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Abstract

Inversion of surface nuclear magnetic resonance (SNMR) provides important information about aquifers, such as their

depths, thickness, pore size and water content. Different methods (inverse quadratic, linear programming) have been applied to

the problem of SNMR data inversion, but there has not yet been any attempt to explore model space. We propose that an

adaptation of the Monte Carlo method presented here is suitable for exploring the set of solutions consistent with SNMR data.

We also demonstrate the capability of this method applied to the interpretation of SNMR data with examples of both synthetic

and field data inversions. We also show that the method can be used to obtain various results, such as a posteriori water

distribution with depth and a posteriori pore-size distribution with depth. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Surface nuclear magnetic resonance (SNMR) is a

particular application of the nuclear magnetic reso-

nance (NMR) phenomenon (Varian, 1962; Semenov,

1987; Semenov et al., 1987), wherein only the protons

in the hydrogen nucleus are investigated. It is the only

known surface geophysical method that allows direct

detection of groundwater, in addition to providing

information about groundwater distribution and the

mean size of the pores of water-saturated rocks. The

interpretation of SNMR measurements is based on the

solution of an inverse problem and involves various

relevant hydrogeological parameters, such as bulk

volume of the water, aquifer depth and thickness. By

adopting certain assumptions, the problem becomes a

linear one. Nevertheless, the nonuniqueness of the

solution requires the application of additional criteria

or knowledge about the solution in order to select just

one solution from amongst other equivalent solutions.

Although the Tikhonov regularization method

(Tikhonov and Arsenin, 1977) or linear programming

techniques can be successfully used for inverting

SNMR data (Legchenko and Shushakov, 1998;

Guillen and Legchenko, 2002), these methods cannot

provide a statistical sampling of the solution space. It

is, therefore, necessary to find a method that will

make it possible to explore extensively the model

space that conform with the known data on:

� the SNMR measurements,
� the probability density function (pdf) of the

groundwater content,
� the pdf of the decay time in the subsurface

region (as a function of the pore size),
� the pdf of the aquifer thickness.
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Hereafter, we demonstrate how a technique, such as

an adapted Monte Carlo method, can be applied to the

interpretation of SNMR measurements and why this

proposed approach is better than using the classical

Monte Carlo method. We first use a synthetic model

and then apply the method to a field test case close to

the Dead Sea in Israel.

A certain amount of information is required to

perform the SNMR data inversion by this method,

the three main items being ground type, probable

thickness of the geological layers and the pdf of water

content and decay time in the subsurface.

Two relevant questions from the point of view of

the data interpretation can, for instance, be formulated

as follows:

� What is the probability of there being a water

content greater than X% between 20- and 30-m

depth?
� What is the probability of there being a water

content greater than X% between 0- and 40-m

depth if there is a barren zone between depths

of 50–100 m?

2. Basic theory of SNMR sounding

A circular or square antenna, between 10 and 100

m diameter/side according to the required depth of

investigation is laid out on the ground and used to

transmit an alternating signal: i(t) = I0cos(x0t),

0VtVs, where I0 and s are the amplitude and the

duration of the signal excitation pulse.

The current frequency f0=x0/2p is equal to the

Larmor frequency of the protons in the geomagnetic

field of the site, i.e., f0=kH0/2p with k being the

gyromagnetic ratio of the protons and H0 the ampli-

tude of the geomagnetic field.

The precession of protons around the geomagnetic

field creates an alternating magnetic field, which is

measured with the transmitting antenna at the end of

the transmission. The measured NMR signal oscillates

at the Larmor frequency and has an exponential

envelope

eðtÞ ¼ e0expð�t=T2*Þcosðx0t þ u0Þ,
where T2* is the spin–spin relaxation or decay time

and u0 the phase of the NMR signal, T2* being a

function of the pore size of the rock and increases with

pore size. This information is relevant because it gives

an idea of the available free groundwater. The ampli-

tude of the NMR signal e0 is equal to (Trushkin et al.,

1995)

e0ðqÞ ¼ x0M0

Z
V

hI?sinð0:5khI?qÞwðrÞdr;

where q= I0s, which represents the excitation param-

eter (here after called charge); M0 is the magnetic

moment; and hI?=HI?/I0= f(r, q(r), a); HI? is the

component of the signal created perpendicular to the

Earth’s magnetic field with an inclination of a, q(r)
and w(r) represent, respectively, the ground resistivity

and the water content at point r.

