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Seismic inversion for the parameters of two orthogonal
fracture sets in a VTI background medium

Andrey Bakulin∗, Vladimir Grechka‡, and Ilya Tsvankin‡

ABSTRACT

Characterization of naturally fractured reservoirs of-
ten requires estimating parameters of multiple fracture
sets that develop in an anisotropic background. Here, we
discuss modeling and inversion of the effective parame-
ters of orthorhombic models formed by two orthogonal
vertical fracture sets embedded in a VTI (transversely
isotropic with a vertical symmetry axis) background
matrix.

Although the number of the microstructural (physi-
cal) medium parameters is equal to the number of ef-
fective stiffness elements (nine), we show that for this
model there is an additional relation (constraint) be-
tween the stiffnesses or Tsvankin’s anisotropic coef-
ficients. As a result, the same effective orthorhombic
medium can be produced by a wide range of equiva-
lent models with vastly different fracture weaknesses and
background VTI parameters, and the inversion of seis-
mic data for the microstructural parameters is nonunique
without additional information. Reflection moveout of

PP- and PS-waves can still be used to find the frac-
ture orientation and estimate (in combination with the
vertical velocities) the differences between the normal
and shear weaknesses of the fracture sets, as well as the
background anellipticity parameter ηb. Since for penny-
shaped cracks the shear weakness is close to twice the
crack density, seismic data can help to identify the domi-
nant fracture set, although the crack densities cannot be
resolved individually.

If the VTI symmetry of the background is caused by
intrinsic anisotropy (as is usually the case for shales), it
may be possible to determine at least one background
anisotropic coefficient from borehole or core measure-
ments. Then seismic data can be inverted for the frac-
ture weaknesses and the rest of the background param-
eters. Therefore, seismic characterization of reservoirs
with multiple fracture sets and anisotropic background is
expected to give ambiguous results, unless the input data
include measurements made on different scales (surface
seismic, borehole, cores).

INTRODUCTION

In our previous papers on seismic fracture characterization
(Bakulin et al., 2000a,b,c), we discussed a series of typical reser-
voir models with one or two vertical fracture sets. If two frac-
ture sets are orthogonal to each other and the background
matrix is azimuthally isotropic, the effective medium is or-
thorhombic with a horizontal symmetry plane. [For seismic sig-
natures of models with nonorthogonal fracture sets, see papers
by Liu et al. (1993), Sayers (1998), and Bakulin et al. (2000c).]

Inversion of seismic data for the parameters of two orthog-
onal fracture sets embedded in a purely isotropic background
is described by Bakulin et al. (2000b; hereafter referred to as
Paper I). Although orthorhombic symmetry is generally de-
fined by nine stiffnesses or Tsvankin’s (1997) parameters, for
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the model from Paper I only six of them are independent; they
are expressed through the four compliances (or weaknesses)
of the two fracture sets (Bakulin et al., 2000a,b) and the two
Lamé parameters of the background. Paper I introduces prac-
tical methodologies for estimating the fracture weaknesses us-
ing reflection moveout and/or amplitudes. Note that reflection
seismic data have to be supplemented with the vertical veloc-
ities (or reflector depth) in order to resolve the anisotropic
coefficients and invert them for the fracture weaknesses.

The rock matrix, however, is often intrinsically anisotropic,
which makes fracture characterization considerably more com-
plicated. Another orthorhombic model treated in Paper I did
have a VTI background, but it contained only one vertical
fracture set. Here, we extend the previous results to a more
complicated orthorhombic medium formed by two orthogonal
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fracture sets embedded in a VTI background matrix. Since ver-
tical transverse isotropy is defined by five independent stiff-
nesses or Thomsen’s (1986) parameters, the total number of
microstructural (physical) parameters increases to nine. We ex-
plore the possibility of estimating both the VTI background pa-
rameters and fracture weaknesses from seismic data and show
that the inversion is nonunique without additional information.

ANALYTIC FORMULATION

Effective stiffness matrix

We consider a model containing two orthogonal sets of paral-
lel vertical fractures embedded in a VTI background medium.
In the long-wavelength limit, such a model is orthorhombic
with two vertical symmetry planes parallel to the fractures
(Appendix A).

