case where the connected pores form
smooth, cylindrical tubes of uniform cross section, the equality
re
2 = rh

2 = hr2i holds, and thus the permeability and electrical
conductivity of the porous material follow the power law k / s2 as
the pores are uniformly constricted. The opposite extreme is the
case where the medium is composed of pores connected by very
narrow necks. Then the effective cross sections pre

2 and prh
2

decrease much more rapidly than the average pore/neck cross
section phr2i, so that the latter is effectively constant and k � s1.
[28] Of course, it is the distribution of flow that determines the

transport properties of a heterogeneous medium. Because flow
paths without narrow necks will generally carry more flow than
paths with narrow necks, the power law exponent is expected to be
closer to 2 than to 1. Indeed, the relation k / s2 is found for
artificial porous materials formed from fused glass beads, where
each sample had a different porosity achieved by sintering [Wong
et al., 1984]; for alumina ceramic samples each with a different
porosity [Brouers and Ramsamugh, 1986]; and for simulated,
three-dimensional systems of packed, spherical grains at various
consolidations, where the permeability was calculated by solving
the linear Stokes equations and the conductivity was calculated by
a method similar to the WDM [Schwartz et al., 1993].
[29] This analysis suggests that when the partially closed

fracture is regarded as a porous material, the value of the power
law exponent r is constrained to lie between 2 and 1. Evidently,
this structural transition is complete when the ratio hdi/sd has
fallen to 2 (see Figure 4). The analysis also suggests that r ! 1 as
the percolation threshold is approached; however, the pore network
tortuosity factors, which have been assumed to be little affected by

the changing fracture aperture, will certainly increase rapidly in
this case. Thus this analysis cannot provide a prediction for r when
the fracture is close to the percolation threshold. (It is perhaps
useful to note here that the pore network tortuosity factors cannot
be determined from the coefficients Dh and De obtained for a
planar fracture.)
[30] The data points in Figure 3 are obtained by calculating the

effective transport properties of the planar fractures. In practice, of
course, the transport properties are measured after a fluid pressure
or electrical potential difference is established across the system.
Figure 5 presents results of computations of orthogonal compo-
nents of de and dh

3 for one of the sets of fractures considered in
Figure 3. Clearly, the properties are increasingly anisotropic as the
fracture closes and will produce a rather different value for r
depending on the direction of the applied gradients in the plane of
the fracture. Such anisotropy further complicates attempts to
predict the geometry of a fracture given the transport properties,
and vice versa. (Experiments by Méheust and Schmittbuhl [2000]
clearly reveal the anisotropy of the flow properties of a nominally
isotropic planar fracture.)
[31] It is important to note that Figure 3 is a parametric plot and

so does not indicate a functional relationship between the
hydraulic and electric transport properties. In particular, Figure 3
cannot be taken as evidence that the transport properties are
influenced primarily by the variance sh

2 of the fracture surface
height distribution (or the variance sd

2 of the aperture distribution)
and very little by the spatial correlation of the surface heights (as
specified here by the roughness exponent z). To see this, the
dimensionless ratios dh/hdi and hdi/sd calculated for the fractures
presented in Figure 3 are plotted against one another in Figure 6. It
is apparent that the open and solid triangles (z = 0.8) define a
single curve, as do the open and solid circles (z = 0). This is
because the fractures corresponding to the open and solid symbols
are created from fracture surfaces that differ only in their height
variance sh

2 (the former set of fractures has much larger sh
2 than

the latter set); thus the dimensionless ratios scale by g/g = 1 in
going from one such fracture to another, but this does not then
imply that a simple relationship between dh/hdi and hdi/sd can be
found for fractures having a particular roughness exponent. For

Figure 4. The ratio hdi/sd, which is a crude indicator of the
shape of the fracture void space, plotted against the average
aperture hdi. A small value of the ratio indicates that the void space
is divided into distinct pores connected by narrow necks. Those
points in Figure 3 that lie on a slope r � 2 have hdi/sd � 2.

