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[1] We have developed a model to simulate the formation and evolution of hydraulic
fractures. The model relies on a discrete spring network representation of the fracturing
media and a continuum description of the fluid pressure that diffuses within it. The model
is both versatile and efficient due to the lack of redundant components in the description of
the fluid dynamics and the simple mechanics of the spring network. The model is
validated quantitatively in a simple test case where it is shown that the pressure forces on
the solid agree with theoretical predictions. Subsequently, it is applied to some simplified
geological scenarios in order to explore some generic effects. While no attempt has been
made to apply representative parameters for real geological systems, the model
demonstrates that the fracture formation depends crucially on the way pressure diffuses
into the rock, both in the case of a point pressure source and in the case of a sandwich or
‘‘caprock’’ geometry where high fluid pressure causes hydraulic fracturing of a low-
permeability ‘‘lid’’ layer. Finally, the continuum limit of the elastic system is obtained
analytically in order to identify the proper macroscopic parameters that are needed
when simulations are to be matched to real geological systems. INDEX TERMS: 5104

Physical Properties of Rocks: Fracture and flow; 0902 Exploration Geophysics: Computational methods,

seismic; 3210 Mathematical Geophysics: Modeling; 3902 Mineral Physics: Creep and deformation;
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1. Introduction

[2] Hydrofracturing is a common and important geo-
logical process in a variety of geological settings and at a
wide range of scales. It is ‘‘perhaps the most important
single mechanism of deformation operative in the upper
crust’’ [Fyfe et al., 1978]. It generates the permeable path-
ways controlling fluid release from fluid reservoirs, fed by
either fluid injection or internal fluid production, when the
forces caused by the fluid pressure gradients exceed the
confining stress plus the modest tensile strength of the rock.
This applies to leakage of hydrocarbons through low-per-
meability caprocks in sedimentary basins, fluid loss during
‘‘leak-off’’ tests carried out in subsurface drill holes, fluid
‘‘blow out’’ events in geysers, hydrothermal megaplumes
and smaller fluid release events at the mid-ocean ridges,
fluid release from crystallizing and cooling magmatic
bodies, and fluid migration and veining following meta-
morphic devolatilization processes, and it may also be
responsible for fracturing associated with the emplacement
of dikes, sills, and other intrusive bodies in the Earth’s crust.
Existing studies of hydrofracturing include both theoretical
analysis [Gordeyev, 1993; Valkó and Econimedes, 1995],
simulation studies [Tzschichholtz et al., 1994; Tzschichholtz
and Herrmann, 1995; Flornes, 2000; Herrmann and Roux,

1990], and real-scale empirical measurements during leak-
off tests [Valkó and Econimedes, 1995]. Analogue experi-
ments have also been carried out where the detailed
evolution of the hydrofractures are made possible by trans-
parent setups [Lemaire et al., 1991]. Yet the mechanism of
hydrofracturing is incompletely understood. This is partic-
ularly so with respect to the intimate coupling between the
fracturing process and the pressure of the the pore- or
fracture-filling fluid. In the simplest case, the fluids can
be considered as ‘‘external’’ to the system of interest, i.e.,
fracturing of some essentially nonporous rock is triggered
by a high fluid pressure applied somewhere along its
boundaries. Models based on such a concept have been
put forward to explain fluid expulsion from pressure com-
partments and fluid loss during leak-off tests in sedimentary
basins. However, even in this case the existing models
generally fail to describe the dynamics of the system after
the initial fracturing has occurred.
[3] In the general case, the force on the rock is given both

by the boundary conditions and by the fluid pressure
gradients within the the pore and fracture space of the rocks.
Models put forward to deal with internal fluid pressure
generation and fluid pressure gradients on a small scale
were initially based on the Griffith theory of tensile failure
[Valkó and Econimedes, 1995]. However, in these models
the explicit coupling between the fracturing dynamics and
the fluid pressure evolution is also lacking. In this paper we
develop a model that includes both the elastic deformation
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and fracturing of the solid medium, the diffusion of fluid
pressure, and the interaction between these processes. We
demonstrate that in the continuum limit our model, which is
based on a discrete spring network, is described by Biot
theory [Wang, 2001] but only in the linear elastic regime
before the onset of fracturing. The corresponding continuum
equations make it possible to identify the parameters that
must be matched to the real system that is simulated.
[4] In the following, hydrofracturing is simulated in some

geometrically simple systems, a point source injection (as in
local gas production or leak-off tests), and a sandwich or
‘‘caprock’’ geometry where the fluid pressure gradients
cause fracturing of a less permeable layer, a ‘‘lid.‘‘ It is
observed that the pressure forces are transmitted to the rock
in a way consistent with Biot theory [Wang, 2001] and that
fracturing occurs as a result. Even though these simulations
focus on qualitative effects, they demonstrate, both in the
case of point source injection and in the caprock simula-
tions, that the fracturing process depends crucially on the
dynamics of the pressure diffusion.
[5] Compared to existing simulation models [Tzschich-