Since we intend to relate fracture parameters to dimension-
less anisotropic coefficients, it is convenient to replace the frac-
ture compliances KN , KV , and KH (e.g., Schoenberg and Sayers,
1995) by dimensionless weaknesses 1N , 1V , and 1H (Bakulin
et al., 2000a,b):

1N = KN c11b

1+ KN c11b
, 1V = KV c44b

1+ KV c44b
,

(1)
1H = KH c66b

1+ KH c66b
.

For simplicity, we assume that the shear weaknesses 1V and
1H for each fracture set are identical,

1V = 1H = 1T , (2)

which reduces the number of model parameters for a given
fracture orientation from 11 (five background and six fracture
parameters) to nine. If the background were isotropic, assump-
tion (2) would make the fractures rotationally invariant with
equal shear compliances (KV = KH ). However, since in VTI
media c44 6= c66, KV differs from KH even if1V =1H . Only for
weak anisotropy (small weaknesses and small anisotropy pa-
rameters of the host rock) can the difference between c44 and
c66 be ignored, and setting1V =1H is equivalent to KV = KH .

The compliance matrix of the effective medium is obtained
in Appendix A [equation (A-2)] using the linear-slip theory
(e.g., Schoenberg and Sayers, 1995). Inverting matrix (A-2)
and using equations (1) and (2) yields the following stiffness
matrix of the effective medium:

c =



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


=



c̃1

∣∣∣∣∣∣∣ 0

0

∣∣∣∣∣∣∣ c̃2


.

(3)
Here 0 is the 3× 3 zero matrix, and the matrices c̃1 and c̃2 can
be written as

c̃1= 1
d

c11b l1 m3 c12b l1 m1 c13b l1 m2

c12b l1 m1 c11b l3 m1 c13b l2 m1

c13b l1 m2 c13b l2 m1 c33bl4

 , (4)

c̃2=
c44b(1−1T2) 0 0

0 c44b(1−1T1) 0

0 0 c66b
(1−1T1) (1−1T2)

(1−1T11T2)

,
(5)

where

l1 = 1−1N1, l2= 1− r1N1, l3= 1− r 21N1,

l4 = 1− r ′(1N1 +1N2)+ r (2r ′ − r )1N11N2,
(6)

m1 = 1−1N2, m2= 1− r 1N2, m3= 1− r 21N2,

r = c12b

c11b
, r ′ = c2

13b

c11bc33b
, d= 1− r 21N11N2.

Note that in VTI media the coefficient c12b can be expressed
through c11b and c66b, so the effective stiffness matrix is deter-
mined by five background parameters and four fracture weak-
nesses. Only eight stiffnesses, however, are independent be-
cause c11, c22, c12, c13, and c23 are related by the constraint

c13 (c22 + c12)= c23 (c11 + c12) , (7)

which follows directly from equation (A-3).
Since equation (7) involves only elements of the submatrix

c̃1, this equation remains valid even if we introduce different
shear weaknesses in the vertical and horizontal directions for
each fracture set [this is also clear from equation (A-2)]. The
constraint (7) was previously given by Schoenberg and Helbig
(1997) for orthorhombic media containing a single fracture set
in a VTI background.

Approximate anisotropic parameters

Equations (3)–(6) allow us to express Tsvankin’s (1997)
anisotropic parameters in terms of the fracture weaknesses
1T1,2 and 1N1,2. Tsvankin (1997) used the similarity between
the Christoffel equation in TI media and symmetry planes of
orthorhombic media to extend Thomsen (1986) notation to or-
thorhombic anisotropy. The parameters ε(1,2), δ(1,2), and γ (1,2)

are defined in the two vertical symmetry planes of orthorhom-
bic media by analogy with vertical transverse isotropy. Another
coefficient, δ(3), is defined in the horizontal symmetry plane.
Combined with the vertical velocities of the P-wave and one
of the split S-waves, these seven anisotropic parameters fully
describe an orthorhombic medium with a known orientation
of the symmetry planes. Tsvankin (1997) and Grechka et al.
(1999) show that this Thomsen-style notation is much more
convenient in seismic velocity analysis and inversion than the
stiffness coefficients.

