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AVO and AVA inversion for fractured reservoir characterization

Matteo Mario Beretta∗, Giancarlo Bernasconi∗, and Giuseppe Drufuca∗

ABSTRACT

Seismic wave reflection amplitudes are used to de-
tect fluids and fracture properties in reservoirs. This pa-
per studies the characterization of a vertically fractured
fluid-filled reservoir by analyzing the reflection ampli-
tudes of P-waves with varying incident and azimuthal
angles. The reservoir is modeled as a horizontal trans-
versely isotropic medium embedded in an isotropic back-
ground, and the linearized P-waves reflection coefficient
are considered. The conditioning of the inverse problem
is analyzed, and fracture density is found to be the best
conditioned parameter. Using diffraction tomography
under the Born approximation, an inversion procedure is
proposed in the transformed k–ω domain to detect frac-
ture density variations within the reservoir. Seismic data
are rearranged in pairs of incident and reflected plane
waves, enlightening only one spectral component of the
fracture density field at a time. Only the observable spec-
tral components are inverted. Moreover, working in the
transformed domain, picking reflection amplitudes is not
required. An example of the inversion applied to a syn-
thetic data set is presented. The limitation of source and
receiver numbers and the finite bandwidth of the wavelet
produce a loss of resolution, but the overall fracture den-
sity variations are recovered correctly.

INTRODUCTION

A large portion of the world’s proven oil and gas reserves
have been found in reservoir rocks that are naturally fractured.
This explains the recent increasing interest in new techniques
to improve the development and management of this kind of
reservoir.

The amount of recoverable hydrocarbons depends on a
number of factors, including interstitial porosity; pore size,
shape, and interconnectivity; saturation of oil, gas, and water
(Nelson, 1985); and fracture spacing, width, and orientation.
In particular, knowing the fracture density variation between
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zones within a reservoir can help determine the location of the
well.

It has become practical to use P-waves to detect fracture-
induced azimuthal anisotropy (MacBeth and Lynn, 2000). The
approach shifts the emphasis from the acquisition effort to
additional processing, relying upon the detection of ampli-
tude variations in individual prestack common reflection point
(CRP), common depth point (CDP), and common midpoint
(CMP) gathers. According to theory, the reflection coefficient
contains combinations of the fracture’s response to normal and
tangential stress when the waves are incident at oblique an-
gles. The additional dependency on the normal stress bound-
ary condition provides the means to improve fracture deter-
mination. Such fracture-related anisotropy can be observed as
a direction-dependent modification of the isotropic amplitude
versus offset (AVO) variation (Lynn et al. 1996; Grimm et al.,
1999; Lynn et al., 1999).

Using diffraction tomography theory and generalizing the
technique presented in Bernasconi et al. (1997), we have de-
veloped a linearized inversion methodology in the k–ω domain
that detects fracture density variation within a reservoir using
P-wave reflection data. We consider small perturbations of
a uniform isotropic background resulting from the presence
of fluid-filled fractures. Seismic data are rearranged in plane
waves: in the Born approximation each pair of incident and
reflected plane waves enlightens only one spectral component
of the fracture density field, which is inverted.

The method has the advantage of not requiring reflection
amplitude picks.

THE INVERSE PROBLEM CONDITIONING

We use the horizonal transverse isotropy (HTI) model as
an effective medium for vertically fractured rock, considered
as a solid with weak distribution of parallel penny-shaped
cracks (Hudson, 1980, 1981; Schoenberg, 1983; Schoenberg and
Sayers, 1995). Under the hypothesis of small contrast inter-
face (Zillmer et al., 1998, Rüger, 1997), we write the linearized
P-wave reflection coefficient from the boundary between
isotropic and vertically fractured media, with varying fracture
density and filling-material properties (Beretta et al., 2000), as
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(1)
where ε is the fracture density, θ is the incidence angle, and
φ is the azimuthal angle, and where ZP = ρV2

P and ZS= ρV2
S

describe the isotropic fracture-filling material. The variables
ε, ZP, and ZS define the parameter (model) space. The barred
quantities represent the mean values, and the1 quantities are
the variations with respect to the mean values. The ˜ terms are
the linearization coefficients.