holtz et al., 1994; Flornes, 2000; Maillot et al., 1999] the
present model is the first to introduce a two-way coupling
between solid deformations/fracture and pressure diffusion.
This is essential in order to describe the fact that even thin
fractures represent efficient pathways for the fluid pressure.
The model by Maillot et al. [1999] describes seismic effects
of hydrofracture, in particular, mode II fractures. For this
purpose, sliding friction along the fractures is introduced,
and the coupling between the pressure diffusion and the
fractures is ignored. In our model, on the other hand, the
main focus is fractures that open (mode I), and the effect of
these fractures on the permeability is important as sliding
friction is relatively unimportant. Friction is thus not part of
the present model.
[6] The main aim of the present model is the study of the

pattern formation that results from fluid production inside
the rock, with or without the effects of external stresses.
Often the fluid production rate within the rock will vary
continuously with location in the rock. In the present
context, however, we consider only the simplest cases
where the pressure is given by boundary conditions at a
point or along lines in space.

2. The Model

[7] The model describes the elastic deformation and
fracturing of the solid medium, the diffusion of fluid
pressure, and the interaction between these processes. The
present application is two-dimensional, and this represents
the most serious limitation compared to real systems.
Basically, it implies that the fractures formed are assumed
long in the direction not described or, in other words, that
the system is translationally invariant in the third dimension.
While this assumption may not hold, in many systems of
interest it may be give a good approximation in others, and
it provides a good starting point for the study of qualitative
effects. In future simulations we will eventually use realistic
values for the dimensionless numbers describing the fluid
and elastic properties of water in sandstones and shales.
[8] Figure 1 describes the basic components of the

model, the deformable triangular spring network, and the

fluid pressure P. The (fixed) square lattice on which P is
discretized has the lattice constant l0 which may be equal
to or larger than the lattice constant of the triangular
lattice.
[9] The nodes of the triangular lattice represent the solid

material that makes up the porous medium, and the springs
between them represent the elastic interactions between
these solid constituents. The volume of the nodes is
assumed fixed, and the springs are assumed not to have
any volume, i.e., the model describes a medium made up of
incompressible grains. In other words, the unjacketed com-
pressibility is taken to be negligible compared to the fluid
compressibility [Wang, 2001].
[10] The gradients in P cause forces on the nodes of the

spring network which therefore deforms. This deformation
on the other hand changes the permeability which again
changes the evolution of P. When the springs are stretched
beyond a certain threshold stress, they break. It is this
fracturing process that makes a microscopic, rather than a
continuum mechanical model of the elastic processes nec-
essary. As opposed to square lattices, the triangular lattice
produces isotropic elastic behavior. This is shown in section
2.3.

2.1. Fluid Component

[11] The evolution of the fluid pressure and the coupling
to the solid phase is described by McNamara et al. [2000].
For completeness, we review it briefly here. The transport
of fluid through the medium is given by a Darcy law where
the permeability k is taken to be a function of the solid
fraction, i.e., the density of nodes on the elastic lattice. The
solid fraction r is related to the porosity f as r =1 � f.
When the pore scale flow is dominated by viscous forces,
i.e., when it is sufficiently slow, the local flow velocity may
be written

u ¼ � k
m
rP; ð1Þ

where m is the fluid viscosity. The fluid density per unit
volume of the porous medium rf is related to the density per
volume of the fluid rf

0 as rf = frf
0. If we now take the

pressure to be related to the density through an equation of
state that we linearize around a background pressure P0, we
can write

rf � f bTr
0
f �P þ r0f 0

� �
; ð2Þ

where the isothermal compressibility is defined as bT =
(1/rf

0) @rf
0/@P at constant temperature, �P = P � P0, and

rf 0
0 is the fluid density corresponding to P0. If we now
impose mass conservation of the fluid

@rf
@t

þr � rf u
� �

¼ 0; ð3Þ

we obtain

@

@t
f r0f bT�P þ r0f 0
h i

�r � f r0f 0bT�P þ r0f
h i k

m
rP

� �
¼ 0: ð4Þ
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Note in the above description that while f may change due
to deformations of the solid grains, we have not included the
effect that the solid that composes the grains change their
density. This is consistent with the fact that water is more
compressible than most rocks under typical conditions. Here
the rate of change of the porosity is due to the motion of the
solid phase. Since we will only obtain the equilibrium state
of the elastic solid, and not the motion to that equilibrium
state, we will neglect terms in equation (4) that depend on
this motion; that is, we will neglect the effect that
expansion/compression of the porous rock has on the fluid
pressure. The only effect on the fluid pressure of the solid
density variations is thus the (strong) dependence of the
permability on solid density. We thus neglect the rapid
pressure variations that result from the fracture formations
and deformations, keeping only the slowly varying effects
on the permeability. We note, however, that in some
applications, like those where the rock is completely
fragmented, this is not a good approximation. In the present
test applications, though, it is. Consequently, we discard the
@f/@t term and write

f
@P

@t
�r � f P þ P̂0

� �k
m
rP

	 

¼ 0; ð5Þ

where we have defined P̂0 = (1/bT � P0) and divided by rf
0bT.