Figure 5. Illustration of the increasing anisotropy of the transport
properties of a planar fracture as the fracture closes. This particular
fracture, at SA = 0.8, is shown in Figure 1. The orthogonal (in the
plane of the fracture) components are distinguished by the
horizontal and vertical lines superposed on the open triangles (this
fracture produces the effective values indicated by the open
triangles in Figure 3).
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example, the fractures corresponding to the solid squares have z =
0.8 and surface height variance sh

2 only slightly larger than those
fractures corresponding to the solid triangles yet produce a very
different curve in Figure 6. Evidently, the transport properties of a
planar fracture are not simple functions of the fracture surface
height variance (or the fracture aperture variance). A different
separation of geometrical properties results from the Reynolds
equation approach: k / dh

3 = hd3i Dh and s / de = hdi De, where
Dh and De are functionals of z and SA. Figure 7 gives the calculated
values of Dh for the sets of fractures considered in Figure 3 plotted
against the SA values for those fractures. These data are suggestive
of the power law behavior Dh � (SA � SA

0)aSA
�1, where SA

0 is the
percolation threshold for the fracture and the exponent a is a
function of z. To verify or refute this conjecture would require
calculations for a much larger number of fractures and is outside the
scope of this paper. (However, it was checked that this power law

relationship does indeed appear to hold for the set of fractures
producing the crosses in Figure 3, where it is known that
SA

0 = 0.59275 for an infinite two-dimensional system.) The perco-
lation properties of simulated fractures are discussed in detail by
Mourzenko et al. [1996, 1999]. Note that the transport properties of
two-dimensional linear fractures obtained by the Reynolds approx-
imation are completely determined by the surface height or aperture
distribution: k / dh

3 = hd�3i-1 and s / de = hd�1i�1.
[32] As mentioned above, the walker diffusion coefficients Dh

and De are inversely related to the tortuosity of the fluid flow and
electrical current streamlines, respectively, through the planar
fracture. (In fact, if the walker were confined to a streamline, its
diffusion coefficient would equal the inverse of the square of the
streamline tortuosity.) Figure 8 shows that Dh < De for every
fracture and further that Dh / De

b with b � 2.3 when all fractures
are considered together.

Figure 7. Walker diffusion coefficient Dh, which is a functional
of the fraction SA of the fracture plane accessible to the walker,
plotted against SA. These data suggest a power law relationship for
SA close to the percolation threshold.

Figure 8. Calculated values of the walker diffusion coefficients
Dh and De which reflect the spatial correlation of the fracture
aperture (as derived from the spatial correlation of the fracture
surface heights). These data suggest a general power law relation
between the two coefficients.

Figure 6. Dimensionless (i.e., normalized) hydraulic aperture
plotted against the void shape factor hdi/sd for the fractures
considered in Figure 3. No simple functional dependence is
apparent.

Figure 9. Hydraulic aperture dh, which varies essentially linearly
with the average aperture hdi and goes to zero for a nonzero value
of hdi. This offset causes the cubic law to fail at small hdi.
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[33] It is of interest to obtain a relation between the hydraulic
aperture dh and the average aperture hdi of a planar fracture.
Figure 9 shows that in general, dh / (hdi � hdi0), where the offset
hdi0 is determined by the percolation threshold for the fracture. The
offset is responsible for the breakdown of the cubic law for fluid
flow as the fracture aperture decreases. This empirical ‘‘law’’ states
that the flow rate per unit head difference varies as the third power
of the fracture aperture. However, Darcy’s law (equation (13)) gives