We investigated the conditioning of the linearized inversion
of P-wave reflection amplitudes, for either AVO or AVA ac-
quisition, computing the singular value decomposition (SVD)
of the relation between reflection amplitude and parameters
[equation (1)], with respect of the maximum incident or az-
imuthal observation angle (Beretta et al., 2000). This allows
a simple interpretation of the information contained in the
reflections. We obtain orthogonal basis (eigenvectors) in the
parameter (model) space and in the data space, linked by a
diagonal matrix of eigenvalues. The eigenvalues represent the
reflected energy from perturbations along the eigenvectors in
the model space. If the orders of magnitude of the eigenval-
ues are very different from each other, then a high S/N ratio
is needed to estimate the signal in the low-energy directions.
The result (Beretta et al., 2000) is that the eigenvectors in the
model space are almost parallel to the axes of the parameter
space [1ε/ε̄, 1ZP/Z̄P, 1ZS/Z̄S] and that fracture density is
the best conditioned parameter (Figures 1 and 2).

FIG. 1. AVO acquisition perpendicular to the fracture strike
plane. Eigenvalues and eigenvectors of the linearized reflec-
tion coefficient in the model (parameter) space versus maxi-
mum incident angle. The minimum difference between the two
eigenvalues is about 20 dB. The first eigenvector is related to
fracture density ε.

REFLECTION COEFFICIENT FOR A SINUSOIDAL MEDIUM

We want to apply the diffraction tomography technique to
the linearized inversion of reflection amplitudes. It is therefore
mandatory to cast the problem in the transformed domain.

An inhomogeneous medium can be decomposed, by means
of the 3-D Fourier transform, in its spectral components. A
point of the medium spectrum, defined by the wavenumber
km= [kmx, kmy, kmz], represents in the spatial domain a 1-D si-
nusoidal perturbation with a given period and direction. In this
section, following De Nicolao et al. (1993), we derive the re-
flection coefficient for a sinusoidal component of a fractured
medium.

Equation (1) can be written for a single interface as

1Rq Pq P(θ, φ) = Rq Pq P(θ, φ)− R̃q Pq P(θ, φ)

= aq Pq P(θ, φ)m, (2)

where

aq Pq P(θ, φ) = [R̃εq Pq P(θ, φ), R̃
ZP
q Pq P(θ, φ), R̃

ZS
q Pq P(θ, φ)

]
(3)

and

m =
[
1ε

ε̄
,
1ZP

Z̄P
,
1ZS

Z̄S

]T

.

If the fracture parameters are continuous functions m(r) of
the position vector r= [x, y, z], the medium can be decomposed
in a sequence of interfaces with infinitesimal thickness dr. The

FIG. 2. AVA acquisition with 360◦ in azimuth (incident angle
35◦). Azimuth angle is measured from the x1 axis. Eigenval-
ues and eigenvectors of the linearized reflection coefficient in
the model (parameter) space versus maximum azimuth angle.
The minimum difference between the two eigenvalues is about
35 dB. The first eigenvector is related to fracture density ε.
Moreover, as it can be concluded also from the forward prob-
lem, azimuth ranges >90◦ do not add more information.
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linearized reflection coefficient for an infinitesimal thickness
can be written as

∂1Rq Pq P(θ, φ)
∂r

· dr = aq Pq P(θ, φ)
[
∂m(r)
∂r
· dr

]
(4)

and

m(r) =
[
1ε(r)
ε̄

,
1ZP(r)

Z̄P
,
1ZS(r)

Z̄S

]T

. (5)

By means of a Fourier transform, it is possible to decompose
the perturbations in sums of sinusoids

1ε̂(km)
ε̄

=
∫ +∞
−∞

1ε(r)
ε̄

ei km·r dr,

1ẐP(km)
Z̄P

=
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−∞
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]T

=
[
1ε̂(km)
ε̄

,
1ẐP(km)

Z̄P
,
1ẐS(km)

Z̄S

]T

. (7)

The ˆ indicates the Fourier transform. A single spectral com-
ponent, identified by the wavenumber km, corresponds to a
sinusoidal 1-D perturbation in the space domain:

mkm(r) = m̂(km)e−i km·r. (8)

From equations (4) and (8) it is possible to obtain the expres-
sion of the reflection coefficient for a sinusoidal perturbation
with wavenumber km:

∂1Rq Pq Pkm

∂r
(θ, φ, r) = aq Pq P(θ, φ)

∂mkm(r)
∂r

= −i aq Pq P(θ, φ)m̂(km)kme−i km·r.

