

Palaeogeography, Palaeoclimatology, Palaeoecology 186 (2002) 127-143

www.elsevier.com/locate/palaeo

Ecological and physiological variability of Sr/Ca and Ba/Ca in mammals of West European mid-Würmian food webs

Vincent Balter^{a,b,*}, Hervé Bocherens^{c,1}, Alain Person^b, Nathalie Labourdette^b, Maurice Renard^b, Bernard Vandermeersch^a

^a UMR 5809 CNRS-Bordeaux I 'Laboratoire d'Anthropologie des Populations du Passé', Avenue des Facultés, 33405 Talence, France
 ^b FRE 2400 CNRS-Paris VI 'Paléontologie et Stratigraphie', Université Pierre et Marie Curie, 4, Place Jussieu, 75252 Paris Cedex 05,

France

^c UMR 162 INRA-CNRS-Paris VI 'Laboratoire de Biogéochimie Isotopique', Université Pierre et Marie Curie, 4, Place Jussieu, 75252 Paris Cedex 05, France

Received 18 December 2000; accepted 7 June 2002

Abstract

The Middle to Upper Paleolithic transition in Western Europe is characterized, from an ecological point of view, by large-ungulate communities adapted to cold climatic conditions. The aim of this study is to reconstruct the trophic relationships prevailing in these paleoecosystems which have no equivalent in the modern world. Bone and dentine remains representing five mammalian assemblages dated around 35 ka BP, one of which included a Neandertal specimen, are investigated for Sr/Ca and Ba/Ca of bioapatites. Examination of the N content and U+REE luminescence of bulk material, Ca/P ratios, and Mn and Ca contents of purified samples demonstrates that the Sr/Ca and the Ba/Ca ratios of bone and dentine samples are not significantly altered by diagenesis. As a consequence of the biological discrimination of Sr and Ba in relation to Ca, Sr/Ca and Ba/Ca values are impoverished with increasing trophic position and are strongly correlated within a trophic web. The slopes of the linear regressions between Sr/Ca and Ba/Ca of foregut and hindgut herbivores. When coexisting collagen is preserved, the Sr+Ba/Ca and δ^{15} N are strongly correlated. The distribution of values suggests that the δ^{15} N range is mainly controlled by the variability of soil conditions whereas the δ^{13} C range may be related to resource availability. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: ungulates; bone; Sr/Ca; Ba/Ca; 15N/14N; 13C/12C; Europe; Pleistocene

¹ Present adress: UMR 5554 CNRS-Montpellier II 'Laboratoire de Paléontologie, Institut des Sciences de l'Evolution', Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex, France.

* Corresponding author. Present adress: UMR 5125 CNRS-Lyon I 'PaléoEnvironnement et PaléobioSphère', Université Claude Bernard, Campus de la Doua, Bâtiment Géode, Bd du 11/11/1918, 69622 Villeurbanne Cedex, France. Fax: +33-4-72-44-16-88.

E-mail address: vincent.balter@univ-lyon1.fr (V. Balter).

1. Introduction

The goal of this study is to determine, after assessing the preservation of biogenic strontium/ calcium and barium/calcium ratios (Sr/Ca and Ba/ Ca respectively), the physiological, trophic and ecological constants resulting from the comparison of Sr/Ca and Ba/Ca of bioapatites and stable nitrogen and carbon isotopes (δ^{15} N and δ^{13} C respectively) of preserved collagen in bone and dentine remains of extinct (around 35 ka BP) West European mammals. West European continental environments coeval with marine oxygen isotopic stage 3 were characterized by steppic landscapes, cold climate with arid and humid oscillations and populated by large-mammalian communities (Guthrie, 1990). It is in this ecological setting, the so-called mammoth steppe, that Neandertal populations disappeared around 30 ka BP (Wolpoff, 1996). δ^{13} C and δ^{15} N of preserved bone and dentine collagen have been used to reconstruct the paleotrophic relationships of some Neandertals and coexisting fauna (e.g. Bocherens et al., 1997). However, this approach is limited by frequently poor collagen preservation. In addition, collagen stable isotopic composition is only a proxy for the source of the consumed proteins (Ambrose and Norr, 1993). Measurement of Sr/ Ca and Ba/Ca of bioapatite may solve these problems.

The process of biological discrimination of Sr and Ba relative to Ca (biopurification of Ca) expresses the positive factor by which Sr and Ba decrease in transferring Ca through physiological reactions (e.g. Comar et al., 1957; French, 1961). Elias et al. (1982) demonstrate that Sr/Ca and Ba/ Ca decrease in bone of animals with ascending trophic position. This phenomenon was extensively used to reconstruct paleodiet (e.g. Sillen, 1992; Sillen and Lee-Thorp, 1994; Gilbert et al., 1994; Ezzo et al., 1995). More recently, Burton et al. (1999) have shown that the relative decrease of Sr/Ca and Ba/Ca seems constant in a mammalian food web. For this studied case (i.e. a food web at the Michigan/Wisconsin frontier), the concomitant decrease of Sr/Ca and Ba/Ca could be illustrated by the following relationship: log(Sr/ Ca = -1.316+0.57×log(Ba/Ca) (Burton et al., 1999). However, this relationship could be compared with other available Sr/Ca and Ba/Ca data (Gilbert et al., 1994; Elias et al., 1982). Fig. 1 shows that the biological discrimination of Sr and Ba relative to Ca seems constant and is independent of the ecological setting as indicated by the parallel slopes of regression lines. This led to a new equation, obtained by averaging regression lines A, B and C: $\log(Sr/Ca) = -0.98(\pm 0.3) +$

Fig. 1. Compilation of log(Sr/Ca) and log(Ba/Ca) in ecosystems located in Southwestern Cape (South Africa; A; squares; Gilbert et al., 1994), Yosemite Park (USA; B; diamonds; Elias et al., 1982) and the Michigan/Wisconsin frontier (USA; C; circles; Burton et al., 1999). Coefficients x and y of equation $\log(Ba/Ca) = x\log(Sr/Ca) + y$ are estimated to be 1.97 (A), 1.62 (B) and 1.71 (C), and 1.8 (A), 0.9 (B) and 2.3 (C), respectively. Omnivores and fish taxa were removed from the survey of Burton and co-workers. A shift towards negative values of log(Sr/Ca), probably due to higher Sr content in the soils, characterizes ecosystem C. As a consequence, it appears that the mean plant Sr/Ca of Wisconsin (C) overlaps the mean herbivore Sr/Ca of California (B) and South Africa (A). Ba values seem to be more constant and each trophic level may be characterized by a specific range of Ba/Ca ratios and log(Ba/Ca) of carnivorous species are lower than an average value of -3.6, which gives a threshold value of 95-100 ppm of Ba considering a mean value of 38% of Ca in bone.

 $0.55(\pm 0.05) \times \log(Ba/Ca)$, illustrating the current known variability.

In paleontological studies, original Sr/Ca and Ba/Ca are often altered by diagenesis. Despite the variability and the non-predictability of diagenetic histories, the chemical state of fossil tooth and bone is affected by precipitation of secondary minerals and chemical alteration of biogenic apatite (Kohn et al., 1999). The former is thought to be significantly eliminated by adapted chemical pretreatment (Sillen and Legeros, 1991; Price et al., 1992; Balter et al., 2001), while the latter definitively overprints the original chemistry. Because of the very low uranium and rare earth elements (REE) contents in living phosphatic organisms (Hinners et al., 1998; Buseth et al., 1998), U+REE content evaluation has been proposed as a proxy of the chemical alteration of the Ca site (Kohn et al., 1999). REE could also be adsorbed onto the surface of the bioapatite crystals (Gaft et al., 1996; Reynard et al., 1999). As an alternative of wet process determination of U+REE, one convenient technique to assess the REE patterns in bioapatite (semi-quantitative determination and mechanisms of mineral trapping) is achieved by cathodoluminescence (Gaft et al., 1996). Despite the fact that each REE possesses an intrinsic sensitivity to luminescence which could be enhanced or diminished by the crystal-chemical environment (Blanc et al., 2000), typical concentrations at the ppm level could be detected for Sm^{3+} , Gd^{3+} and Dv^{3+} by cathodoluminescence (Barbarand and Pagel, 2001). Samples that have passed the U+REE test must be pre-treated by cleaning methods, in order to diminish the diagenetic effects (see 3. Methods for discussion). Subsequently, comparisons of Sr and Ba contents with diagenetic proxies were performed.

2. Material

Bone is usually studied because of its constant turnover (Sillen and Lee-Thorp, 1994). However, teeth, composed of enamel and dentine, represent the most abundant remains in fossil deposits. Dentine is known to be affected by remodelling that takes place in the pulp chamber and root canals (Hillson, 1986).

