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Abstract

In addition to direct detection of groundwater from the surface, the Proton Magnetic Resonance (PMR) method can provide

important information concerning aquifers, such as their number, depth, thickness and water content. This requires the solution

of an inverse problem that like many other geophysical inverse problems is ill posed and often leads to nonuniqueness of the

solution. In this paper, we present the results of applying various techniques originally developed for gravity and magnetic

inversion, such as linear programming, ‘ideal body’ and ‘compact body’, in order to select just one solution out of the solution

space. These methods assume minimization of specific functionals that was obtained by using a linear programming technique

and comparing with those obtained by the Tikhonov regularization method. Although mathematically equivalent in terms of fit

between measured and synthetic data, the selected solutions may differ in their physical significance. Analysis of the obtained

solutions provides additional information for the interpretation of field measurements. A few examples of both synthetic and

field data inversion are presented to demonstrate that these techniques enable the groundwater distribution to be characterized

through the following parameters: top and bottom depths of the acquifer formation, minimum and maximum concentration of

water, water quantity, total water thickness, etc. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Nuclear Magnetic Resonance (NMR) is a techni-

que that was developed in 1945 and is widely used in

chemistry and medicine. Although the original idea to

use NMR for the surface prospecting of hydrocarbons

was proposed by Varian (1962) some 15 years later,

the method and the equipment were developed for

geophysical application by a Russian team (Semenov,

1987; Semenov et al., 1987).

Proton Magnetic Resonance (PMR) is a particular

case of Nuclear Magnetic Resonance (NMR) in which

only the protons in the nucleus are investigated; it is

probably the only existing surface geophysical method

that allows direct detection of groundwater. It provides

information about the groundwater distribution and the

mean pore size of water-saturated rocks. Interpretation

of the PMR measurements is based on the solution of

an inverse problem, which in turn involves various

relevant hydrogeological parameters such as the bulk

volume of water and the depth and thickness of

aquifers. Although with some assumptions the problem

is a linear one, the nonuniqueness of the solution

requires the application of certain criteria, or additional
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knowledge about the solution, in order to select just one

solution out of the potential solution space. Using the

Tikhonov regularization method (Tikhonov and

Arsenin, 1977) to invert the PMR data gives a single

solution based on the only knowledge of the measure-

ment. However, a unique solution can also be obtained

by restricting the geometry of water-saturated layers, or

other parameters that depend on the physical meaning

of the resolved problem. An investigation of the results

obtained with different assumptions about the solution

can be useful for interpreting the measured data.

Here, we will demonstrate how different gravity and

magnetic data interpretation techniques such as ‘ideal

body’ and ‘compact body’ inversion can be adapted for

interpreting PMR measurements. We use synthetic

models and then apply the method to an actual field

test case at the Saint-Cyr-en-Val site in France.

2. Forward problem

We begin by describing the forward problem. A

circular loop of wire that acts as both the transmitting

and receiving antennas is laid out on the ground, with

a diameter varying between 20 and 150 m, which

largely determines the depth of investigation (Fig. 1).

The loop is energized with a pulse of alternating

current.

iðtÞ ¼ I0cosðx0tÞ, 0VtVs,

where I0 and s are the amplitude and the duration of

the pulse, respectively.

The current frequency x0 = 2pf0 is set equal to the

Larmor frequency of the protons in the geomagnetic

field, i.e. x0 = kH0 where k is the gyromagnetic ratio

and H0 is the magnitude of the geomagnetic field. An

alternating magnetic field is created by the precession

of the nuclear magnetization M0 of protons after it has

been tilted by the pulse, and it is this secondary field

that is measured after the pulse is terminated. The

PMR signal oscillates at the Larmor frequency and

has an exponential envelope

eðtÞ ¼ E0ðqÞsinðx0t þ u0Þexpð�t=T2*Þ, ð1Þ

where T2* is the spin–spin relaxation time and u0 is

the phase. The amplitude of the signal is (Trushkin et

al., 1995)

E0ðqÞ ¼ x0M0

Z
x2þy2Vð2DÞ2, z V 2D

h1?sin
1

2
kh1?q

� �

� wðrÞdr, ð2Þ

where q = I0s is the pulse parameter, h1?(r,q(r),a) is a
component of the antenna’s magnetic field created by

I0, perpendicular to the geomagnetic field, q(r) is the
rock resistivity, a is the inclination of the geomagnetic

field, w(r) is the water content, r = r(x,y,z) is the radius

vector of the point in the space, and D is the diameter

of the antenna.