If we assume that we have m measurements of the

NMR signal, and k samples of the exponential enve-

lope, and that the model is contained in a volume Vof

the subsurface, then the data e0jl are connected to the

groundwater concentration and to the decay time T2*

of the model by the equation

e0jl ¼
Z
v

GjðrÞwðrÞexpð�tl=T2*ðrÞÞdr,

j ¼ 1; 2, . . . , m and l ¼ 1, 2, . . . , k,

where Gj(r) is the Green’s function for the measure-

ment j, with GjðrÞ ¼ x0M0 mV hI?sinð0:5khI?qjÞdr ,
and we have 0Vw(r)V1 throughout the investigated

space V.

If we now assume a model of horizontally stratified

ground with each layer being homogeneous, the

above equation becomes

e0jl ¼
X
i

Gijwi expð�tl=T2 j*Þ,

j ¼ 1, 2, . . . , m and l ¼ 1, 2, . . . , k,

with Gij ¼ x0M0

Z x¼l, y¼l, z¼ziþ1

x¼�l, y¼�l, z¼zi

hI?

sinð0:5khI?qjÞdr ð1Þ

where zi and zi+1 are the depths, respectively, to the

top and bottom of layer i, wi represents the ground-
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water content in layer i, and T2* represents the decay

time associated with the same layer.

3. Inverse problem

Taking gjl to be the SNMR effect at time tl for a

charge qj, and Gij to be the contribution of a layer i

with a concentration wi for a charge qj, we obtain

gjl ¼
X
i

Gijwi expð�tl=T2 i*Þ

ð j ¼ 1, . . . , m and l ¼ 1, . . . , kÞ ð2Þ

where k represents the number of samples of the

exponential envelope, m represents the number of

pulse acquisition (charge values), wi represents the

water content in the ith layer, with 0VwiV100% (i=l,

n), and T2i* represents the decay time in the same layer

with 0VT2i*V1000 ms (i=1, n).

We define a model m by the vector of water content

and decay time. Using the bayesian approach to

inverse problems, describing the relation between

the a priori information on a model m defined by a

probability density Pprior(m) and the information pro-

vided by the measurements e0jl and by the physical

theory L(m, e0), we define a probability density of the

a posteriori information Ppost(m) equal to (Tarantola

and Valette, 1982)

PpostðmÞ ¼ kLðm; e0ÞPpriorðmÞ

where k is an appropriate normalization constant.

L(m, e0) is a function of the fit between the

measurements e0jl and the effect of the model gjl.

We want maximise the probability of the a posteriori

information so we must maximise L(m, e0) defined

now as L(m).

If we assume that the measurement error obeys a

Gaussian law of distribution and that r2, defined by the
noise measurement before transmitting the signal, re-

presents the variance of the data which is assumed to be

the same for all measurements, then we need to max-

imize k exp(�S( g)/r2). Here, S( g) represents the misfit

function between the SNMR measurements and the

model effect, i.e., SðgÞ ¼ 1=2
Pm; k

j¼1; l¼1 ðgjl � e0jlÞ2

with gjl being the total effect of the model for the

observation pulse j at time tl, and e0jl being the

measurement of the field at the same point.

3.1. Inversion strategy

The proposed inversion strategy is a Monte Carlo

type of inversion (Metropolis and Ulam, 1949;Metrop-

olis et al., 1953; Mosegaard and Tarantola, 1995) that

makes it possible to randomly search a large number of

possible models, for a hypothesis defined by:

� the electrical conductivity distribution of the

medium,
� the pdf of the water content,
� the pdf of the decay time,
� the pdf of the aquifer thickness.

Monte Carlo methods are pure random search

methods, where each parameter is allowed to vary

within an a priori pdf. Starting from an initial model

we generate a new model by a random perturbation of

the parameters. The model is retained once the misfit

between the effect of the new model and the obser-

vations is smaller than a given threshold. Clearly, this

approach fails when the misfit function has several

peaks and troughs. An alternative for finding a global

minimum is the simulated annealing methods (Sen

and Stoffa, 1995), of which the Metropolis algorithm

is a particular case. Mosegaard and Tarantola (1995)

propose slightly modifying the current model so as to

find a neighboring model and then, sequentially

sampling all the possible models in order to solve

the inverse problem using an efficient Metropolis

method that enables a posteriori sampling of models.