In an ideal gas, P̂0 vanishes as it expresses the nonlinear part
of the relationship between the pressure and density. For
most fluids the constant P̂0 is positive. For water, bT = 4.45	
10�4 MPa�1 [Trompert et al., 1993]. Taking, as an
example, a background pressure P0 = 50 MPa, we obtain
P̂0 = 2197 MPa. Note that equation (5) does not distinguish
between a fluid with background pressure P0 and
compressibility bT and an ideal gas of background pressure
P0 + P̂0.

[12] We now only need to determine the permeability k.
Since the local values of k depend on the details of the
medium at hand, we shall focus on the scaling properties
rather than the prefactor, which to some extent is arbitrary.
[13] We assume that the undeformed solid has a certain

background permeability k0 and changes in this permeabil-
ity to be caused by fractures, as illustrated in Figure 2. The
permeability in the vertical y direction depends both on the
permeability of the fracture and k0. These two permeabil-

ities are connected in parallel, and not serially. This means
that they may simply be added together to get the total
permeability. For this purpose we then need the permeabil-
ity of a channel of width a 
 l0. Assuming that the fluid
flow is in the viscous regime, so that there is a linear
relationship between the average flow velocity in the
fracture and the pressure gradient, the permeability is
obtained as the coefficient relating the two. For simple
Poiseuille flow in a straight channel the permeability is
a2/12. Using this, we may write

kyy ¼ 1� a

l0

	 

k0 þ

a

l0

a2

12

� �
; ð6Þ

where the first term denotes the permeability in the
remaining fraction (1 � a/l0) of the cell and the second
term denotes the permeability contribution from the fracture
that takes up a fraction a/l0 of the cell. In the x direction
normal to the fracture k depends only weakly on a as

kxx ¼
k0

1� a=l0
� k0 1þ a

l0

	 

; ð7Þ

when a 
 l0.
[14] This permeability is tensorial in nature as it changes

with the direction in space. Now, although we could have
based the computations on a tensorial permeability, we
prefer the simpler option of averaging over different spatial
direction. This averaged permeability has the form

k ¼ 1

2
kxx þ kyy
 �

� k0 þ
a3

24l0
: ð8Þ

Writing this permeability as a function of r instead of a, we
obtain the desired result. This is an easy exercise as the

Figure 1. The triangular spring network with the super-
posed square grid on which the pressure is discretized. Here
there is no deformation of the spring network and no
fractures. The lattice constant l0 of the pressure grid is larger
than or equal to, but never smaller than, the links of the
spring network.

Figure 2. A fracture in a cell of the solid medium
corresponding to one node of the pressure lattice. The
average aperture is denoted a.
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geometry of Figure 2 dictates �r/r0 = �a/l0, where r0 is the
solid fraction before deformation. The result is

k ¼ k0 þ
l20
24

j�rj
r0

	 
3

ð9Þ

if the material is dilated/fractured and �r < 0. In the case of
compaction �r > 0 the permeability is, for simplicity, taken
to be unchanged k = k0.
[15] In order to compute the density and thus �r on the

sites of the pressure lattice a linear interpolation scheme is
applied [McNamara et al., 2000]. Each particle is taken to
be discs of unit diameter. Therefore the density computation
amounts to compute the area (volume, in three dimensions)
fraction. This is done by locating the four nearest grid points
of the pressure lattice. For each particle (disc) a contribution
proportional to the distance between the grid point and the
particle center is added to the four nearest grid sites.
[16] Note that when a fracture forms, the information

about its direction is not contained in equation (9). How-
ever, it will be contained in the site-to-site variations of k.
Thus the choice of a nontensorial k is only reflected in the
somewhat coarser description of the fracture orientations.
[17] Since k0 � r2, where r is the characteristic diameter

of the pores in the porous medium, the last term in equation
(9) is of relative order (a/r)2 or larger. This implies that k
varies very strongly with the aperture a, and thus r. This
strong dependence on r variations in equation (9) makes the
pressure diffusion sensitive to very small variations in the
positions of the solid particles. This property strongly
increases the numerical efficiency of the model as even
the effect of fractures that are much thinner than the
pressure grid resolution l0 affect the pressure evolution.
Equations (5) and (9) are solved by means of a Crank-
Nicholson scheme [Press et al., 1992].

2.2. Solid, Elastic Component

[18] The elastic matrix is modeled by an interconnected
network of elastic elements representing the porous material
on an intermediate scale between the large scale of the
continuum behavior and the fine scale of individual grains
in the porous material. The single particles that make up the
elastic system are therefore not to be interpreted as single
grains. They may, however, be given a microscopic or
mesoscopic interpretation in terms of clusters of grains.
The spherical particles are ordered in a triangular lattice and
connected by linear springs.
[19] A comment on the isotropy of the spring network is