The depth, thickness and water content of detected

aquifers can be derived from the amplitude of the

signal. The relaxation time, T2*, correlates with the

mean size of the pores of water-saturated rocks

(Shirov et al., 1991) and the phase depends on the

electrical conductivity of rocks (Legchenko et al.,

1990). Here, we shall focus our attention on the

amplitude of the signal.

If we have M measurements of the signal, then Eq.

(2) can be written as

E0ðqjÞ ¼ E0j ¼
Z
x,y,z

GjðrÞwðrÞdðrÞ,

j ¼ 1,2, . . . ,M , ð3Þ
where Gj(r) is Green’s function for a pulse qj and

Gj(r) =x0M0h1?sin((1/2)kh1?qj).
Eq. (3) needs to be solved for the distribution of

groundwater. To simplify the problem, we assume

homogeneity of the geomagnetic field and horizontal

stratification, where upon Eq. (3) can be written as

E0j ¼
X
i

Gi, jwi, i ¼ 1,2, . . . ,N , ð4Þ
Fig. 1. Model geometry and discretization.
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where N is a number of layers in the model and

Gi, j ¼ x0M0

Z x¼þl,y¼þl, z¼ z iþ1

x¼�l,y¼�l, z¼ zi

� h1?sin
1

2
kh1?qj

� �
dr, ð5Þ

where zi and zi + 1 are, respectively, the depth of the

top and bottom of layer i, and 0VwiV 100% is the

water content in layer i.

The amplitude of the signal E0j can be measured

and so, using these data, the water content wi can be

derived from Eq. (4).

3. Inverse problem

Taking E0j to be the voltage induced in the loop by

the free precession of protons initiated by the pulse qj,

and Gi,jwi to be the contribution of layer i with water

content wi to the total signal produced by the pulse qj,

and ej to be the error for the measurement j, one

obtains the following linear system

E0j � ejVGi, jwiVE0j þ ej

0VwiV100%

:

8<
: ð6Þ

System (6) is satisfied by more than one solution,

which create a solution space. It is then necessary to

choose one of the solutions out of the solution space,

based on additional criteria.

The data obtained by the PMR can be inverted by

the Tikhonov regularization method, which gives a

unique, and in some senses optimal, solution with

noisy data using knowledge of measurement accuracy.

This method assumes a minimization of the Tikhonov

functional (Tikhonov and Arsenin, 1977)

NGWg � eeNL2
þ gNWgNL2

! min
g

, ð7Þ

where G=[Gi, j], Wg=(w1,w2,. . .,wM) is a vector of the

solution, ee=(ee1,ee2,. . .,eeM) is a vector of the noisy

data, and g = g(e) is the regularization parameter.

System (6) can also be solved using other infor-

mation. This is done by looking for parameters that

characterize the groundwater distribution, such as

depth and thickness of the aquifers and the water

content of each aquifer, and applying a linear pro-

gramming technique that is based on ideas proposed

by Parker (1974) for gravity data inversion and further

developed by Safon et al. (1977) and Cuer and Bayer

(1980).

First, however, it is necessary to verify whether

system (6) has a solution with a given level of error e.
If such is the case, it will be called a feasible solution.

If such is not the case, it is necessary to increase e and
try again since the solution space is a function of

experimental errors. In practice, the value e can be

well estimated by studying the noise level during the

data acquisition process, and so, for simplicity, we

assume that ej = e for all j.