q0 ¼ �w dh i k1
m
rP ¼ �w

d3h
12m

rP; ð26Þ

where q0 is the volume of fluid discharged per unit time through the
fracture (with cross-sectional area w hdi). Then the cubic law is
recovered when dh / hdi; that is, when hdi � hdi0. When the
average aperture hdi decreases toward the threshold value hdi0, the
permeability must decrease as an increasingly higher power of hdi
as shown in Figure 10. Indeed, Nolte et al. [1989] find powers of
7–10 for single, natural fractures close to their percolation
threshold (as evidenced by the fractal character of the fluid flow
paths). This trend will reverse in the inelastic regime if hdi0 moves
to a smaller value (due to the creation of microcracks, for instance);
such behavior has been observed by Witherspoon et al. [1980,
Figure 8], Durham and Bonner [1994, Figure 5], and other
researchers (Renshaw [1995, Figure 5] compiles data from a
number of sources).

4. Discussion

[34] These calculations for simulated, planar fractures show that
indeed the ratio dh

3/de
r varies slowly with hdi, as required by the

equivalent channel network model to reproduce the general result
k( p) / s( p)r for fractured rock. The condition that te

r/th vary
slowly with pressure is more difficult to address, if only because
the fracture network tortuosity factors th and te are ill-defined. Of
course, if the network structure is little affected by an applied
pressure, the tortuosity factors are unchanged and the condition
holds trivially. Indirect support for the general validity of the
relation th / te

r is provided by Zhang and Knackstedt [1995],
who calculated the hydraulic and electric streamlines for a set of
simulated, random porous materials. The hydraulic and electric

tortuosity factors for the materials were obtained by weighing the
measured tortuosity of each streamline by its volumetric flow to
account for the distribution of flow among the streamlines. Their
plot of the tortuosity factors as a function of the material porosity
suggests a power law relation with exponent approximately equal
to 2. Clearly, such a relation should be looked for in other systems
to establish or refute its general validity.
[35] In any event, the network tortuosity factors introduced here

have the great virtue that they permit the separation of the fracture
network transport properties into local (dh and de) and network (th
and te) properties. In contrast, this distinction is not made in the
equivalent channel model of Walsh and Brace [1984], which
culminates in equation (1) above. The evidence presented here
that the transport properties of planar fractures follow the power
law k( p) / s( p)r with 1 � r � 3 cannot be reconciled with
equation (1).
[36] An important implication of this work is that r values

between 3 and 2 are simply ‘‘crossover’’ values that indicate a
fracture undergoing the pressure-induced structural transition to a
porous medium. By correlating the data in Figure 7 with that in
Figure 3, it is apparent that the transition is complete when the
fracture is 2 to 5 percent closed (SA = 0.98 � 0.95). This result is
consistent with observations by Durham and Bonner [1994] of
departure from parallel-plate behavior at an SA value between 0.996
and 0.91 in the case of an offset fracture in granite. In general, the
transition will occur at a lower value of SA the greater the fracture
surface correlation (i.e., the larger the z value). Otherwise, the
experimental value of the exponent r cannot be used to distinguish
the fracture geometry.
[37] The treatment of planar fractures presented here has relied

on the Reynolds equations. This enabled the application of the
walker diffusion method (WDM), which produced analytic expres-
sions for the transport properties. The n-dimensional Reynolds
equation actually describes the flow of electrical current through an
n-dimensional volume having spatially dependent conductivity.
Thus Reynolds equations (12) and (20) for fluid and electrical
current flow through a planar fracture produce streamlines that are
precisely those for electrical current flowing across a two-dimen-
sional conducting sheet with local conductivities d(r)3 and d(r),
respectively. Viewed this way, fluid flow through a fracture, as
described by equation (12), will certainly be more sensitive to local
aperture variations (and so will take more tortuous paths) than the
electrical current. Thus the Reynolds equations provide a crude,
but qualitatively correct, model for fluid and electrical current flow.
Of course, specific numerical results obtained from the Reynolds
equation in each case will differ from those obtained by solving the
Navier-Stokes equations and the Laplace equation, respectively.
[38] Finally, it is interesting to note that the effective con-

ductivity of a lognormal distribution of conductivities in two
dimensions equals the geometric mean of the distribution in the
infinite volume limit [Matheron, 1967]. A fracture with lognor-
mal aperture distribution (where the local values d(r) are
uncorrelated) will thus have an effective aperture de equal to
the geometric mean of the aperture distribution, exp[hln di]. The
distribution of cubed values d(r)3 is lognormal as well, so the
effective value dh

