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S U M M A R Y
We present a new time-domain approach to the forward modelling of 3-D electromagnetic
induction in a heterogeneous conducting sphere excited by external and internal sources. This
method utilizes the standard decomposition of the magnetic field into toroidal and poloidal
parts, and spherical harmonic expansions of both the magnetic fields and the conductivity
heterogeneity. Resulting induction equations for the spherical harmonics are solved simul-
taneously in the time domain. Coupling terms between the electromagnetic fields and the
conductivity structure are re-expanded in spherical harmonics, so that the terms can be cal-
culated by matrix multiplications at each time step of the computation. A finite difference
approximation was used to solve the set of diffusion equations for the spherical harmonics up
to degree 20. This method can be efficiently used to analyse transient geomagnetic variations
to estimate the 3-D conductivity structure of the Earth.

In order to validate the present approach, we solved an induction problem in simple four-
layer mantle models, which consist of the surface layer (r = 6371 − 6351 km, σ = 1 S m−1), the
upper mantle (r = 6351 − 5971 km, σ = 0.01 S m−1), the transition layer (r = 5971 − 5671 km,
σ = 0.01–1 S m−1), and the lower mantle (r = 5671 − 3481 km, σ = 1 S m−1). Conductivity
heterogeneities are considered in the surface layer or the transition layer. For these models,
temporal variations of the Gauss coefficients in response to a sudden application of P0

1 -type
external field were calculated, and the impulse response function of each harmonic component
was obtained by differentiating the calculated variations with time. The response functions of
the primary induced components, g0

1, have large initial values and monotonously decay with
time. Changes of the decay rate reflect the radial distribution of the electrical conductivity. For
the surface heterogeneous models, temporal variations of other secondary induced components
have two peaks, where the first peak (observed at 0.001–0.01 hr after the application of the
external field) corresponds to the surface-layer induced phase and the second peak (1–50 hr
after the onset) reflects the deeper structure. The difference of the response functions between
the models with the conductivity jump at 400 km and 700 km depths becomes apparent after
about 1000 s elapsed. The differences can be used to estimate the electrical conductivity
structure around the transition layer. Considering that all the induced components except g0

1
are generated by the surface heterogeneous layer, the surface layer should be included even for
calculating the long period response functions for periods much longer than the characteristic
time of the surface layer. For the model in which the transition layer is heterogeneous, the
signal starts at about 1000 s after the onset and lasts more than about 100 hr. Fourier transform
of the time-domain response functions gives the response function in the frequency domain,
which can be compared with the previous solutions. Real and imaginary parts of the spatial
distribution of the induced magnetic field in frequency domain were calculated from the present
results, and compared with those calculated by the staggered-grid finite difference method.
This comparison indicates that the surface induced phases are equally detected in the both
approaches even for periods as long as 10 days.

Key words: 3-D structure, electrical conductivity, electromagnetic induction, electromagnetic
modelling, numerical techniques, spherical harmonics.
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1 I N T RO D U C T I O N

The time variations of the geomagnetic field are known to be the result of two primary processes: the secular variation of the main field of
internal origin and the variation of the external field, the sources of which are located in the ionosphere and magnetosphere. Observations
of these external and internal fields can be used to infer the electrical conductivity structure within the Earth. The electrical conductivity
of the materials comprising the Earth’s mantle is strongly dependent upon temperature, but it is also an indicator of state, composition and
the presence of volatiles. Since our present knowledge of the interior of the Earth comes primarily from the elastic properties obtained by
seismology, joint interpretation of seismic and EM data sets promises to constrain more strongly the geotherm, composition and state of the
Earth’s mantle. Global seismic tomography clearly shows the existence of lateral heterogeneities of the seismic wave velocity in the deep
interiors of the mantle, and hence, the observation of the conductivity heterogeneities can give powerful clue on the dynamic state of the
mantle.

The estimation of global geomagnetic response functions and their interpretation in terms of mantle electrical conductivity structure
have been available for 60 years (Lahiri & Price 1939; Banks 1969; Parker 1970; Achache et al. 1981; Constable 1993). All these studies
assume a radially symmetric conductivity structure of the Earth, and all indicate a rapid increase of the conductivity at depths between 400
and 1000 km. It became apparent with time, however, that the great variability of near-surface conductivities has a large influence on the
interpretation of the deep distribution of conductivity. Furthermore, analysis of 1-D conductivity sounding profiles calculated from magnetic
observatory data reveals significant regional variability in the deep mantle (Schultz 1990; Egbert & Booker 1992; Schultz et al. 1993; Olsen
1999). Recognizing the importance of the heterogeneous structure for the induction study, the forward modelling of electromagnetic induction
in a spherical earth with a 3-D electrical conductivity structure has recently been an active field of investigation. The thin sheet concept,
presented in Fainberg et al. (1990a,b) confines lateral variations of electrical conductivity to an inhomogeneous thin shell at the surface, which
can model the effect of a large conductivity contrast between oceans and continents. The integral equation approach evolved to a method
based on the modified iterative-dissipative methods to investigate the deep heterogeneous structure of the Earth (Kuvshinov et al. 1990,
1999). The perturbation expansion method (Zhang & Schultz 1992) models the lateral variations of mantle electrical conductivity as small
perturbations about a zero-order radial profile. Schultz & Pritchard (1998) used this approach as the base for generating the first 3-D inverse
model of the conductivity of the upper mantle and mid-mantle. Everett & Schultz (1996) devised a 3-D finite element forward solution using
spherical polyhedra. The implementation of 3-D staggered grid finite differences to modelling 3-D global-scale electromagnetic induction
was made by Uyeshima & Schultz (2000). Martinec (1999) has recently applied a spectral-finite element approach to the problem of external
electromagnetic induction in an arbitrary heterogeneous conducting sphere. Tarits & Grammatica (2000) calculated the induction field at the
satellite altitude due to the surface heterogeneity by using the spectral transform method described by Tarits (1994).