The definition of the neighboring model is impor-

tant (Mosegaard and Tarantola, 1995) because it

influences the success of the method. We define a

model as a set of aquifers with a water content and a

decay time, and where disturbances involves modifi-

cation of the following parameters: the water content

of an aquifer, the decay time of an aquifer and the

geometry of an aquifer.

4. Inversion algorithm

To perform the inversion, we first consider the

water content distribution using only the amplitude
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Fig. 1. Modification of the geometry of an aquifer. (a) Initial model. (b) Merging of two aquifers. (c) Splitting of an aquifer into two aquifers.
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value of the signal at t=0, and then look for a decay

time distribution that can explain the exponential

envelope.

The initial model for a given hypothesis defined by

a pdf for water content and decay time is m0. The

construction of the initial model provides a topology

of aquifers, each aquifer Aa consists of an assemblage

of unit layers j. For ease and rapidity of calculation,

we propose the following method:

. assume a distribution of conductivity in the

subsurface;

. calculate the elements Gij (Eq. (1)) for this

distribution of conductivity and for layers of unit

thickness (one meter);

. sum the Gij of the unit layers j composing the ath

aquifer. This will always be possible if we work in

whole numbers (rounded off to the next higher or

lower integer) to define the thickness and position of

the aquifers. The effect of the ath aquifer for the

measurement i will then be EAai ¼
P

j Gij for all j,

such that the unit layer j belongs to the ath aquifer.

In order to be able to apply the Monte Carlo type

method (disturbance of the model) described above in

an efficient manner, the disturbances must be small.

The first disturbance will be a modification of the

water content of a randomly selected aquifer. The new

content must obey the previously given probability

density function for the distribution of water in the

subsurface region.

The second disturbance will be a modification of

the geometry of an aquifer (Fig. 1). In selecting an

aquifer (Fig. 1a), we can either destroy the separation

between two aquifers and choose a water content and

a decay time for the new aquifer obeying the pdf for

the distribution of water and the distribution of the

decay time in the subsurface (Fig. 1b), or create a new

aquifer by inserting an interface into the aquifer, and

then allocate a new water and decay time distribution

for each of the two new aquifers, obeying the pre-

viously given pdf for the water and decay time

distribution in the subsurface (Fig. 1c).

To compute the SNMR effect of a model m0, we

calculate the elementary SNMR effect for each aquifer

of the model obtained as follows. Let Aa be the aquifer

of the a priori geometrical modelm0 and EAai the effect

of this aquifer at the measurement point i for a distri-

bution of water equal to 100%. The SNMR effect of the

model m0 at a measurement point i and at time l will

then be: gjl ¼
P

a EAaiðwaÞ exp ð�tl=T2a*Þ , with wa

representing the distribution of water and T2a* repre-

senting the distribution of decay time in the ath aquifer.

4.1. A posteriori sampling

The different steps for the a posteriori sampling of

models using an inversion for the a priori geometrical

model m0, are as follows.

(1) Construct the a priori model m0 (i.e., define the

distribution of conductivities, pdf of water content,

pdf of decay time and of aquifer thickness).

(2) Compute the elementary SNMR effect for each

elementary layer, with water content of 100%. The

Fig. 2. A priori probability density function for water content.
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effect of a unit layer j at a measurement point l will

then be Gjl.

(3) Determine the laws of a priori pdf of water

content and decay time in the subsurface region and of

the aquifer thickness.

(3a) For the aquifer thickness, the pdf can be

represented by a uniform law

f ðthÞ ¼ ð1=thmaxÞðHðthÞ � Hðth� th0ÞÞ;

with HðthÞ ¼
1 if thz0

0 if th < 0

8<
:

������
and thmax representing the maximum thickness.

