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Mineral and whole-rock chemical data for peridotite xenoliths in
basaltic lavas on Spitsbergen are examined lo reassess mechanisms
of melt—fluid interaction with peridotites and their relative role versus
mell composition in mantle metasomatism. The enrichment patterns
m the xenoliths on primitive mantle-normalized diagrams range
Srom Th—La—Ce “inflections’ in weakly metasomatized samples
(normally without amphibole) to a continuous increase in abundances
JSrom Ho to Ce typical for amphibole-bearing xenoliths. Numerical
modelling of interaction between depleted peridotites and enriched
melts indicates that these patterns do not result from simple mixing
of the two end-members but can be explained by chromatographic
Jractionation during reactive porous melt flow, which produces a
variely of enrichment patterns in a single event. Many metasomatized
xenoliths have negative high field strength element and Pb anomalies
and Sr spikes relative to rare earth elements of simular compatibility,
and highly fractionated Nb/la and Jr/Hf. Although amphibole
precipitation can produce No—Ta anomalies, some of these_features
cannot be attributed to percolation-related fractionation alone and
have to be a signature of the initial melt (possibly carbonate rich).
In general, chemical and mineralogical fingerprints of a metasomatic
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medium are strongest near is source (e.g. a vein) whereas element
patterns farther in the metasomatic ‘column’ are increasingly con-
trolled by fractionation mechanisms.

KEY WORDS: Sputshergen; lithospheric mantle; metasomatism; trace ele-
ments; theoretical modelling

INTRODUCTION

Peridotite xenoliths brought to the surface by alkali
basaltic magmas on the island of Spitsbergen represent
continental upper mantle located at present in the vicinity
of oceanic spreading centres in the North Atlantic and
Arctic basins. Much of the earlier work on these xenoliths
focused on carbonates and related interstitial phases
believed to have formed as a result of interaction between
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mantle rocks and carbonate-rich melts during en-
trainment and transportation to the surface by the host
magmas (Amundsen, 1987; Genshaft & Ilupin, 1987,
Tonov et al., 1993bh, 1996). The interstitial carbonates,
which are rare in mantle xenoliths elsewhere, attracted
particular attention as direct evidence for carbonate-
rich melts in the mantle. In particular, trace element
compositions of acid-leached interstitial material from
several xenoliths (Ionov e al., 1993b) and i situ analyses
of carbonates and associated interstitial clinopyroxene
and silicate glass (Ionov et al., 1996; Ionov, 1998) were
used to infer geochemical signatures of mantle meta-
somatism by carbonate-rich fluids.

Previous studies have also addressed the petrography
of the xenoliths and provided a limited amount of data
on the compositions of minerals apparently unrelated to
the late-stage interstitial material (Furnes et al., 1986;
Tonov et al., 1996). Analyses of coarse clinopyroxene
grains by proton probe (Ionov et al., 1996) indicated
metasomatic enrichments in Sr. Furthermore, laser-
ablation microprobe (LAM) inductively coupled plasma
mass spectrometry (ICP-MS) analyses in three samples
showed that abundances and elemental ratios in the
coarse clinopyroxene are distinct from those in clino-
pyroxene from interstitial carbonate- and glass-bearing
pockets (Ionov, 1998). Some xenoliths were found to
contain texturally equilibrated amphibole, apatite and
phlogopite (Ionov et al,, 19935, 1996). Altogether, the
earlier work has yielded unequivocal petrographic and
chemical evidence for modal and cryptic metasomatism
that took place before the formation of the silicate glass
and carbonate-bearing material. However, the data are
not sufficient to unravel the nature and evolution of the
mantle beneath Spitsbergen.

In this work we establish major and trace element
signatures of the peridotite mantle beneath Spitsbergen
through analysis of whole-rock xenoliths and of minerals
that largely control the incompatible trace element in-
ventory in the mantle. These data, together with theor-
etical modelling, are used to understand the sequence of
upper-mantle processes recorded in the xenolith suite.
The major goal of this study is to further constrain
mechanisms of mantle metasomatism and define the
nature and sources of the metasomatic components re-
sponsible for enrichment of the lithospheric mantle in
incompatible elements. We focus on characterizing meta-
somatic and other events that pre-date those related to
the late Cenozoic volcanic activity that brought the
xenoliths to the surface.

Petrographic and chemical studies of mantle rocks
worldwide have found a variety of mineralogical as-
sociations and trace element enrichment patterns that
appear to result from interaction of depleted peridotites
with magmas and fluids (e.g. Frey & Green, 1974; Men-
zies & Hawkesworth, 1987; McDonough & Frey, 1989;
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Bodinier et al,, 1990; Johnson et al., 1996; Mukasa &
Wilshire, 1997; Yaxley et al., 1998; Ionov et al., 1999a).
It has become apparent that the enrichment phenomena
generally referred to as mantle metasomatism may be
implemented through a large number of processes (e.g.
batch crystallization, melt fractionation in conduits and
chambers, melt or fluid percolation). These mechanisms
can be identified and constrained based on trace element
distributions in natural samples compared with results of
theoretical modelling.

Another widely debated topic of mantle geochemistry
is the provenance (sources) of melts and fluids responsible
for metasomatism in the continental mantle. It has been
suggested that the metasomatic media may originate
within the lithospheric mantle, convecting asthenospheric
mantle, deep-mantle plumes, or subducted oceanic litho-
sphere (Beccaluva et al., 2001; Churikova et al., 2001;
Downes, 2001 and references therein). Furthermore,
mantle metasomatism may involve a variety of media
(silicate and carbonate melts, water- and COy-rich fluids)
that are derived from different sources. Particular at-
tention has recently been given to metasomatism by
carbonate-rich melts, which seem to have a strong en-
richment potential and impose specific trace element
signatures (e.g. Green & Wallace, 1988; Yaxley e al.,
1991; Dautria et al., 1992; Hauri et al., 1993; Ionov et al.,
19934; Rudnick ez al., 1993; Downes, 2001).

Overall, mantle metasomatism has been attributed to
a variety of: (1) processes, (2) sources, and (3) melt-fluid
compositions. Which factors dominate in creating specific
metasomatic signatures in the continental lithospheric
mantle remains widely debated. For example, trace ele-
ment patterns earlier seen as evidence for metasomatism
by carbonate-rich melts have been recently interpreted
as source signatures or the result of fractionation processes
(Bedini et al., 1997; Blundy & Dalton, 2000; Laurora et
al., 2001). Addressing these complex issues necessitates
comprehensive geochemical investigation of a rep-
resentative sample series, which has been undertaken in
this study, and in the accompanying paper that addresses
Sr—-Nd-Pb isotope composition of the same sample series
(Ionov et al., 2002).

GEOLOGICAL SETTING

Spitsbergen is the largest island of the Svalbard ar-
chipelago off Norway, which is the subaerially exposed
corner of the Barents—Kara shelf between the North
Atlantic and Arctic (Eurasian) oceanic basins (Iig. la).
Tectonic reconstructions indicate that Svalbard was con-
tiguous with Greenland until the northward progression
of the North Atlantic opening produced Late Cretaceous—
Neogene separation of Eurasia and North America
(Blythe & Kleinspehn, 1998). At present, Spitsbergen is
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Fig. 1. Asketchmap of the North Atlantic (a) and Svalbard Archipelago
(b) showing major tectonic features and location of the recent volcanoes
sampled for xenoliths and basalts [modified from Amundsen et al.
(1987)].

located at a distance <200 km from the North Atlantic
mid-ocean ridge (MOR) (Fig. 1b).

The xenoliths for this study have been collected in
hawaiitic to nepheline basanitic lavas at three Quaternary
volcanic centres on the western side of Woodfjorden in
NW Spitsbergen (Fig. 1b): Sverre, Halvdan and Sigurd.
Tholeiitic lavas, 9-12 Myr old, from nearby areas do
not contain mantle xenoliths. Relevant data on geology,
tectonic setting and geophysical results for this region
have been summarized by Amundsen et al. (1987) and
Yevdokimov (2000). Additional information on xenoliths
from these localities has been provided by Furnes et al.
(1986), Genshaft et al. (1992) and Ionov et al. (1996).

SAMPLE PREPARATION AND
ANALYTICAL PROCEDURES

Samples for this study were selected from a larger col-
lection (Yevdokimov, 2000) to represent major peridotite
rock types and modal variations. We have also tried to
select fresh xenoliths that are large enough to prepare
representative whole-rock samples and provide material
for mineral separation. The samples are listed in Table
1, along with a summary of the petrography, modal
compositions, geothermometry and other information on
the analyses performed.

The xenoliths were cut using a diamond saw; central
parts containing no host basalt or saw marks were crushed
in a bench-top jaw crusher, which was carefully cleaned
after each sample to avoid cross-contamination. Aliquots
of the crushed samples were ground in an agate mortar
to produce whole-rock powders. Another aliquot was
sieved, size-fractioned and magnetically separated to yield
sub-fractions enriched in clinopyroxene and amphibole.
Ultrapure mineral separates were handpicked from these
for isotope analyses (Ionov et al., 2002). Several hand-
picked grains (>0-2-0-3 mm) from each sample were
put on mounts for m siu analyses. The handpicked
clinopyroxene grains are larger than clinopyroxene from
interstitial carbonate- and glass-bearing material (Fig.
2a); the latter are therefore absent from the grain mounts.
Samples of host basalts were sawn off from lava attached
to the xenoliths. Basalt chips free of saw marks, weath-
ering products and xenocryst material were leached in 6
M HCI and ground to powder in an agate mortar.

Major elements in bulk rocks were determined by X-
ray fluorescence (XRF) spectrometry at Niigata Uni-
versity using low-dilution fused beads [see Takazawa et
al. (2000) for analytical details] and at Michigan State
University following standard protocols. Major-element
compositions of minerals were determined in thin sections
with a Cameca Camebax SX-50 electron microprobe
(EMP) at Macquarie University, Sydney [for analytical
details see Ionov et al. (1996)] and with Camebax SX-100
at Université Blaise Pascale, Clermont-Ferrand, France.
Modal compositions were calculated from whole-rock
and mineral major-element analyses using least-squares
regression.

Trace elements in whole-rock peridotites were de-
termined by solution ICP-MS at Niigata University;
basalts were analysed at CODES (Hobart). At both
laboratories, the instrument was an HP4500; calibration
was performed against BHVO-1 using values of Eggins
et al. (1997). As, Rh, In, Tm and Bi were used as internal
standards. Several peridotites (including duplicates and
acid-leached rocks) were analysed on a VG PlasmaQuad
instrument in Montpellier following the method of Tonov
et al. (1992). Reference samples BIR-1 and JP-1
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Fig. 2. Photomicrographs of Spitshbergen xenoliths in plane-polarized transmitted light. (a) Relict amphibole (Amph) in a vesicular aggregate of
silicate glass, fine-grained olivine (ol), clinopyroxene (Cpx) and Cr-spinel (Spl). An apatite (Ap) grain and the large size and lack of alteration in
primary clinopyroxene should be noted. Sample 21-6; field of view is 5 mm. (b) Amphibole mantling spinel in sample 318; field of view is 5
mm. (c) Mineralogical variation in composite xenolith 4-90-1. About a quarter of the field of view (4 cm) on the right is amphibole wehrlite,
which grades into coarse olivine matrix with clusters of amphibole and phlogopite (Phl). No spinel or orthopyroxene has been found in this
sample. (d) Small pockets of vesicular glass—cpx—ol-spl aggregates (dark) in sample 311-9 considered to be breakdown products of pre-existing

amphibole; field of view is 10 mm along the long axis.