3 equals the geometric mean exp[hln d3i]. Then
de = dh = exp[hln di]. The last equality was used by Renshaw
[1995] to define the hydraulic aperture of a fracture; this
definition proved successful in reproducing many numerical
and experimental flow results.

Appendix A: Derivation of the Relation Between
Local and Macroscopic Flow Rates

[39] Consider a planar fracture oriented such that the fracture
plane is parallel to the x-y plane and the macroscopic fluid pressure
gradient is in the y direction ( j). Then the volume of fluid
discharged per unit time through the fracture is

Figure 10. Demonstration that the hydraulic aperture dh
decreases as an increasingly higher power of the average aperture
hdi as the planar fracture closes. Fractures that obey the cubic law
produce points that lie on the straight line of slope 3.
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q0 ¼
Z w

0

j�q x; yð Þ
d

dx ðA1Þ

and the cross-sectional area of the fracture normal to the
macroscopic flow direction is

A ¼
Z w

0

d x; yð Þdx: ðA2Þ

The volumetric flow rate Q of the fracture is then

Q ¼ q0

A
¼ j�q x; yð Þh ix

d d x; yð Þh ix
; ðA3Þ

where the subscript x signifies that the averages are taken over the
x coordinate. Since all cross sections normal to the fracture plane
are statistically identical, and the components of q(r) normal to the
macroscopic flow direction sum to zero, equation (A3) is
equivalent to

Q ¼ q rð Þh i
d d rð Þh i

: ðA4Þ

Appendix B: Derivation of the Equivalent
Channel Network Model for Porous Media

[40] In this model a porous material is comprised of con-
nected, locally linear flow channels embedded in an impermeable
(and insulating) matrix. The transport properties of such a net-
work may be described in terms of the effective electric and
hydraulic radii re and rh, respectively, of the linear flow channels
and the tortuosity factors te and th determined by the network
structure.
[41] The electrical conductance g1 of a single, fluid-filled, linear

flow tube of length L is given by

g1 ¼ s0
pr2e
L

; ðB1Þ

where re is the radius of a smooth, cylindrical tube that produces
the same current as the linear flow tube for a given potential
difference applied across the length of the tube. Then the electrical
conductivity s1 of the single, linear flow tube is

s1 ¼
g1L

p r2h i ¼ s0
r2e
r2h i ; ðB2Þ

where phr2i is the average cross-sectional area of the tube. The
pore network formed by a parallel configuration of such flow tubes
oriented in the direction of the applied field has conductivity s = f0

s1, where f0 is the volume fraction of the tubes. A more realistic
network is created by removing this restriction on the tube
orientation and allowing the tubes to bend, which reduces the
electrical conductivity to

s ¼ f0tð Þs1
t2

¼ s0f0

t
r2e
r2h i ; ðB3Þ

where the factor t accounts for the increased tube lengths. It is
convenient for the purpose of this derivation to apply the relation
NA = f0 /(phr2i), where NA is the areal number density of pores
intersecting a cross section of the material perpendicular to the

applied potential gradient, to equation (B3). Then the electrical
conductivity s of the pore network is

s ¼ NAs0
pr2e
te

: ðB4Þ

This is an equivalent channel model in that the electric cross
section pre

2 and the average cross section phr2i characterize the
locally linear flow tubes that comprise the pore network, while te
may be regarded as a current path tortuosity factor determined by
the structure of the network.
[42] An analogous expression may be derived for the perme-

ability k of the pore network. In this case, the hydraulic conduc-
tivity k1 of a single, linear flow tube is given by