(3b) For the water content pdf in the subsurface

region (Fig. 2), a law of the following type can be

used:

fwðwÞ ¼

0 if w < 0

Cst if w ¼ 0

1=r
ffiffiffiffiffiffi
2p

p	 

expð�ðw� wÞ2=2r2Þ if w > 0 and wV1

0 if w > 1

8>>>>>>>><
>>>>>>>>:

where –w represents the mean water content and where

Cst is chosen to obtain m10 fwðwÞdw ¼ 1:
(3c) For the pdf of decay time in the subsurface

region, a law of the following type can be used:

fT2ðT2*Þ ¼ ðHðT2*Þ � HðT2*� 1000ÞÞ,

with HðtÞ ¼
1 if tz0

0 if t < 0

:

8<
:

(4) Sample the thickness of each aquifer (from the

top down) and the water content for all the aquifers

according to the law determined at step 3.

(5) Calculate the effect of the model and initiate the

inversion process.

(6) Initialize the likelihood of the model L(m0)=k

exp(�S(m0)/r
2) to zero. This likelihood will be called

the current likelihood, L(mcur). With S(m0) represent-

ing the deviation from the geophysical data, for

example, Sðm0Þ ¼ 1=2
PN

i¼1ðgiðm0Þ � e0iÞ2 or gi(m0)

represent the total effect of the model at the observa-

tion point i and for e0 the measured field at the same

point. Let r2 represent the a priori variance of the

data, which we assume to be identical for all the data.

(7) Calculate the effect of the model by applying

formula (2). The model is called the disturbed model

mdis.

(8) Disturb the current model mcur: Choose the type

of modification, i.e., modification of water content or

the geometry of the aquifers. This choice is made

randomly with a probability of 0.5.

(a) If the geometry is modified:

	 Select an aquifer by equiprobable choice

selection. Let Aa be the aquifer selected.
	 Decide by equiprobable choice if the aquifer

Aa is to be divided in two, or if it is to be

combined with the overlying aquifer.
	 Allocate a value of water content and of

decay time to the new aquifers using the

laws determined above.
	 Calculate the geophysical disturbance at

time t=0 by which the model is affected;

for this, it is simply necessary to recalculate

the effect of the disturbed aquifers.

(b) If the water content is modified:

	 Select an aquifer by equiprobable choice

selection. Let Aa be the selected aquifer.
	 Sample the parameter (water content and

decay time) using the probability law

determined at step 3.
	 Calculate the geophysical disturbance at

time t=0 by which the model is affected;

for this, it is simply necessary to recalculate

the effect of the disturbed aquifer.

(9) Calculate the likelihood of the model L(mdis)=k

exp(�S(mdis)/r
2).

(10) If L(mdis)>L(mcur), then the model is disturbed

and we set mcur=mdis. If not, we choose to retain mdis

with a random selection and a probability of L(mdis)/

L(mcur). If we keep mdis, then we set mcur=mdis; if not,

mcur is not modified. An example of the evolution of

S(mdis) is illustrated in Fig. 3.

(11) Store the model obtained, i.e., the thickness,

water content and decay time of each aquifer.
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(12) Increment the number of inversions n per-

formed. After 100,000 inversions, return to step 1 to

perform an inversion for a new initial model.

(13) If a new disturbed model mdis results, return to

step 8 for a new sampling.

5. Applications

5.1. Synthetic data cases

We applied the method to a synthetic model

composed of two aquifers:

� 10–20-m depth with 10% water and T2* equal

to 500 ms,
� 40–50-m depth with 15% water and T2* equal

to 300 ms.

A Gaussian noise level equal to 5% of the signal

was added to the computed response.

The initial model consists of 10 aquifers, each 10

m thick and containing 0% water.

Fig. 3 clearly shows the evolution of the mismatch

from the data and the oscillations that enable a wide

range of solutions to be investigated. The oscillations

are created by the retention of models that increase the

misfit to the data, but which are nevertheless retained

with a certain probability (see step 10 in a posteriori

sampling). This strategy makes it possible to explore

the space of the possible models. In the same way, the

evolution of the mean of the solutions with the

number of iterations can be illustrated along the

inversion process. This mean does not in itself repre-

sent a model, but gives a good idea of the probable

distribution of subsurface water, because the response

is linear. The final distribution of the water content as

a function of depth is illustrated in Fig. 4, which

shows that the distribution of water in this evolution

becomes progressively concentrated between 10 and

20 m with a mean value near 10%, and between 35

and 55 m with a mean value of 12.5%. The mean of

the water content and of the T2* value as a function of

depth is illustrated in Fig. 5. Here again, we retrieve

the two aquifers; the first with a T2* between 600 ms

and 700 ms, the second with a T2* close to 400 ms.

