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S U M M A R Y
Analytical expressions for scattering coefficients for S-wave incidence have been derived for the
medium defined by the exponential correlation function. Low- and high-frequency asymptotic
characteristics of the total scattering coefficients have also been investigated. The scattered en-
ergy of the converted waves reaches a maximum value in the high-frequency range for the case
of an exponential correlation function. The meridional component of the scattered energy for
common-mode scattering has a second-power frequency dependence for the high-frequency
range, while the latitude component of the scattered energy for common-mode scattering
has a fourth-power frequency dependence for the high-frequency range. A comparison of the
scattering coefficient for P- and S-wave incidence is also discussed. Mode-conversion for
P-wave incidence is greater than that for S-wave incidence. On the other hand, for the
common-mode case the scattered energy for S-wave incidence is greater than that for P-wave
incidence.
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I N T RO D U C T I O N

The problem of the seismic wave scattering through the Earth can
be considered to be random and some statistical properties of the
medium and the parameters describing its heterogeneities can be
deduced. Previously, the scalar wave scattering theory for random
media (Chernov 1960; Tatarskii 1961) has been applied to estimate
heterogeneities in the lithosphere. The single-wave-scattering the-
ory of scalar waves has been successfully applied to deal with the
modelling of coda generation of local earthquakes (Aki 1969; Aki
& Chouet 1975; Sato 1977) the strength of coda waves (Aki 1981;
Sato 1982a,b; Wu & Aki 1985a,b) and attenuation by scattering (Aki
& Chouet 1975; Aki 1980a,b; Wu 1982a,b; Sato 1982a,b). The fre-
quency dependence of scattering attenuation is also discussed by
other workers (Sato 1982a; Korvin 1983). Using the Born approxi-
mation, expressions for the mean-square amplitudes of the scattered
elastic waves by a random medium have been obtained for low and
high frequencies (Knopoff & Hudson 1964, 1967). Haddon (1978)
derived the explicit expressions for the incident P waves (see, also
Aki & Richards 1980).

Wu & Aki (1985b) have derived the mean square amplitudes of
the scattered field and directional coefficients of a random medium
for the P–P, P–S, S–P and S–S cases using the Born approximation
for the exponential correlation function.

The scattering characteristics of the heterogeneous earth medium
can be very well observed in the envelopes of high-frequency seis-
mograms, especially S-coda waves, of earthquakes. S-coda is in-
terpreted as being composed of scattered S waves. So, S–S scat-
tering has been the basis of its study and analysis (Hoshiba 1991;

Mayeda et al. 1991; Fehler et al. 1992). Regional differences of ran-
domness have also been observed on the basis of S–S scattering or
strong diffraction of S waves (Gusev & Abubabirov 1987; Sato 1989;
Scherbaum & Sato 1991; Obara & Sato 1995; Gusev & Abubabirov
1996). Multiple isotropic scattering process has been synthesized
including P–S conversion for the seismogram envelope on the basis
of energy transport theory (Sato 1984) and the numerical integration
method (Zeng 1993). Sato & Fehler (1998) have presented a very
good summary of observations and models used in this field.

In this paper, analytical expressions for the total scattered power
for S-wave incidence have been derived. The expressions have been
obtained for scattered energy in low- and high-frequency ranges.
A comparison has been made for the scattered energy in the case
of P- and S-wave incidences. The total scattered energy for the
P-wave incidence is more than that for the S-wave incidence in the
case of mode-conversion, while for the common-mode case the total
scattered energy for the S-wave incidence is more than that for the
P-wave incidence.

P RO B L E M F O R M U L AT I O N
A N D D I R E C T I O N A L S C AT T E R I N G
C O E F F I C I E N T S F O R S - WAV E
I N C I D E N C E

It is assumed that there is a homogeneous elastic random medium
with density ρ and elastic parameters λ and µ. A finite volume is
considered in this medium. This arbitrary heterogeneity is charac-
terized by the random perturbation parameters:
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ρ(ξ ) = ρ0 + δρ(ξ )

λ(ξ ) = λ0 + δλ(ξ ) (1)

µ(ξ ) = µ0 + δµ(ξ ),

where ξ is the position vector within the volume, ρ(ξ ) is the density
and λ(ξ ) and µ(ξ ) are the corresponding Lamé parameters of the
random inhomogeneities at ξ , and δρ(ξ ), δλ(ξ ) and δµ(ξ ) are their
perturbations. Here it is assumed that

ρ0 = 〈ρ(ξ )〉
λ0 = 〈λ(ξ )〉 (2)

µ0 = 〈µ(ξ )〉
and δρ � ρ0, δλ � λ0, δµ � µ0, i.e. the inclusion is such that the
random medium is weakly heterogeneous, where 〈 〉 represents an
average over the statistical ensemble of the random variable.