(9)

By superposition, the response of an inhomogeneous medium
is the sum of the responses of the single sinusoidal media:

∂1Rq Pq P(θ, φ, r)
∂r

= aq Pq P(θ, φ)
∂m(r)
∂r

= −i
1

2π
aq Pq P(θ, φ)

∫ +∞
−∞

m̂(km)kme−i km·r dkm. (10)

The same approach can be applied to the other reflection co-
efficients, obtaining expressions similar to equation (10) with
different values of a(θ, φ).

LINEARIZED INVERSION IN THE TRANSFORMED DOMAIN

The hypothesis of small contrasts enables us to use the Born
approximation so that equation (9) is the starting point for a lin-

earized inversion in the transformed wavenumber–frequency
(k–ω) domain.

The input data are a set of common shot gathers. They form
a hypercube (data space, Figure 3) whose axes are

t ⇒ time,

rs = (xs, ys)⇒ source position,

rg = (xg, yg)⇒ geophone position.

The Fourier transform of the data maps the (t, rg, rs) domain
into the (ω, kg, ks) domain, where

ω ⇒ angular frequency,

ks = (ksx, ksy)⇒ source wavenumber,

kg = (kgx, kgy)⇒ geophone wavenumber.

The basic principle of diffraction tomography (Figure 4)
states that a reflected monochromatic plane wave (wavenum-
ber kr ) resulting from an incident plane wave (wavenumber
ki ) relates to only one Fourier component of the medium
(wavenumber km):

km = kr − ki . (11)

The relations between incident and reflected wavenumbers
in equation (11) and source and geophone wavenumbers are
(Wu and Toksöz, 1987)

ki = −ks,
(12)

kr = kg.

Substituting equation (12) in equation (11) reveals the mapping
from data space (ω, ks, kg) to model space (km, θ, φ):

kmx = kgx + ksx,

kmy = kgy+ ksy, (13)

kmz=
√(

ω

vi

)2

− k2
sx− k2

sy+
√(

ω

vr

)2

− k2
gx − k2

gy,

where vi and vr are the velocities of the incident and the re-
flected wave, respectively. It is important to notice that a point

FIG. 3. An example of a 3-D data set cube (data space) for a
2-D acquisition profile. In this case xs is the source position
along the profile, xg is the receiver (geophone) position, and t
is time. For 3-D acquisition the data cube has five dimensions.
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(ω, ks, kg) in the data space determines the angles θ and φ

of the incident plane wave (Figure 4). The ω-dependence is
transformed into incidence angle and azimuth dependence (see
Appendices A and B for a detailed calculation):

cos θ =

(
ω

vi

)2

−
(
ω

vr

)2

+ k2
mx+ k2

my+ k2
mz

2
(
ω

vi

)√
k2

mx+ k2
my+ k2

mz

,

(14)
φ = φn f − φki ,

where

φn f = arctan
[

n̄ f y

n̄ f x

]
,

(15)

φki = arctan
[

k̄iy

k̄i x

]
,

n f is the normal to the fracture strike plane, and (n̄ f x, n̄ f y) and
(k̄i x , k̄iy) are the components of n f and the incident wavenum-
ber vector ki in the 0 plane (Figures 4 and B-1). For each point
(kmx, kmy, kmz) in the transformed model domain (that is, for
each sinusoidal component in the model space domain), the
relation between recorded data and parameters with respect
to the angles θ and φ is

d (θ, φ) = Aq Pq P(θ, φ) m, (16)

where d (θ, φ) is the vector of the amplitude reflections, m de-
scribes the model perturbation, and the matrix Aq Pq P contains
the incident and azimuth angle dependence, the source spec-

FIG. 4. Diffraction tomography. Relation between medium
wavenumber km, incident wavenumber ki, and reflected
wavenumber kr. The gray density shading represents a 1-D si-
nusoidal perturbation with wavenumber km. The planeÄ con-
tains the incident vector ki, the medium vector km, and the
reflected vector kr. The plane 0 is perpendicular to km; θ is
the incident angle; and φ is the angle in plane 0 between the
projection of the vector ki and the normal to the fractures nf.
The coordinate system (x̄, ȳ, z̄) has the vertical z̄ axis in the
direction of km and the plane x̄ ȳ on the 0 plane.

trum, the propagation effects, and the directivity of source and
receivers.

In general Aq Pq P is not square and poorly conditioned. For
the inversion we use the SVD of the relation data parameters
Aq Pq P=UΛVT (Lines and Treitel, 1984). The matrix U defines
the eigenvectors in the data space. The symbol Λ is the diagonal
matrix of singular values; they represent the energy in the data
resulting from a unitary variation along the eigenvector axes in
the model space. The term V contains the eigenvectors in the
model space.