All discussed sites are shown in Fig. 2. Caves of Camiac (Camiac-et-Saint Denis, Gironde. France), Scladina (Sclayn, Namur, Belgium), Unikoté (Iholdy, Pyrénées-Atlantiques, France) were frequently used as denning area by hyenas Crocuta crocuta (Guadelli, 1987; Simonet, 1992; Michel, 1994). La Berbie (Castels, Dordogne, France) is a swallow hole where the assemblage of bone is considered to be the result of accidentally fallen animals (Madelaine, personal communication). La Roche à Pierrot (Saint-Césaire, Charente-Maritime, France) is a rock shelter where bones were accumulated by Homo sapiens

Fig. 2. Geographic location of the sites discussed in the text.

neanderthalensis (Lévêque and Vandermeersch, 1980; Patou-Mathis, 1993). Bone and dentine remains were collected in layers corresponding to an average age of 35 ka BP. Calibrated ¹⁴C on collagen vield: Camiac layer D, 35.1 ± 2 kyr BP (Guadelli, 1987); Scladina layer 1A, > 36.2 and 38.7 ± 1.5 kyr BP (Gilot, 1992); La Berbie, 35.8 ± 5 , 33.5 ± 2.5 , 33.2 ± 2.7 kyr BP (Madelaine, unpublished report). Thermoluminescence values of six burnt flints give an average age of 36.3 ± 2.7 kyr BP for layer EJOPsup. of Saint-Césaire (Mercier et al., 1993). Overlying bones at Unikoté give an age of calibrated ${}^{14}C$ 30 ± 1.6 kyr BP (Michel, unpublished report). In summary, these ages support the interpretation that these communities were contemporaneous. In addition, faunal compositions are homogeneous, with the exception of the additional presence of wild boar at Unikoté and Saint-Césaire, and reindeer at Saint-Césaire and La Berbie (Guadelli, 1987; Simonet, 1992; Patou-Mathis, 1993; Michel, 1994). One hundred and forty samples have been collected, representing 14 taxa. Description of the samples is listed in the Appendix. Samples of soils were collected in the field at Scladina and Unikoté. For Camiac and Saint-Césaire, they were separated from adjoining bones.

3. Methods

3.1. Luminescence of U+REE

Because luminescence of U occurs in the form of free UO_2^{2+} , and REE promote luminescence when they are located in the Ca site of apatite (Gaft et al., 1996), luminescence spectra were performed on raw and heated samples (1100 K during 2 h). Cathodoluminescence spectra were recorded with a Jobin-Yvon H10 UV spectrometer attached to a JEOL JSM 840A scanning electron microscope. Operating conditions are given in Perseil et al. (2000).

3.2. Cleaning method and elemental measurements

The diagenetic occurrence of Sr and Ba is mainly linked to the precipitation of secondary carbonates and Mn–Fe oxyhydroxydes respectively (Kohn et al., 1999). Efficiency of removing secondary minerals on trace element chemistry by cleaning methods has been discussed by several authors (e.g. Tuross et al., 1989; Price et al.,

Fig. 3. Cathodoluminescence spectra from samples corresponding to a given locality. Intensity of luminescence of raw sample is very low, displays no UO_2^{2+} luminescence pattern (Gaft et al., 1996), but is characteristic of Mn activation in calcite (de Rafélis et al., 2000). Heated samples display more intense luminescent peaks whose wavelength does not correspond to a REE activation in phosphates. Heating sample promotes organic matter destruction and diffusion of REE in the apatite lattice. Heated samples show a systematic set of broad peaks at 330, 360, 480, 590 and 725 nm, which are not characteristic of REE luminescence.

1992). Recently, Nielsen-Marsch and Hedges (2000) have demonstrated that commonly used acetic acid pretreatment is efficient for removing secondary carbonates for histologically well preserved material, i.e. with high protein content (%N). This is due to the fact that remaining collagen, protecting pristine bioapatite (Person et al., 1996), is not dissolved by acetic acid. For samples with low protein content, Nielsen-Marsch and Hedges (2000) found that acetic acid pretreatment results in hypermineralized remaining bioapatite. In order to isolate the less altered bioapatite, the solubility profile procedure was developed by Sillen and Legeros (1991). However, this method or is time-consuming and as a first approach the same cleaning procedure was applied to samples

same cleaning procedure was applied to samples with high and low nitrogen content (Balter et al., 2001). Methods and analytical conditions for Ca, P, Sr, Ba and Mn determination in washed powders were according to Balter et al. (2001). Soluble fractions of soil samples were analyzed according to the Shirahata et al. (1980) procedure after extensive rinsing to remove modern water fraction. All results are expressed in log for Sr/Ca and Ba/Ca. For quality control, the standard NIST SRM 1400 'Bone ash' was used for all elements and results are presented in the Appendix.

3.3. Collagen quantity and extraction and isotopic analysis

Collagen quantity was measured by means of a CHN elemental analyzer. Procedures for collagen extraction and δ^{13} C and δ^{15} N analyses are given in Bocherens et al. (1997). The isotope ratios are expressed for carbon as δ^{13} C vs. PDB and for nitrogen vs. atmospheric N₂: $\delta = [(R_{sample} - R_{standard}) - 1] \times 1000$ where *R* stands for 13 C/ 12 C or 15 N/ 14 N.

4. Results

4.1. Diagenetic proxies

About 50 samples (10 for each site) were studied for their luminescence spectra. All raw samples were poorly luminescent and displayed a single broad peak at 620 nm (Fig. 3). According to Blanc et al. (2000) and Roeder et al. (1987), REE in apatite promote sharp intense luminescent

Fig. 4. Cathodoluminescence spectra of a micrite containing 500 μ g/g of Mn characterized by a luminescence peak at 615 nm. Corresponding lime exhibits a set of luminescent peaks whose wavelengths match those of heated fossil bone samples.

peaks whose wavelength does not correspond to those observed in the case of heated samples, which are due to Mn in lime (Fig. 4). Since detection limits of REE luminescence activation are poorly defined and luminescence efficiency varies for each element and can be either enhanced or suppressed by impurities, precise measurement of REE cannot be direct. However, absence of REEactivated luminescence allows an estimation of the magnitude range of the possible REE contents below the ppm level (Roeder et al., 1987). Table 1 summarizes Fisher test results performed between Ca, Sr, Ba and Mn of bioapatite powders after chemical pretreatments for each locality. Mn content is not correlated with Ba content, indicating that possible Fe-Mn-bearing oxyhydroxydes etched by nitric acid contain no additional Ba. Values of Ca seem to be not correlated with Sr. attesting to a lack of significant amount of Srbearing carbonates. The fact that no remnant diagenetic Ca exists is strengthened by the bioapatitic Ca/P ratio (Fig. 5), whose lower and upper boundaries of 1.57 and 1.8 (molar ratio), given by Legeros and Legeros (1984), correspond to 1.99 and 2.33 (weight ratio). Organic content (%N) is not correlated with either Sr or Ba content (r = -0.136 and r = -0.122 respectively).None of these diagenetic proxies shows a clear relationship with Sr and Ba contents: thus, it could be a posteriori inferred that diagenesis has not significantly altered paleobiological Sr/Ca and Ba/Ca ratios.

4.2. Sr and Ba in bone and dentine

Concomitant analyses of bone and dentine of a

Table 1

Results	for	r and	P of	Fisher	tests	between	Sr	and	Ca,	and
Ba and	Mn	perfor	med	for each	h loca	ılity				

Site	r		Р	
	Sr,Ca	Ba,Mn	Sr,Ca	Ba,Mn
Camiac	0.267	0.115	0.2584	0.6346
La Berbie	0.284	-0.318	0.5137	0.4609
Saint Césaire	0.226	0.293	0.1006	0.0312
Scladina 1A	0.293	-0.106	0.1310	0.5952
Unikoté	0.112		0.6739	

Fig. 5. Ca/P ratios of the analyzed samples, plotted in relation to modern variability. Values of the lower and upper boundaries are given by Legeros and Legeros (1984), table 4, p. 377.

given individual show that Sr contents vary slightly among tissues, but that the Ba difference is null whatever the Ba contents may be (Fig. 6). Systematic shifts are observed in $\delta^{15}N$ in collagen of bone and dentine (Bocherens and Mariotti, 1997). Similarities in Sr and Ba contents of bone and dentine suggest that those shifts are probably due to metabolic processes involving isotopic fractionation rather than diachronic steps of bone and dentine mineralization with different dietary intakes. Clearly, more work is needed to find out which factors determine these $\delta^{15}N$ variations between bone and dentine in different mammals species. At this stage, it seems justified to consider both tissues as equivalent as far as trace element control is concerned.