k1 ¼ r2h
�
8; ðB5Þ

where rh is the radius of a smooth, cylindrical tube that produces
the same volumetric flow rate as the linear flow tube for a given
fluid pressure difference applied across the length of the tube. Then
the analogue of equation (B3) is the relation

k ¼ f0

t
r2h
8
; ðB6Þ

and the analogue of equation (B4) is the relation

k ¼ NA

pr2h r2
	 


8th
: ðB7Þ

Expressions for s1 and k1 may also be found by application of the
Reynolds approximation. Equating these with equations (B2) and
(B5), respectively, produces a useful relation between the effective
radii re and rh. The Reynolds approximation considers the linear
flow tube to be comprised of n short segments, where the ith
segment is a disc of radius ri and length L/n. The electrical
conductance gi of that segment is

gi ¼ s0
pr2i
L=nð Þ ðB8Þ

(note that the conductivity si = s0 as expected). Then the
conductance g1 of the flow tube is given by the relation

g�1
1 ¼

Xn
i¼1

g�1
i ; ðB9Þ

and the electrical conductivity is

s1 ¼
g1L

p r2h i ¼ s0
n

r2h i
Xn
i¼1

r�2
i

" #�1

; ðB10Þ

where phr2i is the average cross-sectional area of the tube.
Similarly, the permeability ki of the ith segment is

ki ¼ r2i
�
8 ðB11Þ

so that the permeability k1 of the flow tube is

k1 ¼ n
Xn
i¼1

k�1
i

" #�1

¼ n

8

Xn
i¼1

r�2
i

" #�1

: ðB12Þ
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Equating expressions (B2) and (B10) for s1, and expressions (B5)
and (B12) for k1, gives the relations

r2e ¼ r2h ¼ n
Xn
i¼1

r�2
i

" #�1

¼ r�2
	 
�1 ðB13Þ

when the Reynolds approximation is used. Note that the effective
radii re and rh are primarily affected by the smallest members of the
set {ri}, that is, by the necks connecting the pores.
[43] It should be recognized that the equality of re and rh

(equation (B13)) is a consequence of defining rh according to
equation (B5). The more conventional definition of rh is that it is
the radius of a smooth, cylindrical tube that produces the same
volume flow rate as the linear flow tube for a given fluid pressure
difference applied across the length of the tube. Then equations
(B6) and (B7) become

k ¼ f0

t
r4h

8 r2h i ¼ NA

pr4h
8th

: ðB14Þ

In this case the hydraulic radius is given by the relation

r4h ¼ r�4
	 
�1 ðB15Þ

when the Reynolds approximation is used.
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Méheust, Y., and J. Schmittbuhl, Flow enhancement of a rough fracture,
Geophys. Res. Lett., 27, 2989–2992, 2000.

Moreno, L., Y. W. Tsang, C. F. Tsang, F. V. Hale, and I. Neretnieks, Flow
and tracer transport in a single fracture: A stochastic model and its rela-
tion to some field observations, Water Resour. Res., 24, 2033–2048,
1988.

Mourzenko, V. V., J.-F. Thovert, and P. M. Adler, Permeability of a single
fracture; validity of the Reynolds equation, J. Phys. II, 5, 465–482, 1995.

Mourzenko, V. V., J.-F. Thovert, and P. M. Adler, Geometry of simulated
fractures, Phys. Rev. E, 53, 5606–5626, 1996.

Mourzenko, V. V., J.-F. Thovert, and P. M. Adler, Percolation and conduc-
tivity of self-affine fractures, Phys. Rev. E, 59, 4265–4284, 1999.

Nicholl, M. J., H. Rajaram, R. J. Glass, and R. Detwiler, Saturated flow in a
single fracture: Evaluation of the Reynolds equation in measured aperture
fields, Water Resour. Res., 35, 3361–3373, 1999.