Once the system is known to have a solution, it is

then necessary to investigate the solution space. For

this purpose, we introduce specific parameters that

may characterize the water-saturated intervals.

The maximum depth of the top of the water-

saturated zone (ztop) is the top of the first water-

saturated layer k such that wi= 0 when i < k and wi> 0

when i = k. In order to find ztop, we need to solve the

system

wi ¼ 0, for i ¼ 1,2, . . . ,k � 1

wi > 0, for 1 ¼ k

E0j � eVGi, jwiVE0j þ e

0VwiV100%

:

8>>>>>>>><
>>>>>>>>:

ð8Þ

This evaluation will give us the maximum drilling

depth required to find an aquifer, which is an impor-

tant economic consideration in exploration.

The minimum depth of the bottom of the water-

saturated zone (zbot) is the bottom of the last water-

saturated layer l such that wi>0 when iV l and wi= 0

when i>l. This parameter can be deduced from the

system

wi > 0, for i ¼ l

wi ¼ 0, for i ¼ l þ 1,l þ 2, . . . ,M

E0j � eVGi, jwiVE0j þ e

0VwiV100%

:

8>>>>>>>><
>>>>>>>>:

ð9Þ
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This evaluation will give us the minimum drilling

depth required to intersect all the aquifer formations.

Both these parameters are retrieved using extremal

points in the solution space of system (6). Although,

ideally, the water-saturated zone must be between the

calculated top and bottom, in practice, it may extend

further in both directions. In some cases, if the

resolution is poor, the calculated minimum depth of

the bottom may be shallower than the calculated

maximum depth of the top.

The maximum (Vmax) and minimum (Vmin) volume

of water in the investigated area may be found by an

optimization of the linear form V ¼
X
i

Dzisiwi ¼
maxðminÞ, where Dzi is the thickness of layer i and

Dzisi is the total volume of the layer. In order to avoid

any problems related to antenna geometry, we can

prescribe si = 1. Thus, we can evaluate an average

volume of water in a vertical column of total volume

1�1�Dzi. The linear system will now take the form

X
i

Dziwi ! maxðminÞ

E0j � eVG1, jwiVE0j þ e

0VwiV100%

:

8>>>><
>>>>:

ð10Þ

This evaluation gives us the maximum and minimum

volume of water that should be intersected by a

borehole drilled down to the maximum depth of

PMR investigation. In practice, the minimum volume

of water is a matter of interest if the objective is to

locate a source of water supply, while the maximum

volume of water should be estimated if one is looking

to find a relatively dry area for building construction

or other reasons.

The ‘ideal body’ solution, as developed by Parker

(1974, 1975), is a uniform water-saturated layer of

least possible water content associated with the meas-

ured data. The corresponding linear system is (Cuer

and Bayer, 1980)

max
i

ðwiÞ ! min

E0j � eVGi, jwiVE0j þ e

0VwiV100%

:

8>>>><
>>>>:

ð11Þ

This solution allows us to determine the minimum

value of water content and, consequently, the max-

imum thickness of aquifers. Groundwater must be

located within the detected aquifers (layers with

wi>0), but the exact position of the center of the

layers remains unknown and unsaturated intervals

(wi = 0) in the ‘ideal body’ solution should be consid-

ered as reliably dry.

In order to find the location of water with greater

certainty, we can apply the ‘compact body’ solution

(Last and Kubik, 1983; Guillen and Menichetti,

1984), which represents the most compact distribution

of water. It can be found by minimizing the total

thickness of all detected water-saturated layers and

applying the linear system.

X
i

vi ! min

E0j � eVGi, jwiVE0j þ e

0VwiV100%

,

8>>>><
>>>>:

ð12Þ

where

vi ¼
1 for wi > 0

0 for wi ¼ 0

						
This type of solution gives us the maximum value of

water content and the minimum aquifer thickness. We

consider the detected intervals with nonzero water

Fig. 2. Examples of the calculated PMR signal.
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content as reliably water-saturated, but the thickness

of detected water-saturated layers is uncertain. We are

also not sure whether or not the derived dry interval

(wi = 0) contains water. In the gravity interpretation,

this solution gives the center of gravity of the inves-

tigated body.