Fig. 6. Comparison of dentine and bone Sr, Ba and Mn. For one specimen, values of Sr of bone mimic those of dentine with a mean difference of 23 $\mu g/g$, except in the wild boar (70 $\mu g/g$) which may be due to its omnivorous diet. Congruence of Ba in these two tissues is very pronounced. Values of Mn are plotted as well to show that the correlation of Sr and Ba in bone and dentine is not related to diagenesis.

4.3. Sr/Ca, Ba/Ca, $\delta^{13}C$ and $\delta^{15}N$

At all sites, values of log(Sr/Ca) and log(Ba/Ca) are lower for carnivorous than for herbivorous species (Fig. 7). Omnivorous species when they are present have intermediate log(Sr/Ca) and log (Ba/Ca) values (Sr/Ca: P = 0.0185, Camiac; P = 0.0061, Saint-Césaire; P = 0.0003, Scladina 1A; P=0.0019, Unikoté; Ba/Ca: P=0.0023, Camiac; P < 0.0001, Saint-Césaire; P = 0.2124, Scladina 1A; P = 0.0283, Unikoté). Despite the nonsignificant difference in Ba/Ca at Scladina 1A, these results are in agreement with predicted trophic position (see Appendix). Log(Sr/Ca) ranges and absolute values are highly variable and distinctive of each food web. Nitrogen content (%N) below 0.4% does not allow collagen extraction (Bocherens et al., 1997): for instance, %N at Saint-Césaire was extremely low, and only few samples yield isotopic values (Drucker et al.,

1999; Appendix). C/N values (Appendix) of all extracted residues are characteristic of fresh collagen, comprised between 2.9 and 3.6 (DeNiro, 1985). Collagen δ^{13} C and δ^{15} N values for Scladina 1A have been presented and discussed previously (Bocherens et al., 1997), as well as for Saint-Césaire (Drucker et al., 1999). The distribution of carbon and nitrogen isotopic compositions at Camiac and la Berbie is consistent for upper Pleistocene mammals from Western Europe. The range of δ^{13} C values ($\Delta\delta^{13}$ C) is 2.8%, 2.8% and 3.9‰ at Camiac, La Berbie and Scladina 1A respectively, whereas $\Delta \delta^{15} N$ is 4.6%, 4.8% and 7.8% at Camiac, La Berbie and Scladina 1A respectively. $\Delta \delta^{15} N$ at Camiac reflects an unexpectedly low ¹⁵N enrichment from herbivores to carnivores. The high $\delta^{15}N$ value (9.4%) of the Ursus spelaeus specimen at Camiac is surprising, considering the omnivorous diet of these animals (Bocherens and Mariotti, 1997).

Fig. 7. Relation of log(Ba/Ca) and log(Sr/Ca) in each site, representing all samples. Omnivorous taxa are represented by gray filling. They are statistically different in log(Ba/Ca) (P < 0.0001) and log(Sr/Ca) (P < 0.0001) from herbivorous and carnivorous taxa. Distribution of all samples seems to be constrained by log(Ba/Ca) and log(Sr/Ca).

5. Discussion

5.1. Sr/Ca and Ba/Ca distribution

We will discuss Sr/Ca and Ba/Ca results of soils, within animals, and their covariation along trophic webs in comparison to modern data. Soils containing calcite are unsuitable for the determination of their Sr/Ca and Ba/Ca ratios. This is especially the case for sediments surrounding bones (see the Appendix for Camiac and Saint-Césaire). Thus, providing original Sr/Ca and Ba/Ca ratios of soils remains feasible but extreme care in the sampling must be taken. Herbivore distributions (Fig. 7) reveal that bovines and reindeer are enriched in Ba by comparison to horses, rhinoceros and mammoths (P = 0.0005, Camiac; P = 0.0002, Saint-Césaire; P = 0.0027, Sclayn;

P = 0.833, La Berbie; P = 0.28, Unikoté). Bovines and reindeer are ruminants with foregut microbial fermentation, whereas horses, rhinoceros and mammoths are monogastric herbivores. It is thus proposed that the distinction in Ba/Ca between the two groups is due to the difference in gastrointestinal tracts. Examination of Ba/Ca values of Gilbert et al. (1994) reveals that in antelope these are significantly (P=0.09) higher than in other herbivores, and the same trend is observed for deer in the study of Burton et al. (1999). The enrichment of Ba in bovines and reindeer is possibly related to the long-lasting retention of digesta (Uden et al., 1982) in addition to the more efficient cellulose degradation. Consequently, trace element release could be more important in foregut herbivores compared to hindgut herbivores. However, no direct evidence supports this assumption, and the Ba enrichment observed in ruminants might also be linked to diet. This must be confirmed by further studies.

The coefficient of variation (CV) of Sr/Ca and Ba/Ca within herbivore taxa are low. The mean CV, calculated within herbivore taxa for each locality, gives for Sr/Ca and Ba/Ca respectively: $9 \pm 6\%$ and $18 \pm 12\%$ with n=8 at Unikoté; $5 \pm 1\%$ and $23 \pm 6\%$ with n = 23 at Scladina 1A; $15 \pm 9\%$ and $16 \pm 10\%$ with n = 32 at Camiac; $19 \pm 7\%$ and $17 \pm 10\%$ with n = 36 at Saint-Césaire. Low CV at Unikoté might be due to the small number of samples analyzed. Except for the very low CV of Sr/Ca at Scladina 1A, other values are compatible with the so-called biological threshold value of 20% (Sillen, 1992). However, it is not clear whether diagenesis involves a reduction of CVs by an equilibration process of bones with soil matrices (Sillen, 1992), or an increase of CVs due to the presence of heterogeneous amounts of Sr and Ba in secondary minerals (Burton et al., 1999). The strong statistical differences in Ba/Ca between foregut and hindgut herbivores, and in Sr/Ca and Ba/Ca between herbivores, omnivores and carnivores suggest that biological rather than diagenetic phenomena (which would imply a 'taxa-selective' diagenesis) account for the observed distribution in Sr/Ca and Ba/Ca ratios.

Calculated slopes of linear regressions between log(Sr/Ca) and log(Ba/Ca) of present paleoecosystems are similar to the modern ones (Fig. 8), supporting the fact that the fossil Sr/Ca and Ba/Ca ratios are biologically constrained (Burton et al., 1999). However, detailed observations of modern ecosystems reveal that concomitant transfer of Sr and Ba is not constant. For instance, Gilbert et al. (1994) claimed that leopards and hyraxes have predator-prey relationships. Using the definition of the observed ratio (OR) for Sr (given by (Sr/Ca)_{bone}/(Sr/Ca)_{precursor} or (Sr/Ca)_{predator}/(Sr/ Ca)_{prev}; Comar et al., 1957) we obtain a value of 0.36 for OR_{Sr} and 0.46 for OR_{Ba} . These results do not support the fact that leopards and hyraxes have predator-prey relationships because Ba is less segregated in comparison to Sr as was demonstrated by Elias et al. (1982), with martens and voles ($OR_{Sr} = 0.16$ and $OR_{Ba} = 0.09$) and Burton et al. (1999) with the pair bobcat/hare ($OR_{Sr} = 0.3$

-1.5 Camiac Saint-Césaire -2 Scladina 1A Unikoté Log (Ba/Ca) -2.5 -3 -3.5 -4 -4 -3.5 -3 -2.5 -2 -1.5 Log (Sr/Ca)

Fig. 8. Comparison of average ± 1 S.D. for herbivores and carnivores from Camiac (vertical bars), Saint-Césaire (circles), Scladina 1A (no design) and Unikoté (horizontal bars). For each site, herbivores are represented by open symbols, carnivores by gray filled symbols and soils by black filled symbols. Modern variability is illustrated by the gray area, representing average ± 2 S.D.

and $OR_{Ba} = 0.12$). To evaluate the proportion by which Sr is segregated in relation to Ba, one can divide the OR_{Ba} used between carnivores and herbivores by the equivalent OR_{Sr} ($K_{Ba/Sr}$). This gives $K_{\text{Ba/Sr}}$ values of 0.55 for ecosystems B and C, and 0.85 for ecosystem A, meaning that, in comparison to ecosystems B and C. Ca is less biopurified in Ba in relation to Sr. This leads to the evidence that concomitant biosegregation of Sr and Ba is more complex than the so-called relative reduction of 10:5:1 (French, 1961), which should theoretically yield a $K_{\text{Ba/Sr}}$ ratio of 0.2. In paleoecosystems D, E, F and G, $K_{\text{Ba/Sr}}$ is evaluated to be 0.64, 0.64, 0.69 and 0.65 respectively, which is in intermediate position with the variability of available modern data. Differential transfer of Sr and Ba at the level of one organism needs to be evaluated more accurately to progress in the understanding of their trophic behavior.