(Makishima & Nakamura, 1997) were analysed as un-
knowns for quality control. Trace elements in minerals
were determined by LAM-ICP-MS in grain mounts and
polished rock sections of 200 um thickness in Sydney and
Pavia. The instrument at Macquarie University is a
Perkin—Elmer Sciex ELAN 5100 coupled with a UV
(266 nm) laser [see Norman et al. (1996) and Ionov (1998)
for details of operating conditions]. The instrument at
the CNR-IGG of Pavia is a double focusing sector field
analyser (‘Element’ Finnigan Mat) coupled with a Q-
switched Nd:YAG laser source (Quantel Brilliant), whose
fundamental emission in the near-IR region (1064 nm)
is converted to 266 nm by two harmonic generators
(Bottazzi et al., 1999). Helium was used as carrier gas
and mixed with Ar downstream of the ablation cell. A
BCR2-g reference sample was used as an external stand-
ard, with *Ca as an internal standard for clinopyroxene
and amphibole and *Si for phlogopite. Precision and
accuracy (<10% and <5%, respectively) were assessed
from repeated analyses of SRN NIST 612 reference
sample. Trace elements were also determined in profiles

across clinopyroxene and amphibole grains by SIMS
(secondary ion mass spectrometry) on Cameca 4f in-
struments in Pavia and Montpellier following procedures
reported by Bottazzi et al. (1994).

PETROGRAPHY AND MAJOR
ELEMENT COMPOSITIONS
Petrography

Most of the xenoliths from Halvdan and Sverre are
medium- to coarse-grained spinel lherzolites with low to
moderate modal clinopyroxene (Table 1). Samples 26a
and 318 have <3% clinopyroxene and are therefore
classified as harzburgites (Streckeisen, 1976). Many of
the Halvdan xenoliths contain amphibole (Table 1),
whose modal abundance ranges from rare individual
grains to >4%. Amphibole in samples 318 and 315-6
has textural position, grain size and shape similar to
those of neoblast olivine and pyroxenes. It does not

2223



JOURNAL OF PETROLOGY

appear to replace clinopyroxene or spinel because, in
particular, spinel abundances in amphibole-rich peri-
dotites are not noticeably lower than in amphibole-poor
samples (Fig. 2b). A single sample from Sigurd (4-90-1)
is a composite xenolith of amphibole wehrlite (spinel-
free) grading into a coarse-grained olivine-dominated
rock that contains clusters of amphibole and less abundant
phlogopite in an olivine matrix (Fig. 2¢). Two Halvdan
xenoliths (too small for mineral separation) contain apatite
in addition to amphibole (Fig. 2a). Fe—Ni sulphides are
common accessory minerals. The petrography of these
rocks has been presented in more detail by Ionov et al.
(1996).

Some of the peridotites contain interstitial veins and
pockets of fine-grained material made of silicate glass,
carbonate and second-generation clinopyroxene, olivine
and Cr-spinel, enclosing resorbed relict grains of minerals
of the host peridotite (Fig. 2a). This late-stage fine-grained
material is not considered in this work, and readers are
referred to Ionov (1998) for more information. Sample
311-9 has pockets of silicate glass with micro-phenocrysts
and vugs associated with spinel (Fig. 2d); no amphibole
1s present in the thin section available. The shapes and
textural position of the glassy pockets resemble those of
amphibole mantling spinel in some other Spitsbergen
xenoliths; similar pockets in samples 21-5 and 21-6 en-
close resorbed amphibole relics (Fig. 2a) (Ionov e al.,
1996). It is most likely that xenolith 311-9 originally
contained some amphibole, which broke down shortly
before or during the eruption of the host basalts, as
has also been inferred for certain types of glass-bearing
pockets in mantle xenoliths worldwide (e.g. Yaxley et al.,
1997). We therefore classify sample 311-9 as amphibole-
bearing to properly characterize its modal composition
before the late-stage melting events.

Whole-rock compositions

Whole-rock major element compositions are given in
Table 2 and illustrated in Fig. 3. The xenolith suite can
generally be characterized as moderately depleted in
basaltic components (Al, Ca, Na, T1). Most of the samples
plot in the middle of compositional fields of basalt-borne,
off-cratonic peridotite xenoliths and massif peridotites
worldwide on covariation plots vs MgO and Mg# [molar
Mg/(Mg + Fe) ratio] (Fig. 3; McDonough, 1990). Two
samples (including an amphibole-rich peridotite) have
high MgO and low CaO and ALO; similar to some
xenoliths from kimberlites; however, they differ from
typical cratonic mantle peridotites by higher FeO and
lower Mg# (Fig. 3a and b). A few samples plot above
the MgO-CaO trend on Fig. 3c, consistent with the
presence of <1% of Ca-rich mnterstitial carbonate in-
dicated by earlier studies (Ionov et al., 1996). Carbonate-
poor sample 63-90-30 shows a very high molar Ca/Al
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ratio of 1-65 compared with a range of 1-0-1-2 typical
for the spinel lherzolites (Table 2). The composition of
Fe-rich sample 39-86-1 is distinct from that of a duplicate
sample (39-86; Iigs 3a and b, and 4a) prepared from
the same xenolith (Ionov et al, 1996) indicating rock
heterogeneity.

Mineral compositions and temperature
estimates

Major element compositions of minerals are given in
Table 3. Values of Mg# in olivine (Mg#,) are tightly
correlated with Mg# in whole rocks (Iig. 4a) and show
a general positive trend with the Cr/(Cr + Al) ratios of
spinel (Cr#g,) (Fig. 4b). Most of the Spitsbergen samples
on the latter diagram plot between the tight field of fertile
(Mg# <0-90) xenoliths and highly depleted xenoliths
from East Greenland and abyssal peridotites, consistent
with partial melting relationships (Bernstein ef al., 1998;
Hellebrand et al., 2001). Sample 26a, which has the
highest Cr#,, plots with off-cratonic xenoliths that show
a wide range of Cr#g, at moderately high Mg#¢, (0-90—
0-915; Fig. 4b). In some xenoliths from Spitsbergen (and
Samoa), the Cr#g, values are higher, at a given Cr,O;
content in clinopyroxene, than in other mantle peridotites
(Fig. 4c).

The abundances of Ti, Al and Na in clinopyroxene
are shown in Fig. 4d—f vs Mg#,. Olivine hosts 72-90%
of Mg and Fe in the xenoliths and therefore its Mg#
established during partial melting is less affected by
posterior temperature-dependent sub-solidus  inter-
mineral Mg—Fe partitioning (Brey & Kohler, 1990) than
the Mg# of pyroxenes. The abundances of T1 and Al in
clinopyroxene in the majority of the samples are neg-
atively correlated with the Mg#,, (Fig. 4d and e). By
contrast, Na,O contents are nearly the same (1-0-1-5%)
and are higher than for abyssal peridotites and xenoliths
from Samoa at similar Mg#q, (Fig. 4f). Clinopyroxene
in 26a has much lower abundances of Na, Al and Ti
than in the rest of the xenoliths. Amphibole wehrlite 4-
90-1 plots away from spinel peridotites in Fig. 4 because
of its low Mg# and high TiO, in clinopyroxene.

The Mg# values of amphibole show a near-linear
correlation with the Mg#p. The Cr abundances in
amphibole are positively correlated with the Cr#g, (Fig.
5a and b). These and other results indicate that amphibole
in all of the samples is chemically equilibrated with the
other minerals. In comparison, the abundances of K
and Ti, minor elements strongly concentrated in the
amphibole, are poorly correlated (Fig. 5d). Most am-
phiboles have low K,O (<1%), particularly 315-6
(0-02%).

Equilibration temperature estimates calculated from
the electron microprobe data using methods of Wells
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Fig. 3. Major element variations in Spitsbergen whole-rock xenoliths. Oxide contents are in weight percent (normalized to 100% total). A,
amphibole-bearing peridotites; @, ‘anhydrous’ peridotites. Shown for comparison as grey symbols are xenoliths in basalts from Siberia and
Mongolia (small open circles), xenoliths in Yakutian kimberlites (crosses) and peridotites from Horoman and Ronda massifs (small rhombs).
Continuous grey line outlines typical compositions of xenoliths in basalts; dashed lines contour typical compositions of xenoliths in kimberlites
and massif peridotites. Shaded fields in (c) and (d) show chemical trends calculated for residues from fractional partial melting of fertile spinel
lherzolites (Niu, 1997). Data sources: Frey et al. (1985), Ionov (1986), Press e al. (1986), lonov e al. (19934, 19995), Boyd et al. (1997), Wiechert
et al. (1997), Takazawa et al. (2000) and unpublished data of D. A. Ionov (2000).

(1977) and Brey & Kohler (1990) are listed in Table 1.
The values for the Halvdan xenoliths seem to be generally
higher than those for the Sverre xenoliths, but this
difference may not be meaningful considering the small
number of samples analysed. Our 7 estimates
(840-1030°C) are much lower than the range of
940-1170°C reported for Spitsbergen spinel lherzolites
by Amundsen et al. (1987). We failed to obtain 7 values
>1080°C applying the same thermometer (Sachtleben &
Seck, 1981) to samples in this study or published data
(Furnes et al., 1986). Projection of our 7 estimates onto the
geotherm for northwestern Spitsbergen after Amundsen et
al. (1987) yields unrealistically low pressures of 7-11 kbar.
We conclude that the above geotherm overestimates
temperatures in the uppermost mantle, apparently be-
cause of the use of inappropriate thermometers. We

have roughly estimated equilibration pressures for the
lherzolites in this study (11-15 kbar) by projecting their
Ca-opx 7 range (890-1025°C) onto a P-T trend cal-
culated by applying the same thermometer (Brey &
Kohler, 1990) and relevant barometers to published
electron microprobe analyses of garnet-bearing py-
roxenites from Spitsbergen (Amundsen et al., 1987).
Minerals in most samples show no, or only limited,
chemical zoning. In several xenoliths, pyroxene rims have
lower Al and Cr than the cores. Harzburgite 26a has
particularly strong Al-Cr zoning and low Al in pyroxenes
(coupled with Cr-rich spinel, Fig. 4b) and a very high
Mg# in clinopyroxene relative to that in olivine and
orthopyroxene. Because Fe-Mg partitioning between ol-
wine and pyroxenes is temperature dependent, the high
Mg# in clinopyroxene may be related to the very low
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Fig. 4. Major element concentrations and ratios for minerals from Spitsbergen xenoliths (grain core compositions; symbols as in Fig. 3). Data
for Fe-rich sample 39-86 are from Ionov et al. (1996). Also shown are xenoliths in basalts from Siberia and Mongolia (see Fig. 3 for data sources),
Samoa (shaded field; Hauri & Hart, 1994) and East Greenland (open grey circles contoured by dashed line; Bernstein et al., 1998) and abyssal

peridotites (grey crosses; Hellebrand et al., 2001).

equilibration temperatures estimated for that sample
(740-800°C). The low 7 values indicate a relatively
shallow depth of origin, compared with the other xeno-
liths, possibly near the crust-mantle boundary. The cores

of the largest orthopyroxene grains from sample 26a
have exsolution lamellae and very high Ca abundances,
indicating incomplete equilibration after cooling from 7°

>1000°C.
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TRACE ELEMENT COMPOSITIONS
OF MINERALS

Average trace element abundances for the cores of clino-
pyroxene, amphibole and mica grains determined by
LAM-ICP-MS are given in Table 4. Differences between
individual analyses of the same mineral were normally
within analytical precision, except for highly variable Zr
(28-97 ppm), Nb (0-4-1-1 ppm), Hf (1-2-5 ppm) and Ta
(<0-02-0-18 ppm) in clinopyroxene 39-86-1, and Rb
(5:6-10-5 ppm) and Ba (760-1350 ppm) in amphibole
318-1. Sample 39-86-1 is obviously heterogeneous and
is not considered below. We also use LAM-ICP-MS
analyses of minerals in four xenoliths from Ionov (1998).
Several analyses of apatite were published earlier (Ionov
et al., 1996).