The model perturbation with wavenumber (kmx, kmy, kmz) can
be obtained by inverting equation (16):

m ∼= VΛ−1UT d. (17)

In practice we extract from the seismic data the reflections re-
sulting from pairs of incident and reflected plane waves. Each of
them relates to a single spectral component [equation (13)], in-
cident angle, and azimuth angle [equations (14) and (15)] of the
medium perturbation. At the end of this mapping procedure,
for each spectral component we invert the angle dependence
(elements of d) to get the medium perturbation parameters
m [equation (17)]. The final image is obtained by an inverse
Fourier transform to the spatial (x, y, z) domain.

Because of the finite range of sources, receivers, frequency
components, and observation angles, only part of the entire
model spectrum can be recovered. Nonobservable components
of the spectrum (null space) are not inverted.

The ill conditioning of the inverse problem (Beretta et al.,
2000) does not allow a good estimate of all fracture parameters.
Even small numerical errors can deteriorate the quality of the
inversion and can produce interference between the estimated
parameters. Similar effects result from the practical aspects
of data collection and processing. Truncations resulting from
the finite length of the cable and the finite number of sources
produce aliasing and distortions in the reconstructed model.
For these reasons, in the linearized approach we use q P–q P
reflections to estimate only fracture density.

RESULTS

We are testing our inversion on synthetic data sets. We are
able to invert small variations of density fractures on a uniform
background: this suggests the application of the procedure to
a limited area (target) where this condition can be verified.
Moreover, we assume to collect reflection seismograms on the
top of the target. In general this implies a datuming step prior
to inversion, to bring sources and receivers from the original
depth level to the target level (Wapenaar et al., 1989).

The model presented here is a homogeneous isotropic
medium (Vp= 5800 m/s, Vs= 3349 m/s, ρ= 2600 kg/m3) with
some fluid-filled fractured zones. The filling material is water.
Fracture density varies up to 10% (Figure 5a). The input data
consist of 128 shot gathers on a 2-D seismic line recorded on
top of the target zone. Source spacing is 30 m; receiver spacing
is 25 m. Each shot has a split-spread geometry perpendicular
to the fracture strike plane with 64 receivers.

The reference input model is a homogeneous vertically frac-
tured medium with correct background isotropic parameters,
fluid filling parameters, and constant density fracture of 10%.
The output of the inversion is the map of density fracture
variations.
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FIG. 5. Homogeneous isotropic medium (VP = 5800 m/s, VS=
3349 m/s, ρ= 2600 kg/m3) with water-filled vertical fractures.
Fracture density varies up to 10%. (a) Original model. (b) In-
verted model.

FIG. 6. Spectrum (absolute value) of the inverted model in
Figure 5. Because of the finite range of sources, receivers,
frequency components, and observation angles, only part of
the entire model spectrum can be recovered. Nonobservable
components (white background) are not inverted.

Figure 5 shows the original fracture density and the result
of inversion; the position and the relative amplitudes of the
anomalies are retrieved correctly.

Because the number of sources and receivers is finite, the
observation angles are limited and the inverted image appears
smoothed. In fact, Figure 6 shows the spectrum (absolute value)
of the inverted image, which is built up only with the well-
conditioned components. The angular limitation produces a
truncation of the spectrum.

CONCLUSIONS

We have studied the characterization of a vertically fluid-
filled fractured reservoir using the reflection amplitudes of

P-waves with varying incident and azimuthal angle. We have
shown that, in the linearized approach, the inverse problem is ill
conditioned and only fracture density can be obtained reliably.

We have derived the linearized reflection coefficient for a
1-D sinusoidal medium, and we have presented a procedure
to determine fracture density variations within the reservoir,
based on a diffraction tomography technique. Seismic data are
rearranged in plane waves; in the Born approximation each
pair of incident and reflected plane waves enlightens only one
spectral component of the fracture density field, which is in-
verted. Ambiguities are carefully avoided by inverting only
well-conditioned components. Working in the transformed do-
main, we can control the effects of the limited angular coverage.
Moreover, no picking of events is required.

We need reflection seismograms recorded on the top of the
target zone. In general this requires an amplitude-preserving
datuming step prior to the inversion.