All the recent approaches for global earth modelling calculate the induction in frequency domain in order to investigate a steady-state
part of geomagnetic variation with a strictly periodic current system flowing in the Earth. On the other hand, in electromagnetic exploration,
the time domain approach is also used to estimate the crustal structure of the Earth. For the global study, the transient response is also useful
to detect the conductivity structure of deep interiors of the Earth. In order to treat the transient response of the induction due to the external
magnetic disturbances observed during large magnetic storms, and the sudden change of the geomagnetic field of core origin such as the
magnetic jerk, I deal with the induction problem in the time domain. In addition, spherical harmonic analysis is still the most powerful method
to decompose the globally observed magnetic field into the external and the internal part. Hence, the global geomagnetic field and its variations
are generally expressed in terms of the Gauss coefficients of the spherical harmonic expansion of the geomagnetic potential at the surface. The
purpose of the present paper is to present a time-domain approach to compute a 3-D electromagnetic response of the heterogeneous mantle to
the external disturbance and the disturbances of core origin. In order to use the Gauss coefficients and their variations for the induction study,
I employ the standard decomposition of the toroidal and poloidal field and the spherical harmonic expansions of the fields.

2 F O R M U L AT I O N

We solve the following Maxwell equations for the magnetic induction B and the electric field E simultaneously, allowing that the magnetic
diffusivity η = 1/σµ0 varies as a function of position (r, θ, ϕ) in spherical coordinates:

∂B

∂t
= −∇ × (η∇ × B)

∂E

∂t
= −η∇ × ∇ × E, (1)

where the relation between E and B is expressed as E = η∇ × B. Because the magnetic induction, B, is solenoidal (i.e. ∇ · B = 0), B can be
decomposed into two parts: toroidal and poloidal fields as

B = ∇ × (T r) + ∇ × ∇ × (Pr). (2)

Substituting this relation into eq. (1), and using the relations for the angular momentum operator, L2;

r · B = L2 P and r · ∇ × B = L2T where L2 = −
{

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

}
, (3)
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we obtain the following two equations for the poloidal and toroidal scalar functions (P and T) in spherical coordinates:

L2 ∂

∂t
[r P] = ηL2

(
∂2

∂r 2
− L2

r 2

)
[r P] −

{(
∂η

∂θ

)
∂

∂θ
+

(
1

sin θ

∂η

∂ϕ

)
1

sin θ

∂

∂ϕ

} (
∂2

∂r 2
− L2

r 2

)
[r P]

−
{(

∂η

∂θ

)
1

sin θ

∂

∂ϕ
−

(
1

sin θ

∂η

∂ϕ

)
∂

∂θ

}
∂

∂r
[rT ] , (4)

L2 ∂

∂t
[rT ] = ηL2

(
∂2

∂r 2
− L2

r 2

)
[rT ] +

(
∂η

∂r

)
L2 ∂

∂r
[rT ] + 1

r 2
(L2η)L2[rT ]

−
{(

∂η

∂θ

)
∂

∂θ
+

(
1

sin θ

∂η

∂ϕ

)
1

sin θ

∂

∂ϕ

} (
∂2

∂r 2
− 2L2

r 2

)
[rT ]

−
{(

∂

∂θ

∂η

∂r

)
∂

∂θ
+

(
1

sin θ

∂

∂ϕ

∂η

∂r

)
1

sin θ

∂

∂ϕ

}
∂

∂r
[rT ]

+
{(

∂η

∂θ

)
1

sin θ

∂

∂ϕ
−

(
1

sin θ

∂η

∂ϕ

)
∂

∂θ

}
∂

∂r

(
∂2

∂r 2
− L2

r 2

)
[r P]

+
{(

∂

∂θ

∂η

∂r

)
1

sin θ

∂

∂ϕ
−

(
1

sin θ

∂

∂ϕ

∂η

∂r

)
∂

∂θ

} (
∂2

∂r 2
− L2

r 2

)
[r P] . (5)

It can be seen from these equations that the two modes (toroidal and poloidal) are mutually coupled, and˙hence, the equations should be solved
simultaneously. To solve the equations, we expand the scalar fields P and T, and the magnetic diffusivity η by the spherical harmonics as

η(r, θ, ϕ) = η∗
[

1 +
∞∑

n=1

n∑
k=0

{
ηkc

n cos kϕ + ηks
n sin kϕ

}
Pk

n (θ )

]
= η∗[1 + η′(θ, ϕ)]

P(r, θ, ϕ) =
∞∑

l=1

n∑
m=0

{
pmc

l cos kϕ + pms
l sin kϕ

}
Pm

l (θ ) (6)

T (r, θ, ϕ) =
∞∑

l=1

n∑
m=0

{
tmc
l cos kϕ + tms

l sin kϕ
}

Pm
l (θ ),

where the radial dependence of the conductivity is not considered in the spherical shell. Substituting these equations into eqs (4) and (5),
multiplying the resulting equations by Pk

n (θ )cos kϕ

sin kϕ , and integrating over the spherical surface, we get a set of diffusion equations for each
harmonic component of the poloidal and toroidal field:

1

η∗
∂

∂t

[
r pmc·s

l

] −
(

∂2

∂r 2
− l(l + 1)

r 2

) [
r pmc·s

l

] = 1

l(l + 1)
Fmc·s

l

1

η∗
∂

∂t

[
r tmc·s

l

] −
(

∂2

∂r 2
− l(l + 1)

r 2

) [
r tmc·s

l

] = 1

l(l + 1)
Gmc·s

l , (7)

where pmc·s
l denotes pmc

l or pms
l , etc.