The abundances of moderately incompatible elements,
such as the heavy rare earth elements (HREE) and Y,
are lower in the Spitsbergen clinopyroxenes than for
fertile lherzolites worldwide and decrease systematically

with increasing Mg#, (Fig. 6a). In contrast, the abund-
ances of highly incompatible elements [Sr, light REE
(LREE), Nb, Th, U] do not define coherent trends with
Mg# variations (Fig. 6b and c¢) and for nearly all the
samples are much higher than those expected for residues
after partial melting (e.g. Johnson et al., 1990). Similar
observations were made earlier for many other suites of
mantle peridotites and attributed to metasomatic en-
richment in incompatible elements of residual rocks
formed by earlier partial melting events (e.g. Frey &
Green, 1974; Kempton, 1987; McDonough & Frey,
1989). Minerals from composite xenolith 4-90-1 and
harzburgite 26a commonly plot off trends defined by the
other xenoliths.

Two major types of clinopyroxene can be identified in
the Spitsbergen xenoliths on the basis of their in-
compatible element abundances and ratios (Fig. 6b-f).
Type-1 clinopyroxene is characterized by lower con-
centrations of the middle REE (MREE) and Sr (and
therefore lower MREE/HREE ratios, e.g. Nd/Yb)
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Fig. 6. Variation plots for abundances of Y, Nd and Sr in clinopyroxene vs Mg#p and for abundances and ratios of trace elements in
clinopyroxene (symbols as in Fig. 4). Crosses are compositions of clinopyroxene from unmetasomatized fertile lherzolites from the southwestern
USA and Mongolia (Stosch & Lugmair, 1986; Galer & O’Nions, 1989) and unpublished data of D. A. Ionov (1998). PM, primitive mantle
(Hofmann, 1988). Melt extraction trends are after Johnson et al. (1990). Plots (b)—(f) outline two major types of Spitsbergen clinopyroxenes based
on abundances and/or elemental ratios of REE, Sr, Ti and Pb.

relative to Type-2 clinopyroxene, and by high La/Ce
ratios (Iig. 6¢). We emphasize that the terms Type-1
and Type-2 are used here simply to distinguish between
the two most common trace element patterns in this
xenolith suite. They are not related to the classification
of Frey & Green (1974), which would identify all those
samples as Type I (based on their high Mg#), or with

types la (LREE depleted) a
Kempton (1987).
The differences between

nd 1b (LREE enriched) of

the two types are further

highlighted on primitive mantle (PM)-normalized trace
element distribution diagrams (Fig. 7). Type-1 clino-
pyroxenes have nearly flat HREE-MREE patterns (at

~4 times the PM level) follo
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Fig. 7. Primitive mantle-normalized (Hofmann, 1988) REE and multi-element abundance patterns of clinopyroxene: (a) and (b) Type-1; (c) and
(d) Type 2; (e) and (f) vein and other samples together with fields for Types 1 and 2. Cpx 4-90-9 (after Ionov, 1998) has higher HREE and
LREE contents than any other Type-2 sample. Dashed lines are clinopyroxene compositions in residues of 5-25% of partial melting of primitive
mantle, calculated using algorithm and partition coeflicients from Takazawa et al. (2000). It should be noted that the residual clinopyroxene
compositions were calculated for amphibole-free rocks. Comparisons between these model compositions and clinopyroxenes from amphibole-
bearing xenoliths should take into account REE partitioning from clinopyroxene into the metasomatic amphibole (Fig. 8c).

from Eu to Nd (Pr) and a steep La—Ce—(Pr) inflection
(Fig. 7a). Type-2 clinopyroxenes have somewhat lower
HREE concentrations (~3 x PM) followed by a con-
tinuous increase in normalized REE concentrations from
Ho to Ce (Fig. 7c). Both types of clinopyroxene have
strong negative Nb anomalies and small to moderate
positive Sr anomalies (Fig. 7b and d). Type-2 clino-
pyroxenes have similar or only slightly lower con-
centrations of Ti, Zr and Hf compared with Type-1
clinopyroxenes, but their high MREE levels result in

pronounced negative anomalies of those elements (Fig.
7d) and low Ti/Eu ratios. Both clinopyroxene types also
have a similar range of Pb concentrations, but high Nd
and Ce in the Type-2 bring about conspicuous negative
Pb anomalies (Fig. 7d). A Ce/Pb vs Ti/Eu diagram
clearly distinguishes between the two types (Fig. 6f).
Clinopyroxenes 26a and 63-90-30 cannot be grouped
with either Type-1 or Type-2: 26a has very low abund-
ances of all lithophile trace elements and a nearly flat
REE pattern; 63-90-30 has a convex-upwards REE
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probe in sample 315-6. The lack of significant core-rim zoning and consistency of the LAM-ICP-MS and the ion probe data should be

noted.

pattern (Fig. 7e and f). Vein clinopyroxene 4-90-1 has
an REE pattern resembling those of Type-2 clino-
pyroxenes but differs from them largely by its much
higher HFSE (high field strength element) abundances
and lower HREE (Fig. 7d-f).

Only one Type-1 sample contains amphibole (315-6),
whereas all Type-2 xenoliths are amphibole bearing.
However, it is the elemental abundances and ratios
rather than presence of ‘hydrous’ phases that define and
characterize the two geochemical xenolith types. The
REE pattern of Type-1 amphibole 315-6 is clearly distinct
from that of Type-2 amphiboles (Fig. 8a); it also has
unusually low abundances of K (Fig. 5d), Nb and Ta
(Fig. 8b). REE patterns in amphiboles are very similar
to those of coexisting clinopyroxenes; these two minerals
also have very similar abundances of Th, U, Zr and Hf
(Figs 8d and 9b). However, the amphiboles have much
higher concentrations of the alkalis, Ba, Nb, Ta and 1,
and moderately higher concentrations of Pb and Sr (Fig.
8c¢), consistent with amph—cpx relationships observed in
other mantle rocks (e.g. Ionov & Hofmann, 1995;

Kempton et al., 1999; Tiepolo et al., 2001). Vein am-
phibole has high Nb and Ta abundances, no negative
anomalies for Ti and Zr, and a negative Pb anomaly
(Fig. 8b). All the amphiboles are relatively low in Rb
and Cs, with Rb/Ba and Rb/Sr ratios below those of
the primitive mantle.

Ion probe analyses in profiles across mineral grains
found slightly lower Ti and V in rims compared with
cores of clinopyroxene (but not in the single amphibole
grain analysed). Other elements show no significant
differences in abundances between the cores and the
rims (Table 5, Fig. 8d). The ion probe and LAM-ICP-
MS data for the same samples agree well (Fig. 8d).

TRACE ELEMENT COMPOSITIONS
OF BULK ROCKS

Trace element abundances in whole-rock samples are
given in Table 6. Ionov ¢t al. (19935) and Ionov (1998)
found high incompatible trace element concentrations in
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interstitial material within some Spitsbergen xenoliths, in
particular high Sr, Ba and U in the carbonate. Because
this study is concerned with the composition of Spits-
bergen peridotites before the late-stage formation of the
interstitial materials, it 13 clearly important to establish
their relative role in the whole-rock budget. Table 6 and
Fig. 9a give results of a leaching experiment on sample
25, similar to those reported by Ionov et al. (1993b).
Xenolith 25 has abundant interstitial material and higher
modal carbonate than most other samples studied in this
work (Table 1) and represents a ‘worst case’ example of
their combined effects on whole-rock compositions. The
leachate (in 10% HNQO;) from the crushed rock has very
low abundances of REE, HFSE and Th but is strongly
enriched in Sr, Pb, U, Ba and Rb. It is obvious that the
spikes for those elements in the whole-rock pattern are
mainly related to the interstitial material (Fig. 9a). On
the other hand, the residue after leaching has small but
conspicuous positive anomalies for the same elements
indicating qualitative similarities between trace element
signatures of the late-stage interstitial material and meta-
somatic patterns in the rest of the rock, as discussed by
Tonov et al. (19935).

We further address the role of interstitial ‘contaminants’
by plotting abundances of incompatible trace elements
i the bulk rocks versus those in clinopyroxene and
amphibole (Fig. 10). The majority of the data points plot
along well-defined trends consistent with enrichments in
LREE, Sr, Pb, Th and U mainly hosted by clinopyroxene
and amphibole. Anomalously high Sr in two whole-rock
samples is clearly related to their high modal calcite
(Table 1), as for sample 25 (Fig. 9a), also reflected in
elevated CaO on the CaO-MgO plot (Fig. 3c). Overall,
the cases of anomalous whole-rock enrichments as a
result of eruption-related metasomatism or post-eruption
alteration are rare and taken into account below. Whole-
rock abundances calculated from mineral and modal
compositions commonly are close to those directly meas-
ured by solution ICP-MS (Fig. 9c), except for elements
that tend to reside in interstitial micro-phases (Eggins e
al., 1998; Bedini & Bodinier, 1999; Garrido ¢t al., 2000;
Kalfoun e al., 2002).

The REE patterns of whole-rock xenoliths are similar
to those of their clinopyroxenes (compare Figs 11a and
7a, and 1lc and 7c). The Type-1 and Type-2 patterns
can be easily identified from LREE-MREE relationships
for most of the xenoliths, including those from the earlier
work (Ionov et al., 1993b). For some elements, in particular
HFSE, their whole-rock abundances relative to those of
adjacent REE are distinct from those for clinopyroxene,
whose composition is significantly affected by partitioning
into coexisting amphibole (Fig. 8c) and/or orthopyroxene
(Rampone et al., 1991; Tonov et al., 1995; Eggins et al.,
1998; Garrido et al., 2000; Tiepolo et al., 2001). Whole-
rock Type-1 xenoliths, unlike their clinopyroxenes, have
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Fig. 9. Examples of trace element distribution between major minerals
and interstitial material of the whole-rock xenoliths. (a) Whole-rock,
residue after leaching and leachate (largely representing interstitial
material) for carbonate-bearing sample 25. (b) Whole-rock, amphibole
and clinopyroxene compositions for sample 318. (c) Ratios of trace
element concentrations in three peridotites calculated from mineral
analyses and modal compositions to the abundances obtained by whole-
rock analyses. For most elements the ratios are within 1-0 + 0-1,
indicating that they largely reside in the major minerals. By contrast,
a large proportion of Cs, Rb, Nb, Ta and Pb in some samples may
reside in the interstitial material.

no or only minor negative Ti-Zr anomalies (compare
Figs 7b and 11b). The low Ti/Zr values, common in
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the interstitial material.

Type-2 clinopyroxenes (Fig. 7d) as a result of strong T1
partitioning into coexisting amphibole, are not seen in
the bulk rocks. Similarly, whole-rock Type-2 xenoliths
do not have negative Nb anomalies, and some yield high
Nb/La and Nb/Th values. However, all Type-2 rocks
have strong negative Ta anomalies, and therefore, high
Nb/Ta ratios (Fig. 11d) consistent with data for am-
phiboles 318 (Fig. 9b) and 318-1, and clinopyroxene
311-9 (Table 4).