in order. The isotropy of the elastic properties triangular
lattice is unique among two-dimensional Bravais lattices
(see section 2.3). However, while the elastic properties are
isotropic, the fractures may not be, as they are formed by
breaking one lattice bond at a time. As a result, the external
tension needed to break the first bond in any lattice of
identical bonds depends on the direction of the tension. This
anisotropy was quantified by Monette and Anderson [1994]
for triangular and square lattices with and without bond
bending resistance. They showed that for lattices without
any disorder in the breaking thresholds, there is always
anisotropy, mostly so for the triangular, central force net-
work that we apply. However, the presence of disorder in

the breaking thresholds alters this picture. In fact, with a
variance in the breaking thresholds of 10% we have not
been able to observe large-scale anisotropies in the fracture
patterns, neither in the present simulations nor in simula-
tions of more complex fracture patterns. Being the simplest
model with isotropic elastic behavior, the triangular network
is thus a convenient choice, though it is possible that future
applications may be improved by other lattice choices. As a
simple test, we imply a square lattice with torsion inter-
actions in some of the simulations.
[20] The force acting on an individual particle i has two

components, the elastic force and the pressure forces fi
e,

which are external to the elastic network. Mathematically,
this force may be written

f i ¼ k
X
j

jxi � xjj � l
 �

eij þ f ei ; ð10Þ

where k is the spring constant, xi are particle positions, l is
the interparticle equilibrium distance, and eij is a unit vector
pointing from particle i to particle j. The sum is over all
contacting neighbors j. The repulsive part of the spring
force is present for all particles in contact, even though the
spring may be broken. This happens if it is strained beyond
the breaking threshold, in which case, it becomes unable to
support tension.
[21] In the simulations using the square lattice there is

also a torsion force between particles. This force between
particle i and j has the form

Fs;ij ¼ ksjxi � xjjqij; ð11Þ

where qij is the relative rotation between particles and ks is
an elastic constant. In all the simulations, ks = 0.14 k.
[22] The pressure force has the form

f ei ¼ �rP

r0
; ð12Þ

where r0 is the particle number density, which is related to
the volume fraction r through r0 = rVP

�1, where VP is the
volume (area) corresponding to a single node of the spring
network.
[23] The pressure force is distributed over the particles of

the elastic lattice in much the same way as the contribution
to the particle volume fraction is distributed between sites of
the pressure lattice. Around each particle the four nearest
sites of the pressure grid are located, and the values ofrP/r0

are computed. Then the force on the particle i is the average
of rP/r0 weighted by the distance between the site and the
particle. Thus, if a particle happens to sit in the immediate
proximity of a pressure site, the value of rP/r0 on that site
will dominate the force calculation.
[24] The system is constrained by elastic boundaries. The

force from a wall on a particle is proportional to the distance
the particle is pushed into the wall. For example, for a
particle i in contact with a wall parallel to the y axis starting
at x = x0, the force is

f i ¼
�kw xi þ ri � x0ð Þi xi þ ri � x0 > 0ð Þ

0 xi þ ri � x0 � 0ð Þ

�
ð13Þ
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where ri is the radius of particle i, i is a unit vector along the
x axis, and k is the spring constant for the interaction. The
wall force corresponds to the interaction between particle i
and a particle with the same radius, placed along the wall at
a position x0 + ri. In addition, a particle i may be clamped to
a particular position xi

0 with the addition of a clamping force
fi
c = k (xi � xi

0). The elastic boundaries will usually
coincide with the boundaries for the fluid, but this is not a
prerequisite. The elastic boundaries are not deformed by the
fluid pressure.
[25] Heterogeneities may be introduced for the elastic

properties, the material strength, and the hydraulic proper-
ties of the material. Variations in the local spring constant k
correspond to local variations in the elastic properties of the
material. In this study, we will assume that the material has
homogeneous elastic properties.
[26] Fractures occur through the irreversible breaking of

a spring if the spring force exceeds a threshold value, the
breaking threshold. The material strength is assumed to be
homogeneous on a large scale, but with variations on a
small scale, represented by the individual particles. The
variations correspond to variations in microcrack densities
and lengths, which are always present in a disordered
material. We describe the heterogeneities by a distribution
in breaking threshold. A normal distribution of breaking
thresholds is used. This has been shown to reproduce both
experimental and field fracture patterns [Malthe-Sørenssen
et al., 1998a, 1998b]. The average value of the breaking
threshold may be related to the critical stress intensity
factor, as discussed in section 2.4.1. The material behavior
may be tuned from a brittle material for a narrow distri-
bution of breaking thresholds to a more ductile material
for a wide distribution of breaking thresholds. Experience
from comparisons with experiments and field data was
used to choose realistic distributions of breaking thresh-
olds.
[27] Local variations in the hydraulic properties of the

matrix may be introduced by varying the hydraulic radius
used to calculate the particle volume fraction, r, or by
varying the background permeability k0.
[28] The simulation follows the following general pro-

cedure at each time step. First, the pressure is evolved
using the Crank-Nicholson scheme. This produces pressure
gradients acting on the particles. Given the pressure
gradients, the equilibrium configuration of the elastic
lattice is found using a successive overrelaxation algo-
rithm. If any springs exceed their breaking threshold, they
break, and a new equilibrium configuration is found. This
procedure continues until no more springs are broken.
New values for the volume fractions are calculated, and
the whole procedure is repeated, propagating the pressure
one time step further.