The ‘ideal body’ and ‘compact body’ solutions

are two extreme cases for the possible location of

the detected aquifer. In practice, it means that the

aquifers are located around the position obtained by

the ‘compact body’ solution and do not spread

outside the region given by the ‘ideal body’ sol-

ution.

We are now in a position to write down the strategy

for PMR data interpretation:

	 find a feasible solution using the knowledge

about experimental errors;
	 compute the top and bottom of the water-

saturated zone;
	 estimate the maximum and minimum volume

of water;

Fig. 3. The contribution of a 1-m-thick layer of water to the total signal as a function of layer depth.

Table 1

Estimation of the water-saturated zone and volume of water for a one-layer model

Parameter Model

(5–15 m)

Solution

(5–15 m)

Model

(20–30 m)

Solution

(20–30 m)

Model

(60–70 m)

Solution

(60–70 m)

ztop (m) 5 4 20 21 60 96

zbot (m) 15 13 30 25 70 54

Vmin (m
3) 1.0 0.987 1.0 0.964 1.0 1.42

Vmax (m
3) 1.0 1.36 1.0 1.38 1.0 3.2

‘Ideal body’ minimum

water content (%)

10 7.6 1.7

‘Ideal body’ equivalent

maximum thickness (m)

10 12.7 83

‘Compact body’

center of layer (m)

9–10 26–27 65
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	 find the minimum value of water content and

guaranteed waterless (completely dry) intervals

using the ‘ideal body’ solution;
	 find the number and the position of the different

aquifers using the ‘compact body’ solution.

Before illustrating the method, we need to discuss

some physical features of the PMR inverse problem.

The PMR signal, calculated for a 5-m-thick layer of

water (wi = 100%) situated at different depths of 20,

25, 30 and 60 m, is presented in Fig. 2. It is seen

that both the amplitude and the shape of the signal

vary according to the depth of the layer; with a

given level of noise e, the signal to noise ratio for

deeper layers is less favorable than for shallow ones.

The contribution to the signal energy from a 1-m-

thick layer of water, located at different depths for

different values of the pulse parameter qj, demon-

Fig. 4. Inversion of data for a three-layer model using both noisy and noise-free data. (a) PMR signal for the three-layer model using 0 and 10%

noise added to the synthetic data. (b) Inversion of the PMR signal for the three-layer model using 0 and 10% noise added to the synthetic data.

(c) PMR signal of the three-layer model using 0 and 5% noise added to the synthetic data. (d) Inversion of the PMR signal for the three-layer

model using 5% noise added to the synthetic data. (e) Inversion of the PMR signal for the three-layer model using 5% noise and a maximum

water content of 40%.
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strates the attenuation of the signal caused by depth

(Fig. 3).

4. Results

For a demonstration of the inversion of PMR

measurements for water prospecting from the surface,

we first used two classes of synthetic data sets and

then applied the inversion to field measurements at the

Saint Cyr-en-Val site in France. In each case, the

subsurface is assumed to be homogeneous and non-

conductive.

4.1. One-layer synthetic data inversion

The first model demonstrates the PMR method

resolution as a function of depth. We used a model

of one 10-m-thick water-saturated layer with a water

content equal to 10%. The simulation was calculated

using both the ‘ideal body’ and ‘compact body’

inversions for depths of 5–15, 20–30 and 60–70

m. No noise was added to the theoretical signal. For

each case, we have performed both the ‘‘ideal body’’

and ‘‘compact body’’ inversions. Nevertheless,

despite the noiseless data, we used an assumed error

e = 10 nV, which enlarges the solution space, and also

makes our results more realistic.

If the resolution is poor, we should expect a

difference, in terms of thickness, position and number

of the aquifers, between the ‘ideal body’ and ‘compact

body’ solutions.