The abundances of moderately incompatible V, Sc, Y
and HREE are lower than in fertile lherzolites worldwide
and decrease with increasing MgO (Fig. 12). There are
no differences in HREE and Y levels at similar MgO (or
Mg#) between amphibole-bearing and amphibole-free
peridotites, unlike for clinopyroxene (Fig. 6a). Similar to
Ti, Zr abundances are much lower than in the primitive
mantle (Fig. 13) and do not seem to be related to MgO
(Figs 3d and 12). Abundances of Sr, LREE, Nb, Th, U,
Ba and Rb vary widely and do not define coherent trends
with MgO variations (Fig. 12). If samples with Sr-rich

interstitial material are discarded, Type-2 rocks show
higher Sr (as well as Pr, Nd, Sm and Eu) than Type-
1 rocks (Figs 12 and 13). The abundances of highly
incompatible elements (La, Ce, Pb, Th and Ba) overlap
in Types 1 and 2, but the two types are clearly dis-
criminated on the La/Ce vs Nd/Yb plot; this dem-
onstrates the strong LREE fractionation in Type-1
xenoliths. The two types are also distinguished on a plot
of La vs Th (or U) because of higher Th at similar La
in highly LREE-enriched Type-1 xenoliths (Fig. 13).
The distribution of Nb is distinct from that of T1 and
Zr (Fig. 13). Ti and Zr are uniformly low in both rock
types and do not seem to be affected by metasomatism.
Nb abundances are usually much higher in Type-2
xenoliths, and show no correlation either with Zr or
La and Th, elements that have relative peridotite-melt
compatibility similar to that of Nb. The high Nb cannot
be attributed to the presence of amphibole in the Type-
2 xenoliths alone because amphibole-bearing xenolith
315-6 is as low in Nb as other Type-1 rocks. Zr/Hf and
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SB-4, SB-5, 28 and 43-86 are from Ionov et al. (19934) (leached whole-rock compositions are shown for the Type-1 rocks to minimize effects of
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Nb/Ta range from subchondritic in some Type-1 rocks
to superchondritic in the rest of the xenoliths and are
particularly high in Type-2 rocks (Fig. 13). Zr/Hf values
are positively correlated with some incompatible ele-
ments, e.g. Nd, but vary broadly at similar Zr. By contrast,
Nb/Ta increases with Nb abundances both in Type-1
and Type-2 rocks (Fig. 13). Ce/Pb is commonly below
the PM value in both Type-1 and Type-2 rocks, which
is also seen as negative Pb anomalies in Fig. 11d (when
interstitial Pb contamination is taken into account).

CHEMICAL RECORD OF DEPLETION
AND METASOMATISM

Evidence for partial melting and
mineral-melt equilibria in chemical
compositions

Abundances of major oxides and moderately in-
compatible elements in whole rocks and minerals vary
systematically with variations in MgO contents and Mg#
in most of the xenoliths (Figs 3, 4, 6a and 12). Such
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et al. (2000).

trends are commonly interpreted as indicating that the
peridotites formed as residues from variable degrees of
partial melting and melt extraction from a fertile lherzolite
source. This assertion is supported by abundant ex-
perimental and modelling results and data on natural
peridotites [e.g. a recent review by Takazawa et al. (2000)].

Most of the Spitsbergen xenoliths plot close to cal-
culated evolution lines for residual spinel peridotite at
1-2-5 GPa (Niu, 1997) on major oxide covariation dia-
grams (e.g. MgO vs CaO; Fig. 3c). Relatively high CaO
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in several samples is due to late-stage precipitation of
mterstitial calcite. On Mg# vs Al,O; and MgO vs FeO
plots (Fig. 3a and b), the Spitsbergen peridotites fall
within the compositional field of the Horoman peridotites
inferred to have been derived by polybaric melting at
2:5-0-4 GPa. Takazawa et al. (2000) concluded from data
on Mg-Te partitioning that the Horoman peridotites
with olivine Mg# and whole-rock MgO similar to those
in the most depleted Spitsbergen xenoliths (26a and 318)
have been produced by 19-25% of partial melting.
Importantly, amphibole-bearing Spitsbergen peridotites
plot within the compositional fields defined by the ma-
jority of the xenoliths and follow major oxide variation
trends related to partial melting, indicating that am-
phibole precipitation was not accompanied by significant
additions of ‘basaltic’ components (FeO, CaO, Al,Os,
TiO,). An apparent exception is sample 318 (with highest
modal amphibole, >4%), which has Al, Ca and Ti
abundances too high relative to MgO to be an unaltered
melting residue; yet the very low FeO in sample 318
(Fig. 3b) rules out amphibole formation from an evolved,
Fe-rich basaltic melt.

We calculated trace element abundances in residues
after incremental (1% steps) partial melting of primitive
spinel lherzolite using an algorithm and partition co-
efficients from Takazawa el al. (2000). Compositions of
clinopyroxene and whole-rock samples from this study
are compared with the calculation results in Figs 7e and
11e. The whole-rock abundances of HREE and MREE
and Zr (elements least affected by metasomatism) are
consistent with 3-11% of partial melting for Type-1
xenoliths and 5-12% for Type-2 xenoliths. The very low
HREE values in harzburgite 26a cannot be reproduced
by batch melting and require 20-25% of incremental
partial melting (see also Fig. 12), consistent with its high
whole-rock MgO, low whole-rock Ca, Al and Ti, low
modal clinopyroxene (2:9%), and low Al, Ti and Na in
the clinopyroxene (Fig. 4). Sample 318 has higher MgO
and Mg# than 26a (Table 2). However, the degree of
incremental melting estimated for amphibole-rich xeno-
lith 318 from HREE abundances (~ 12%) is much lower
than for 26a, possibly as a result of REE enrichment by
metasomatism.

Many Spitsbergen xenoliths plot off calculated partial
melting trends on covariation diagrams of moderately
incompatible elements vs MgO (Fig. 12). Similar features
in other mantle peridotites were previously attributed to
melting in the garnet stability field, variable amounts
of trapped melt, changes in melting regime, etc. (e.g.
Takazawa et al., 2000). Other processes, such as solid—melt
mixing (Elthon, 1992) and solid-melt reaction (Kelemen
et al., 1992; Van der Wal & Bodinier, 1996) may have
accompanied or followed the partial melting and melt
extraction. It is hardly possible, however, to better con-
strain melting conditions for the Spitsbergen peridotites
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because of widespread overprinting of the initial melting
signatures by later metasomatism.

The convex-upward trace element patterns of whole-
rock xenolith 63-90-30 (Fig. 11) and its clinopyroxene
(Fig. 7) cannot be produced by partial melting and
indicate equilibration with a melt that has lower Nb and
LREE, and higher HREE than the host basalt (based on
published ™™"D; Fig. 14). Several other features also
set that sample apart from the rest of the xenoliths: high
whole-rock Ca/Al, high T1 in the bulk rock (Fig. 3d) and
clinopyroxene (Fig. 4d), and high Cr# in clinopyroxene
relative to spinel (Fig. 4c). However, the high Mg# in
whole rock (0-909) and olivine (0-911) appear to rule out
an origin from or equilibration with an evolved, Fe-rich
basaltic melt.

Mineral compositions in composite xenolith 4-90-1 are
distinct from those in the other xenoliths, in particular
low Mg# and high Ti (Figs 4-7). That sample appears
to be a fragment of a magmatic conduit system in the
peridotite mantle. The modal gradient from dunite to

2241

Fig. 13. Covariation plots for trace elements (in ppm) and their ratios in whole-rock peridotites. Symbols as in Fig. 12. Continuous grey lines
show trace element ratios in primitive mantle. Arrows show possible trajectories of chemical change during melting and metasomatism.

wehrlite (Fig. 2¢) may reflect different degrees of magma-—
host interaction in the cross-section of a magmatic chan-
nel (Kelemen, 1990), whereas abundant amphibole and
phlogopite may be due to significant water and alkali
contents of the magma and/or i situ crystallization of
trapped fluid. Estimates of the trace element composition
of a basaltic liquid in equilibrium with clinopyroxene 4-
90-1 show strong enrichments in highly incompatible
elements, with Th, U, Nb and LREE several times higher
than in the basalts hosting the xenoliths (Fig. 14). The
REE pattern of that hypothetical liquid 1s similar to
calculated liquids for clinopyroxene from several Type-
2 xenoliths (e.g. 311-9, Fig. 14a), except for somewhat
higher LREE and MREE and lower HREE for cpx 4-
90-1. The minor differences between the patterns cal-
culated for clinopyroxene from the vein and from the
Type-2 xenoliths could reflect local variations in meta-
somatic melt compositions. Alternatively, they can be
explained assuming that the vein clinopyroxene equi-
librated with an initial LREE-enriched melt (flowing
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Fig. 14. Primitive mantle-normalized (Hofmann, 1988) trace element abundance patterns of average basalts from Halvdan and Sverre (black
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lines) calculated using cpx—melt partition coefficients after Hart & Dunn (1993) and Verniéres e al. (1997).

in a conduit), whereas clinopyroxenes in the peridotite
xenoliths record equilibration (either partial or complete)
with a melt modified during percolation from a conduit
into the host peridotites. We conclude that a melt with
REE abundances in equilibrium with vein cpx 4-90-
1 could be an appropriate metasomatic agent for the
Spitsbergen xenolith suite.

Mineral zoning and the timing of
metasomatism

Strong compositional gradients between the depleted
cores of minerals and their rims (in direct contact with
an enriched melt) may develop during initial stages of
metasomatism of melting residues. The lack of significant

trace element zoning—even in large, porphyroblastic
Type-1 clinopyroxenes (revealed by ion probe analyses,
Table 5)—indicates that the mineral grains were in-
ternally homogenized by diffusion during or after meta-
somatism. The time required for homogenization is
primarily dependent on diffusion coefficients and tem-
perature as well as on the distance. We use here ex-
perimental data of Sneeringer ¢t al. (1984) on Sr diffusion
in natural diopside, which are consistent with Sr diffusion
coefficients obtained on clinopyroxene (and amphibole)
in other studies. Possible temperatures may range from
>1200°C for metasomatism by a silicate melt to
<1100°C for metasomatism by a carbonate-rich melt
or fluid. The lower 7 values may be more appropriate
in view of the experimentally determined amphibole
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stability field in pyrolite compositions (< 1050°C) (Niida
& Green, 1999) if it is applicable to less fertile Spitshergen
peridotites. The solution of Fick’s equation given by
Crank (1975) for Sr homogenization (from 45 to 181
ppm, to 95% of the final equilibrium level) to occur in
a grain with a radius of 1-2 mm yields about 10° years
for 7 in the range 1050-1100°C and >10" years at
1200°C. These results further indicate that the meta-
somatism was not a very recent event related to formation
of interstitial silicate glass and carbonate.

Trace element evidence for mechanisms
and sources of metasomatism and its
interpretation

Nearly all the xenoliths studied in this work show evidence
for modal and/or cryptic metasomatism, which must have
been widespread in the source regions of the xenoliths. In
the discussion below we will focus on the nature of the
metasomatism, leaving aside the few samples that do not
bear well-defined enrichment signatures (26a, 63-90-30).

Geochemical evidence outlines two major types of
the metasomatized rocks. One of them (Type-1) shows
smaller and highly variable degrees of metasomatism,
and only one xenolith from that group contains am-
phibole (with an unusually low K concentration). In
contrast, all Type-2 xenoliths contain amphibole (some
also have apatite) and show strong enrichments in some
incompatible elements, with very similar enrichment pat-
terns (Figs 6-8 and 11). Although trace element patterns
and covariation plots (e.g. Fig. 13) clearly distinguish
between the two groups, one cannot rule out that inter-
mediate compositions also exist in the mantle beneath
Spitsbergen, but are not represented in this sample series.
Because both groups have similar equilibration tem-
peratures, they appear to come from the same depth
range in the uppermost mantle, but we have no in-
formation on specific spatial relationships between the
two rock types, e.g. with relation to the sources of
metasomatic media.

This study has to address two principal questions: (1)
whether the two rock types were formed by two different
mechanisms of metasomatism or, alternatively, reflect
two distinct stages of the same mechanism (event); (2)
whether distinct compositions (and sources) of meta-
somatic media were involved in the formation of the two
rock types. The second question can be reworded as how
to distinguish between metasomatic features produced
by fractionation processes versus those that should be
attributed to distinct metasomatic melt-fluid com-
positions.