2.3. Continuum Limit

[29] In order to make sense of a comparison between
simulation results and real systems we must match the key
dimensionless parameters of the model with the corre-
sponding quantities in a real system. The scale of interest
will enter into these parameters. For this purpose, we
derive the continuum equations and governing dimension-
less parameters.

[30] Equation (5) is already in the continuum form, and
we have discretized it on the square lattice. The continuum
description of the spring network is not obtained, however,
and we derive both the Young modulus and the Poisson
ratio as well as the isotropy of the triangular lattice. While
natural media often exhibit anisotropies, these will generally
not coincide with specified lattice directions.
[31] Our starting point is the stress tensor on an arbitrary

lattice site. Starting from the conventional form of the stress
tensor s in terms of interparticle forces [Tildesley and Allen,
1987]

Sc ¼
1

2V

X
k 6¼l

Fkl rkl; ð14Þ

where the vectors on the right are subjected to the dyadic
product and Fkl is the force from particle k on particle l, rkl
is the corresponding particle separation, and V is the
averaging volume containing the particles. The linear form
of the force is

Fkl ¼ kcici � u xk þ cið Þ � u xkð Þ½ �; ð15Þ

where the position xk + ci corresponds to xl, u(x) is the
displacement from the equilibrium state of the node at
position x and k is the spring constant. Since the index i now
identifies the particle pair kl, the subscripts can be
simplified, and we may write equation (14) as

Sc ¼
k

2Vp

X6
i¼1

cici ci � u xþ cið Þ � u xð Þ½ �f g; ð16Þ

where Vp is the volume per node of the triangular lattice,
i.e., Vp ¼

ffiffiffi
3

p
=2 when the lattice constant is taken as unity.

[32] The vector field u is defined at every node in the
elastic lattice. However, we may also consider it as a
continuous vector field that is sampled at every lattice site.
As a continuous field we may Taylor expand it to get u(x +
ci) � u(x) � ci � ru(x) and

Sc ¼
ffiffiffi
3

p
k

4

X6
i¼1

cicici � ci � ru xð Þ½ �: ð17Þ

Now, isotropy of the fourth-order lattice tensor is a
unique feature of the triangular lattice in two dimensions.
This implies that the right-hand side of equation (17)
carries no information of the orientation of the underlying
lattice. By inserting the geometric identity [Frisch et al.,
1987]

X
i

ciacibcigcid ¼
3

4
dabdgd þ dagdbd þ daddbg
 �

; ð18Þ

where Greek symbols label Cartesian indices, into
equation (17) we obtain directly

Sc ¼
ffiffiffi
3

p
k

4
ruþruT þr � u 1
 �

; ð19Þ

where T denotes the transpose of the second-order tensor
ru and 1 is the identity tensor. The stress tensor is now
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on a continuum form. We need only compare it with the
standard two-dimensional continuum expression

Sc ¼
E

2 1þ nð Þ ruþruT
 �

þ E

1þ n
N

1� n
r � u 1; ð20Þ

where E is Young’s modulus and n the Poisson ratio
[Landau and Lifshitz, 1959; Monette and Anderson, 1994]
to identify the values

n ¼ 1

3

E ¼ 2kffiffiffi
3

p :

ð21Þ

Equations (19) and (21) give both the isotropy and the
material constants of the lattice network prior to
fracturing. However, they only hold if the deformations
are not too large. If the deformations become so large
that the Taylor expansion becomes a poor approximation,
i.e., if the relative extensions are no longer small, it may
induce anisotropies. Note that the square lattice will not
have isotropic properties even when the lattice is enriched
with torsion interactions at the nodes (i.e., connections
between the springs that resist angular motion). To see,
this consider the stretching of a square lattice along a
lattice direction. This will produce a vanishing Poission
ratio, which is not measured if the lattice is stretched at
an angle to a lattice direction.
[33] Since we are not considering inertial effects, there is

a balance between the pressure forces and the spring forces.
This balance may now be written

r � Sc �rP ¼ 0: ð22Þ

It is possible to make contact with the formulation of Biot
theory by introducing the effective stress

Seff ¼ S� a1P; ð23Þ

where s is the total stress in system consisting of fluid plus
solid and a is the Biot-Willis parameter [Wang, 2001].
When, as in our case, the compressibility of the solid grains
is neglected, a = 1. It follows that seff = sc and equation
(22) may be written

r � S ¼ 0 ð24Þ

which is nothing but the general condition of local force
equilibrium.
[34] Together with equation (5), equation (22) gives the

continuum description of the elastic lattice. As long as
there are no fractures, this description coincides with the
continuum equations given by Biot theory. Biot theory
only describes linear elastic deformations in materials
with a given permeability. Hence this theory does not
describe the permeability variations that result from
deformations, nor does it say anything about the fracture
process.