The results presented in Table 1 indicate that the

difference between the extremal estimations of the

layer thickness and water content is relatively small

when the layer close to the surface, but increases with

increasing depth of the layer. This can be explained

principally by the decrease in the resolution of the

PMR method with increasing depth, a result that

agrees very well with the results of Legchenko and

Shushakov (1998) using an eigenvalue analysis.

On comparing the results of the inversion with the

model data (Table 1), we can see that:

	 as expected, the water-saturated zone is well

detected for the shallow (5–15 m) and

intermediate (20–30 m) layers;
	 the minimum volume of water was found to be

very close to the model for the two shallow

depths;
	 the maximum volume of water is much greater

than the true value in the model;
	 the ‘ideal body’ gives good results of the

minimum water content for the shallow and for

the intermediate layers;
	 the ‘ideal body’ gives good results of the

equivalent maximum thickness for the shallow

and for the intermediate layers;
	 the ‘compact body’ for the three cases gives

good results regarding the position of the center

of the layer.

Nevertheless, the accuracy of detection of the

water-saturated zone decreases with increasing layer

depth. For the deepest model (60–70 m), the inver-

sion gives a maximum depth of the top of the water-

saturated zone that is deeper than the minimum depth

of the bottom. This result demonstrates that the

inversion method has no resolution at this depth and

that the parameters of an aquifer cannot be computed

Table 2

Estimation of the water-saturated zone and volume of water for a three-layer model

Parameter Model (3 layers) Solution (3 layers, 5% noise) Solution (3 layers, 10% noise)

ztop (m) 20 24 25

zbot (m) 80 53 46

Vmin (m
3) 3.0 2.2 2.2

Vmax (m
3) 3.0 7.8 8.1

‘Ideal body’ minimum

water content (%)

6.7 5

‘Ideal body’ equivalent

maximum thickness (m)

32.8 44

‘Compact body’

center of layer (m)

23–25 and 43–50 19–26 and 50–51

A. Guillen, A. Legchenko / Journal of Applied Geophysics 50 (2002) 149–162 157



Fig. 5. Field case of Saint-Cyr-en-Val. (a) Lithological description of borehole 268, water content inversion using Tikhonov regularization,

decay time inversion and resistivity. (b) Measured PMR signal. (c) Inversion of the PMR signal using ‘ideal body’ solution. (d) Inversion of the

PMR signal using ‘compact body’ solution.
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satisfactorily from the measurements. However, the

evaluation of the minimum volume of water is quite

close to the model, and although the evaluation of the

maximum volume of water is too optimistic, it does

indicate the existence of water.

4.2. Three-layer synthetic data inversion

A more complicated model consists of three 10-m-

thick layers lying at 20–30, 40–50 and 70–80 m,

with the water content in each layer being equal to

Fig. 5 (continued ).
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10%. Inversion was performed using the linear pro-

gramming method, with an error of e = 10 nV being

used for noiseless data as in the single-layer case.

When adding random noise to the theoretical data,

using a noise amplitude of 10 and 5% of the signal

amplitude (Fig. 4a and c), it was necessary to increase

the error to e = 10 nV, in order to solve system (6) with

noisy data.

Results of the inversion are presented in Table 2

and depicted in Fig. 4b, d and e. Once again, we can

see (Fig. 4d and e) that the solution space for the

shallow layer is smaller than for the deeper layers, and

that the deepest layer (70–80 m) cannot be retrieved

even using the less noisy (5%) data. The results also

show (Fig. 4b and d) that no water is expected below

50 m.

Here, we used the most common physical limita-

tion 0VwiV 100% for the inversion. However, it

makes sense to use a more realistic evaluation of the

maximum possible water content based on hydro-

geological knowledge about the aquifers: this would

significantly improve results obtained by linear pro-

Fig. 5 (continued ).
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gramming, for example, one could use the maximum

possible porosity of the water-saturated rock when the

rock type is known.