These equations are the diffusion equations with the source terms in the right hand side, and can be solved as an initial value problem,
if the right-hand side of eq. (7) can be explicitly expressed with the coefficients; ηkc·s

n , pmc·s
l , and tmc·s

l . The source terms are expressed as

Fmc·s
l =

∫



η′L2

(
∂2

∂r 2
− L2

r 2

)
[r P] −

{(
∂η′

∂θ

)
∂

∂θ
+

(
1

sin θ

∂η′

∂ϕ

)
1

sin θ

∂

∂ϕ

}

×
(

∂2

∂r 2
− L2

r 2

)
[r P] −

{(
∂η′

∂θ

)
1

sin θ

∂

∂ϕ
−

(
1

sin θ

∂η′

∂ϕ

)
∂

∂θ

}
∂

∂r
[rT ]


Pm

l (θ )cos mϕ

sin mϕ d�, (8)

Gmc·s
l =

∫



η′L2

(
∂2

∂r 2
− L2

r 2

)
[rT ] + 1

r 2

(
L2η′) L2[rT ]

−
{(

∂η′

∂θ

)
∂

∂θ
+

(
1

sin θ

∂η′

∂ϕ

)
1

sin θ

∂

∂ϕ

} (
∂2

∂r 2
− 2L2

r 2

)
[rT ]

+
{(

∂η′

∂θ

)
1

sin θ

∂

∂ϕ
−

(
1

sin θ

∂η′

∂ϕ

)
∂

∂θ

}
∂

∂r

(
∂2

∂r 2
− L2

r 2

)
[r P]




Pm
l (θ )cos mϕ

sin mϕ d�. (9)

For a complex spherical surface harmonics Y m
l (θ, ϕ) = Pm

l (θ )eimϕ(−l ≤ m ≤ l), the integral,

Am1,m2,m3
l1,l2,l3

=
∫

Y m1
l1

Y m2
l2

Y m3
l3

d�, (10)

C© 2002 RAS, GJI, 150, 753–769



756 Y. Hamano

has been known as Adams integral in the geomagnetic community or Gaunt integral in atomic physics (James 1973). The Elsasser integral

Em1,m2,m3
l1,l2,l3

=
∫ (

∂Y m1
l1

∂θ

∂Y m2
l2

sin θ∂ϕ
− ∂Y m1

l1

sin θ∂ϕ

∂Y m2
l2

∂θ

)
Y m3

l3
d�, (11)

is also used in the geomagnetic dynamo theory, which can be reduced to a linear combination of the Adams-Gaunt integrals. The Adams-Gaunt
integral was evaluated and tabulated as Wigner (or Clebsch–Gordan) coefficients and widely used in quantum mechanics. Although the present
integrals in eqs (8) and (9) are also expressed by the Wigner/Clebsch–Gordan coefficients and obtain the values from the extensive tables of the
coefficients, we try to derive the explicit expression of the integrals with the coefficients of the spherical harmonic expansions in order to solve
the equations by numerical computation. For that purpose, we need to expand the integrands in eqs (8) and (9) with the linear combination of
spherical harmonics.

By substituting the coupling terms in the integrands, i.e., η′ P , ( ∂η′
∂θ

)( ∂ P
∂θ

), ( 1
sin θ

∂η′
∂ϕ

)( 1
sin θ

∂ P
∂ϕ

), ( ∂η′
∂θ

)( 1
sin θ

∂ P
∂ϕ

), ( 1
sin θ

∂η′
∂ϕ

∂ P
∂θ

) and similar expres-
sions for T, with the expressions in eq. (6), the coupling terms can be expressed with the linear combinations of

ηkc·s
n pmc·s

l Pk
n Pm

l

cos(m + k)ϕ
sin(m + k)ϕ

, ηkc·s
n pmc·s

l Pk
n Pm

l

cos(|m − k|)ϕ
sin(|m − k|)ϕ,

ηkc·s
n pmc·s

l

d Pk
n

dθ

d Pm
l

dθ

cos(m + k)ϕ
sin(m + k)ϕ

, ηkc·s
n pmc·s

l

d Pk
n

dθ

d Pm
l

dθ

cos(|m − k|)ϕ
sin(|m − k|)ϕ,

ηkc·s
n pmc·s

l

k

sin θ
Pk

n

m

sin θ
Pm

l

cos(m + k)ϕ
sin(m + k)ϕ

, ηkc·s
n pmc·s

l

k

sin θ
Pk

n

m

sin θ
Pm

l

cos(|m − k|)ϕ
sin(|m − k|)ϕ,

ηkc,s
n pmc,s

l

d Pk
n

dθ

m

sin θ
Pm

l

cos(m + k)ϕ
sin(m + k)ϕ

, ηkc,s
n pmc,s

l

d Pk
n

dθ

m

sin θ
Pm

l

cos(|m − k|)ϕ
sin(|m − k|)ϕ,

ηkc,s
n pmc,s

l

k

sin θ
Pk

n

d Pm
l

dθ

cos(m + k)ϕ
sin(m + k)ϕ

, ηkc,s
n pmc,s

l

k

sin θ
Pk

n

d Pm
l

dθ

cos(|m − k|)ϕ
sin(|m − k|)ϕ,

respectively. Since the derivatives of the spherical harmonics with respect to θ and ϕ are expressed with the sum of the single spherical
harmonics by using the recursive relations of the Legendre functions (see e.g. Abramowitz & Stegun 1965), the coupling terms can all be
expressed with the linear combinations of

Pk
n Pm

l

cos(m + k)ϕ
sin(m + k)ϕ

and Pk
n Pm

l

cos(|m − k|)ϕ
sin(|m − k|)ϕ .