The distribution of T2* at a given depth is more spread

out than for the water content (Fig. 5) due to the

multiple solutions in the inversion of a sum of

exponentials.

Fig. 3. Evolution of the mismatch between a current model mcur and

measurements after 100,000 iterations.

Fig. 4. Probability density function of the water content versus

depth.
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Fig. 5. Mean of water content and T2* versus depth.

Fig. 6. Field test case in Israel: lithological description of the borehole, water content and decay time obtained by Tikhonov inversion, resistivity

obtained by TDEM (Goldman et al., 1994).
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5.2. Field test case

During 1998, 30 surface nuclear magnetic reso-

nance (SNMR) soundings were performed in Israel in

two distinct areas, one located near the Mediterranean

coast and the other near the Dead Sea (Legchenko and

Beauce, 1998). For the area close to the Dead Sea,

which had been studied by Goldman et al. (1994), two

boreholes T2 and T4 were used to verify the SNMR

results.

5.2.1. Results using the Tikhonov regularization

method for inversion

A comparison of the borehole data and the SNMR

results obtained using the Tikhonov regularization

method for inversion are depicted in Fig. 6 for the

sounding corresponding to borehole T4. The water

table depth deduced from the SNMR sounding is in

good agreement with the depth measured in the bore-

hole T4. The interpretation is also in agreement with

the available hydrogeological data for this area. Some

variations in the decay time were detected by SNMR

sounding close to borehole T4, although not in the

sounding near borehole T2. The lower decay time in

the shallow part of the resolved aquifer could be

explained by the presence of a 5-m-thick layer of

clay at a depth of 25 m, which was revealed by the

borehole and by TDEM (Goldman et al., 1994). This

relatively thin layer, which is not resolved by inver-

sion of the water content, causes a decrease in the

decay time due to the direct relationship existing

between decay time and pore size.

5.2.2. Results using the adapted Monte Carlo method

for inversion

We analyzed the results obtained from this SNMR

sounding using the proposed Monte Carlo method for

inversion. Assuming a Gaussian a priori probability

density function, with a mean value of 5% and a

standard deviation of 30%, for water content, the

results are:

(i) The minimum mass of water is 410, corre-

sponding to an equivalent 41-m-thick aquifer

with water content of 10% (Fig. 7).

(ii) Two water-bearing zones are clearly distin-

guished; the first around 10 m and the second

beginning at 20 m with higher water content

(Fig. 8).

Fig. 7. Cumulative distribution of water content versus depth for the

model corresponding to the minimum of total water.

Fig. 8. Probability density function water content versus depth.
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(iii) A 5-m-thick aquifer corresponding to a

decrease in decay time could be identified

around 20 m (Fig. 9).

Not only are these results in good agreement with

the results obtained by the more classical Tikhonov

regularization method, but also they provide more

additional useful information as discussed below.

If we store the different models obtained during the

inversion process, we can, for example, seek answers

to different questions, such as:

� What is the evolution of the maximum water

content with depth?
� What is the probability of a given water content

between two depths?
� What is the probability of obtaining more than

x% of water between 30 and 50 m if there is

less than 5% of water in the first 20 m?

� What is the probability of obtaining more water

in a given 5-m-thick layer than in the 5 m above

this layer?

6. Model interpretation

6.1. What is the evolution of the maximum water

content with depth?

The results to this question give us an idea of the

maximum water content that we could expect at a

given depth. To do this we compute the function:

f ða, zÞ ¼ ProbðMaxðwðhÞÞ> aÞ,

with aaf0, 1, 2, 3, . . . , 15, . . .g and ha½0, z,

where w represents the water content and z represents

a depth, looking for all the models that satisfy this

condition in the set of stored models. Fig. 10 illus-

trates this function for aa{1, 2, 3, . . ., 10%} and for

different za{15, 20, 25, 30 m} for the field test case

near borehole T4. We see on the curve corresponding

to the depth interval 0–20 m that the probability of a

water content greater than 5% is 0.9 and on the curve

corresponding to the depth interval 0–30 m that theFig. 9. Mean of T2* versus depth.