5.2. Elemental and isotopic variations

Trophic positions of different species are very

Fig. 9. Distribution of log(Sr+Ba/Ca) in relation of $\delta^{15}N$ (on the left) and $\delta^{13}C$ (on the right) averaging (±1 S.D.) by taxon. Isotopic values were obtained from collagen extracted from the same aliquot on which trace element contents were determined (see Fig. 7 for symbol description).

well illustrated using log(Sr+Ba/Ca) and δ^{15} N variations, especially because Sr and Ba are added to promote a higher ranking effect (Fig. 9). The Camiac and La Berbie communities are characterized by a higher range of log(Sr+Ba/Ca) (-3.27 to -2.67 and -3.29 to -2.91 respectively) and a lower range of δ^{15} N (5.2–9.8 and 3.7–8.5 respectively) in comparison to Scladina 1A (-3.14 to -2.81 and 4.3–11.5). This may be explained by a higher diversity of geological substrates, and therefore of soil conditions of living areas of herbivores at Camiac and La Berbie in comparison to Scladina 1A. This is supported by the results of Schoeninger (1985), who observed that scattering of Sr and δ^{15} N increases with sampling area in a modern food web. This hypothesis is strengthened by the low $\delta^{15}N$ increase (2.5–3‰) from herbivores to carnivores at Camiac. Reported values of fossil reindeer and mammoth $\delta^{15}N$ (Iacumin et al., 2000), interpreted in terms of variation of aridity in Eurasia during the Pleistocene-Holocene period, may also be explained by different soil characteristics leading to various $\delta^{15}N$ in plants (Mariotti et al., 1980). Ranges of δ^{13} C at Camiac and La Berbie are lower than at Scladina 1A. These features, in addition to the lower range of log(Sr+Ba/Ca) at Scladina 1A in comparison to Camiac and La Berbie, are possibly related to a higher availability of resources (leading to an averaging of δ^{13} C) at Camiac and La Berbie in comparison to Scladina 1A (Feranec and Mac-Fadden, 2000).

Preliminary results concerning the Neandertal of Saint-Césaire reveal that this human specimen was quasi-strictly carnivorous (Balter et al., 2001). A quantification of the proportions of meat vs. plants was possible through tests of different foodstuffs containing known amounts of Sr and Ca with the model proposed by Burton and Wright (1995). It was shown that while there is a wide variability in Sr/Ca of the plants used in the model, the Sr/Ca of the bone of the Neandertal is only predicted with a quasi-totality of meat in the diet (97 wt%) and a plant or fish supplementation. In addition, the association of plant and fish is impossible in any proportion. The collagen extracted from the same sample of the Neandertal gives δ^{13} C and δ^{15} N values of -19.8%and 11.4‰ respectively (Bocherens and Drucker, 2002), which indicate a diet predominantly based upon meat consumption. As the single use of the trace elements or stable isotopes in many cases gives conflicting dietary interpretations (Sillen and Lee-Thorp, 1994; Schoeninger, 1985), we suggest that these methods should be applied together in further studies of paleodiet in order to better constrain possible dietary sources and their relative proportions.

6. Conclusion

The absence of relationship between different physico-chemical proxies of diagenesis and Sr and Ba content of bone and dentine indicates that diagenesis effects on Sr/Ca and Ba/Ca ratios are not significant. Slopes of log(Sr/Ca) and log (Ba/Ca) regression lines calculated for past ecosystems differ slightly from modern ones due to the variability of the amplitude of biopurification of Ca in relation to Sr and Ba. Rough extrapolation of experimental surveys does not reflect ecological reality and the degree by which an element is segregated in comparison to the other must be further investigated. An unexpected enrichment of Ba in ruminants in comparison to monogastric taxa is observed and must be confirmed with modern data. We suggest that by comparing the range of log(Sr+Ba/Ca), δ^{15} N and δ^{13} C, paleoecological interpretations are possible in terms of habitat area and resource availability. Further investigations at 30-40 ka BP West European prehistoric sites will probably shed light upon paleoenvironments coeval to the Neandertalian replacement by Modern humans.

Acknowledgements

The authors are grateful to C. Lécuyer and A.-M. Lézine for helpful comments on an earlier version of the manuscript. We thank A. Sillen and an anonymous reviewer for their constructive criticism, J.L. Guadelli, F. Lavaud-Girard, F. Lévêque and P. Michel for supplying fossil samples, and P. Blanc for luminescence analyses and related discussions. Thanks are due to Daniel Billiou and the staff of the Laboratoire de Biogéochimie Isotopique for their help in running the stable isotopic measurements. This study benefited from the financial support of the CNRS program 'Paléoenvironnement, Evolution des Hominidés'.

Appendix

Results of bone and dentine Ca/P, Sr, Ba, log(Sr/Ca), log(Ba/Ca), Mn, N and corresponding collagen δ^{13} C and δ^{15} N for all fossil samples, and results of international standard NIST SRM 1400 'Bone ash'. Numbers in parentheses and in brackets indicate number of analyses and variation coefficient (%) respectively. n.m.: not measured; n.e.c.: no extractable collagen.