2.4. Nondimensionalizing the Equations

[35] In order to compare our simulation system evolving
in discrete time steps on a lattice to real systems it is
necessary to introduce characteristic scales for all quantities
and to identify the combinations of these that are relevant
for the processes at hand. This will give us the relevant
parameters to put into our simulations. To do this, we
remove the physical dimensions from equations (22) and
(5).
[36] For this purpose we introduce the nondimensional

primed quantities

t ¼ t0T
P ¼ �P0P

0

u ¼ u0u
0

x ¼ lx0

k ¼ k0 f ðfÞ

where T is the characteristic time of the pressure evolution
on the boundaries of the system, �P0 the characteristic
pressure variations, u0 the characteristic displacement, as
illustrated in Figure 3. The function f (f) follows from
equation (9). Writing equations (22) and (5), in terms of
these quantities we get

2r0r0 � u0 þ r02u0 � Ar0P 0 ¼ 0

f
@P0

@t0
¼ Br0 � f 1þ Cðf� f0Þ

3
h i

ðP0 þ DÞr0P 0
n o

; ð26Þ

where

A ¼ l�P0

Eu0
;

B ¼ T
ðk0=m0Þ�P0

l2
;

C ¼ 24l2
0

k0 1�f0ð Þ3
;

D ¼ P̂0

�P0
:

Here A is the ratio between the pressure forces and the
elastic forces and B is the ratio between the diffusive
timescale and the external timescale T. If the deformation is
only due to the pressure forces, A will automatically be of
order unity. Likewise, if the pressure is left to evolve in
response to external pressure variations, then l will adjust to
produce a B value of order one. On the other hand, one may
take l to be a fixed scale, say the thickness of caprock that
undergoes hydrofracturing, and T to be some other time-
scale, say the duration of the pressure evolution following a
fracture event. In these cases, A and B may depart
significantly from unity.
[37] Above, C � (r/l0)

2 is the squared ratio of two length
scales. Since the typical distance l0 between fractures is not
easily obtained and since these fractures may contain frag-
ments and otherwise depart from our ideal channel geom-
etry, C is not easily estimated. It is easily seen, however,
that large variations in the values of C will tend to increase
contrasts in the pressure.
[38] From the above values of the compressibility of

water it is noted that D � 100, while P 0 � 1. This implies
that P 0 + D � D and the nonlinearity in P 0 in equation (26)

(25)

(27)
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may be neglected to a good approximation. In this case the
pressure equation takes the form

f
@P0

@t0
¼ B0r0 � 1þ Cðf� f0Þ

3
h i

r0P 0
n o

; ð28Þ

where B and D have been grouped together in the new
parameter B0

B0 ¼ BD ¼ T
ðk0=m0ÞP̂0

l 2
: ð29Þ

Hence in the case of continuous deformations where the
fluid is not strongly compressible only three parameters
enter the simulations.
[39] In order to determine the typical values for these

parameters we need the associated material constants, in
particular, the typical strain u0/l, the permeability k0, and the
pressure difference �P0. We will take a fixed typical value
for �P0 = 10 MPa. The typical strain may be taken as the
critical strain at which the material breaks. Some values for

thisquantity isgivenbyFyfeetal. [1978]whereu0/l=0.2–2%,
where the smaller value is associated with strong brittle
sandstones and the larger value with weak ductile mud-
stones. For the same rocks we have E = 0.7–70 GPa . These
material constants give the range

A ¼ 1:5 ð10�2 � 10Þ; ð30Þ

which gives reasonable A values. The B0 parameter, on the
other hand, may take almost any value as the permeability
may range as much as 10 orders of magnitude [Jamtveit and
Yardley, 1997] and the timescale T by just as much. A
similar indeterminacy holds for the C parameter, since the l0
values are very hard to both predict and measure. We shall
therefore take an exploratory attitude and regard B0 and C as
free parameters in the model.
[40] With the exception of very small and very pure

materials, there is generally a great discrepancy between
the theoretical breaking strength based on the strength of
atomic bonds and the real strength of the material. The
reason for this is that real materials always contain imper-
fections around which the stress tends to focus. In these
places, fractures may nucleate at modest external loadings.
When the imperfections have the form of cracks, the
continuum mechanical stress will even diverge at the end
of these imperfections. The quantity that characterizes these
high stress locations is then the stress intensity factor KI =
sc1/2, where s is the far-field or external stress and c is the
characteristic size of the largest microcracks in the system.
The quantity that tells us when the material will fracture is
the critical stress intensity factor s0c

1/2, also called the
‘‘fracture toughness,’’ where s0 is the critical external
tensile stress. This is the quantity we use to match with
our model parameters.
[41] To do this, we construct a new dimensionless num-

ber

Fc ¼
s0c1=2

El1=2
: ð31Þ

This quantity may be written in terms of the critical strain
ec = s0/E or u0/l, which, like s0, is a macroscopic,
measurable quantity. This yields

Figure 3. The characteristic magnitudes of the displace-
ment u0 and pressures P0 and rP0.

Figure 4. The measured force Fy on a plug of low
permeability as a function of time. The pressure is denoted
by P, and the length of the plug is denoted by A.