For weakly anisotropic models in which the weaknesses and
the background anisotropic coefficients are much smaller than
unity, the effective parameters of orthorhombic media can be
simplified by linearizing them in1T1,2,1N1,2, εb, δb, and γb. The
structure of the weak-anisotropy approximation can be under-
stood from the “addition rule” discussed in Paper I. For a model
with two fracture sets, any linearized effective anisotropic co-
efficient ε is given by

ε= εb + ε ISO
f 1 + ε ISO

f 2 , (8)
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where εb is the corresponding anisotropic coefficient of the
unfractured background and ε ISO

f 1 and ε ISO
f 2 are the coefficients

due to each fracture set embedded separately in a reference
isotropic medium. In our case, the reference model should have
the ratio VS/VP of the S- and P-wave velocities close to that of
the actual VTI background.

Symmetry plane [x2, x3].—The anisotropic parameters with
the superscript “(1)” are defined in the symmetry plane [x2, x3],
which is parallel to the first set of fractures and orthogonal to
the second set. In the absence of the second set and background
anisotropy, the [x2, x3]-plane would coincide with the isotropy
plane of the transversely isotropic medium with a horizontal
symmetry axis (HTI) associated with the first set of fractures.
Therefore, we can expect those parameters to be largely inde-
pendent of the properties of the first fracture set. On the other
hand, removing both fracture sets would make the parameters
in the [x2, x3]-plane (and, for that matter, in any other vertical
plane) equal to the anisotropic parameters of the background
VTI medium.

Indeed, the linearized anisotropic coefficients in the [x2, x3]-
plane depend only on the weaknesses of the second fracture
set and the corresponding background parameters:

ε(1) = εb − 2g (1− g)1N2 , (9)

δ(1) = δb − 2g [(1− 2g)1N2 +1T2], (10)

γ (1) = γb − 1T2

2
, (11)

η(1) ≡ ε(1) − δ(1)

1+ 2δ(1)
= ηb + 2g [1T2 − g1N2] , (12)

where g≡V2
S0/V2

P0 is the squared ratio of the vertical S- and P-
wave velocities in the background, and ηb≡ (εb−δb)/(1+ 2δb).
The coefficients ε(1), δ(1), and γ (1) are a subset of the core pa-
rameters defined by Tsvankin (1997), while η(1) is a measure
of anellipticity in the [x2, x3]-plane needed (along with the pa-
rameters η(2) and η(3) defined below) for time processing of
P-wave data in orthorhombic media (Grechka and Tsvankin,
1999a).

As expected from the above discussion, equations (9)–(12)
are identical to the corresponding expressions given in Paper I
for the linearized anisotropic coefficients of orthorhombic me-
dia due to a single fracture set (orthogonal to the x2-axis) em-
bedded in a VTI background. Also, the fracture-related terms
in equations (9)–(12) coincide with those for a fracture set in a
purely isotropic background with the squared vertical-velocity
ratio g (Bakulin et al., 2000a).

Symmetry plane [x1, x3].—Similarly, the linearized anisotro-
pic coefficients in the symmetry plane [x1, x3] are controlled
by the weaknesses of the first fracture set and the background
anisotropy. In agreement with the symmetry of the model, the
expressions for the parameters ε(2), δ(2), γ (2), and η(2) are anal-
ogous to equations (9)–(12):

ε(2) = εb − 2g (1− g)1N1, (13)

δ(2) = δb − 2g [(1− 2g)1N1 +1T1], (14)

γ (2) = γb − 1T1

2
, (15)

η(2) ≡ ε(2) − δ(2)

1+ 2δ(2)
= ηb + 2 g [1T1 − g1N1]. (16)

Symmetry plane [x1, x2].—The remaining anisotropic coef-
ficient δ(3) defined in the horizontal symmetry plane [x1, x2] is
given by

δ(3)= 2g[1N1 −1T1]− 2g [(1− 2g)1N2 +1T2]. (17)

The linearized δ(3) is exactly the same as for the model with two
fracture sets in a purely isotropic background (Paper I) because
the horizontal plane in VTI media is the plane of isotropy.