Nolte, D. D., L. J. Pyrak-Nolte, and N. G. W. Cook, The fractal geometry of
flow paths in natural fractures in rock and the approach to percolation,
Pure Appl. Geophys., 131, 111–138, 1989.

Oron, A. P., and B. Berkowitz, Flow in rock fractures: The local cubic law
assumption reexamined, Water Resour. Res., 34, 2811–2825, 1998.

Patir, N., and H. S. Cheng, An average flow model for determining effects
of three-dimensional roughness on partial hydrodynamic lubrication,
J. Lubrication Technol., 100, 12–17, 1978.

Renshaw, C. E., On the relationship between mechanical and hydraulic
apertures in rough-walled fractures, J. Geophys. Res., 100, 24,629–
24,636, 1995.

Romeu, R. K., and B. Noetinger, Calculation of internodal transmissivities
in finite difference models of flow in heterogeneous porous media, Water
Resour. Res., 31, 943–959, 1995.

Schmittbuhl, J., F. Schmitt, and C. Scholz, Scaling invariance of crack
surfaces, J. Geophys. Res., 100, 5953–5973, 1995.

Schwartz, L. M., N. Martys, D. P. Bentz, E. J. Garboczi, and S. Torquato,
Cross-property relations and permeability estimation in model porous
media, Phys. Rev. E, 48, 4584–4591, 1993.

Thompson, M. E., and S. R. Brown, The effect of anisotropic surface
roughness on flow and transport in fractures, J. Geophys. Res., 96,
21,923–21,932, 1991.

Van Baak, D. A., Variational alternatives to Kirchhoff’s loop theorem in dc
circuits, Am. J. Phys., 67, 36–44, 1999.

Van Siclen, C. D., Walker diffusion method for calculation of transport
properties of composite materials, Phys. Rev. E., 59, 2804–2807, 1999a.

Van Siclen, C. D., Anomalous walker diffusion through composite systems,
J. Phys. A, 32, 5763–5771, 1999b.

Volik, S., V. V. Mourzenko, J.-F. Thovert, and P. M. Adler, Thermal
conductivity of a single fracture, Transp. Porous Media, 27, 305–326,
1997.

Voss, R. F., Random fractal forgeries, in Fundamental Algorithms for Com-
puter Graphics, NATO ASI Ser., vol. F17, edited by R. A. Earnshaw,
pp. 805–835, Springer-Verlag, New York, 1985.

Walsh, J. B., and W. F. Brace, The effect of pressure on porosity and the
transport properties of rock, J. Geophys. Res., 89, 9425–9431, 1984.

Witherspoon, P. A., J. S. Y. Wang, K. Iwai, and J. E. Gale, Validity of cubic
law for fluid flow in a deformable rock fracture, Water Resour. Res., 16,
1016–1024, 1980.

Wong, P.-Z., J. Koplik, and J. P. Tomanic, Conductivity and permeability of
rocks, Phys. Rev. B, 30, 6606–6614, 1984.

Zhang, X., and M. A. Knackstedt, Direct simulation of electrical and hy-
draulic tortuosity in porous solids, Geophys. Res. Lett., 22, 2333–2336,
1995.

Zhang, X., M. A. Knackstedt, and M. Sahimi, Fluid flow across mass
fractals and self-affine surfaces, Physica A, 233, 835–847, 1996.

Zimmerman, R. W., and G. S. Bodvarsson, Hydraulic conductivity of rock
fractures, Transp. Porous Media, 23, 1–30, 1996.

Zimmerman, R. W., S. Kumar, and G. S. Bodvarsson, Lubrication theory
analysis of the permeability of rough-walled fractures, Int. J. Rock Mech.
Min. Sci. Geomech. Abstr., 28, 325–331, 1991.

�����������
C. D. Van Siclen, Idaho National Engineering and Environmental

Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-2211, USA. (cvs@
inel.gov)

ECV 1 - 10 VAN SICLEN: EQUIVALENT CHANNEL NETWORK MODEL

View publication statsView publication stats