These questions are addressed below using theoretical
modelling of metasomatism. We first establish that simple
mixing of depleted peridotites with melts enriched in

MECHANISMS AND SOURCES OF MANTLE METASOMATISM

incompatible trace elements cannot produce strong
LREE fractionations and the diversity of enrichment
patterns found in the Spitsbergen xenoliths. We then use
numerical modelling to demonstrate that those features
can be explained by chromatographic effects of melt
percolation in peridotite matrix. Two modelling tech-
niques are employed: (1) one-dimensional (1-D) melt
percolation with fixed rock/melt ratios; (2) ‘plate’ models
of reactive porous flow (percolative fractional crys-
tallization). The results are presented in order of in-
creasing model complexity, beginning with the REE
distribution in spinel peridotites during melt percolation
at constant rock/melt ratios. More complex models ex-
plore the effects of trapped melt, variable rock/melt
ratios, distinct modal compositions of the peridotite, and
the role of amphibole in element fractionation. These
models are first run for REE to constrain their abundances
in the initial metasomatic melt and outline the most
likely physical parameters of melt percolation. We then
introduce a broader range of elements (HFSE, Th, U
and Pb) assuming that their ratios to adjacent REE in
the initial melt are close to those in the primitive mantle.
Finally, alternative melt compositions (with anomalies
on PM-normalized diagrams for certain elements) are
considered to provide the best fit between the models
and the Spitsbergen xenoliths. For simplicity, a single set
of mineral-melt partition coefficients (™™= ) is
used (Table 7), except for Nb and Ta in amphibole.

The origin of strong LREE enrichment and
fractionation in the Spitsbergen xenoliths

The strongly fractionated LREE patterns of several Type-
1 xenoliths with extremely high La/Ce, La/Pr and La/
Nd ratios provide key evidence for their mode of origin.
These extreme fractionations between individual REE
do not appear to have analogues among any type of
terrestrial magma. Therefore, such REE patterns in
xenoliths cannot be modelled by simple mixing between
LREE-depleted residues of partial melting and a mag-
matic liquid. Figure 15 demonstrates that mixtures of a
model LREE-depleted peridotite with either host basalt
or a hypothetical highly LREE-enriched liquid (in equi-
librium with vein 4-90-1, Fig. 14) cannot reproduce
high La/Ce or Sr/Nd ratios in typical Type-1 rocks.
Furthermore, the ratios of highly incompatible elements
in the mixing models are nearly uniform for moderately
to highly enriched compositions (resulting in subparallel
LREE-MREE patterns) because they are dominated by
those in the liquid. By contrast, the LREE patterns and
La/Ce, La/Nd and other ratios vary broadly among
individual Type-1 xenoliths and seem to require a specific
liquid composition for each sample in the mixing models.
Finally, Navon & Stolper (1987) have demonstrated that
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Table 7: Mineral—melt partition coefficients and initial peridotite and melt compositions (ppm) used in the

modelling

Partition coefficients (Dmnera/met)

Peridotite matrix

Percolating melt

cpx opx olivine spinel amph fertile refractory vein model ‘best fit’
Th 0-012 0-00003 1E — 07 1E — 08 0-0145 0-00038 0-00003 47-9 47-9
U 0-0103 0-00004 1E — 07 1E — 08 0-0125 0-00016 0-00001 11-8 11-8
Nb 0-0077 0-0005 0-0002 0-001 0-20 0-01 0-0007 299 299
Ta 0-02 0-001 0-0004 0-002 0-20 0-001 0-00007 17-2 5.7
La 0-054 0-0002 0-0001 0-0004 0-086 0-033 0-003 234 234
Ce 0-086 0-0004 0-0002 0-0005 0-138 0-160 0-013 391 391
Pb 0-072 0-0012 0-0002 0-0007 0-18 0-024 0-002 315 15.7
Pr 0-139 0-0006 0-0003 0-00065 0-222 0-045 0-0053 365 36-5
Sr 0-128 0-0003 0-0001 0-0001 0-32 4.22 0-57 2500 4853
Nd 0-187 0-001 0-0004 0-00058 0-299 0-34 0-054 118 118
Zr 0-13 0-005 0-004 0-005 0-156 3.36 0-672 784 280
Hf 0-2 0-01 0-006 0-01 0-24 0-105 0-025 216 4.6
Sm 0-291 0-003 0-00044 0-00048 0-466 0-16 0-044 166 16-6
Eu 0-35 0-004 0-00056 0-00045 0-56 0-067 0-023 4.2 4.2
Ti 0-33 0-07 0-007 0-15 1.32 520 195 27300 19500
Gd 0-4 0-0128 0-00076 0-00042 0-64 0-26 0-107 10-0 10-0
Tb 0-429 0-0186 0-00104 0-00041 0-686 0-051 0-025 1.21 1-21
Dy 0-442 0-0261 0-0014 0-0004 0-707 0-36 0-192 6-36 6-36
Ho 0-439 0-0356 0-00184 0-00041 0-702 0-088 0-047 1-09 1-09
Er 0-436 0-0474 0-00236 0-00042 0-698 0-267 0-144 2.45 2.45
Tm 0-433 0-0617 0-00296 0-00045 0-693 0-042 0-023 0-36 0-36
Yb 0-43 0-0787 0-00364 0-00048 0-688 0-28 0-158 2.37 2.37
Lu 0-427 0-0986 0-0044 0-00053 0-683 0-043 0-024 0-35 0-35

References: D™t values for REE, Nb, Pb and Sr are from Hart & Dunn (1993); D™ values for Zr, Hf and Ti are from
Johnson (1998); D™ values for Th and U are from Hauri et al. (1994); D™ values for Pr, Eu, Gd, Tb, Ho and Tm were
obtained by interpolation of data for adjacent REE; D™ for Ta is from Lundstrom et al. (1998), consistent with average
Dyy/Dr, ratios from Forsythe et al. (1994) and Blundy et al. (1998). DeP/melt pelmelt gnd psP/melt yalues are based on the
De¥met combined with DPYPx, DXl and D' values from peridotite xenolith studies after Bedini et al. (1997) and Verniéres
et al. (1997). Some of the original D™"'me!t yalues were rounded up or slightly modified to provide a consistent and smooth
set of peridotite-melt partition coefficients. D*™"™" yalues were obtained from D™ based on mean amph/cpx ratios in
Spitsbergen xenoliths for different groups of elements: 1-2 for Th, U, Zr and Hf; 1-6 for REE; 2.5 for Pb and Sr; 4 for Ti; 10

for Ta; 26 for Nb.

plots of LREE vs MREE for peridotite suites with LREE
enrichment patterns similar to those in this work do not
form linear arrays expected in the case of simple mixing.

Similarly, it is unlikely that an exotic metasomatic fluid
with extreme LREE fractionations and very high LREE/
HREE (implied in mixing models) could form in equi-
librium with any common mantle rock type. It follows
that possible origins for the trace element patterns of
Type-1 xenoliths may be related to enrichment processes
rather than to unusual metasomatic source compositions.
The key idea 1s that some metasomatic mechanisms may
generate a range of fractionated REE patterns in the

course of an enrichment event from a single initial LREE-
enriched liquid.

The REE patterns of Type-1 xenoliths are very similar
to those produced by modelling chromatographic effects
during melt percolation (Navon & Stolper, 1987; Bodinier
etal., 1990; Vasseur et al., 1991; Takazawa et al., 1992) and
appear to show evidence for interaction with percolating
LREE-rich melts (Fig. 16). The ‘chromatographic’ mod-
els imply that the behaviour of elements during melt
percolation in residual peridotites is controlled by min-
eral-melt partition coefficients. Elements with higher
ok/mel) values, such as HREE, are selectively removed
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Fig. 15. Primitive mantle-normalized (Hofmann, 1988) REE abund-
ance patterns of mixing products (grey lines) of a model LREE-depleted
peridotite with: (a) average host basalt (melt proportion in wt %); (b)
calculated melt in equilibrium with vein cpx 4-90-1 (see Fig. 14).
Comparison with representative whole-rock xenoliths (continuous black
lines and symbols) shows that peridotite-melt mixing models cannot
reproduce either Type-1 or Type-2 patterns.

from the percolating melt by interaction with minerals
in the host peridotite so that the melt at the percolation
front becomes progressively enriched in the most in-
compatible elements relative to the less incompatible
elements. As a consequence, an advancing metasomatic
percolation front first produces enrichments in the most
incompatible elements followed by enrichments in the
less incompatible elements, thus creating transient meta-
somatic zoning with different enrichment patterns as a
function of the distance from the magma source (Iig.
16b).

At an advanced stage of metasomatism, xenolith com-
positions approach chemical equilibrium with the mi-
grating liquid (e.g. Navon & Stolper, 1987; Bodinier et
al., 1990; Vasseur ¢t al., 1991), with REE patterns similar
to those of Type-2 xenoliths. It may be possible therefore
to explain the whole range of REE patterns in the Type-
1, Type-2 and vein samples by a single mechanism of
metasomatism assuming that xenoliths with different REE

patterns ‘sample’ different zones in percolation systems
(Fig. 16¢). This hypothesis will be tested below using
numerical modelling.

MECHANISMS AND SOURCES OF
METASOMATISM IN THE CONTEXT
OF NUMERICAL MODELLING

One-dimensional melt percolation models
and the origin of Type-1 and Type-2 REE
patterns

Were Type-1 and Type-2 metasomatic patterns formed
in the same event and by the same process? To address
that question we performed numerical simulation of REE
and Sr distribution during 1-D porous melt flow in
peridotite (Vasseur et al, 1991) suited to the xenolith
series in this work. The principles of the modelling are
llustrated in Fig. 16a and b; modelling parameters and
results are presented in Fig. 17 (‘1-D.p’ models). Two
initial LREE-depleted peridotite compositions rep-
resentative of the modal variation range in the Spits-
bergen xenoliths were used (Table 7), one ‘fertile’ (11%
cpx) and one ‘refractory’ (6% cpx), based on estimates
of element abundances in partial melting residues (Iig.
11e). The presence of amphibole in the rocks does not
significantly affect comparisons with modelling results for
REE and can be simply considered equivalent to higher
modal clinopyroxene because REE patterns in amphibole
are nearly parallel to those in clinopyroxene (Figs 8c and
d and 9b). For percolating melt compositions we used
that of average host basalt and a hypothetical melt in
equilibrium with vein clinopyroxene 4-90-1 (Fig. 14,
Table 7). These two compositions have smooth, LREE-
enriched patterns and cover a range of PM-normalized
abundances (from 3-5 for Lu to 100-500 for La). Sr was
included in some of these models because its residence
and behaviour in peridotites 1s similar to that of the
LREE and because nearly all xenoliths have positive Sr
anomalies.

The modelling using the host basalt composition (not
shown) failed to yield high LREE-MREE abundances,
like those in Type-2 and many Type-1 samples. For
example, a melt in equilibrium with typical Type-2
sample 311-9 (probably located close to the melt source)
must have LREE-MREE abundances much higher than
those in the host basalt (Fig. 14). This modelling outcome
is not surprising because the ‘constant porosity’ model
we used does not involve fractional crystallization of the
percolating melt and therefore cannot yield an increase
in its element abundances. The element fractionation in
such models is produced because the abundances of more
compatible elements in the melt near the percolation
front decrease (because of their partitioning to the matrix)
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Fig. 16. A scheme and REE pattern diagrams illustrating the principles of one-dimensional (1-D) porous flow modelling. (a) Melt percolates
away from its source (e.g. a vein) in the intergranular space of host peridotite, which is assumed to have constant porosity and modal composition.
Melt and peridotite equilibrate by diffusion; no minerals precipitate from the melt. The model calculates average compositions of clinopyroxene,
bulk matrix (peridotite without percolating melt) and percolating melt at a given time after the start of percolation in a given number of ‘cells’
(equal distance intervals) within a percolation ‘column’ of a given total length (). (b) Host peridotite near the melt source (cell 1) soon reaches
trace clement equilibrium with the initial melt, wherecas far from the source (cell y) both percolating melt and host peridotite are selectively
enriched in highly incompatible elements relative to elements with lower compatibility as a result of ‘chromatographic’ effects of mineral-melt
interaction (see text). (c) Comparison of REE patterns in Type-1, Type-2 and vein clinopyroxene in Spitsbergen xenoliths with results of 1-D
numerical simulation of porous melt flow (using a model LREE-enriched melt composition) in an LREE-depleted lherzolite (13-5% cpx) for
selected cells (numbered) after Bedini et al. (1997). (d) A schematic illustration of the principles of the reactive porous flow model used in this
work (Vernieres ¢t al., 1997). Unlike in 1-D modelling, the matrix porosity decreases as pyroxenes precipitate as a result of melt-matrix reactions,
the total distance and duration are not defined, and the cell size decreases from the melt source to the end of the ‘column’.

faster than those of less compatible elements. It follows
that the concentrations of least compatible elements (e.g.
La) in the initial melt should be sufficient to yield,
by mineral-melt equilibria, the strongest metasomatic
enrichments in those elements far from the melt
source.