The anellipticity coefficient η(3) in the horizontal plane is
given by

η(3)= 2g [1T1 − g1N1]+ 2g [1T2 − g1N2] . (18)

Relationship between the anisotropic coefficients.—If the
background were isotropic, the anisotropic parameters in each
vertical symmetry plane would satisfy the following constraints
(Paper I):

γ (i )= 1
4g

[
δ(i ) − ε(i ) 1− 2g

1− g

]
, (i = 1, 2) . (19)

Those constraints do not hold individually in the presence of
anisotropy in the background. However, as follows from equa-
tions (9)–(11) and (13)–(15), a valid constraint can be obtained
by subtracting equations (19) for i = 1 and i = 2, which cancels
the background coefficients:

γ (2) − γ (1)= 1
4g

[
δ(2) − δ(1) − (ε(2) − ε(1))1− 2g

1− g

]
.

(20)
Note that equation (20) can be also derived by linearizing the
exact constraint (7) in the anisotropic coefficients.

ESTIMATION OF FRACTURE PARAMETERS

General analysis

The two fracture sets are aligned with the vertical symmetry
planes of the effective orthorhombic medium. The symmetry-
plane azimuths can be found from seismic data using the po-
larization vectors of the split S-waves (or PS-waves) at vertical
incidence or the orientations of the NMO ellipses of pure or
converted reflections from horizontal interfaces (Paper I).

The parameters ε(1,2), δ(1,2), γ (1,2) govern the azimuthally de-
pendent NMO velocities of P-waves and split S-waves from
horizontal reflectors. As discussed in detail by Grechka et al.
(1999) and in Paper I, those coefficients can be obtained by
combining the NMO ellipses of horizontal P and S (or con-
verted PS) events with the vertical P- and S-wave velocities. An
efficient algorithm for reconstructing NMO ellipses from 3-D
wide-azimuth data was presented by Grechka and Tsvankin
(1999b), who also developed a correction of normal moveout
for lateral velocity variation. The remaining anisotropic param-
eter, δ(3), can be estimated from the NMO ellipse of dipping
P events or (with less accuracy) from P-wave nonhyperbolic
moveout (Grechka and Tsvankin, 1999a). Finally, the squared
vertical-velocity ratio g is close to the ratio of the vertical trav-
eltimes of the P-wave and fast S-wave (or it is possible to use
the fast PS-wave).
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Therefore, seismic data may constrain seven anisotropic
coefficients (ε(1,2), δ(1,2,3), γ (1,2)) which depend on seven mi-
crostructural model parameters (1N1,2,1T1,2, εb, δb, and γb). If
all anisotropic coefficients were independent, it might be pos-
sible to invert them for the fracture weaknesses and the VTI
background coefficients. However, the exact constraint (7) and
its weak-anisotropy counterpart (20) show that only six out of
seven anisotropic coefficients are independent. Hence, we can
expect that there is a family (set) of equivalent models which
produce the same anisotropic coefficients (or the same stiff-
nesses) of the effective orthorhombic model.

Equivalent models

To verify the existence of equivalent models, we conducted
a numerical test based on the exact equations for the effec-
tive anisotropic coefficients. The input effective parameters
were as follows: ε(1)= 0.06, ε(2)= 0.01, δ(1)= 0.02, δ(2)=−0.07,
γ (1)= 0.05, γ (2)=−0.01, and δ(3)=−0.07. The underlying frac-
ture model was described by the background parameters
VS0/VP0= 0.5, εb= δb= γb= 0.1, and the fracture weaknesses
1N1=1T1= 0.2 and 1N2=1T2= 0.1.