Analysis iumber G.B.S.	Analysis number L.B.I.	Excavation number	Species	Predicted diet	Sample	Bioapa	tite				Collage	n			Bulk	
						Ca/P	Sr	Ba	Log (Sr/Ca)	Log (Ba/Ca)	Yield	C/N	$\delta^{13}C$	$\delta^{15}N$	Mn	Ν
							(µg/g)	(µg/g)	(11, 21)	(======)	(mg/g)		(‰)	(‰)	(µg/g)	(%)
o Dombio																
211_031	LBR 300	I B98 M9a 349	Rison priscus	herbiyorous	metatarsus r	23	130	142	-3 44	-34	27.6	3.1	-20.8	47	< 10	1
211-032	LBR 500	LB96 L10a 44	Bison priscus	herbivorous	metatarsus 1	2.5	131	197	-3.43	-3.25	26.1	3.2	-20.2	6.1	40	0.8
211-033	LBR 900	LB96 AV M7bc	Rangifer tarandus	herbivorous	humerus r	2.22	154	282	-3.36	-3.09	18.7	3.2	-19.2	3.7	< 10	0.8
P11-034	LBR 1100	LB90 grotte puits	Rangifer tarandus	herbivorous	mandible	2.52	126	120	-3.45	-3.48	14.6	3.2	-19.1	7.6	< 10	0.0
211-035	LBR 1600	LB91 grotte	Fanus caballus	herbivorous	metacarnus	2.23	130	70	-3 44	-3.72	22.4	3.2	-20.4	7.5	213	0.4
11-036	LBR 1700	LB91 grotte	Equus caballus	herbivorous	femur	2.35	130	38	-3.4	-3.94	36.5	3.2	-20.9	3.5	< 10	1.1
11-037	LBR 1900	grotte	Mammuthus primigenius	herbivorous	femur	2.20	134	161	-3.41	-3.33	11.9	3.2	-21.8	8.5	81	0.3
11-038	LBR 2200	grotte	Coelodonta antiavitatis	herbivorous	cranium	2.25	92	110	-3.57	-3.49	27.6	3.2	-19.6	7.2	343	0.8
amiac	2010 2200	5.000	cocioaonia aniiquitatis	nerorvorous	cramum	2.21	12	110	5.57	5.47	27.0	5.2	19.0	1.2	545	0.0
202		C2-02	Bos sp.	herbivorous	long bone shaft	2.12	231	247	-3.23	-3.2	n.m.					0.8
203		C2-44	Bos sp.	herbivorous	tibia	2.04	171	643	-3.35	-2.78	n.m.					0.4
204		C2-47	Bos sp.	herbivorous	long bone shaft	2.06	225	375	-3.23	-3.01	n.m					1.4
205		D2	Bos sp	herbivorous	long bone shaft	2.08	225	263	-3.23	-3.16	n m					1.2
206		D3-22	Bos sp	herbivorous	tibia	2.00	120	331	-3.49	-3.05	n m					0.5
200	CAM600	D4-8	Bos sp	herbivorous	femur or tibia	1 94	185	310	-3.29	-3.06	35.9	33	-20.4	53	n m	11
209	CAM100	E1-7	Bos sp	herbivorous	femur or tibia	2.01	160	206	-3.38	-3.27	66.9	3.2	-20	61	n m	2.1
210	CAM200	E2-14	Bos sp	herbivorous	femur or tibia	2.09	190	476	-3.32	-2.92	58.7	3.2	-207	6.2	n m	2.1
11	CAM300	E2-64	Bos sp	herbivorous	femur or tibia	2.03	199	299	-3.28	-31	52.3	33	-20.7	7.4	n m	17
213	0.1.1.500	F1-14	Bos sp	herbivorous	long bone shaft	2.05	220	353	-3.23	-3.03	n m	515	20.1	<i></i>		17
308	CAM400	E2-40	Bos sp	herbivorous	tibia	2.18	171	350	-3.32	-3.01	23.4	32	-20.1	8.6	n m	19
109	CAM500	E2-82	Bas sp	herbivorous	tibia	2.16	123	281	-3.5	-3.14	14.4	3 3	-20	6	n m	1.2
14	0.1.1.000	B2-64 (A)	Mammuthus primigenius	herbivorous	femur	2.17	209	134	-3.23	-3.43	n m	515	20	0	132	0.6
15	CAM700	D6	Mammuthus primigenius	herbivorous	humerus	2.06	167	155	-3.34	-3.38	57.2	3.2	-21.2	8.7	57	1.6
16	CAM800	D7	Mammuthus primigenius	herbivorous	femur	2.05	136	135	-3 44	-3.44	32.3	3.2	-21.8	77	< 10	0.8
218	CAM900	C2-51	Megaloceros giganteus	herbivorous	femur	2.05	144	143	-3 44	-3.44	10	3.2	-20	6.4	62	14
06	CAM1000	D2-30	Megaloceros giganteus	herbivorous	long bone shaft	2.17	153	128	-3.41	-3.49	36.8	3.3	-20.1	7.7	129	1
05	CAM1100	C2-55	Cervus elanhus	herbivorous	long bone shaft	2.26	213	138	-3.28	-3.46	24.4	3.3	-20	6.9	116	0.9
307	CAM1200	D8-30	Cervus elaphus	herbivorous	long bone shaft	2.16	120	160	-3.51	-3.39	8.7	3.1	-20.6	6.2	< 10	0.5
222	CAM1400	B2-52	Coelodonta antiauitatis	herbivorous	humerus	2.01	234	98	-3.21	-3.58	27	3.2	-20.1	7.1	< 10	0.8
23	CAM1300	B2-68	Coelodonta antiauitatis	herbivorous	humerus	2.09	309	137	-3.09	-3.44	22.6	3.2	-19.9	8.4	< 10	0.8
44	CAM1500	D6-2	Coelodonta antiquitatis	herbivorous	long bone shaft	1.94	134	120	-3.41	-3.45	78.1	3.2	-20.6	7.1	< 10	2.1
240		E3-90	Coelodonta antiquitatis	herbivorous	long bone shaft	2.11	184	150	-3.33	-3.42	n.m.				n.m.	1.3
226		E6-6	Coelodonta antiquitatis	herbivorous	long bone shaft	1.97	183	94	-3.33	-3.62	n.m.				10	1.3
241		E2-12	Coelodonta antiquitatis	herbivorous	long bone shaft	2.03	156	65	-3.38	-3.76	n.e.c.				57	0.1
27		Ra-1	Coelodonta antiquitatis	herbivorous	long bone shaft	2.1	186	127	-3.31	-3.48	n.m.				70	n.m.
28		Rb-1	Coelodonta antiquitatis	herbivorous	long bone shaft	2.13	206	113	-3.27	-3.53	n.m.				34	n.m.
229		B2-29	Equus caballus	herbivorous	tibia-fibula	2.02	194	136	-3.3	-3.45	n.e.c.				147	0.2
.31		C3	Equus caballus	herbivorous	tibia-fibula	2.14	164	122	-3.37	-3.5	n.m.				< 10	1.6
234		E2-32	Equus caballus	herbivorous	tibia-fibula	2.25	195	254	-3.32	-3.2	n.m.				n.m.	1.6
235		E3-103	Equus caballus	herbivorous	tibia-fibula	2.03	176	143	-3.31	-3.4	n.m.				< 10	1.3
	CAM1600	D6-3	Equus caballus	herbivorous	tibia-fibula	n.m.	n.m.	n.m.	n.m.	n.m.	56.1	3.2	-20.7	5.2	n.m.	n.m.
	CAM1700	D7-24	Equus caballus	herbivorous	tibia-fibula	n.m.	n.m.	n.m.	n.m.	n.m.	40.6	3.2	-20.5	5.2	n.m.	n.m.
:42	CAM1900	C6-18	Crocuta crocuta	carnivorous	long bone shaft	2.19	124	131	-3.51	-3.48	53.1	3.2	-19	9.1	n.m.	2.4
243	CAM1800	D51	Crocuta crocuta	carnivorous	long bone shaft	2.1	137	69	-345	-3.75	72 3	33	-19.3	9.8	n m	2.6