The above two terms can be decomposed into the linear combinations of the single spherical harmonics by using the relations of

Pk
n Pm

l =
sn+∑
s=0

(
Qn,k

l,m

)
s
Pk+m

n+l−2s, sn+ =
[

n + l − (k + m)

2

]
(12)

and

Pk
n Pm

l =
sn−∑
s=0

(
Rn,k

l,m

)
s
P | k−m|

n+l−2s, sn− =
[

n + l − | k − m|
2

]
, (13)

respectively, where the coefficients (Qn,k
l,m)s and (Rn,k

l,m)s are shown in Appendix A and B. Hence, the coupling terms in the integrands are all
expressed with the sum of the sets of spherical harmonics, and the integration of these terms in eqs (8) and (9) can be expressed with the
expansion coefficients defined in eq. (6).

Finally, Fmc·s
l and Gmc·s

l in eqs (8) and (9) are simplified as

Fmc·s
l =

∑
n,kc·s

(�0)l,mc·s
n,kc·s n (n + 1)

(
∂2

∂r 2
− n (n + 1)

r 2

) [
r pkc·s

n

] −
∑
n,kc·s

(�+)l,mc·s
n,kc·s

(
∂2

∂r 2
− n (n + 1)

r 2

) [
r pkc·s

n

] −
∑
n,kc·s

(�−)l,mc·s
n,kc·s

∂

∂r

[
r tkc·s

n

]
(14)

and

Gmc·s
l =

∑
n,kc·s

(�0)l,kc·s
n,kc·sn (n + 1)

(
∂2

∂r 2
− n (n + 1)

r 2

) [
r tkc·s

n

] −
∑
n,kc·s

(�+)l,kc·s
n,kc·s

(
∂2

∂r 2
− 2n (n + 1)

r 2

) [
r tkc·s

n

]

−
∑
n,kc·s

l (l + 1) (�0)l,kc·s
n,kc·s

n (n + 1)

r 2

[
r tkc·s

n

] −
∑
n,kc·s

(�−)l,kc·s
n,kc·s

∂

∂r

(
∂2

∂r 2
− n (n + 1)

r 2

) [
r pkc·s

n

]
(15)

by using the three operators, �o, �+, �−, defined as
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[η′ P]mc·s
l = �o P =

∑
n,kc·s

(�o)l,mc·s
n,kc·s pkc·s

n ,

[{(
∂η′

∂θ

)
∂

∂θ
+

(
1

sin θ

∂η′

∂ϕ

)
1

sin θ

∂

∂ϕ

}
P

]mc,s

l

= �+ P =
∑
n,kc·s

(�+)l,mc·s
n,kc·s pkc·s

n , (16)

[{(
∂η′

∂θ

)
1

sin θ

∂

∂ϕ
−

(
1

sin θ

∂η′

∂ϕ

)
∂

∂θ

}
P

]mc,s

l

= �− P =
∑
n,kc·s

(�−)l,mc·s
n,kc·s pkc·s

n ,

where [·]mc,s
l denotes the integral

∫ ·Pm
l (θ )cos mϕ

sin mϕ d�. Since the three operators are only functions of the structure, i.e. the function of the lateral
heterogeneity of the magnetic diffusivity, and do not depend on the magnetic field, the operators can be calculated before the time integration
of the field using eq. (7).

3 N U M E R I C A L C A L C U L AT I O N

3.1 A simple earth model with a surface heterogeneous layer

In order to verify the present time-domain approach to the induction in a 3-D Earth, we calculate the induction of simple 4-layer mantle
models of the Earth. The models are shown in Fig. 1. The four layers consist of the surface layer (r = 6371 − 6351 km), the upper mantle
(r = 6351 − 5971 km), the transition layer (r = 5971 − 5671 km), and the lower mantle (r = 5671 − 3481 km). Model H is a homogeneous
mantle model with σ = 1 S m−1. In model400 and model700, the surface thin layer with a thickness of 20 km is considered as a simplification
of the surface distribution of oceans and continents. The electrical resistivity in this layer is laterally heterogeneous and the distribution of the
magnetic diffusivity is given by

η(θ, ϕ) = η∗(1 + wP1
1 (θ ) cos ϕ

)
, (17)

where η∗ = 1/σ (=1 S m−1) µ0 and w = 0.9. The underlying layer is laterally homogeneous with a conductivity of 0.01 S m−1. It is now
generally agreed that the electrical conductivity rises from about 0.01–1 S m−1 between the upper mantle and a depth between 400–1000 km
(Petersons & Constable 1996). Hence, two models with the depth of the bottom of the second layer of 400 km (Model400) and 700 km

Figure 1. A sketch of the four-layer mantle models. The hatched layer indicates the conductivity heterogeneity. Model H: homogeneous mantle model,
Model400 and Model700: The surface layer has the electrical conductivity heterogeneity given by eq. (17), and the underlying resistive layer extend to
r = 5971 km and 5671 km, respectively. Model M: The transition layer (r = 5971 − 5671 km) has the conductivity heterogeneity.
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(Model700) are considered in the present study. The conductivity of the lower mantle is assumed to be 1 S m−1. In Model M, the conductivity
heterogeneity (σ = 0.1 S m−1 and w = 0.9) is assumed in the transition layer.