It is assumed that the random medium is statistical, homoge-
neous and isotropic. The perturbations of density (δρ(ξ )) and the

Figure 1. The spherical coordinate system for S-wave incidence (along the x direction). The polar axis is in the direction of particle motion ( y-axis). γ1, γ2

and γ3 are the direction cosines of the scattering direction (Wu & Aki 1985b).

Lamé parameters (δλ(ξ ) and δµ(ξ )) are defined by the same type of
correlation functions. Let〈(

δρ

ρ0

)2
〉

= 〈ε2〉,
〈(

δλ

λ0

)2
〉

= m2〈ε2〉, (3)

〈(
δµ

µ0

)2
〉

= n2〈ε2〉,

〈δρ(ξ )δρ(η)〉 = 〈δρ2〉N (|ξ − η|)
〈δλ(ξ )δλ(η)〉 = 〈δλ2〉N (|ξ − η|) (4)

〈δµ(ξ )δµ(η)〉 = 〈δµ2〉N (|ξ − η|)
etc. Where the normalized correlation function of the random me-
dia is given by N(|ξ − η|). The correlation coefficients between ρ,
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λ and µ are represented as φρλ, φρµ and φλµ and are defined as
follows:

φρλ = 〈δρδλ〉
〈δρ2〉1/2〈δλ2〉1/2

(5a)

φλµ = 〈δλδµ〉
〈δλ2〉1/2〈δµ2〉1/2

(5b)

φρµ = 〈δρδµ〉
〈δρ2〉1/2〈δµ2〉1/2

. (5c)

In order to find the directional scattering coefficients for S-wave
incidence, a spherical coordinate system is considered in which
the polar axis is along the direction of particle motion (Fig. 1). The
directional scattering coefficients for S–S scattering gss(x̂) is defined
as 4π times the average scattered power in the x direction per unit
solid angle by a unit volume of random medium for a unit incident
field (Wu & Aki 1985b). Thus, for the case when δρ(ξ ), δλ(ξ ) and
δµ(ξ ) are totally correlated (φρλ = φρµ = φλµ = 1), the directional
scattering coefficients can be obtained as (Wu & Aki 1985b)

Figure 2. The frequency dependence of the S–P scattering coefficient for different values of n. The frequency dependence of the P–S scattering coefficient
for the values of n is also given for comparison.

gsp(θ, φ) = 1

4π

ω4

α4
0

〈ε2〉
[

cos θ −
(

β0

α0

)
n sin 2θ sin φ

]2

Pc(x̂)

(6)

gss
mer(θ, φ) = 1

4π

ω4

β4
0

〈ε2〉(sin θ + n cos 2θ sin φ)2 Ps(x̂) (7)

gss
lat(θ, φ) = 1

4π

ω4

β4
0

〈ε2〉n2 cos2 θ cos2 φPs(x̂) (8)

where gsp(θ, φ) is the S–P scattering coefficient, gss
mer(θ, φ) is the

scattering coefficient for the meridian component of the S–S scatter-
ing and gss

lat(θ, φ) is the scattering coefficient for the latitude com-
ponent of the S–S scattering and

Pc(x̂) =
∫ ∞∫

−∞

∫
N (|ζ |) exp

[
iω

(
x̂1

β0
− x̂

α0

)
ζ

]
dV (ζ ) (9)
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Ps (x̂) =
∫ ∞∫

−∞

∫
N (|ζ |) exp

[
iω

(
x̂1

β0
− x̂

β0

)
ζ

]
dV (ζ ), (10)

where x̂1 is the unit vector in the incident direction.
The normalized correlation function, N (|ζ |), is taken as an expo-

nential correlation function that is defined as

N (|ζ |) = exp(−|ζ |/a) (11)

where a is the correlation length.
Thus, for the exponential correlation function, one can obtain

Pc(θx ) = 8πa3[
1 + (ωS2a)2]2 (12)

where

S2 = {
(1/α0)2 + (1/β0)2 − [2/(α0β0)] cos θx

}1/2
(13)

and

Ps(θx ) = 8πa3{
1 + [2(ω/β0)a sin θx/2]2

}2 (14)

where θx is the scattering angle, i.e. the angle between the scattering
direction and the incident (x1) direction.