The value of γb was varied from 0.09 to 0.18, and for each
γb within this interval the exact anisotropic coefficients were
inverted for the weaknesses 1N1,2, 1T1,2, and the background
parameters εb and δb. Smaller values of γb < 0.09 were not con-
sidered because they produce negative weaknesses which are
unphysical. Although values of γb > 0.18 yield plausible weak-
nesses, they were also excluded because the corresponding
background parameters become unrealistically large (εb > 0.5
and δb > 0.5; see Thomsen, 1986). The inversion results are
marked by small dots in Figure 1. Increasing γb leads to an in-

FIG. 1. Equivalent fracture models which produce the effective
orthorhombic parameters given in the text. The background co-
efficient γb is varied from 0.09 to 0.18, which leads to a mono-
tonic increase in all other parameters. The crosses mark the
actual model parameters. (a) 1T1 versus 1T2; (b) 1N1 versus
1N2; (c) δb versus εb.

crease in all inverted parameters, which helps us to understand
the correspondence between the three plots. The maximum
error in the effective anisotropic coefficients of all models dis-
played in Figure 1 does not exceed 0.003. Clearly, the family
of equivalent models includes a wide range of weaknesses and
background VTI parameters.

Constrained parameter combinations

Although the ambiguity in the inversion discussed above
prevents us from estimating the individual values of the mi-
crostructural parameters, it is still possible to infer some useful
information about the fractures and the VTI background. Ac-
cording to the weak-anisotropy approximations (9)–(16), the
effective parameters of the orthorhombic model constrain the
following quantities:

1T1 −1T2 = 2
(
γ (1) − γ (2)), (21)

1N1 −1N2 = ε(1) − ε(2)

2g(1− g)
, (22)

ηb = η(1) + η(2) − η(3)

2
. (23)

Since the shear weakness is close to twice the crack density
(for penny-shaped cracks; see Paper I), equation (21) implies
that seismic data can detect the dominant fracture set and es-
timate the difference in the crack densities. Note that the term
[γ (1)−γ (2)] is close to the fractional difference between the ver-
tical velocities of split shear waves (Tsvankin, 1997). Therefore,
the difference in the shear weaknesses can be found directly
from the time delay between the fast and slow S-waves at ver-
tical incidence.

According to equation (22), the coefficients ε(1) and ε(2) can
be used to evaluate the difference between the saturations of
the two fracture sets because the normal weakness1N is usually
large for dry cracks and vanishes for isolated fluid-filled ones
(Bakulin et al., 2000a). However, if fluid-filled cracks are con-
nected to pore space, interpretation of1N becomes ambiguous.
Finally, the η coefficients of orthorhombic media, which can be
determined solely from P-wave moveout data (Grechka and
Tsvankin, 1999a), constrain the anellipticity coefficient ηb of
the VTI background.

The above conclusions are supported by Figure 1, where
all inverted parameters closely follow linear trends. However,
to test the accuracy of the weak-anisotropy equations (21)–
(23), Figure 2 reproduces the differences1T1−1T2 and1N1−
1N2 and the parameter ηb from Figure 1. The variations of all
three parameter combinations within the family of equivalent
models do not exceed±0.035 (for1T1−1T2 and ηb) and±0.06
(for 1N1 −1N2), which confirms the weak-anisotropy result.

Figure 3 shows the results of inverting the exact equations for
1T1 −1T2,1N1 −1N2, and ηb. The errors in the estimated pa-
rameter combinations in Figure 3 are close to those introduced
in the input anisotropic coefficients.

Additional information for the inversion

Estimating only the differences in the weaknesses of the two
fracture sets may be insufficient for reservoir characterization.
Since we are missing just one equation, a priori knowledge of
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one of the model parameters can help to resolve the rest of
them using seismic data.

For example, one or more background VTI coefficients may
be known from laboratory measurements on rock samples or
from borehole data. Indeed, the average fracture spacing in
situ often is much larger than the dimensions of rock samples
(e.g., Schoenberg and Sayers, 1995) or the scale of borehole
surveys. In contrast, seismic waves probe the reservoir at a
much larger scale and provide an estimate of effective long-
wavelength anisotropy due to both the fractures and the back-
ground medium.

Even if fracturing occurs at a fine scale comparable to the
rock-sample dimensions, the background parameters can still
be evaluated by making velocity versus pressure laboratory
measurements (Vernik, 1993; Bakulin, 1995). With increasing
confining pressure, cracks or fractures (especially dry) tend to
close, and the elastic parameters of the sample become close
to those of the unfractured rock. Extrapolating the obtained
background parameters back to the low-pressure range using

FIG. 2. The differences 1T1 − 1T2 (a), 1N1 − 1N2 (b), and
the parameter ηb (c) computed from the inversion results in
Figure 1.