For these models, we calculated the temporal variation of the electromagnetic fields in response to a sudden application of the external
field of

q0
1 (θ, ϕ) = P0

1 (θ ), (18)

at t = 0. Time derivative of the field induced by this abrupt change of the external field gives the impulse response function of the induced
field in time domain.

3.2 Numerical method

For the numerical calculation, we approximate the time and the space derivatives with finite differences. Then, if we denote

un
j = r pmc·s

l (tn, r j ) or r tmc·s
l (tn, r j ), (19)

and

hn
j = Fmc·s

l (tn, r j ) or Gmc·s
l (tn, r j ), (20)

finite difference approximation of eq. (7) becomes

−D
�t

2�x2
un+1

j−1 +
(

1 + D
�t

�x2
+ D

l(l + 1)�t

2(1 + ( j − 1)�x)2

)
un+1

j − D
�t

2�x2
un+1

j+1

= D
�t

2�x2
un

j−1 +
(

1 − D
�t

�x2
− D

l(l + 1)�t

2(1 + ( j − 1)�x)2

)
un

j + D
�t

2�x2
un

j+1 + D
�t

l(l + 1)
hn

j ,

(21)

where we use the Crank–Nicholson scheme (see e.g. Press et al. 1992), which uses the average of the forward and backward schemes for
representing the time derivative, to approximate the diffusion term of the equation for the stability of the computation, and �t, �x , and D
denote the time step, the grid spacing and the magnetic diffusivity in non-dimensional form, respectively. We used the radius of the Earth,
a = 6371 km as the unit of length, and the diffusion time, τ = σµ0a2(σ = 1 S m−1), as the unit of time. In the present model, mesh divisions
are 6, 9, 7, and 19 for the top, the second, the third and the bottom layers respectively, and the grid points are numbered as js = 1 for the surface,
jb1 = 7 for the first boundary, jb2 = 16 for the second boundary, Jb3 = 22, and jbtm = 41 for the bottom boundary. For this mesh division and
the truncation level of harmonic degree 20, it took about an hour for 102 400 steps of the calculation with 667 MHz Alpha 21 264 CPU.

Boundary conditions are expressed as

〈
pmc·s

l

〉 = 〈
tmc·s
l

〉 =
〈

dpmc·s
l

dr

〉
=

〈[
η

dT

dr

]mc·s

l

〉
= 0, (22)

where 〈· · ·〉 denotes the jump across the boundary. For u = r pmc·s
l , finite difference approximation of the boundary condition at the internal

boundary j = jb is given by

− �x+
�x− + �x+

un+1
jb−1 + un+1

jb − �x−
�x− + �x+

un+1
jb+1 = 0, (23)

where �x− and �x+ denote the grid spacing of the upper and the lower layers, respectively. For u = r tmc·s
l , the boundary condition can be

expressed as

− D−�x+
D+�x− + D−�x+

un+1
jb−1 + un+1

jb − D+�x−
D+�x− + D−�x+

un+1
jb+1 = 0, (24)

if the upper and the lower layers are homogeneous, whereas, if the upper boundary is heterogeneous, the condition becomes as

− D−�x+
D+�x− + D−�x+

un+1
jb−1 + un+1

jb − D+�x−
D+�x− + D−�x+

un+1
jb+1 = − D−�x+

D+�x− + D−�x+
η′(un

jb − un
jb−1

)
, (25)

where D− and D+ denote the magnetic diffusivity of the upper and the lower layers, respectively. A similar expression can be obtained if the
lower layer is heterogeneous.

The surface ( j = 1) boundary conditions for the poloidal fields are given by(
l + r

�x1

)
un+1

1 − r

�x1
un+1

2 = −2l + 1

l + 1
vn+1

1 , (26)

where v = rqm
l denotes the coefficients of the external field at the surface. For the toroidal fields, all the components are set to zero at the

surface boundary. At the bottom boundary, all the poloidal and toroidal components are set to zero assuming that the conductivity of the core
is much higher than the overlying mantle.
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In the present study, time variations of the spherical harmonics up to degree 20 were calculated. The time variation of the internal
component of the field was calculated with a time step of about 5 s and until about 730 hr. Above the Earth’s surface, the magnetic induction
B can be expressed by a gradient of the magnetic potential V as B = −∇V , where V is expanded into spherical harmonics as

V = a
∞∑

l=1

l∑
m=0

{[
gm

l cos mϕ + hm
l sin mϕ

] (
a

r

)l+1

+ [
qm

l cos mϕ + sm
l sin mϕ

] (
r

a

)l
}

Pm
l (θ ), (27)

where (gm
l , hm

l ) and (qm
l , sm

l ) are the internal and the external Gauss coefficients, respectively.
From the surface boundary condition, the magnetic potential V is related to the poloidal scalar function P as V = − ∂

∂r (r P). Hence, the
internal Gauss coefficients can be calculated from the applied external field and the surface variation of pmc·s

l as

gm
l = l

(
pmc

l

)
1
+ l

l + 1

(
qmc

l

)
,

hm
l = l

(
pms

l

)
1
+ l

l + 1

(
qms

l

)
,

(28)

at the surface. The calculated response of the induced field was differentiated with time to obtain the impulse response of the present earth
model.