The technique was tested successfully on a synthetic data set.
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APPENDIX A
CALCULATION OF cosθ

Figure A-1 shows the Ä plane of Figure 4; θ is the angle
between the incident wavenumber vector ki and the medium
wavenumber vector km. The scalar product of these two vectors
is

−ki · km = |ki ||km| cos θ. (A-1)

Substituting the expressions for ki and km into the equa-
tion (A-1), we obtain

cos θ = −kix (krx − kix )+ kiy(kry − kiy)+ kiz(krz − kiz)(
ω

vi

)√
k2

mx+ k2
my+ k2

mz

,

(A-2)

FIG. A-1. Plane Ä of Figure 4.

APPENDIX B
CALCULATION OF tanφ

The calculation of the azimuthal angle φ is a bit more com-
plicated than that of the incident angle θ . Figure B-1 shows
the plane 0, perpendicular to the model vector km, highlighted
in Figure 4, where φ is the angle in the plane 0 between the
projection of the vector ki and the normal to the fracture n f .
The components of ki and n f in the (x̄, ȳ, z̄) coordinate system
are

k̄i x = kixkmy− kiykmx√
k2

mx+ k2
my

,

k̄iy = kmz(kixkmx+ kiykmy)√
k2

mx+ k2
my

√
k2

mx+ k2
my+ k2

mz

(B-1)

−
√

k2
mx+ k2

my

√
(ω/vi )2 − k2

i x − k2
iy√

k2
mx+ k2

my+ k2
mz

,

k̄iz = kixkmx+ kiykmy√
k2

mx+ k2
my+ k2

mz

+
kmz

√
(ω/vi )2 − k2

i x − k2
iy√

k2
mx+ k2

my+ k2
mz

which simplifies to

cos θ =

(
ω

vi

)2

− kixkrx − kiykry − kizkrz(
ω

vi

)√
k2

mx+ k2
my+ k2

mz

. (A-3)

Using

−kixkrx = (krx − kix )2 − k2
r x − k2

i x

2
,

−kiykry =
(kry − kiy)2 − k2

r y − k2
iy

2
, (A-4)

−kizkrz = (krz − kiz)2 − k2
rz − k2

i z

2
with

k2
i x + k2

iy + k2
i z = (ω/vi )2,

(A-5)
k2

r x + k2
r y + k2

rz = (ω/vr )2,

and remembering that

k2
mx = (krx − kix )2,

k2
my = (kry − kiy)2, (A-6)

k2
mz= (krz − kiz)2,

after some algebra, equation (A-3) becomes

cos θ =

(
ω

vi

)2

−
(
ω

vr

)2

+ k2
mx+ k2

my+ k2
mz

2
(
ω

vi

)√
k2

mx+ k2
my+ k2

mz

, (A-7)

which gives the relation between θ , the medium wavenumber
components (kmx, kmy, kmz), and the angular frequency ω.

Equation (A-7) is invertible with respect to ω. For a given
medium wavenumber km, a variation in θ produces a variation
in ω.
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and

n̄ f x = n f xkmy− n f ykmx√
k2

mx+ k2
my

,

n̄ f y = kmz(n f xkmx+ n f ykmy)√
k2

mx+ k2
my

√
k2

mx+ k2
my+ k2

mz

FIG. B-1. Plane 0 of Figure 4.

−
n f z

√
k2

mx+ k2
my√

k2
mx+ k2

my+ k2
mz

, (B-2)

n̄ f z = n f xkmx+ n f ykmy√
k2

mx+ k2
my+ k2

mz

+ kmzn f z√
k2

mx+ k2
my+ k2

mz

.

From Figure B-1, the angles φki and φn f can be written as

φki = arctan
[

k̄iy

k̄i x

]
= arctan (B-3)

×
kmz(kmxkix + kmykiy)−

(
k2

mx+ k2
my

)√
(ω/vi)2− k2

i x − k2
iy

(kmykix − kmxkiy)
√

k2
mx+ k2

my+ k2
my


and

φn f = arctan
[

n̄ f y

n̄ f x

]

= arctan

[
kmz(kmxn f x + kmyn f y)− (k2

mx+ k2
my

)
n f z

(kmyn f x − kmxn f y)
√

k2
mx+ k2

my+ k2
my

]
.

(B-4)

The angle φ between vectors k̄i xy and n̄ f xy is the difference
between the angles φki and φn f :

φ = φn f − φki = arctan
[

n̄ f y

n̄ f x

]
− arctan

[
k̄iy

k̄i x

]
. (B-5)