FIG. 3. Inversion of the exact anisotropic coefficients ε(1,2),
δ(1,2), γ (1,2), and η(3) for the differences in the weaknesses
1T1 − 1T2, 1N1 − 1N2 and the background anellipticity co-
efficient ηb. The input parameters were distorted by Gaussian
noise with the standard deviation 0.03. The dots mark the ac-
tual parameter values; the bars correspond to the ± standard
deviation in each parameter.

Murnaghan’s theory (Bakulin, 1995) can give a reasonably ac-
curate estimate of the in-situ background properties (e.g., for
shales). This methodology, however, is sensitive mostly to the
intrinsic component of the matrix anisotropy and does not ac-
count for the contribution of thin layering to the background
VTI model. Alternatively, in some cases the background pa-
rameters may be determined at adjacent unfractured reservoirs
with a similar lithologic composition.

Special cases

Here we consider several special cases in which certain re-
lationships between the model parameters reduce the number
of unknowns to be determined from the data. In principle,
such a simplification of the model may help to overcome the
nonuniqueness in the inversion. However, as shown below,
by introducing relations between the fracture parameters, we
create additional constraints [the constraint (7) remains valid
for all our models] on the effective anisotropic coefficients,
and the number of unknowns still exceeds the number of
measurements. Some practically important special cases,
along with the corresponding constraints, are listed below. For
completeness, the same special cases are analyzed in terms of
fracture compliances in Appendix A.

1. Identical shear or normal weaknesses.

If the shear weaknesses 1T1 and 1T2 are equal to each other,
the anisotropic parameters satisfy an additional constraint,
γ (1)= γ (2), or [using equation (20)]

δ(1) − δ(2)

1− 2g
= ε

(1)− ε(2)

1− g
.

For1N1=1N2, we also lose an independent equation because
ε(1)= ε(2).

2. Identical fracture sets.

In this case, 1T1=1T2 and 1N1=1N2. However, we acquire
two additional constraints, δ(1)= δ(2) and ε(1)= ε(2). Such a
medium is close to VTI, but the horizontal plane is not a plane
of isotropy because δ(3) 6= 0.

3. One fracture set is dry.

Following Schoenberg and Sayers (1995), we assume that if
the first fracture set is dry, in the limit of weak anisotropy
1N1=1T1/g (see also Bakulin et al., 2000a). Then the δ

coefficients satisfy an additional constraint: δ(3)= δ(1) − δ(2).

4. Both fracture sets are dry.

Then1N1=1T1/g and1N2=1T2/g, which leads to two addi-
tional constraints, δ(1) − δ(2)= ε(1) − ε(2) and δ(3)= δ(1) − δ(2).

The above constraints can be used to identify the special
features of the model (e.g., whether the sets are identical, have
the same shear weakness, etc.) from seismic data. However,
for all four cases discussed here even a priori knowledge of
those features is not sufficient to overcome the ambiguity in
the inversion and resolve the microstructural parameters.

There is at least one model, however, for which the effec-
tive anisotropic coefficients can be inverted for all fracture
and background parameters. Suppose one of the sets contains
isolated fluid-filled cracks, so that 1N1= 0 (see Bakulin et al.,
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2000a). Then, as follows from the weak-anisotropy approxima-
tions (9)–(17), the model parameters can be found as

εb = ε(2), (24)

1N2 = εb − ε(1)

2g(1− g)
, (25)

1T1 = δ(1) − δ(2) − δ(3)

4g
, (26)

γb = γ (2) + 1T1

2
, (27)

1T2 = 2
(
γb − γ (1)), (28)

δb = δ(2) + 2g1T1. (29)

Note, however, that estimation of all parameters except for
εb and 1N2 requires a measurement of the coefficient δ(3) (or
η(3)) that has no influence on the NMO ellipses of horizontal
events. As discussed above, δ(3) can be obtained from dip or
nonhyperbolic moveout of P-waves (Grechka and Tsvankin,
1999a).