Fig. 10. Evolution of the maximum water content with depth.
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probability of a water content greater than 10% is

greater than 0.9.

6.2. What is the probability of given minimum mean

water content between two depths?

The answer to this question gives us an idea of the

distribution of water in some areas of the sounding. To

do this, we compute the function

f ða; z0; z1Þ ¼ Probðð1=ðz1 � z0Þ
Z z1

z0

wðzÞdzÞ > aÞ,

with aa{1, 2, 3, . . ., 15, . . .}, and where w represents

the water content and z0 and z1 represent two depths

defining an interval, looking for all the models that

satisfy this condition in the set of stored models. Fig.

11 illustrates this function for aa{1, 2, 3, . . ., 20%}

and for different pairs of z0 and z1a{(0, 15), (0, 20),

. . ., (0, 60)} for the SNMR sounding near borehole

T4. We see on this plot that the probability of a mean

of water content greater than 5% between 0 and 40 m

is 0.8 and it is 0.9 to have a mean greater than 8%

between 0 and 50 m.

6.3. What is the probability of obtaining more than

X% of water between 30 and 50 m if there is less than

5% of water in the first 20?

The answer to this question gives us an estimate of

the expected water resources between 30 and 50 m if

the first 20-m contain less than 5% of water. To obtain

these results we compute the function

f ða, z, z0, z1Þ ¼ ProbðA=BÞ;
where A is ðð1=ðz1 � z0ÞÞmz1z0 wðzÞdzÞ > aÞ with

aa{0, 1, 2, 3, . . ., 20%}, B is max(w(z))<5% for

0<z<20 m, where w represents the water content, and

where z0=30 m and z1=50 m representing the interval

for which we want known the resources, looking for

all the models that satisfy this condition in the set of

stored models. Fig. 12 illustrates this function applied

to the SNMR sounding near borehole T4. We see on

this curve that we are sure (the probability is one) to

obtain more than 10%, and we have a probability of

0.8 to obtain more than 14%.

Fig. 11. Plot representing the probability of a mean water content greater than a given value in a depth range (0–X m).

Fig. 12. Function representing the probability of mean water content

greater than a given value between 30 and 50 m depth.
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6.4. What is the probability of obtaining more water in

a given 5-m-thick layer than in the 5-m above this

layer?

The results to this question give us an idea of the

evolution of the water content versus depth, pointing

out the areas where the water content increases or

decreases. To obtain these results we compute the

function

f ðz0;DzÞ ¼ ProbðA > BÞ

w h e r e A ¼ 1=ðDzÞmz0z0�Dz wðzÞdz and B ¼ 1=ðDz
mz0�Dz
z0�2*Dz

wðzÞdzÞ. Here w represents the water content,

z0 represents the depth and Dz=5 m is the interval in

which we want to find the probability, looking for all

the models that satisfy this condition in the set of

stored models. Fig. 13 illustrates this function applied

to the field test case near borehole T4. We see on this

curve that the probability of obtaining more water

between 15 and 20 m than in the 10–15 m layer is

0.3, whereas between 35 and 40 m, the probability of

an increase in the water content is 0.6.

These different results demonstrate that in using

the adapted Monte Carlo method for inversion we are

able to describe the studied aquifer statistically and

obtain a good idea of the distribution of the water

content, maximum water content expected, location of

the water and mean water content.

The calculation time for 100,000 iterations with

graphic representation every 100 iterations is of the

order of 4–5 min, using a PC with 128-Mbyte RAM.

7. Conclusion

We have successfully adapted a Monte Carlo

technique to the inversion of SNMR data. The exam-

ples that we have presented show that the strategy

adopted for exploring the space of the models is

effective and efficient.

This strategy allows us to describe an aquifer

statistically and evaluate, using water content and

the decay time, the resources and production risk of

the aquifer through exploring a range of models in

order to answer questions relevant to groundwater

exploration, viz:

� What is the probability of there being a water

content greater than X% between 20 and 30 m?
� What is the probability of there being a water

content greater than X% between 0 and 40 m if

there is a barren zone between 50 and 100 m?