The models using the ‘vein melt’ composition (with
higher LREE and MREE) yield good results for the
fertile initial matrix, producing (at different distances
from the melt source) both REE pattern shapes and
concentrations typical of Type-1 and Type-2 rocks (Fig.
17a). It should be noted that mineral compositions for
cells next to the melt source (e.g. cells 1 and 2 in Fig.

17a) approach equilibrium with the initial melt for all
REE and may correspond to vein mineral associations
(as in xenolith 4-90-1) rather than to Type-2 peridotites.
The models with the refractory matrix also yield Type-1
and -2 REE patterns, but the highest LREE abundances
they produce are only half of those with the fertile matrix
because of lower modal cpx in the refractory peridotite
(Fig. 17b).

This fairly simple method of modelling melt porous
flow does not address some aspects of that process, but
nevertheless clearly demonstrates several fundamental
consequences of melt percolation in peridotites. First, a
single initial liquid fractionates to produce a range of
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(a) Fertile peridotite matrix (11% cpx)
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(b) Refractory peridotite matrix (6% cpx)
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Fig. 17. Comparison of REE + Sr primitive mantle-normalized (Sun & McDonough, 1989) patterns in whole-rock xenoliths with results of 1-
D numerical simulation of porous flow of an initial melt (similar to that in equilibrium with vein 4-90-1, as in Fig. 14) in a ‘fertile’ matrix (left:
11% cpx, 24% opx, 63% ol, 2% spl) and a ‘refractory’ matrix (right: 6% cpx, 22% opx, 70% ol, 2% spl). REE and Sr abundances in the matrix
were calculated for appropriate residues after incremental partial melting (Fig. 11e). The mineral-melt partition coefficients are given in Table
7 and largely follow those from Verniéres et al. (1997). Diffusivity in minerals is 107" em”/s; diffusivity in melt is 107 cm®/s. Average radii of
minerals are 0-05 cm for cpx and 0-2 cm for opx and olivine. Other model parameters are shown on each graph: @, matrix porosity (melt
fraction); &, total percolation distance in cm; 4, time after the start of percolation (in years); ¥, melt percolation velocity (in cm/year). Calculations
in each model are performed for 20 distance increments (cells) within a given total distance, ranging from 5 cm (1-D.p7 and 12) to 500 cm (1-
D.pl0 and 15); some cells are numbered on the plots. Dashed grey lines show compositions of cells 1-10 (closest to melt source); continuous
grey lines are compositions of cells 11-20 (far from melt source). (See Fig. 16 for explanations.)

element patterns, thus eliminating the need for multiple
melt—fluid compositions in simple mixing models (Bod-
mier ¢t al., 1990). Second, highly fractionated element
patterns are derived from ‘conventional’ initial melt com-
positions and do not imply the existence of exotic mantle
sources capable of generating a highly fractionated liquid
by equilibrium melting. Finally, strong element frac-
tionation can be produced over relatively short distances,
1.e. the same order of magnitude as metasomatic aureoles
around magmatic veins in peridotite massifs (Bodinier et
al., 1990; Navon et al., 1996; Zanetti et al., 1996), contrary
to the view that long percolation distances are required
to produce significant ‘chromatographic’ effects (Nielson
& Wilshire, 1993). Modelling percolation over distances
from 1 to 100 m (Fig. 17a) has yielded similar results
assuming that the distance to porosity ratio (/@) remains
the same. For instance, strong fractionation within 1 m
is possible at ~0:01% porosity, a low but physically
realistic value (McKenzie, 1989).

Melt percolation over short distances, e.g. from a vein
mnto host peridotite, is likely to involve partial melt
crystallization and decreasing effective porosity along
a temperature gradient. These effects cannot be fully
reproduced in the 1-D porous flow model we used.
However, an important step to more realistic modelling
can be made assuming that percolation stops at a certain
time and the fractionated melt present in the matrix is
‘trapped’, to be incorporated into the peridotite after
recrystallization. Figure 18 presents modelling results
analogous to those given in Fig. 17 except that the
‘trapped melt’ was added to whole-rock compositions
(‘I-D.tm’ models). Because the trapped melt has much
higher abundances of LREE and MREE than the matrix
(because of low P¥™D), these models may produce
marked enrichments of these elements in the rocks
compared with 1-D.p models, in particular for cpx-
poor peridotites. The trapped melt effects are roughly
proportional to matrix porosity and become significant
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Fig. 18. Same as Fig. 17 except that modelling results were recalculated to obtain bulk compositions of the host matrix together with ‘trapped’
percolating melt (‘1-D.tm’ models). Data for Type-2 Spitsbergen xenolith 43-86 are from Ionov et al. (19935).

at @ >0-1%. 1-D porous flow models with trapped melt
contents between 0-1 and <1% provide the best fit with
REE data for the xenoliths in this work (Fig. 18). They
can explain both strong LREE fractionation in Type-1
sample 315-6 (model 1-D.tm10) and a continuous in-
crease in MREE and LREE abundances (model 1-
D.tm15) in highly metasomatized Type-2 sample 43-86
(containing amphibole and apatite; Ionov et al., 19935)
in a single event.

Reactive porous melt flow (plate models)

Vernieres et al. (1997) developed a method of numerical
simulation of porous melt flow, which they called a ‘plate
model’, to account for variable matrix porosity, modal
compositions and mineral precipitation or dissolution
through matrix-melt reactions. The method assumes
instantaneous melt equilibration as it moves from one
matrix cell to another and therefore, by comparison
with the 1-D models, disregards melt velocity, time and
distance. A simplified version of that method is used here
(Fig. 16d) as an alternative to the 1-D ‘trapped melt’
models. The plate modelling presented in Fig. 19 for the
fertile and refractory matrices implies a decrease in
porosity from 1% near the melt source to near zero

through precipitation of clinopyroxene and ortho-
pyroxene as a result of olivine—melt reaction. Compared
with 11% cpx and 24% opx in the initial fertile matrix, the
reaction products contain 11-3-12% cpx and 24-4-25-4%
opx, implying only very moderate changes in bulk-rock
major oxide contents (e.g. increasing CaO by <0-2%
and ALO; by <0-12%).

The plate models produce both LREE enrichments
and strong LREE fractionation far from the melt source
as a result of ‘percolative fractional crystallization’ of the
mitial melt (Godard et al., 1995; Bedini et al., 1997), even
for liquids with relatively moderate LREE abundances
like the host Spitsbergen basalts. However, as in the
1-D modelling, combined LREE-MREE enrichments
typical for Type-2 rocks are not likely to be generated
with the host basalt as the initial melt. By contrast,
the modelling using the hypothetical vein melt yields
compositions that match very well those of both Type-1
and Type-2 rocks (Fig. 19). We conclude that the initial
metasomatic melt was probably strongly enriched in
LREE and MREE, with REE abundances similar to
those in our ‘vein model’. That inference only refers to
the REE abundances and does not imply that the major
and trace element composition of the metasomatic
medium was identical to that of the parental melt of the
vein 4-90-1.
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Fig. 19. Results of numerical simulation of reactive porous flow (plate model of Verniéres et al., 1997) in comparison with REE + Sr primitive
mantle-normalized (Sun & McDonough, 1989) patterns in whole-rock xenoliths. Calculations are performed for 100 increments (cells), with cell
size decreasing from ~10% of the column length in cell 1 to ~0:008% in cell 100. Initial matrix porosity of 1% decreases to near-zero as melt
is consumed in the sliding reactions ranging from {1 melt + 0-18 olivine = 0:91 melt + 0-162 opx + 0-108 cpx} at the base of the column
(cell 1) to {1 melt + 0-52 olivine = 0-74 melt + 0-468 opx + 0:312 cpx} at the top of the column (cell 100). The changing mineral proportions
in these reactions were selected to provide for an evenly distributed decrease in porosity along the column. Initial melt and matrix compositions
and mineral-melt partition coeflicients are same as in Figs 17 and 18. For simplicity, results for cells 1-4 are grouped together as ‘near melt
source’ field, results for cells 15-80 are grouped as ‘far from source’ field.

The cell size in the plate model we used decreases
away from the melt source and therefore the number
of cells with strong fractionation near the end of the
percolation column is not representative of their fairly
small volume. To illustrate relative proportions of cor-
responding rock types in the column, we calculated
average compositions of clinopyroxene in 10% intervals
of the total percolation column for model PM-50 (Tig.
19). The results (Fig. 20) show that some 40% of the
column near the melt source (compositions 1-4) has a
Type-2 REE pattern, whereas the far half of the column
(compositions 6-10) has a Type-1 pattern. This is roughly
consistent with the proportions of the two rock types in
our xenolith suite.

Opverall, either 1-D porous flow models with trapped
melt or plate models (percolative fractional crystallization)
can satisfactorily match the principal REE pattern types
and enrichment levels in the Spitsbergen xenoliths. We
conclude that REE patterns in the majority of the xeno-
liths can be explained by a single event and the same
process: reactive porous flow. That process probably
operated beneath an area on a scale of at least several

kilometres (‘sampled’ by two volcanoes) and may have
ultimately produced metasomatism in a large portion of
the lithospheric mantle. The metasomatic medium was
strongly LREE enriched (with higher LREE and MREE
abundances than in the host basalts).

Various 1-D and plate percolation models for REE
and Sr yield minor positive Sr anomalies far from the
melt source but cannot reproduce high Sr spikes
common 1in Spitsbergen xenoliths (Figs 17 and 18).
One possible explanation is that the ™™D for Sr is
close to that of Ce (rather than Pr in our modelling)
as suggested by some experimental studies (Skulski e
al., 1994; Foley et al., 1996). That inference implies a
more incompatible behaviour of Sr during meta-
somatism than follows from compilations based on
trace element systematics in oceanic basalts (Hofmann,
1988; Sun & McDonough, 1989) and appears to be
supported by data on some cryptically metasomatized
mantle peridotites (e.g. Ionov et al,, 1994; Vannucci et
al., 1998; Lenoir et al., 2000). Plotting Sr between La
and Ce on PM-normalized diagrams eliminates the Sr
anomaly in many Type-1 samples. Regardless of
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Fig. 20. (a) Results of numerical simulation of reactive porous flow (same as in Fig. 19) followed by calculation of average clinopyroxene
compositions for 10 successive equal column volumes each making up 10% of the total. Volume 1 is closest to the melt source and approaches
equilibration with the melt, volume 10 is farthest from the melt source. (b) Comparison of modelling results from (a) with fields of REE primitive
mantle-normalized (Sun & McDonough, 1989) patterns in Type-1 and Type-2 clinopyroxene (see Fig. 7). LREE-rich cpx 4-90-9 is shown
separately from other Type-2 samples. Model compositions 1-4 are similar to those of Type-2 cpx; compositions 510 match those of Type-1
cpx. It should be noted that REE abundances in some Type-2 clinopyroxenes may be lower than in the model results because of (1) preferential
REE partitioning into coexisting amphibole and (2) the use of fertile initial matrix in this model whereas many Type-2 xenoliths are more

refractory.

whether that observation is relevant, consistently high
Sr/Nd values in strongly metasomatized Type-2 xeno-
liths (Fig. 13) appear to require a superchondritic Sr/
Nd in the initial metasomatic liquid because Type-2
rocks approach equilibrium with that liquid. Lower
e¥/metfy values than those used in our modelling would
yield even higher Sr/Nd in the metasomatic liquid.
Alternatively, ™™D values could have been higher
during the formation of Type-2 rocks than of Type-1
rocks (for example, as a result of changes in melt
composition). However, variations in ™™™ ]) values,
e.g. those related to evolving melt compositions or
temperature changes, were not considered in our
modelling, to keep the models as simple as possible.