3.3 Induction of a homogeneous sphere

In order to check the effectiveness of the finite difference approximation, we first calculated the impulse response of a homogeneous sphere
(Model H) and compared with the analytical solution (Chapman & Bartels 1940). In this model, 1 S m−1 is assigned for the mantle conductivity.
The calculated impulse response (C) is compared with the analytical solutions (T) in Fig. 2. Except the initial few steps, the calculated impulse
response well reproduces the analytical response. The difference is more closely shown in Fig. 2(b), where the relative per cent-deviation of
the response, (T-C)/C∗100, is shown as a function of log t. After 0.3 hr from the onset, the fit is extremely well with the root mean square
deviation of less than 0.1 per cent. The large deviation before 0.03 hr reflects the insufficiency of the finite difference approximation of the
differentiation in time because of the rapid variation of the response. The deviation of about 1 per cent observed at around 0.1 hr is caused
by the finite difference approximation of the boundary condition, eq. (15), because the radial gradient of the response function is large in the
initial stage around the surface layer. The deviation can be reduced by decreasing the grid spacing. In summary, the present code of the finite
difference equation well approximates the analytical solution for the time span longer than 0.03 hr.

3.4 Models with surface heterogeneities (Model400 and Model700)

Next, we calculated the impulse response functions of the two surface heterogeneous models (Model400 and Model700). In order to evaluate
the effect of the truncation of the harmonic degree, temporal variations of the mean square field strength were calculated by changing the
truncation level. For the Schmidt normalization, the mean square field strength of the magnetic field for the harmonic degree l is given by
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Figure 2. (a) Impulse response function of a homogeneous sphere corresponding to the P0
1 -type external source. Solid curve shows the analytical solution,

whereas the black dots indicate the results of the present calculation for MODEL H. (b) per cent-deviation between the analytical solution and the present result.
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Figure 3. Time variations of the mean square field strength at surface corresponding to the harmonic terms of degrees l = 1, 2, 4, 6, 8, 10, 12,14, 16, 18
and 20.

Rl = (l + 1)
l∑

m=0

([
gm

l

]2 + [
hm

l

]2
)
. (29)

The time variations of Rl are shown in Fig. 3 for the harmonic degrees of 1, 2, 4, . . . , 20. As shown in the figure, the power of the induced field
rapidly decreases with the increase of the harmonic degree. Besides the initial induction, the time variations take a peak, the time of which
delays with the increase of the harmonic degree. The peak values are plotted as a function of the harmonic degree in Fig. 4, where the results
of the calculations with the truncation levels of 8, 12, 16 and 20 are shown. As evident from Fig. 4, the total power of the response functions
can be approximated to about an accuracy of 10−6 if the coefficients up to degree 10 are used to calculate the total response functions. If the
truncation level of the harmonic degree is n, only the coefficients of degree n and n − 1 are severely affected by the truncation. Considering
these facts, we used the coefficients up to degree 10 to calculate the spatial distribution of the response functions, although the time integral
of the induction equations was made for the harmonics up to degree 20.

Now we return to the individual components of the response functions. The response functions for the dominant phases are shown in
Fig. 5 as a function of log t, where the responses for the two models (Model400 and Model700) are compared. In Fig. 5, the amplitude of
the response functions is normalized to that of the applied external field. Among the induced fields, g0

1 and g1
2 components are the primary

induced phases. Initial inductions of these components are large and exponentially decay with time. The changes of the decay rate in this
diagram correspond to the radial conductivity structure of the model. The difference of the two models (Model400 and Model700) can be
observed after 0.3 hr, suggesting the possibility to estimate the depth of the conductivity jump at around this timescale. Compared to these
primary induced phases, time variations of the secondary induced phases are quite different. Dominant components of these secondary phases
are odd-degree zonal fields of g0

3 , g0
5 , g0

7 . . . , and g2
3 , g1

4 , g3
4 , g2

5 , g1
6 , g3

6 , g5
6 , g2

7 , g4
7 . . . , etc. These components are generated by the interactions

between the primary and the secondary induced phases, and the heterogeneous conductivity structure in the first layer. These secondary phases
have double peaks at around 0.005–0.1 hr and around 1–20 hr (for harmonic degrees 2–7) after the onset. The induced current for the first peak
can be attributed to the current flow within the surface heterogeneous layer and the top of the upper mantle, because the response functions
for Model400 and Model700 are identical. The splitting of the first peak corresponds to the double-peak distribution of the conductivity in
the surface layer.
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Figure 4. Power spectrum of the mean square field strength at peak as a function of harmonic degree l. Results of the calculation for the truncation degrees
of 8, 12, 16 and 20 are shown.

On the other hand, the current system generating the second peak flows into the lower mantle and returns to the surface. This timescale
might be important to determine the depth of the conductivity jump from the secondary induced phases, as well as the slope change of the
primary induced phases. It is to be noted that the second peak in these secondary phases delays as a function of the harmonic degree. Since
the harmonic degree corresponds to the wavenumber of the field, this suggests that the short wavelength signals become relatively dominant
at the later stages of the responses. As will be shown later, these small scale disturbances are confined in the small region around the point
(180E, 0N), where the conductivity takes a maximum value.