CONCLUSIONS

Two orthogonal sets of vertical fractures embedded in a
VTI background produce an effective orthorhombic model
described by nine stiffnesses or Tsvankin’s (1997) parame-
ters. Using the linear slip theory, we expressed the effective
anisotropic coefficients through the fracture weaknesses and
VTI background parameters. Under the assumption of weak
background and fracture-induced anisotropy, each anisotropic
coefficient is obtained by simply summing up the contributions
of the VTI background and both fracture sets. The fracture-
related terms are computed for each fracture set embedded
separately into a purely isotropic host rock with the velocities
close to those of the true VTI background. Those concise ap-
proximations help to elucidate the relationship between the
effective orthorhombic model and the physical properties of
the fractures.

In principle, it is possible to find the azimuths of the verti-
cal symmetry planes and estimate all nine parameters of or-
thorhombic media from multicomponent, wide-azimuth seis-
mic data (Paper I). Eight parameters (all except for δ(3)) can
be found by combining the NMO ellipses of P- and split
S-waves (or converted PS-waves) with the vertical velocities
(or reflector depth). The coefficient δ(3) can be determined from
P-wave reflection traveltimes using dipping events or nonhy-
perbolic (long-spread) moveout.

Next, the effective orthorhombic model has to be inverted
for the fracture and background parameters. The azimuths of
both fracture sets coincide with those of the vertical symmetry
planes and can be found from either shear-wave polarizations
at vertical incidence or the orientation of the NMO ellipses of
pure or converted waves. Since the underlying physical model
is described by five VTI background parameters and four frac-
ture weaknesses, the number of unknown microstructural pa-
rameters is equal to the number of the effective stiffnesses.
However, for this model only eight effective stiffnesses turn
out to be independent, and seismic data alone do not provide
enough information for unambiguous fracture characteriza-
tion. We show that there exists a broad range of fracture models

producing exactly the same anisotropic coefficients and, there-
fore, the same seismic signatures.

The only well-constrained parameter combinations are
the differences between the normal (1N1−1N2) and shear
(1T1−1T2) fracture weaknesses and the anellipticity coeffi-
cient ηb of the background. Therefore, seismic data allow us
to identify the predominant fracture set that has the larger
shear weakness (i.e., the higher crack density) and estimate
the difference between the crack densities of the two sets. It is
quite difficult, however, to make any conclusions about frac-
ture saturation just from the difference between the relevant
weaknesses 1N1 and 1N2.

To resolve the fracture parameters individually, seismic data
can be supplemented by additional information from bore-
hole or laboratory measurements. Since seismic anisotropy
is a scale-dependent phenomenon, in some cases fine-scale
laboratory experiments can give accurate estimates of the
anisotropic background parameters, whereas reflection seismic
data are influenced by both fracture-induced and background
anisotropy. With at least one background parameter known
a priori, the inversion of seismic data for the fracture weak-
nesses and the remaining background parameters becomes un-
ambiguous. Therefore, characterization of complex fractured
reservoirs with multiple fracture sets and an anisotropic back-
ground matrix requires integrating reflection seismic data with
measurements on other scales.
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APPENDIX A

EFFECTIVE COMPLIANCE OF A MEDIUM WITH TWO FRACTURE SETS

General form of the compliance matrix

Here we obtain the compliance matrix of two orthogonal
sets of parallel vertical fractures in a VTI background matrix.
The compliance matrix sb of the background is given by

sb ≡ c−1
b =



s11b s12b s13b 0 0 0

s12b s11b s13b 0 0 0

s13b s13b s33b 0 0 0

0 0 0 s44b 0 0

0 0 0 0 s44b 0

0 0 0 0 0 s66b


, (A-1)

where cb is the stiffness matrix and s12b= s11b − s66b/2 (Hood,
1991).