Effects of amphibole on REE-HFSE
relationships

The example of Sr highlights multiple problems involved
in modelling the behaviour of elements during meta-
somatism in comparison with REE of similar com-
patibility. Whereas REE patterns in initial melts are
expected to be smooth, other elements may define an-
omalies relative to adjacent REE. Furthermore, partition
coeflicients of some elements are less precisely constrained
or may vary with melt composition or other parameters
in a different manner than those for REE (Lundstrom et
al., 1998). Metasomatic minerals may be strongly en-
riched in certain elements and therefore control their
budget even when present only in small quantities (Kal-
foun et al., 2002). In particular, amphibole, a common
metasomatic mineral in Spitsbergen xenoliths, has much
higher abundances of Nb, Ta, Ti, Pb and Sr (but not

Zr, Hf, Th and U) than clinopyroxene (Fig. 8c). To
explore the role of various factors in the behaviour of
these elements in percolation metasomatism, we ran
several 1-D porous flow models with and without am-
phibole. Element abundances in the fertile and refractory
peridotite matrix were derived from those of adjacent
REE to yield smooth depleted patterns on PM-nor-
malized diagrams. Similarly, the composition of the per-
colating liquid was fixed to yield smooth enrichment
patterns on PM-normalized diagrams, with Th/U, Nb/
Ta and Zr/Hf values equal to those in the primitive
mantle (Sun & McDonough, 1989) and no anomalies
relative to adjacent REE. The matrix and melt com-
positions and partition coeflicients are listed in Table 7.

The models without amphibole based on mineral-melt
equilibria alone (no trapped melt) yield only moderate
enrichments in Th, U and Nb (a/ and 47; Fig. 21), which
cannot match the high contents of these elements in
strongly metasomatized xenoliths. The mismatch is even
higher than for LREE (discussed in previous section)
because of very low ™™D values for Th, U and Nb.
This problem is partially resolved if the interstitial melt
1s incorporated into the matrix, providing a good fit with
the xenolith data for Th and U at matrix porosity
0-1-0-5% (a2 and b2; Fig. 21). Nevertheless, the ‘trapped
melt’ models cannot produce negative HFSE anomalies
because, first, the mnitial liquid does not have them and,
second, the behaviour of elements during percolation is
largely controlled by their ™! values, which
consistently decrease from HREE to Th and are not very
different from those of adjacent REE (Table 7).

The only obvious way to fractionate HFSE from ele-
ments with similar ™™D values by porous melt flow
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(a) Fertile peridotite matrix
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(b) Refractory peridotite matrix
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Fig. 21. Results of 1-D numerical simulation of reactive porous flow in comparison with primitive mantle-normalized (Sun & McDonough,
1989) trace element patterns (REE, Sr, HFSE, Th, U, Pb) in whole-rock xenoliths. Models 2 and 4 include trapped melt. Peridotite matrix in
models 3 and 4 contains amphibole: 3% amph, 8% cpx in ‘fertile’ and 3% amph, 3% cpx in ‘refractory’. Modelling parameters: porosity, 0-5%;
distance, 50 m; time, 5000 years; melt velocity, 1 cm/year. (See Table 7 for partition coefficients.) Symbols are the same as in Figs 17 and 18.
It should be noted that mineral compositions for cells next to the melt source (commonly cells 1 and 2) approach equilibrium with the initial

melt for all REE and may correspond to vein mineral associations (as in xenolith 4-90-1) rather than to Type-2 peridotites.
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(assuming smooth distribution patterns in both initial
matrix and melt) i3 by means of a mineral with higher
Dyypsg;, values than for clinopyroxene. Recent experimental
work (Tiepolo et al., 20005) has yielded generally higher
amph/mell 7y values for Nb and Ta (0-1-1+6) than for La and
Th and also confirmed that Dy, y, and Dy; are much
higher for amphibole than for clinopyroxene, as indicated
carlier by natural amph—cpx pairs in mantle rocks (Ionov
& Hofmann, 1995). We derived ™™D values (Table
7) from those for clinopyroxene based on mean amph/
cpx ratios in Spitsbergen xenoliths for different groups
of elements: 1-2 for Th, U, Zr and Hf, 1-6 for REE, 2-5
for Pb and Sr, and 4 for Ti. ®*™!]) values for Nb and
Ta were both fixed at 0-2. These values are 10-26 times
higher than for clinopyroxene, yet are conservative in
view of the generally very high amph/cpx ratios (Iig.
8c). The bulk ™™™ ]) values are somewhat higher for
Ta than for Nb, both in amphibole-bearing and in
amphibole-free peridotites, because of higher ®/™!])
values for Ta than for Nb.

We prefer to derive “™"™"D values from ™™D values
and the amph/cpx ratios in the xenoliths (rather than use
experimental ™™D data), so as to have an internally
consistent set of partition coeflicients for these two min-
erals that host most of the REE and the HFSE in the
peridotites. This work aims to constrain general features
of trace element behaviour during melt percolation (based
on a generalized set of ™™™/ ™) values) rather than
to evaluate “™™™"D values from specific experimental
studies. Experimental *™™"]) values vary broadly as a
function of SiO, in the melt and Mg# and TiO, in
amphibole (Tiepolo et al., 2000a, 20005). Few data are
available for amphiboles with high Mg# and, in par-
ticular, low TiO, as in the Spitsbergen xenoliths. Never-
theless, the “™™"D values we used are within the ranges
reported by Tiepolo et al. (2001) for amphiboles with
Mg# >0-74: 0-2 vs 0-06-0-23 for Nb and Ta (Dy,/1,
0-7-1-2); 0-16 vs 0-15-0-51 for Zr; 0-24 vs 0-24-0-95 for
Hf. The higher Dy values of Tiepolo et al. (2001)
are for Tirich (>6% TiO,) amphiboles, whereas the
amphiboles in the Spitsbergen peridotite xenoliths have
<1-5% TiO,.

The 1-D models were rerun with 3% amphibole and
8% clinopyroxene in the fertile matrix and 3% amphibole
and 3% clinopyroxene in the refractory matrix. The
models with amphibole (a3, a4, b3 and b4; Fig. 21) show
little difference for LREE, Th and U but indicate a
dramatic change in the behaviour of Nb and Ta. Because
Dy, 1, values for amphibole are higher than for clino-
pyroxene, the bulk matrix-melt partition coeflicients
for Nb and Ta increase and ‘slow down’ the Nb-Ta
enrichment front in the percolating melt relative to other
highly incompatible elements. This produces negative
Nb anomalies far from the melt source, similar to those
in Type-1 xenoliths, and moderate to high Nb/Th and

VOLUME 43

NUMBER 12 DECEMBER 2002

Nb/La ratios (i.c. positive Nb—Ta anomalies) close to the
source, as in Type-2 rocks. Models with higher modal
amphibole (5%) and higher ™™Dy, 1, values (0-5)
yield similar results (not shown). We emphasize that the
negative Nb-Ta anomalies far from the melt source
are a signature of the fractionated melt produced by
percolation through the amphibole-bearing matrix closer
to the source and are not related to the presence or
absence of amphibole in that zone. Therefore, both
amphibole-bearing and amphibole-free peridotites far
from the source should have low Nb/Th and Nb/La, as
in the Type-1 xenoliths.

The modelling of Nb-Ta behaviour during porous
melt flow hinges critically on assumptions about the
partitioning of these elements (in comparison with LREE,
Th and U) between mantle minerals and metasomatic
media. Experimental work has shown that Dy values
may be strongly affected by major element composition
of minerals and the silicate melt (Lundstrom et al., 1998;
Tiepolo et al., 20004), proportion of carbonate component
in the melt (Blundy & Dalton, 2000) or a transition from
a silicate melt to a supercritical fluid. Combined effects
of these factors are hard to assess but there is little doubt
that ™™D} values for Nb and Ta are significantly
higher than ™/™"D. Notably, xenolith studies consistently
report very high amph/cpx ratios for Nb and Ta (in-
dicating high ™"/ m““DNb;ra), whereas experimental work
yields moderate Dy, values, at least for Mg-rich am-
phiboles typical for mantle peridotites (Green, 1995).
Tonov & Hofmann (1995) suggested that precipitation
of Nb,Ta-rich vein amphibole (and phlogopite) from
migrating melts may produce negative Nb—Ta anomalies
in residual liquids whereas Tiepolo et al. (20005) argued
that experimentally determined *™"/™" Dy, values for Mg-
rich systems are not high enough relative to ™™D,
to effectively fractionate these elements by peridotite—melt
equilibria. Our modelling shows that melt percolation in
amphibole-bearing peridotites can fractionate Nb from
La and Th even at small differences in bulk matrix-—melt
partition coefficients (in the same manner as La—Ce-Pr
are fractionated, Figs 17-19). This happens because
chromatographic effects enhance the effects of differences
in ™™™y values and thus produce a wide range of
Nb/(La, Th) values at different distances from the melt
source (a5—b4; Fig. 21). Similarly, Bedini et al. (1997)
showed that porous melt flow may create negative Nb—Ta
anomalies far from the melt source if accessory minerals
with high Dy, 1, values (e.g. rutile) are present, even in
very small amounts, in the percolation column. We
conclude that melt percolation through amphibole-bear-
ing rocks will inevitably decrease the abundances of Nb
relative to those of Th and La and thus is likely to
produce negative Nb anomalies in the melt.
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Trace element composition of the initial
metasomatic melt

The modelling with amphibole yields relatively high
values for all HFSE and Pb in peridotites close to the
melt source (cells 1-5 in Fig. 21). By contrast, most Type-
2 xenoliths have negative anomalies for Ta, Zr, Hf, Ti
and Pb, and only few samples have moderately high Nb/
Th ratios. We have failed to reproduce the negative
anomalies for these elements in Type-2 xenoliths with
models that assume a fixed initial melt composition and
vary other parameters within reasonable limits, even
though these models yield a good match for other ele-
ments. If the initial melt has no anomalies for given
elements, the only way to produce the negative anomalies
close to melt source in the percolation models is to
assume low ™™D yvalues for those elements (relative
to adjacent REE). As discussed above, that is not likely
for HFSE in amphibole-bearing rocks and, furthermore,
low ™ /metp o values may result in positive HFSE
anomalies far from the melt source, which are not ob-
served in the Type-1 rocks. More complex models, in-
volving intermittent precipitation of various accessory
minerals (Bedini et al., 1997), variable partition co-
efficients, transition from a melt to fluid within a per-
colation column (Ionov & Hofmann, 1995), etc. are
beyond the scope of this paper.

However, 1-D percolation models using a liquid with
negative Ta, Zr, Hf, T1 and Pb anomalies, a positive Sr
anomaly and high Zr/Hf and Nb/Ta (‘best-fit" in Table
7) have reproduced both Type-1 and Type-2 patterns
for nearly all elements (Fig. 22). This leads us to conclude
that the simplest way to explain the negative anomalies
in Type-2 rocks is for the initial melt to be markedly
depleted (relative to adjacent REE) in Ta, Zr, Hf, Ti
and Pb and to assume that they approached equilibrium
with that liquid (e.g. 311-9 in Fig. 14b). In other words,
the distribution of Ti, Zr, Hf, Ta and Pb in Type-1 and
Type-2 xenoliths can be explained if one assumes that
these elements are not significantly affected by meta-
somatism (because of their low abundances in the per-
colating liquid). In such a case, increasing REE contents
imposed by an REE-rich liquid would result in negative
anomalies of Ti, Zr, Hf, Ta and Pb (whose contents do
not increase), typical of Type-2 rocks, and even deeper
anomalies in clinopyroxene (as a result of partial re-
distribution to amphibole).