3.5 Mid-mantle heterogeneous model (Model M)

Response functions are calculated for Model M, in which the transition layer has a conductivity heterogeneity. The response functions of g0
1

is very similar to the previous model shown in Fig. 5(a). Impulse responses of other harmonic components are shown in Fig. 6. The dominant
induced components in Model M are the same as in the previous models, although their temporal variations are different. The impulse
responses of these phases appear after 0.3 hr has elapsed from the onset. This delay corresponds to the depth of the top of the heterogeneous
layer. They take a peak value around the time between 3–10 hr. Except g1

2 , the temporal position of the peaks roughly coincides with the
second peaks observed in the respective components of Model400.

3.6 Space–time variation of the response function

From the Gauss coefficients, three components of the magnetic induction can be calculated as

Bz = −Br = ∂V

∂r
= −

∞∑
l=1

l∑
m=0

(
a

r

)l+2

(l + 1)
{
gm

l cos mϕ + hm
l sin mϕ

}
Pm

l (θ ),

Bx = −Bθ = ∂V

r∂θ
=

∞∑
l=1

l∑
m=0

(
a

r

)l+2 {
gm

l cos mϕ + hm
l sin mϕ

}d Pm
l (θ )

dθ
, (30)

By = Bϕ = − ∂V

r sin θ∂ϕ
=

∞∑
l=1

l∑
m=0

(
a

r

)l+2

m
{
gm

l sin mϕ − hm
l cos mϕ

}
Pm

l (θ ) ,

where x (northward), y (eastward), and z (downward) denote a local coordinate. Behaviour of the response function of the present simple
earth can be more clearly understood when we observe the spatial distribution of the induced field. In Fig. 7, maps of the vertical component,
Bz , of the induced field on the surface are shown, where the conductive ocean hemisphere spans from the latitude 90–270 E. In the figure,
the field due to g0

1 component is removed so that we can clearly observe the secondary induced phases. Therefore, the initially induced field
is dominated by the g1

2 component, and the amplitude is symmetric between the two hemispheres. These fields rapidly decrease with time,
but the decay rate is more gradual in the ocean hemisphere. Hence, after an hour, the induced field in the ocean hemisphere becomes larger
than that of the continental hemisphere. This tendency increases with time, and after 4 hr, the return current from the lower mantle causes
new anomalies at the high latitudes in the ocean hemisphere. These anomalies have opposite polarity with the initially induced field, and they
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Figure 5. Variations of the response functions of the dominant harmonic components for Model400 (solid line) and Model700 (dashed line) as a function of
log t. (a) g0

1 and g1
2 , (b) g0

3 and g2
3 , (c) g1

4 and g3
4 , (d) g2

5 and g4
5 , (e) g3

6 and g5
6 , and (f ) g4

7 and g6
7 .

grow with time and move to the lower latitude. After 12 hr, these anomalies with the opposite polarity occupy the ocean hemisphere and the
initially induced phase is confined within the small area around (180E, 0N), where the conductivity is maximum. After that, the size and the
amplitude of the anomaly decrease with time, but it remains even after 3 days as shown in Fig. 7, and can be detected even after 30 days,
although the amplitude of the anomaly is about an order of magnitude smaller than that after 3 days.

Since all the presently observed induced fields are originally induced in the surface heterogeneous layer with a thickness of only 20 km,
it is to be noted that this surface heterogeneous layer should be included in the model even if the purpose of the investigation is the middle

C© 2002 RAS, GJI, 150, 753–769



Time-domain electromagnetic induction 763

(a) (b)

(c) (d)

(e) (f)

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.01 0.1 1 10 100

R
es

po
ns

e 
fu

nc
tio

ns

Time,  hour

g
2

1

-0.00015

-0.0001

-5 10-5

0

5 10-5

0.0001

0.00015

0.0002

0.01 0.1 1 10 100

R
es

po
ns

e 
fu

nc
tio

ns

Time,  hour

g
3

0

g
3

2

-5 10-5

0

5 10-5

0.01 0.1 1 10 100

R
es

po
ns

e 
fu

nc
tio

ns

Time,  hour

g
4

3

g
4

1

-1.5 10-5

-1 10-5

-5 10-6

0

5 10-6

1 10-5

1.5 10-5

0.01 0.1 1 10 100

R
es

po
ns

e 
fu

nc
tio

ns

Time,  hour

g
5

2

g
5

4

-5 10-6

0

5 10-6

0.01 0.1 1 10 100

R
es

po
ns

e 
fu

nc
tio

ns

Time,  hour

g
6

5

g
6

3

-2 10-6

-1.5 10-6

-1 10-6

-5 10-7

0

5 10-7

1 10-6

1.5 10-6

2 10-6

0.01 0.1 1 10 100

R
es

po
ns

e 
fu

nc
tio

ns

Time,  hour

g
7

4

g
7

6

Figure 6. Variations of the response functions of the dominant harmonic components for Model M as a function of log t. (a) g1
2 , (b) g0

3 and g2
3 , (c) g1

4 and g3
4 ,

(d) g2
5 and g4

5 , (e) g3
6 and g5

6 , and (f ) g4
7 and g6

7 .

and the lower mantle. In addition, the difference of the response functions of the present two models (Model400 and Model700) suggests that
the surface induced field at a timescale of 1–100 hr is important to estimate the conductivity structure of the middle mantle.