Results of the inversion of the three-layer model

with the limitation 0VwiV 40% are presented in Fig.

4e. We used the same noise level in the data that was

used for inversion shown in Fig. 4c and it can be seen

that the result is improved.

4.3. Field data inversion

For the field test of the various inversion schemes,

data were acquired with the newly developed NUMIS

system (Legchenko et al., 1995) in the vicinity of

Orleans city (Central France); the corresponding

hydrogeological data were obtained from a nearby

water-supply well for the village of Saint Cyr-en-Val

(France) during a BRGM geological study. A litho-

logic log of borehole 268 is given in Fig. 5a.

Three aquifers were intersected by this borehole:

an upper aquifer of mixed gravel, sand and clay,

approximately 20–25 m thick, and two aquifers of

water-saturated karst limestone separated by a sand-

stone layer at a depth of 50–60 m. The total thickness

of the water satured zone is about 70–80 m and the

average porosity is approximately 10%. Water trans-

missivity within the aquifer is around 0.28 m2/s. The

measured signal is presented in Fig. 5b.

Inversion of these field data was performed by both

the linear programming (Fig. 5c and d) and regulari-

zation (Fig. 5a) methods. According to the linear

programming algorithm, we first concluded that a

solution exists with a noise e = 10 nV, and then, we

evaluated the presence and character of a water-

saturated zone. The results are presented in Table 3.

The ‘ideal body’ inversion (Fig. 5c) showed a water-

saturated zone between 3 and 37 m; the water pre-

dicted below 37 m is discussed later. Using ‘compact

body’ inversion (Fig. 5d), we can distinguish two

aquifers: a shallow aquifer between 5 and 13 m and a

deeper aquifer at 37 m. The waterless interval between

13 and 30 m was confirmed by both the ‘ideal body’

and ‘compact body’ solutions. The water content

cannot be more than 52%, but this high value is

hardly new information.

Using the Tikhonov regularization method, we

obtained a unique solution (Fig. 5a). Evaluating the

water-saturated zone in the same manner as with the

linear programming method, two aquifers are detected

at about the same depths and the volume of water is

close to the maximum that was found by linear

programming (Table 3). Both the linear programming

and the Thikonov regularization indicate a small

amount of water below 40 m, thus we can expect

that, according to the inversion, there is a third aquifer

situated deeper than 50 m. This is borne out by the

lithologic log of borehole 268, which indicates a third

aquifer between 60 and 80 m. However, this deeper

aquifer cannot be computed reliably from the meas-

ured data because of lack of resolution of the PMR

data set at this depth.

5. Conclusion

We have presented examples of solutions for the

inversion of surface PMR data applied to groundwater

investigation. Inversion was performed using a linear

programming technique that permits not only the

finding of a solution but also a study of the solution

space, which gives us a better idea of possible

parameter variations in view of experimental errors.

Table 3

Estimation of the water-saturated zone and volume of water for the Saint Cyr-en-Val field data

Parameter Field data: linear programming,

‘ideal body’ and ‘compact body’

Field data: Tikhonov

regularization

ztop (m) 4 3

zbot (m) 37 52

Vmin (m
3) 0.96 1.78

Vmax (m
3) 2.0 1.78

‘Ideal body’ minimum water content (%) 4.8

‘Ideal body’ equivalent maximum thickness (m) 20

‘Compact body’ center of layer (m) 5–13 and 37
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The method enables the groundwater distribution to

be characterized through parameters that constrain the

depths of the top and bottom of the aquifer forma-

tions; it also indicates other properties of groundwater

distribution such as minimum concentration, total

water thickness, water quantity, etc.

In order to compare the performance of different

methods for inverting PMR data, we used both

numerical simulations and field data. The results

obtained using the linear programming compared

favorably with those obtained using the Tikhonov

regularization method. Moreover, these algorithms

can be used with a portable computer, which means

that interpretations can be made rapidly in the field.

Generalization to the nonuniformly stratified 2D case

and even to the general 3D case can be envisioned.
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