As in our previous papers (Bakulin et al., 2000a,b,c), the in-
fluence of fractures on the effective stiffnesses is incorporated
using the linear slip theory (Schoenberg and Sayers, 1995). One
of the main advantages of this theory is the simplicity of the
expression for the effective compliance matrix that can be ob-
tained by adding the excess fracture compliances to the com-
pliance sb of the background. If the fracture planes are per-
pendicular to the axes x1 (first set) and x2 (second set), and
the fractures are described by the normal compliance KN and
two shear compliances KV (in the vertical direction) and KH (in
the horizontal direction; see Bakulin et al., 2000a), the effective
compliance takes the form

s ≡ c−1=



s11b + KN1 s12b s13b 0 0 0

s12b s11b + KN2 s13b 0 0 0

s13b s13b s33b 0 0 0

0 0 0 s44b + KV2 0 0

0 0 0 0 s44b + KV1 0

0 0 0 0 0 s66b + KH1 + KH2


. (A-2)

Note that the first fracture set contributes only to s11, s55,
and s66, whereas the second set contributes to s22, s44, and s66.
Matrix (A-2) corresponds to an orthorhombic medium with an
additional constraint

s13= s23. (A-3)

Deconstruction of the compliance matrix

By “deconstruction” (or decomposition) we mean the pro-
cess of obtaining the background and fracture parameters
from measured effective stiffnesses or compliances (Hood

and Schoenberg, 1989). In the compliance formulation, the
deconstruction process reduces to solving a system of linear
equations. Here, we discuss the deconstruction of matrix (A-2)
under the assumption that the background medium has VTI
symmetry.

Evidently, it is impossible to estimate 11 unknowns (five
background and six fracture parameters) from nine linear
equations corresponding to the nine stiffnesses of the or-
thorhombic model. For example, the parameters s66b, KH1,
and KH2 cannot be resolved individually because they con-
tribute to a single stiffness element s66. To overcome this am-
biguity, we introduce a simplifying assumption about the ro-
tational invariance of both fracture sets (KV1= KH1= KT1,
KV2= KH2= KT2), which reduces the number of unknowns
to nine. However, due to the additional constraint (A-3), the
effective orthorhombic medium is described by only eight in-
dependent compliances, and the deconstruction requires addi-
tional information.

Since the effective compliances s12, s13, and s33 are equal to
the corresponding background compliances, the remaining six
unknowns (s66b, s44b, KN1, KT1, KN2, and KT2) have to be de-
termined from the following five equations:

s66b

2
+ KN1 = s11 − s12, (A-4)

s66b

2
+ KN2 = s22 − s12, (A-5)

s44b + KT2 = s44, (A-6)

s44b + KT1 = s55, (A-7)

s66b + KT1 + KT2 = s66. (A-8)

Let us examine several special cases, which were discussed
in the main text in terms of the stiffnesses and anisotropic
coefficients.

1. Identical shear or normal compliances.

For equal shear compliances (KT1= KT2), s44= s55 and equa-
tions (A-6) and (A-7) coincide with each other. If the normal
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compliances of the two sets are equal (KN1= KN2), equa-
tions (A-4) and (A-5) become identical because s11= s22.
Therefore, in either case there is not enough information for
the deconstruction because four equations have to be solved
for five unknowns.

2. Identical fracture sets.

Combining the two previous assumptions (KN1= KN2 and
KT1= KT2) makes s11 equal to s22 and s44 equal to s55. The
remaining three equations are still insufficient to constrain the
four unknowns (KN1, KT1, s44b, and s66b).

3. One fracture set is dry.

According to Schoenberg and Sayers (1995), for dry fractures
KN = KT (in our case, KN1= KT1). Then one of the equations is
no longer independent due to the constraint that follows from

equations (A-4)–(A-8):

s55 + s66 − s44= 2(s11 − s12). (A-9)

Thus, there are only four equations for the five unknowns (KN1,
KN2, KT2, s44b, and s66b).

4. Both fracture sets are dry.

In this case, KN1= KT1 and KN2= KT2, which reduces the num-
ber of unknown parameters to four. However, then the effec-
tive compliances satisfy two additional constraints,

s22 − s11= s44 − s55, s11 + s22 − 2s12= s66, (A-10)

which preclude us from inverting equations (A-4)–(A-8) for
the fracture and background parameters.

As discussed in the main text, the model parameters can be
resolved uniquely if one of the fracture sets is known to be
formed by isolated fluid-filled cracks (KN1= 0).

View publication statsView publication stats