The assumption of high Zr/Hf in the initial melt can
also explain the positive Nd—Zr/Hf correlation and the
lack of Zr—Zr/Hf correlation in Fig. 13. Zr/Hf must be
subchondritic in partial melting residues (as in some
Type-1 rocks) because of lower ™™D values for Zr than
for Hf (Lundstrom et al., 1998; Takazawa et al., 2000;
Kalfoun et al., 2002) and is increasingly buffered by the
metasomatic liquid with superchondritic Zr/Hf in more

MECHANISMS AND SOURCES OF MANTLE METASOMATISM

strongly metasomatized Type-2 rocks without significant
increases in Zr abundance. The situation is different for
the Nb-Ta pair because Nb has negative anomalies in
Type-1 xenoliths but positive anomalies in some Type-
2 rocks. Moreover, Nb abundances and Nb/Ta values
are positively correlated (Fig. 13), consistent with both
high Nb and very high Nb/Ta in the melt.

The assumption of very high Sr and Sr/Nd in the
mitial melt does not provide a completely satisfactory
match of modelling results with the xenolith data. The
models yield positive Sr anomalies close to the melt
source (Fig. 22) and therefore provide a better match
with Type-2 samples than models in Fig. 21. However,
they typically yield higher Sr abundances and Sr/Nd
values than in Type-2 xenoliths, indicating that the Sr/
Nd in the initial melt was overestimated. On the other
hand, even those high Sr/Nd values in the initial melt
fail to result in marked positive anomalies far from the
melt source to match the very high Sr/Nd in most Type-
1 rocks. In general, positive anomalies for a highly
incompatible element both near and far from the melt
source do not appear to be a likely feature of the
metasomatism by melt percolation.

Opverall, the theoretical modelling strongly suggests
that both Type-1 and Type-2 trace element patterns in
the Spitsbergen xenoliths may have been produced by
the same metasomatic mechanism and possibly in the
same event. The Type-1 REE patterns may have been
derived by small-scale reactive porous flow metasomatism
at the percolation front, whereas large-scale rock-melt
interaction close to the melt source, probably approaching
equilibration with the percolating melt, produced the
Type-2 patterns. Evidence from other elements is quant-
itatively consistent with such a model, assuming am-
phibole precipitation and an initial melt depleted in Ta,
Zr, Hf, Ti and Pb and enriched in Sr (relative to adjacent
REE). It is likely that crystallization of amphibole in
wall-rock peridotite (Type-2) exhausted water from the
percolating liquid so that at larger distances from the
melt source the water-poor liquid or fluild produced
largely ‘anhydrous’ Type-1 metasomatic assemblages.
The melt/rock ratio may have continuously decreased
as well.

The nature of the metasomatic media and
their fingerprints in the metasomatic rocks

The nature of the percolating melts can be constrained
from the mineralogical and chemical compositions of the
xenoliths. It is unlikely that the melt or fluid responsible
for the formation of Type-1 rocks was rich in alkalis and
water because ‘hydrous’ phases are normally not present
and the only amphibole from a Type-1 sample is very
low in K. An Fe-Ti-rich silicate melt is not a likely option
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Refractory peridotite matrix (3% cpx, 3% amph)
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Fig. 22. One-dimensional percolation models for amphibole-bearing peridotite matrix with and without trapped melt for the ‘best-fit’ initial
melt composition (with anomalies). Other modelling parameters are the same as in Fig. 21.

either because rocks with the highest LREE enrichments
and high modal amphibole do not show concomitant
enrichment in Fe and Ti (Fig. 3b and d). In particular,
Type-2 rocks contain a high incompatible element con-
tribution from the metasomatic media and must have
been formed by deep interaction of peridotitic residues
with melts. The lack of Fe—Ti enrichments in these rocks
1s a strong argument for carbonate-rich metasomatic
media because primary carbonatites are characterized
by elevated Mg# values in the range 0-:8-0-9 (Dalton &
Wood, 1993; Sweeney, 1994). Carbonate-rich melts are
believed to be very efficient metasomatizing agents (Green
& Wallace, 1988) because of a combination of high
mobility (Hunter & McKenzie, 1989) and high in-
compatible element abundances imparted by low degrees
of partial melting during their generation. For a silicate—
carbonate liquid, a consequence of its reaction with host
peridotite would be continuous exhaustion of its silicate
component and increasing proportion of the carbonate
component in its composition (Mattielli et al., 1999),
because carbonates are not stable in the shallow spinel
peridotite mantle at moderate to high temperatures (Dal-
ton & Wood, 1993).

Carbonate-rich melts, which may be strongly enriched
in LREE and Sr and depleted in HFSE, were earlier

proposed as likely metasomatic agents for peridotite xeno-
liths worldwide (Green & Wallace, 1988; Yaxley et al.,
1991; Dautria et al., 1992; Hauri et al., 1993; Rudnick et
al., 1993) including those from Spitsbergen (Ionov et al.,
19935). Those inferences were based on comparisons of
trace element patterns in metasomatized xenoliths with
those of carbonatites exposed in the crust (Nelson e al.,
1988; Woolley & Kempe, 1989), experimental evidence
on element partitioning between immiscible carbonate
and silicate liquids (Hamilton et al., 1989; Veksler et al.,
1998) and compositional variations in mantle-derived
volcanic rocks (Dupuy et al., 1992). Some of these con-
straints are poorly defined (Laurora et al., 2001), e.g. the
compositions of the crustal carbonatites may differ from
those of primary carbonate liquids generated by mantle
melting (Eggler, 1989; Ionov et al., 1993b; lonov &
Harmer, 2002), and liquid immiscibility may not be a
major factor in the carbonatite genesis (Lee & Wyllie,
1998). Direct evidence for trace element fingerprints of
mantle-derived carbonate-rich melts was recently pro-
vided by experimental results of Blundy & Dalton (2000)
and Adam & Green (2001). Their work demonstrated
that cpx-melt partition coeflicients for HREE, Ti, Zr
and Rb are higher by factors of 5-200 for carbonate
melts than for silicate melts, whereas partition coefficients
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for LREE, Sr and Nb show less fractionation. Those
workers inferred that low degrees of partial melting of
carbonated mantle lherzolite should produce carbonate-
rich melts with elevated incompatible element con-
centrations, steep REE patterns and marked depletions
of Ti and Zr (but not necessarily Nb), consistent with
signatures inferred for the initial metasomatic liquid in
this study.

We would like to emphasize that the reactive porous
flow is an essential mechanism to produce strong LREE
fractionation (high La/Ce, La/Nd) and highly variable
enrichment patterns In metasomatic peridotites (re-
gardless of whether the metasomatic melt was carbonatite
or silicate). As discussed above, no known type of mantle-
derived melt, including carbonatites, is likely to produce
REE + Sr patterns similar to those in Spitsbergen
Type-1 xenoliths, either by simple mixing or equilibrium
mineral-melt partitioning, without the chromatographic
effects of melt percolation (see also Ionov et al., 2002).
Conversely, porous melt flow can fractionate silicate
basaltic liquids to produce extremely high La/Ce and
La/Nd ratios (Fig. 19). Therefore, it is more correct to
attribute the U-shaped or ‘spoon-shaped” REE patterns
in mantle rocks [fig. 5g and h of Downes (2001)] to
‘percolation’ metasomatism rather than ‘carbonatite’
metasomatism even if carbonate-rich melts are considered
the most likely candidates for the metasomatic media.
Similarly, negative HFSE anomalies (e.g. low Nb/Th
and Nb/La in Type-1 Spitsbergen xenoliths) can be
related to chromatographic effects of porous melt flow
(as a result of precipitation of amphibole near the melt
source) and not be direct signatures of the initial melt
(compare high Nb/Th in Type-2 xenoliths, Figs 11 and
13). These examples further demonstrate that frac-
tionation processes may be as important as melt com-
positions in determining trace element signatures of the
metasomatized mantle (Laurora et al., 2001).

In general, the relative effects of the source composition
and fractionation mechanisms in the metasomatism may
change with distance from the melt source in a generalized
‘metasomatic column’ (1) peridotites hosting the feeder
channel may undergo strong transformation (e.g. dis-
solution of orthopyroxene and formation of wehrlites as
a result of reaction with carbonatites); (2) rocks in the
vicinity of the feeder will approach trace element equi-
librium with the melt or fluid and therefore acquire
strong chemical fingerprints of the metasomatic agent
(Type-2 Spitsbergen xenoliths); (3) trace element patterns
farther in the metasomatic ‘column’ will be increasingly
controlled by metasomatic fractionation mechanisms
(Type-1 Spitsbergen xenoliths). Overall, different sig-
natures of the metasomatic medium in a percolation
column may be spatially detached, depending on relative
matrix-melt element partition coefficients. We have
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shown that marked trace element variations in the Type-
1 peridotites could have been accompanied by only minor
mineralogical and major element effects (precipitation of
<1% clinopyroxene). It follows, for example, that the
absence of characteristic major element (high Ca/Al) or
trace element (low Ti/Eu or Zr/Sm) signatures inferred
for high degrees of ‘carbonatite’ metasomatism in rocks
far from the melt source (like Spitsbergen Type-1 xeno-
liths) does not rule out a carbonate-rich composition of
the initial metasomatic medium.

LREE enrichments and negative HFSE anomalies in
mantle rocks can possibly be implanted by subduction-
related silicate melts or water-rich fluids (Zanetti et al.,
1999). These melts or fluids, in particular, are believed
to be strongly depleted in Nb and Ta (high Th/Nb and
La/Nb ratios) and enriched in Pb, Sr, Ba and alkalis
(Nakamura et al., 1985; Hofmann, 1988; Woodhead,
1989). However, negative Pb anomalies (high Ce/Pb)
and high Nb abundances in Type-2 xenoliths (Figs 11
and 13) appear to argue against such an alternative.
Peridotites enriched by subduction-related fluids should
probably also show stronger enrichments in Rb and Cs
(Churikova et al., 2001) than most of the Spitsbergen
xenoliths (note fairly low Rb and Cs contents in the
amphiboles, Tables 4 and 5, I'ig. 8b and d). Notably, a
combination of depletion in Pb and enrichment in Nb
1s an unlikely feature to be found in mantle rocks meta-
somatized by subduction-related fluids.

SUMMARY

(1) The protolith for the lithospheric mantle beneath
Spitsbergen was created by moderate to high degrees of
partial melting and melt extraction from a fertile source.
The melting residues were then metasomatized with
melts or fluids that intruded the upper levels of the
lithospheric mantle via a network of veins and high-
porosity zones in the wall-rock peridotite.

(2) The initial melt was probably a carbonate-rich
silicate liquid, strongly enriched in highly incompatible
trace elements, with negative anomalies of Zr, Hf, Ta,
Ti and Pb and a small positive anomaly of Sr relative to
adjacent REE, and with high Nb/Ta and Zr/Hf ratios.
An involvement of subduction-related melt source is not
likely.

(3) The reactive porous flow in the vicinity of conduits
that involved crystallization of amphibole created meta-
somatic patterns approaching equilibrium with the initial
melt. Melt composition evolved continuously as its frac-
tion decreased as a result of percolative fractional crys-
tallization. At larger distances from the local melt sources
the evolved liquid or fluid produced largely ‘anhydrous’
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assemblages with highly fractionated LREE. The meta-
somatic zoning in wall-rocks was ‘frozen’ when local
sources of percolating melt were exhausted.

(4) Very high and variable La/Ce, La/Nd and possibly
Sr/Nd ratios in LREE-enriched metasomatic peridotites
worldwide are consistent with ‘chromatographic’ frac-
tionation during reactive porous melt flow rather than
simple mixing with an enriched melt (either silicate or
carbonatite). Negative Nb—Ta anomalies far from the
melt source can be produced by melt percolation through
amphibole-bearing peridotites.

(5) Chemical and mineralogical fingerprints of a meta-
somatic medium are strongest near its source (¢.g. a vein),
whereas trace element patterns farther in the metasomatic
‘column’ are increasingly controlled by metasomatic frac-
tionation mechanisms.
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