Figure 5. The measured particle area fraction as a function
of l0, normalized by the average value.
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Fc ¼ �c

ffiffiffi
c

l

r
: ð32Þ

On the elastic lattice, c = |ci| and ec may as a first
approximation be taken as the critical strain associated with
single links between the particles. Adding a superscript sim
to the quantities pertaining to the simulations, we can write

�simc ¼ �c

ffiffiffi
c

l

r ffiffiffiffiffiffiffi
lsim

jcij

s
; ð33Þ

where l and c pertain to the real system. Equation (33)
relates the critical strain of the particle bonds to the critical
strain of the real system. As quoted above, typical values for
ec range from 0.2% to 2%. Making the rough estimate c = 1
mm, we get

�simc � 6	 ð10�5 � 10�4Þ

ffiffiffiffiffiffiffi
lsim

jcij

s
; ð34Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lsim=jcij

p
is the number of particles across a length

l sim. In real materials the length c is not readily measurable,
and its value will have a significant uncertainty. A possible
way to test this assertion is to measure the critical tensile
stress s0 in a simulation that uses ec

sim of equation (33) and
to compare the result with real rock values, which range
from s0 = 107 Pa for weak mudstones to s0 = 1.5 	 108 Pa
for limestones and strong sandstones [Fyfe et al., 1978].
[42] Having determined reasonable ranges for typical

parameter values we now turn to their distributions. Neither
the permeability nor the elastic properties of real rocks are
constants. Indeed, we will demonstrate that the variance in
k0 and E, now considered as fields, is perhaps the most
important parameter in the model.

3. Tests and Results

[43] Having worked out the most relevant theoretical
aspects of the model, we now turn to its implementation
and testing.

3.1. Test of Force Balance and Density
Measurements

[44] Before we start exploring various scenarios of hydro-
fracturing, we need to check that the pressure forces acting
on individual particles are transmitted correctly. Figure 4
shows the result of a simulation designed to test that these
forces conform to the theoretical prediction. In the follow-
ing, the unit of length is taken to be the lattice constant of
the spring lattice. The system consists of a square 80 by 80
spring lattice with a layer of low permeability in the center
and a pressure difference imposed at the boundaries which
causes a pressure drop P over the layer. Consequently, the
overall force in that layer should be Fy = PA, where A is the

Figure 6. (opposite) The hydrofractures formed by a point
source of pressure. The white lines show broken bonds and
time runs from left to right. Simulation time T = (a) 50, (b)
100, and (c) 200. The gray scale runs from black (low
pressure) to light gray (high pressure).
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length of the layer. Figure 4 shows that the agreement
between this prediction and the sum of the single-particle
forces is better than within 1%.
[45] In this case, l0 = 2 and the thickness of the low-

permeability layer is 8. The parameters are A = 1.0, B =
0.01, C = 200, and D = 50. The transient phase for t < 0.1
reflects the time it takes for the pressure to diffuse onto the
plug.
[46] In the simulations the area fraction r̂ ¼ rV , where V

(the volume per particle) and r (the number density), is

measured as input for the permeability evaluation. There is a
geometric noise contribution intrinsic to this measurement
that is caused by the fact that the sampling area l0

2 will
cover different segments of the disc-shaped solid particles
depending on its location.
[47] This is illustrated and quantified in Figure 5, which

shows the variations of the density with location of the
sampling volume. The different curves correspond to
different l0 values, which here are l0 = 2, 4, 6, 8. Obviously
the more fluctuating curves correspond to the smaller l0

Figure 7. Hydrofractures formed in a caprock layer by a fluid pressure drop imposed from the bottom
to the top of the system. The gray scale shows the pressure with dark corresponding to low pressure. Note
how the high pressure propagates up through the caprock following the permeability increase that is
caused by the formation of the fractures. The fractures are denoted by white lines, and time runs from left
to right and top to bottom. Simulation time T = (a) 1000, (b) 2000, (c) 3000, and (d) 4000.
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values. These results show that even with l0 = 2 the
variance is only 1%, and we have chosen this l0 in the
following simulations.

3.2. Fracture Results

[48] In order to test the model and explore some typical
fracture scenarios we study the fractures that form around a
point pressure source and in a caprock layer or lid that is
subject to a pressure drop across it. In both cases all parts of
the system are permeable. The boundary conditions on the
spring network are that of no wall displacement, i.e., all
deformations occur within a region of fixed area. Since the
network is not stressed in its initial state the boundary
conditions are isotropic.
[49] Figure 6 shows the result of the point injection. Here

the pressure receives a constant addition P! P + sdt, where
s is a constant source term at a single central site of the
system. The boundary conditions are n � rP = 0, where n is
the normal vector on the wall. This corresponds to a no-flow
boundary condition on the wall. Particle sizes show the
permeability with large particles corresponding to lower
permeability. The white lines in both Figures 6 and 7 are
perpendicular to broken springs and thus point along the
fracture. The pressure field is shown by the color of the
particles with white corresponding to high and black corre-
sponding to low pressures.
[50] The radial fractures branch out in several directions.