In the near future, we expect to be able to use

inversion results and geostatistics to run 3D simula-

tions of the water content and decay time. In the same

way, we should be able to invert and investigate 2D

and 3D data.

Fig. 13. Probability versus depth of greater water content in a 5-m-thick layer than in the 5-m-thick layer above it.

A. Guillen, A. Legchenko / Journal of Applied Geophysics 50 (2002) 193–205204



Acknowledgements

We would like to thank P. Valla, J. Bernard and A.

Beauce for their critical perusal of this manuscript.

Patrick Skipwith, BRGM Translation Service, im-

proved the English of the final version of the

manuscript. This work was carried out as part of the

BRGM Research Project entitled ‘‘0–100 m under-

ground imaging.’’

References

Goldman, M., Rabinovich, B., Rabinovich, M., Gilad, D., Gev, L.,

Shirov, M., 1994. Application of integrated NMR-TDEM me-

thod in groundwater exploration in Israel. J. Appl. Geophys. 31,

27–52.

Guillen, A., Legchenko, A., 2002. Application of linear program-

ming techniques to the inversion of proton magnetic resonance

measurements for water prospecting from the surface. J. Appl.

Geophys. 50, 149–162.

Legchenko, A., Beauce, A., 1998. A new integrated geophysical

approach for the rational management and exploration of

groundwater resources: second annual report. European Com-

mission of Communities, European Project INCO-DC no.

CT960122, BRGM public report 40368.

Legchenko, A.V., Shushakov, O.A., 1998. Inversion of surface

NMR data. Geophysics 63, 75–84.

Metropolis, N., Ulam, S.M., 1949. The Monte Carlo method. J. Am.

Stat. Assoc. 44, 335–341.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, A.H., Teller, A.H.,

Teller, E., 1953. Equation of state calculations by fast computing

machines. J. Chem. Phys. 1 (6), 1087–1092.

Mosegaard, K., Tarantola, A., 1995. Monte Carlo sampling of solu-

tions to inverse problems. J. Geophys. Res. 100B, 12431–

12447.

Semenov, A.G., 1987. NMR Hydroscope for water prospecting.

Proceedings of the Seminar on Geotomography. Indian Geo-

physical Union, Hyderabad, pp. 66–67.

Semenov, A.G., Schirov, M.D., Legchenko, A.V., 1987. On the

technology of subterranean water exploration founded on appli-

cation of nuclear magnetic resonance tomograph ‘‘Hydro-

scope’’: IXth Ampere Summer School, Abstracts, Novosibirsk,

September 20–26, 1987. Institute of Chemical Kinetics and

Combustion of Siberian Branch of Russian Academie of

Sciences, Novosibirsk, ICKG library, 214.

Sen, M., Stoffa, P., 1995. Global Optimization Methods in Geo-

physical Inversion. Elsevier.

Tarantola, A., Valette, B., 1982. Inverse problems=Quest for infor-

mation. J. Geophys. 50, 159–170.

Tikhonov, A., Arsenin, V., 1977. Solution of Ill-Posed Problems.

Wiley & Sons.

Trushkin, D.V., Shushakov, O.A., Legchenko, A.V., 1995. Surface

NMR applied to an electroconductive medium. Geophys. Pros-

pect. 43, 623–633.

Varian, R.H., 1962. Ground liquid prospecting method and appara-

tus. US Patent 3019383.

A. Guillen, A. Legchenko / Journal of Applied Geophysics 50 (2002) 193–205 205


	Introduction
	Basic theory of SNMR sounding
	Inverse problem
	Inversion strategy

	Inversion algorithm
	A posteriori sampling

	Applications
	Synthetic data cases
	Field test case
	Results using the Tikhonov regularization method for inversion
	Results using the adapted Monte Carlo method for inversion


	Model interpretation
	What is the evolution of the maximum water content with depth?
	What is the probability of given minimum mean water content between two depths?
	What is the probability of obtaining more than X% of water between 30 and 50 m if there is less than 5% of water in the first 20 ?
	What is the probability of obtaining more water in a given 5-m-thick layer than in the 5-m above this layer?

	Conclusion
	Acknowledgements
	References