T O TA L S C AT T E R E D P O W E R A N D
S C AT T E R I N G C O E F F I C I E N T O F T H E
M E D I U M F O R S - WAV E I N C I D E N C E

The scattering coefficient g can be defined as the total scattered
power by a unit volume of the random medium for a unit incident
field (i.e. unit power flux density)

g = 1

4π

∫ ∫
4π

g(θ, φ) d� (15)

where d� is the differential solid angle over which g(θ ) is defined.
The dimension of g is 1/length or area/volume.

For S-wave incidence,

gs = 1

4π

∫ ∫
4π

[
gsp (θ, φ) + gss

mer (θ, φ) + gss
lat (θ, φ)

]
d�

= gsp + gss
mer + gss

lat. (16)

Figure 3. The frequency dependence of the meridian component of the S–S
scattering coefficient for different values of n.

For the case when δρ, δλ and δµ are totally correlated, gsp , gss
mer

and gss
lat, which are scattering coefficients for S–P, S–S (meridian

and latitude components), can be calculated. Thus, we can express
the frequency dependence of S–P scattering coefficient as

gsp = 1

4π

∫ ∫
4π

[gsp(θ, φ)] d� = 2〈ε2〉
a

K 4

b3

{
b

(2d2 − b2)

(d2 − b2)

− d ln

(
d + b

d − b

)
+ 2n2

γ 2b2

[
2b3

3
− 4d2b + d(2d2 − b2)

× ln

(
d + b

d − b

)]}
(17)

where K = ωa/α0, γ = α0/β0, b = 2γ K 2 and d = 1 + (1 + γ 2)K 2.
It is noticeable that the ‘n’ has the power of 2 in the above expres-

sion. So, the contribution of this component will be same for n = 1
(impedance perturbation) and n = −1 (velocity perturbation).

When K � 1, i.e. at low frequencies eq. (17) reduces to

gsp = 2〈ε2〉
3a

(
1 + 4n2

5γ 2

)
K 4, (18)

which has Rayleigh scattering with the usual fourth-power frequency
dependence. The ratio of gsp/g ps (from above equation and eq. 58
of Wu & Aki 1985b) can be obtained at low frequencies as

g ps/gsp = 2γ 4 (19)

which is the same as that obtained by Papanicolaou et al. (1996)
(the factor 2 is omitted in Aki 1992).

Now, at high frequencies i.e. when K � 1,

gsp = 〈ε2〉
a

D

2γ 2
(20)

where

D = 2ξ 2 − 1

ξ 2 − 1
− ξη + 2

η2

γ 2

(
2

3
− ξη − 4ξ 2 + 2ξ 3η

)
, (21)

where

ξ = 1

2
(γ + γ −1) (22)

and

Figure 4. The frequency dependence of the latitude component of the S–S
scattering coefficient for different values of n.
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η = 2 ln

(
γ + 1

γ − 1

)
. (23)

It is clear from eq. (20) that the conversion loss reduces to a
constant value at higher frequencies for the exponential correlation
function.

Similarly, the value of gss
mer(θ, φ) is substituted and the total scat-

tered S-wave (meridian) energy can be computed as

gss
mer = 1

4π

∫ ∫
4π

[
gss

mer(θ, φ)
]

d�. (24)

So,

gss
mer = 〈ε2〉

a
K 4γ 4

{
2 + n2

1 + 2E
− 2(1 + 2n2)

E3

[
EF4

1 + 2E

− F ln (1 + 2E) + E

]
+ 4n2

E5

[
EF4

1 + 2E
− 2F3 ln (1 + 2E)

+ 3EF2 + E3

3

]}
(25)

where K = ω a/α0, γ = α0/β0, E = 2γ 2 K 2 and F = 1 + E .

Figure 5. The frequency dependence of the total S–S scattering coefficient for different values of n. The scattering coefficient for P–P scattering is also given
in the figure for comparison.