This observation by itself demonstrates that the process is
governed by the pressure diffusion. If there were no
pressure diffusion, as is often assumed, the pressure drop
would occur only across the fracture-solid boundary. When
a fracture opens and increases its volume the pressure will
drop, and hence the driving force required to open addi-
tional fractures decreases. Only if the pressure forces are
distributed continuously inside the medium prior to fracture
will they remain to form secondary fractures after the first
fracture is formed.
[51] In the simulations shown in Figure 6 the fluid is an

ideal gas, and correspondingly D = 0. The spring lattice is
rather small, (30 	 30) and l0 = 3. Consequently, these
simulations take only a few tens of minutes. Apart from the
D value the parameters used are those used above. The same
is true for Figure 7.
[52] Figure 7 shows a simulation analogous to caprock

fracturing: A layer of low permeability overlies a layer of
higher permeability. There is a pressure drop from bottom to
top. The sidewalls are nonpermeable. The boundary con-
dition on the spring network is as in Figure 6. To create the
horizontal variations in the permeability field necessary to
initiate hydrofracturing for this layered geometry, a vertical
notch of higher permeability is placed in the center of the
caprock layer. The result is seen to be the formation of
vertical fractures around the notch as the pressure penetrates
through the caprock. Note the smaller secondary fractures
on the side of the notch. These form as the pressure front
penetrates into the surroundings of the notch. The front
corresponding to the maximum pressure gradient moves
away from the main fracture into the surrounding rock
matrix. Thus the breaking forces penetrate deeper into the
surroundings as the permeability is increased by the defor-
mations.

[53] The simulations reflect both the inhomogeneity in
the elastic boundary conditions and in the permeability
field. This is apparent in the fractures close to the sidewalls,
which are caused by the inhomogeneity introduced by the
stiff boundary conditions in the spring network. When the
simulation is shown as a video sequence, it becomes evident
that the pressure causes a deformation as if a wedge were
forced horizontally from the high-permeability notch toward
the walls. The corresponding displacement is inhibited by
the stationary particles on the walls, and the layer breaks in
vertical fractures where the strain is largest.
[54] Visually, the pressure may appear to be lower below

than inside the caprock. This, however, is merely an effect
of the graphical representation and the smaller particle sizes
(higher permeability) below the caprock.

4. Discussion, Conclusions, and Speculations

[55] In conclusion, we have developed a model that
describes the interplay between fracturing and the evolving
pressure field that causes them. In doing this, it has become
evident that the permeability of the solid must respond
strongly to deformations, and this has been taken into
account by introducing an explicit function k(r) that is
based on the assumptions that density variations are caused
by thin fractures. Effectively, this means that pressure
variations in fractures of a size much smaller than the lattice
constant may be captured, thus greatly reducing the reso-
lution requirements.
[56] The model has been shown to produce results in

quantitative agreement with theoretical predictions. The
continuum limit has been derived, and it has been shown
that the resulting equations make comparison with real
systems possible. This implies that the problem of upscaling
has been given on a quantitative basis.
[57] As a further test the model has been applied to study

hydrofracturing qualitatively for two simple geometrical
scenarios, one representing a point source injection and the
other a sandwich scenario with associated ‘‘caprock’’ frac-
turing. In both these applications the pressure diffusion was
demonstrated to be a critical mechanism. Without it, neither
the branching fracture pattern in the point source case nor the
secondary fractures in the caprock case would have formed.
[58] Finally, we note that for the horizontally layered

caprock geometry the pressure forces only act to compress,
not to break the caprock in the absence of permeability
variations. For the caprock to fracture, there must be
inhomogeneities either in the permeability field or in the
elastic properties. These properties include the boundary
conditions. Thus the concept of an independent fracture
pressure often used in discussions of caprock leakage in
sedimentary basins [e.g., Bjørlykke, 1997] is meaningless in
this context. The critical pressure difference at which the
caprock fractures will, in general, depend strongly on the
degree of inhomogeneity in the material properties as well
as on elastic and fluid boundary conditions.
[59] In principle, the model could handle any scale (at the

price of poor resolution in time and space) by the appro-
priate choice of the dimensionless parameters. However,
when the Reynolds number of the flow in the fractures
become large, the linear Darcy law breaks down, and one
would need to extend the description by the Ergun equation
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and eventually the full Navier Stokes equations. This
implies that the scale of the fractures must be sufficiently
small that the Reynolds number remains below unity.
[60] Future applications of our model include quantitative

investigations of caprock fracturing. Since in most real,
geological systems only the end result, and not the dynam-
ics of this process, may be observed, the formation of
hydrofractures has been incompletely understood. The cur-
rent model will be used to investigate this geologically
important process quantitatively, and thus address questions
such as: Under which conditions are hydro-fractures
dynamic or steady? How do they interact? To what extent
are they hysteretic, i.e., may they rapidly seal to return to the
initial permeability, what patterns result when the fractures
form throughout the rock as a result of a homogeneous fluid
production? For some of these questions, extensions of the
model, in particular to deal with all three spatial dimensions,
may be important. To answer the last question, the model
must be enriched with a (straightforward) description of
how solid expansion and compression affects the pressure.
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