Appendi	ix (<i>Continu</i>	ed).														
Analysis number L.G.B.S.	Analysis number L.B.I.	Excavation number	Species	Predicted diet	Sample	Bioapa	atite				Collage	n			Bulk	
						Ca/P	Sr		Log (Sr/Ca)	Log (Ba/Ca)	Yield	C/N	δ ¹³ C	δ ¹⁵ N	Mn (110/9)	N (%)
		P 2	<i>C</i>		1 1 1 0	2.20	(#8/8)	105	2.47	2.52	((700)	(,,,,,)	(48/8)	(/0)
P301 P215		B2 B2 72	Crocuta crocuta	carnivorous	long bone shaft	2.28	122	105	-3.47	-3.53	n.m.				61	1.2
F313 D244	CAM2000	$B_{2-1/2}$	Unava analasus	carmivorous	oubitus a	2.10	218	04 07	- 5.58	-5.08	57.5	2.2	10.1	0.4	42	2.1
F244 D217	CAM2000	C2-35 (A)	Ursus spetaeus	omnivorous	Leng have shaft	2.07	210	02	- 5.24	-5.00	57.5	5.2	-19.1	9.4		1
P317 D245		C2-35 (B)	Orsus speideus	omnivorous	ting bone shall	2.18	215	121	- 5.29	-5.54	n.m.				n.m.	n.m.
P245 C712		B3-2	Paninera speiaea	carnivorous	libia r.	2.13	145	123	- 5.44	-3.5	n.m.				n.m.	1.9
G/13		SED_C2	Soll		bone sediment	-	98	139	-3.0	-5.45						-
J/10		SED_D2	Soil		bone sediment	-	105	n.m.	-3.57	n.m.						-
J/19 Saint Césai	ire	SED_D4-4	5011		bone sediment	_	/4	131	-3./1	-3.4/						-
P732	RPB 2100	EJOPsup, 14(1V) 258-268	Eauus sp.	herbiyorous	tooth (E+D)	2.15	169	133	-3.3	-3.4	n.e.c.				111	0.1
P736	RPB 300	EJOPsup. E5(IV) 27i	Equus sp.	herbivorous	C (E+D)	2.21	152	116	-3.36	-3.47	n.e.c.				608	0.1
P706	111 2 500	EJOPsup. E5	Rangifer tarandus	herbivorous	mandible	2.19	162	210	-3.32	-3.21	n.m.				n.m.	n.m.
P722		EIOPsup E5	Rangifer tarandus	herbivorous	mandible	2.18	173	247	-3.28	-3.12	n m				167	n m
P723		EIOPsup I4(I) 22i	Rangifer tarandus	herbivorous	metanod	2.10	160	194	-3.28	-3.2	n m				1150	n m
P730	RPB 1100	EIOPsup, $G_5(II)$ 23s	Rangifer tarandus	herbivorous	Mi (F+D)	2.07	190	385	-3.23	-2.93	n.e.c				166	0.1
P746	RPB 1200	EIOP E7(III) 32s	Rangifer tarandus	herbivorous	mandible	2.25	97	230	-3.52	-3.14	9.5	3.2	-18.8	49	801	0.4
P738	RPB 600	EIOPsup G4(II) 23	Magalocaros gigantaus	herbivorous	maxillary	2.09	96	181	-3.53	-3.26	21.7	3.2	-10.8	3.2	10	0.7
P730	RPB 700	EIOPsup, $G4(II)$ 23	Megaloceros giganteus	herbivorous	M2s (E+D)	2.00	82	180	-3.63	-3.20	21.7 n.e.c	5.2	19.0	5.2	804	0.1
P757	KI B 700	EIOPsup E6(II) 25	Carvus alanhus	herbivorous	$M_{1-2i}(D)$	2.12	215	223	-3.27	-3.25	n m				677	0.1 n m
D709		EIOPsup. 15, 22s	Pos sp	herbivorous	matanad	2.25	120	242	-3.27	-3.25	n.m.				019	n.m.
P700		EIOPsup. 15 22s	Bos sp.	herbivorous	metapod	2.1	1/3	246	-3.30	-3.15	n.m.				08/	n.m.
D719		ElOPsup E6(II) 26i	Bos sp.	herbivorous	M2id (D)	2.11	125	240	-2.44	_2.12	n.m.				500	n.m.
D724		EIOPsup. $H6(I)$ 25	Bos sp.	herbivorous	mandible	2.14	125	205	-2.20	-3.12	n.m.				688	n.m.
P725		EIOPsup. $15(1V)$ 24i	Bos sp.	herbivorous	metanod	2.11	1/3	314	-3.38	-3.04	n.m.				734	n.m.
D722	PPP 2500	ElOPsup, $D6(U)$ 2%	Bos sp.	herbivorous	hone (ind)	2.1	150	257	_2 22	-2.11	n.m.				524	0.2
D724	RIB 2500	EIOPsup. $H6(I)$ 25i	Bos sp.	herbivorous	bone (ind.)	2.09	135	257	-3.32	-2.08	n.e.c.				145	0.2
P7/8	RPB 1500	EIOP E7(1) 32s	Bos sp.	herbivorous	$P_{e}(F+D)$	2.02	140	205	-3.38	-3.14	n.e.c.				518	0.1
D740	RIB 1500	EIOP D5(II) 27c	Bos sp.	herbivorous	tooth $(E+D)$	2.21	208	242	_2 22	_2 12	n.e.e.				177	0.5
P750	RPB 1800	EIOP G2(IV) 32	Bos sp.	herbivorous	tooth $(E+D)$	2.28	145	265	-3.22	-3.12	n.e.c.				185	0.2
P751	RPB 1900	EIOP E7(I) 31;	Bos sp.	herbivorous	tooth $(E+D)$	2.20	145	205	-3.30	-3.15	n.e.c.				361	0.5
D757	RTB 1900	EIOP C5(IV) 24	Bos sp.	herbivorous	tooth $(E+D)$	2.29	139	177	-3.55	-3.15	n.e.c.				420	0.2
D752	RIB 2000	EIOP D5(II) 26	Bos sp.	herbivorous	tooth $(E+D)$	2.21	270	152	-3.50	-2.25	n.e.c.				519	0.1
D711	KI B 2200	EIOPool E8(I)	Mammuthus primiganius	herbivorous	M(D)	2.19	104	155	-2.48	-2.22	n.e.c.				421	0.1
D712		ElOPad E8(I)	Mammunus primigenius	harbiyorous	M (D)	2.04	104	132	2.24	2.32					421	
F/15 D721		EIOPour H4(II) 22a	Mammunus primigenius	harbiyorous	M (D)	2.00	195	141	- 5.24	-5.56					107	
D720	D DD 800	EIOPsup. H5(III) 225	Mammuthus primigenius	herbivorous	M(D) M(E+D)	2.15	1/9	140	-3.27	-3.0	n.m.				522	0.1
0711	KI D 000	EIOPsup (III IV) 20a	Coalodonta antimitatio	harbivorous	$M(E \mid D)$ M1 2; (D)	2.05	150	217	-3.34	-3.57	n.c.c.				252	0.1
0714 1715		EJOPsup. (III-IV) 298	Coelodonta antiquitatis	herbivorous	$P_{red}(D)$	2.09	201	217 171	-3.52	-3.17	n.m.				222 122	n.m.
P731	PPR 1700	ElOPsup, C5(III) 22:	Coelodonta antiquitatis	herbivorous	1 2 su(D) tooth (E+D)	2.00	159	1/1	-3.21	-3.27	п.ш. п.е.с				432 501	n.m. 0.1
0747	DDD 1200	EIOP G5/11/ 231	Coalodonta antiquitatis	harbiyaraya	humarus	2.14	100	142	- 3.33	- 2.30	n.e.c.				260	0.1
1 /4/ D728	RFD 1300 DDD 550	EJOF (J)(1V) 248 ELOPsup E6(II) 24: 24:	Coeloaonia antiquitatis	ampivorous	maxillary	2.2 1.00	124	114	-5.45	-3.40	n.e.c.				500	0.1
1 / 20 D727	RFD 330	EIOPsup. $E6(II)$ 241–201 EIOPsup. $E6(II)$ 24: 24:	Sus scroju Sus scroja	omnivorous	Maxinary	1.99	01	122	-3.51	-3.43	n.e.c.				521	0.1
0755	KFD 300	EJOPSup. E0(11) 241-201	Sus scroju Sua acrofa	omnivorous	M2: (D)	1.00	91 100	120	- 5.54	-5.42	n.e.c.				442	0.1
r/33 D754		EJOPSup. H4(IV) 238	Sus scroja Vulnas vulnas	omnivorous	M (D)	2.22	109	118	- 3.55	- 3.51	n.m.				443 509	n.m.
r/34	D DD 2 00	EJOPSup. G/(III) 30s	v uipes vuipes	omnivorous	M (D)	2.2	127	149	- 3.49	-3.42	n.m.				508	n.m.
P/40	RPB 200	EJOP F3(IV) 23s	Carnivore	carnivorous	C (D)	2.04	/6	70	-3.66	-3.7	n.e.c.				117	0.1
P/41	RPB 400	EJOP E6(II) 27s	Carnivore	carnivorous	tibia	2.25	177	144	-3.31	-3.4	n.e.c.		10.5		247	0.1
P/43	RPB 7000	EJOPsup.	Homo sapiens neanderthalensis		fibula	2.13	86	73	-3.57	-3.65	26		-19.8	11.4	801	0.6
G714		SED_RPB H6-G6			bone sediment	_	88	85	-3.61	-3.63						_