In the above expression, ‘n’ also has the power of 2. So, the
contribution of this component will also be the same for impedance
perturbation and velocity perturbation, in this case.

When K � 1, i.e. for low frequencies,

gss
mer ≈ 〈ε2〉

a

(
4

3
+ 7n2

15

)
γ 2K 2. (26)

So, it has the usual second-power frequency dependence.
When K � 1, i.e. for high frequencies,

gss
mer = 〈ε2〉

4a

(
γ 2n2 K 2 + 16n2

3
− 4

)
. (27)

So, it has the usual second-power frequency dependence but with
the addition of some other factor.

Similarly, gss
lat can be derived as follows:

gss
lat = 〈ε2〉

a

γ 4 K 4n2

E3

[
E(2 + E2 + 4E)

1 + 2E
− (1 + E) ln (1 + 2E)

]
.

(28)
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When K � 1, i.e. at low frequencies

gss
lat = 〈ε2〉

3a
n2γ 4 K 4. (29)

So, it has a fourth-power frequency dependence. When K � 1, i.e.
at high frequencies,

gss
lat = E

2

(
1 + 7

2E

)
+ ln (1 + 2E). (30)

These equations should follow the Born approximations (the scat-
tered energy must be very small compared with the energy of the
primary field) such that these can be applied to find the parameters
of the medium. The frequency ω and propagation distance L for the
validity condition for the converted waves (eq. 20) should be such
that the following condition must be satisfied (Aki & Richards 1980;
Wu & Aki 1985b; Tripathi & Ram 1997)

〈ε2〉
a

D

2γ 2
L � 1. (31)

The validity condition for the common-mode scattered waves can
also be written as follows. For eq. (27) it is

〈ε2〉
4a

(
γ 2n2 K 2 + 16n2

3
− 4

)
L � 1 (32)

and similarly, for eq. (30) it will be as follows:[
E

2

(
1 + 7

2E

)
+ ln (1 + 2E)

]
L � 1. (33)

D I S C U S S I O N A N D C O N C L U S I O N S

A comparison of the scattering coefficient for mode-conversion is
given in Fig. 2. The analytical expressions deduced by Wu & Aki
(1985b) for the scattering coefficient for P–S conversion is used
for the calculation. The scattered energy attains a constant value at
high frequencies in the case of S–P for the exponential correlation
function. It is clear that the mode-conversion is more prominent in
the case of P-wave incidence (i.e. for the P–S case) as compared with
S-wave incidence (i.e. for the S–P case) for low- as well as high-
frequency range. This conclusion was also inferred by Knopoff &
Hudson (1967). From eq. (19) it is obtained that ratio g ps/gsp = 2γ 4

at low frequencies. If it is assumed that γ = 31/2 then g ps/gsp ∼ 18
at low frequencies. This implies that the S wave will dominate after
scattering. It has also been observed that the S wave dominates the
seismological data (Aki 1992; Su et al. 1991). Zeng (1993) also
observed the dominance of S waves in numerical solutions. It is
interesting to notice that the curves for n = 1 and −1 are the same,
because the ‘n’ has a power of 2 in the analytical expression for the
case of S-wave incidence. So, the amount of scattered energy for the
mode-conversion caused by impedance and velocity perturbation
are the same. This is not the case for P-wave incidence, where the
scattered energy for the velocity perturbation is greater than that for
impedance perturbation (see Fig. 11, Wu & Aki 1985b), particularly
at K ≈ 1 and K � 1.

The S–S scattering coefficient is given in the Figs 3 and 4 for its
meridian and latitude components, respectively. It is also clear from
these figures that the amounts of scattered energy for the common-
mode for impedance and velocity perturbation are the same. The
scattering coefficient has a second-power dependence at high fre-
quencies. The total scattered energy for the common-mode is more
prominent for S-wave incidence compared with P-wave incidence

(Fig. 5). It is clear from Fig. 5 that the scattering coefficient for the
common-mode for S-wave incidence is always higher than that for
P-wave incidence. The ratio gss/g pp is almost constant for veloc-
ity perturbation (n �= 1). Since the ratios gss/g pp and g ps/gsp are
greater than unity, the dominance of S waves is quite obvious in the
seismological data as observed by other workers (Su et al. 1991;
Aki 1992; Zeng 1993).
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