3.7 Response functions in frequency domain

Fourier transforms of the time-domain responses of the Gauss coefficients give the response function in the frequency domain, which can be
used to compare the present results with the previous solutions. From the impulse response functions obtained in time domain (TDM solution),
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Figure 7. Temporal variations of the spatial distribution of Bz on the Earth’s surface. Scales are in the unit of the inducing external field and multiplied by
1000.
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Figure 8. Comparison of the response functions in frequency domain between the present time domain solution (TDM) and the staggered grid finite difference
solution (FDM). Real and imaginary parts of Bz and By at a period of 12 hr are shown. Scales are normalized to the amplitude of the external source field.
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Figure 9. Comparison of the latitudinal variations of the response functions in frequency domain between TDM (thick solid curves) and FDM (thick dashed
curves). Thin solid curves denote the fields composed from the Gauss coefficients up to harmonic degrees 2, 4, 6 and 8. Real and imaginary parts of Bz at 0E
and 180E, By at 45E and 135E are shown.
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real (in phase) and imaginary (out of phase) parts of the spatial distribution of the induced magnetic field (Bz and By) in frequency domain
were calculated by cosine and sine transforms, respectively, and compared with those calculated based on the staggered-grid finite difference
method (FDM solution, Uyeshima & Schultz 2000).

In Fig. 8, real and imaginary parts of the surface response functions of Bz (downward) and By (eastward) for the period of 12 hr are
compared. In the staggered-grid finite difference calculation, the radial structure of the model is the same as shown in Fig. 1 (Model400), and
the horizontal variations of the electric conductivity were given at the mesh points with a grid spacing of 10 degrees. It is worth noting that the
spatial distribution of Bz will show no longitudinal dependence, and By is zero all over the surface without the surface heterogeneous layer.
The features of Bz observed in the ocean hemisphere and By are all generated by the existence of the surface layer. Fig. 8 indicates that the
surface induced phases are equally observed in the results of the both approaches.

In order to compare the results of the both approaches in more detail, latitudinal variations of By and Bz at some longitudes are plotted in
Fig. 9. The response functions reasonably agree and the root mean square value of the difference normalized by the amplitude of the variation
along each meridian are 1.3 per cent (Bz real 0 E), 2.6 per cent (Bz real, 180 E), 2.9 per cent (Bz imag, 0 E), 3.5 per cent (Bz imag 0 E),
0.3 per cent (By real, 45 E), 2.8 per cent (By real, 135 E), 3.4 per cent (By imag, 45 E), and 3.0 per cent (By imag, 135 E), respectively. The
relatively large deviations are observed near (180 E, 0 N) and the poles. In Fig. 9, the geomagnetic field constructed from the Gauss coefficients
up to degrees 2, 3, 4, 5, 6, 8 obtained from the present calculation are also shown. The induced fields constructed by using the coefficients
higher than degree 6 are identical with each other. Hence, we conclude that the difference between the TDM and FDM approach is not due
to the truncation of spherical harmonics. The comparison in Fig. 9 indicates that the shorter wavelength components are more dominant
in the FDM solution compared to the present time domain analysis. In the present approach (TDM), the spatial variation of the electrical
conductivity is continuous, whereas the variation is discontinuous in the FDM calculation. Hence, the cause of the short-scale difference of
the two methods can be attributed to the discrete nature of the conductivity structure in the FDM method. On the other hand, long wavelength
deviation is probably due to the finite length of the Fourier transform of the TDM solutions.

It is to be noted that the appreciable amount of the higher degree components originally excited in the surface layer exist even at the
period of 12 hr in the conductive ocean hemisphere. The significant deviation of the response functions from the radially symmetric Earth
shown in Figs 7 and 8 indicates that the surface layer should be taken into consideration to investigate the heterogeneous structure in the
deeper part of the mantle.

4 C O N C L U S I O N S

We have developed a time domain method to compute the electromagnetic induction response of an arbitrary 3-D conducting sphere by
external sources. The method permits conductivity heterogeneities inside the Earth to calculate the transient response of the Earth to the
external geomagnetic disturbances. The present approach provides the time-domain response function for each spherical harmonic component
separately, which is convenient to solve the inverse problem for the global structure of the Earth, because the output from the spherical harmonic
analysis separating the internal and the external components of the geomagnetic field can be directly fed to the investigation of the conductivity
structure. The spherical analysis is also helpful to remove the short wavelength disturbances due to the surface distribution of oceans and
continents. Frequency domain response functions were calculated from the present time domain solutions and compared with the results of
the staggered grid finite difference methods by Uyeshima & Schultz (2000). The agreement is reasonably good, suggesting that the present
method is also efficient for calculating the frequency domain response functions.

A C K N O W L E D G M E N T S

We are indebted to M. Uyeshima for calculating the response functions of the present three-layer mantle model with the staggered grid finite
difference method.
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The associated Legendre functions with Schmidt normalization satisfy the following recursive relations:
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n are given by
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By using the above relation recursively, cosk θ Pm
n and sink θ Pm

n can be expressed as
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The associated Legendre functions are defined as
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where [ N−M
2 ] denotes the maximum integer which does not exceed N−M

2 ; εm = 2 for m �= 0 and ε0 = 1. Hence, the product of two Legendre
functions can be calculated from the above relations of (A3) and (A5) as
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By changing the order of summation, eq. (A6) becomes as
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where (QN ,M
n,m )s can be calculated from the relation:
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From the definition of the associated Legendre functions shown in eq. (A5), Pm+M
n can be expressed as
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By using the following relation,
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(B1) can be expressed as
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n can be expressed with the linear combinations of P |m−M |
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Then, substituting the relation to eq. (A7), we get
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and (Rn,k
l,m)s can be expressed by the linear combination of (Qn,k

l,m)r as

(
Rn,k

l,m

)
s
=

s∑
r=0

(
Qn,k

l,m

)
r
w

n+l−2r,|m−k|
s−r , (B7)

where the coefficients w
n+l−2r,|m−k|
s−r is defined in (B5).
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