Appendi	x (Contini	ued).														
Analysis number L.G.B.S.	Analysis number L.B.I.	Excavation number	Species	Predicted diet	Sample	Bioapa	tite				Collage	'n			Bulk	
						Ca/P	Sr	Ba	Log (Sr/Ca)	Log (Ba/Ca)	Yield	C/N	δ ¹³ C	δ ¹⁵ N	Mn (ug/g)	N (%)
							(46/6)	(µg/g)	2.50	2.11	(116/6)		(700)	(700)	(µ8/6)	(70)
3722 Salaan		SED_RPB H5(IV) 24			bone sediment	-	98	82	-3.59	-3.66						-
soo	\$C2000	SC 87 140	Fanne aaballus	harbiyoroya	upper tooth (D)	2.16	250	00	_2 17	-2 50	18.0	2.2	_21.7	5.2	450	1.4
800	SC4100	SC 89-135	Equus caballus	herbivorous	upper tooth (D)	2.10	255	55 66	-3.10	-3.39	51.7	3.2	-21.7	5.1	450	1.4
801	SC4200	SC 83-304	Equus caballus	herbivorous	upper tooth (D)	2.21	255	72	-3.15	-3.78	/3.0	3.1	-21.7	5	108	1.7
808	SC2500	SC 86-131	Lquus cubunus Megalocerus giganteus	herbiyorous	upper tooth (D)	2.22	275	190	-3.16	-3.32	43.7	3.2	-20.2	5	378	2
804	SC4500	SC 89-94	Ras sn	herbivorous	Pi (D)	2.10	259	132	-3.17	-3.46	35.5	3.2	-20.5	4.8	385	13
805	SC4700	SC 86-21	Bos sp. Bos sp	herbivorous	P3i (D)	2.14	266	277	-3.17	-3.15	32.4	3.2	-20.5	43	354	1.2
806	SC4800	SC 83-282	Bos sp.	herbivorous	Mli (D)	2.18	249	148	-3.18	-3.41	28.6	3.1	-19.9	5.3	584	1.7
307	SC4900	SC85-158	Bos sp.	herbivorous	P3i (D)	2.13	284	261	-3.13	-3.16	29.7	3.2	-20.7	4.4	857	1.7
312	SC600	SC 83-285	Mammuthus primigenius	herbivorous	tooth (E+D)	2.17	267	98	-3.16	-3.59	45.1	3.2	-20.9	8.4	509	1.4
813	SC700	SC 85-121	Mammuthus primigenius	herbivorous	tooth (E+D)	2.17	284	73	-3.13	-3.72	31.7	3.2	-21.5	9.4	365	1.2
802	SC1200	SC 87-126	Coelodonta antiauitatis	herbivorous	P2i (D)	2.23	290	91	-3.14	-3.64	79.4	3.2	-21.1	5.3	937	2.5
809	SC900	SC 82-210	Coelodonta antiquitatis	herbivorous	P2i (D)	2.19	255	118	-3.19	-3.52	86.7	3.2	-20.9	5.5	418	2.8
810	SC1300	SC 87-129	Coelodonta antiquitatis	herbivorous	P2i (D)	2.05	242	53	-3.19	-3.84	44.9	3.2	-20.4	7.5	1302	1.8
811	SC1400	SC 81-205	Coelodonta antiauitatis	herbivorous	P2i (D)	2.17	248	71	-3.19	-3.74	80.8	3.2	-20.6	5.5	280	2.6
14	SC3100	SC 85-130	Ursus spelaeus	omnivorous	mandible	2.36	238	118	-3.2	-3.5	75.7	3.2	-22.5	3.7	1540	2.6
15	SC3300	SC 87-171	Ursus spelaeus	omnivorous	mandible	2.12	243	110	-3.2	-3.55	60.1	3.2	-22.2	6	125	2.3
16	SC3500	SC 87-103	Ursus spelaeus	omnivorous	phalanx II	2.19	217	100	-3.25	-3.59	80	3.2	-21.8	5.1	374	2.1
317	SC3600	SC 82-131	Ursus spelaeus	omnivorous	phalanx II	2.21	282	107	-3.14	-3.56	73.4	3.2	-21.8	3	461	2.1
318	SC3700	SC 86-136	Ursus spelaeus	omnivorous	phalanx II	2.09	261	79	-3.17	-3.69	55.3	3.2	-22	6.1	848	1.4
319	SC3800	SC 83-291	Ursus spelaeus	omnivorous	phalanx II	2.13	239	95	-3.21	-3.61	119.7	3.2	-2.22	5	1283	2.8
320	SC2700	SC 83-295	Ursus spelaeus	omnivorous	I3i (D)	2.14	247	66	-3.2	-3.77	44.1	3.2	-23	6.5	180	1.6
322	SC3000	SC 83-63b	Ursus spelaeus	omnivorous	I3i (D)	2.12	254	102	-3.19	-3.58	95.1	3.2	-22.5	7	308	2.8
323	SC3150	SC 85-130	Ursus spelaeus	omnivorous	P4i (D)	2.26	277	130	-3.19	-3.5	87	3.2	-23.3	4.5	2233	2.9
324	SC3350	SC 87-171	Ursus spelaeus	omnivorous	P4i (D)	2.2	278	128	-3.16	-3.49	77.6	3.2	-23.3	7.3	872	2.4
325	SC300	SC 85-94	Ursus arctos	omnivorous	I3i (D)	2.09	234	353	-3.21	-3.04	62.1	3.2	-20.2	7.1	0	2
326	SC1800	SC 85-150	Crocuta crocuta	carnivorous	phalanx I	2.19	241	83	-3.22	-3.68	62.5	3.2	-20.2	8.8	1322	2.1
27	SC2000	SC 83-93	Crocuta crocuta	carnivorous	phalanx I	2.05	224	53	-3.23	-3.85	110	3.2	-19.7	8.2	86	3.2
28	SC1750	SC 83-93b	Crocuta crocuta	carnivorous	P3i (D)	2.23	237	54	-3.23	-3.88	60.4	3.2	-19.4	11.5	589	1.7
1-001		Sclayn 1A G32	Soil		excavation sediment	-	285	413	-2.75	-2.59						-
11-002		Sclayn 1A G33	Soil		excavation sediment	-	310	421	-2.73	-2.6						-
11-003		Sclayn 1A G34	Soil		excavation sediment	-	285	473	-2.79	-2.57						-
1-004		Sclayn 1A G35	Soil		excavation sediment	-	327	805	-2.78	-2.38						-
nkotė	70.00															
49	Z2-20	Equus caballus	E	numerus I.	2.21	388	181	-3.00	-3.33	n.m.					n.m.	0.5
20 20		C8-30	Equus caballus	te e etc.	udia-fibula	2.03	486	91	-2.9	-3.63	n.e.c.				n.m.	0.3
3U 4C		A1-40	Megaloceros giganteus	nerbivorous	numerus	2.24	530	205	-2.86	-3.27						0.7
40		A1-5 B1 42	Bos sp.	nerbivorous	iemur r.	2.10	430	165	-2.95	-5.5/	n.m.				n.m.	0.7
40		B1-43	Bos sp.	nerbivorous	numerus r.	2.08	318	160	-3.07	-3.37	n.m.				n.m.	0.1
48 12		HS 91 E2 40	воs sp.	nerbivorous	numerus I.	2.07	447	141	-2.91	- 5.42	n.m.				n.m.	0.4
15		E2-49 21(4)	Sus scroja Moloo moloo	omnivorous	cubitus	2.14	381	262	-3.00	-3.10	n.m.				n.m.	0.2
21		21(4) D2 1	Meles meles	carnivorous	tibio	2.01	44Z	105	-2.90	- 5.42	n.m.				n.m.	0.0
322		D2-1	meles meles	carnivorous	ubia	1.85	390	105	-2.97	-3.55	n.m.				n.m.	0.8

40

U

Appendix	(Continue	ed).														
Analysis number L.G.B.S.	Analysis number L.B.I.	Excavation number	Species	Predicted diet	Sample	Bioapat	ite				Collagen			Bul	ý	
						Ca/P	Sr	Ba	Log (Sr/Ca)	Log (Ba/Ca)	Yield C	/N 8 ¹³ (C & ¹⁵	N Mn	Z	
							(g/gµ)	(β/β)			(mg/g)	(%	%) (%	°) (µgл	(%) (g	
P251		C1-191	Crocuta crocuta	carnivorous	tibia l.	2.23	323	4	-3.1	-3.96	n.m.			n.n	. 0.3	
P252		DI-111	Crocuta crocuta	carnivorous	cubitus r.	2.23	309	80	-3.11	-3.69	n.m.			n.n	. 0.3	
P253		E1-2	Crocuta crocuta	carnivorous	humerus 1.	2.27	292	79	-3.13	-3.7	n.m.			n.n	. 1.1	
G717		UNI. II Hz B	Soil		excavation	I	302	772	-2.39	-1.98					I	
G720		UNL II Hz C	Soil		sediment excavation	I	284	167	-2.38	-1.95					1	
1					sediment											
G723		UNI. II Hz A	Soil		excavation sediment	I	251	654	-2.24	-1.82					I	
G724		UNI. I B4	Soil		excavation sediment	I	320	602	-2.06	-1.71					I	
NIST SRM 1400							Sr	Ba	Ca	Ь						
					Certified value		(µg/g) 749	(µg/g) 240	(%) 38 1	(%) 17.9						
					Measured value		246 (27) 545 (27)	248 (11) 1248 (11)	38.9 (21) 16 11	17.2 (25)						
							[,'.]	[10,4]	[0,1]	2						

References

- Ambrose, S.H., Norr, L., 1993. Experimental evidence for the relationship of the carbon isotope ratio of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert, J.B., Grupe (Eds.), Prehistoric Human Bone. Archaeology at the Molecular Level. Springer, Berlin, pp. 1-37.
- Balter, V., Person, A., Labourdette, N., Drucker, D., Renard, M., Vandermeersch, B., 2001. Were Neandertalianns essentially carnivores? Sr and Ba preliminary results of the mammalian palaeobiocoenosis of Saint-Césaire, C.R. Acad. Sci. Paris 332, 59-65.
- Barbarand, J., Pagel, M., 2001. Cathodoluminescence study of apatite crystal. Am. Mineral. 86, 473-484.
- Blanc, Ph., Baumer, A., Cesbron, F., Ohnenstteter, D., Panczer, G., Rémond, G., 2000. Systematic cathodoluminescence spectral analyses of synthetic doped minerals: anhydrite, apatite, calcite, fluorite, scheelite and zircon. In: Pagel, M., Barbin, V., Blanc, Ph., Ohnenstetter, D. (Eds.), Cathodoluminescence in Geosciences. Springer-Verlag, Berlin, pp. 127-160.
- Bocherens, H., Mariotti, A., 1997. Comments on: diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: implications for Pleistocene bears by Bocherens et al. Reply. Palaeogeogr. Palaeoclimatol. Palaeoecol. 128, 362-364.
- Bocherens, H., Billiou, D., Patou-Mathis, M., Bonjean, D., Otte, M., Mariotti, A., 1997. Palaeobiological implications of the isotopic signatures (13C, 15N) of fossil mammals collagen in Scladina Cave (Sclayn, Belgium). Quat. Res. 48, 370-380.
- Bocherens, H., Drucker, D., 2002. Reconstructing Neandertal diet from 120,000 to 30,000 BP using carbon and nitrogen isotopic abundances. Br. Archaeol. Rep. (in press).
- Burton, J.H., Price, T.D., Middleton, W.D., 1999. Correlation of bone Sr/Ca and Ba/Ca due to biological purification of calcium. J. Archaeol. Sci. 26, 609-616.
- Burton, J.H., Wright, L.E., 1995. Nonlinearity in the relationship between bone Sr/Ca and diet: palaeodietary implications. Am. J. Phys. Anthropol. 96, 273-282.
- Buseth, E., Wibetoe, G., Martinsen, I., 1998. Determination of endogenous concentrations of the lanthanides in body fluids and tissues using electrothermal vaporization ICPMS. J. Anal. At. Spectrom. 13, 1039-1049.
- Comar, C.L., Russell, R., Wasserman, R., 1957. Strontiumcalcium movement from soil to man. Science 126, 485-496.
- DeNiro, M.J., 1985. Post-mortem preservation of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317, 806-809.
- de Rafélis, M., Renard, M., Emmanuel, L., Durlet, C., 2000. Apports de la cathodoluminescence à la connaissance de la spéciation du Mn dans les carbonates pélagiques. C.R. Acad. Sci. Paris 330, 391-398.
- Drucker, D., Bocherens, H., Mariotti, A., Lévêque, F., Vandermeersch, B., Guadelli, J.L., 1999. Conservation des signatures isotopiques du collagène d'os et de dents du Pléis-

tocène Supérieur (Saint-Césaire, France): implications pour les reconstitutions des régimes alimentaires des Néandertaliens. Bull. Mém. Soc. Anthropol. Paris 11, 289–305.

- Elias, R.W., Hirao, Y., Patterson, C.C., 1982. The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochim. Cosmochim. Acta 46, 2561–2580.
- Ezzo, J.A., Larsen, C.S., Burton, J.H., 1995. Elemental signatures of human diets from the Georgia Bight. Am. J. Phys. Anthropol. 98, 471–481.
- Feranec, R.S., MacFadden, B.J., 2000. Evolution of the grazing niche in Pleistocene mammals from Florida: evidence from stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 162, 155–169.
- French, N.R., 1961. Review and discussion of barium. In: Schultz, V., Klement, A.W. (Eds.), Radioecology. Reinhold, New York, pp. 557–560.
- Gaft, M., Shoval, S., Panczer, G., Nathan, Y., Champagnon, B., Garapon, C., 1996. Luminescence of uranium and rareearth elements in apatite of fossil fish teeth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 187–193.
- Gilbert, C., Sealy, J., Sillen, A., 1994. An investigation of barium, calcium and strontium as palaeodietary indicators in the Southwestern Cape, South Africa. J. Archaeol. Sci. 21, 173–184.
- Gilot, E., 1992. Sclayn: datation par ¹⁴C du Mousterien final.
 In: 'Recherches aux grottes de Sclayn', Vol. 1, Le Contexte.
 Etud. Rech. Archéol. Univ. Liège 27, 173.
- Guadelli, J.L., 1987. Contribution à l'étude des zoocénoses préhistoriques en Aquitaine (Würm anicen et interstade würmien). PhD thesis, University of Bordeaux I, No. 148.
- Guthrie, R.D., 1990. Frozen Fauna of the Mammoth Steppe: the Story of the Blue Babe. Chicago University Press, Chicago, IL.
- Hinners, T., Hughes, R., Outridge, P., Davis, W.J., Simon, K., Woolard, R., 1998. Interlaboratory comparison of mass spectrometric methods for lead isotopes and traces elements in NIST SRM 1400 Bone Ash. J. Anal. At. Spectrom. 13, 963–970.
- Hillson, S., 1986. Teeth. Cambridge Manuals in Archaeology. Cambridge University Press, Cambridge.
- Iacumin, P., Nikolaev, V., Ramigni, M., 2000. C and N stable isotope measurements on Eurasian fossil mammals, 40 000 to 10 000 years BP: herbivore physiologies and palaeoenvironmental reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 163, 33–47.
- Kohn, M.J., Schoeninger, M.J., Barker, W.W., 1999. Altered states: effects of diagenesis on fossil tooth chemistry. Geochim. Cosmochim. Acta 63, 2737–2747.
- Legeros, R.Z., Legeros, J.P., 1984. Phosphate minerals in human tissues. In: Nriagu, J.O., Moore, P.B. (Eds.), Phosphate Minerals. Springer-Verlag, Berlin, pp. 351–385.
- Lévêque, F., Vandermeersch, B., 1980. Découverte de restes humains dans un niveau castelperronien à Saint-Césaire, Charente-Maritime. C.R. Acad. Sci. Paris 291 (Sér. II), 187–189.
- Mariotti, A., Pierre, D., Vedy, J., Bruckert, S., Guillemot, J.,

1980. The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient. Catena 7, 293–300.

- Mercier, N., Valladas, H., Joron, J.L., Reyss, J.L., 1993. Thermoluminescence dating of the prehistoric site of La Roche à Pierrot, Saint-Césaire. In: Lévêque, F., Backer, A.M., Guilbaud, M. (Eds.), Context of a late Neandertal. Prehistory Press, pp. 15–23.
- Michel, P., 1994. La grotte d'Unikoté (commune d'Iholdy. Pyrénées-Atlantiques): un repaire de hyènes avec des restes humains dans des niveaux würmiens. Données préliminaires. C.R. Acad. Sci. Paris 318 (Sér. II), 837–841.
- Nielsen-Marsch, C., Hedges, R.E.M., 2000. Pattern of diagenesis in bone II: effects of acetic acid treatment and the removal of diagenetic CO₃²⁻. J. Archaeol. Sci. 27, 1151– 1159.
- Patou-Mathis, M., 1993. A taphonomic and paleoethnographic study of the fauna associated with the Neandertal of Saint-Césaire. In: Lévêque, F., Backer, A.M., Guilbaud, M. (Eds.), Context of a late Neandertal. Prehistory Press, pp. 79–103.
- Perseil, E.A., Blanc, P., Ohnenstetter, D., 2000. As-bearing fluoroapatite in manganiferous deposits from St. Marcel-Praborna, Val d'Aosta, Italy. Can. Mineral. 38, 101–117.
- Person, A., Bocherens, H., Mariotti, A., Renard, M., 1996. Diagenetic evolution and experimental heating of bone phosphate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 135–149.
- Price, T.D., Blitz, J., Burton, J.H., Ezzo, J.A., 1992. Diagenesis in prehistoric bone: problems and solutions. J. Archaeol. Sci. 19, 513–529.
- Reynard, B., Lécuyer, C., Grandjean, P., 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem. Geol. 155, 233–241.
- Roeder, P.L., Mac Arthur, D., Ma, X.P., Palmer, G.L., Mariano, A.N., 1987. Cathodoluminescence and microprobe study of REE in apatite. Am. Mineral. 72, 801–811.
- Schoeninger, M.J., 1985. Trophic level effects on ¹⁵N/¹⁴N and ¹³C/¹²C rations in bone collagen and strontium levels in bone minerals. J. Hum. Evol. 14, 515–525.
- Shirahata, H., Elias, R.W., Patterson, C.C., Koide, M., 1980. Chronological variations in concentrations and isotopic compositions of anthropogenic atmospheric lead in sediment of a remote subalpine ecosystem. Geochim. Cosmochim. Acta 44, 149–162.
- Sillen, A., 1992. Strontium-calcium ratios (Sr/Ca) of Australopithecus robustus and associated fauna from Swartkrans. J. Hum. Evol. 23, 495–516.
- Sillen, A., Legeros, R., 1991. Solubility profiles of synthetic apatites of modern and fossil bones. J. Archaeol. Sci. 18, 385–397.
- Sillen, A., Lee-Thorp, J.A., 1994. Trace elements and isotopic aspects of predator-prey relationships in terrestrial foodwebs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 243– 255.
- Simonet, P., 1992. Les associations de grands mammifères du

gisement de la grotte Scladina à Sclayn (Namur, Belgique). In: Recherches aux grottes de Sclayn, Vol. 1, Le Contexte. Etud. Rech. Archéol. Univ. Liège 27, 127–151.

Tuross, N., Behrensmeyer, A.K., Eanes, E.D., 1989. Sr increase and crystallinity changes in taphonomic and archaeological bones. J. Archaeol. Sci. 16, 661–672.

Uden, P., Rounsaville, T.R., Wiggans, G.R., van Soest, P.J.,

1982. The measurement of liquid and solid digesta retention in ruminants, equines and rabbits given timothy (*Phleum pratense*) hay. Br. J. Nutr. 48, 329–339.

Wolpoff, M.H., 1996. Neandertals of the upper paleolithic. In: Carbonell, E., Vaquero, M. (Eds.), The Last Neandertals, the First Anatomically Modern Humans. Universitat Rovira i Virgili, pp. 51–76.