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INTRODUCTION

Phosphorus was discovered in 1669 by Hennig Brand. The word phosphorus
originates from the two Greek words phds, meaning light, and phoros, meaning bearer,
due to the phosphorescent nature of white phosphorus. Phosphorus is the tenth most
abundant element on Earth and tends to be concentrated in igneous rocks. It is an
incompatible element in common rock-forming minerals, and hence is susceptible to
concentration via fractionation in geochemical processes. It reaches its highest abundance
in sedimentary rocks: the major constituents of phosphorite are the minerals of the apatite
group. Phosphorus is the second most abundant inorganic element in our bodies (after
Ca); it makes up about 1% of our body weight, occurring primarily in bones and teeth.
Phosphorus (atomic number 15) is a non-metal in group VA of the periodic table, and has
the ground-state electronic configuration 1s* 2s* 2p°® 3s* 3p,* 3p,’ 3p,* or [Ne]3s”3p°.
There are three orbitals occupied with only one electron each in the third energy level
(the M shell). Phosphorus participates in essentially covalent bonds; electron gain to form
P> from P requires considerable energy (on the order of 1450 kJ mol™). Loss of electrons
is also difficult due to the high ionization potentials of P (the sum of the first three
ionization potentials is 60.4 eV).

CHEMICAL BONDING

Here we use bond-valence theory (Brown 1981) and its developments (Hawthorne
1985a, 1994, 1997) to consider structure topology and hierarchical classification
of crystal structures, and we point out that bond-valence theory can be considered as a
simple form of molecular-orbital theory (Burdett and Hawthorne 1993; Hawthorne
1994, 1997).

STEREOCHEMISTRY OF (P¢s) POLYHEDRA IN MINERALS

The variation of P-¢ (¢: O, OH") distances and ¢-P-¢ angles is of great interest for
several reasons:

(1) mean bond-length and empirical cation and anion radii play an important role in
systematizing chemical and physical properties of crystals;

(2) variations in individual bond-lengths give insight into the stereochemical behavior of
structures, particularly with regard to the factors affecting structure stability;

(3) there is a range of stereochemical variation beyond which a specific oxyanion or
cation-coordination polyhedron is not stable; it is obviously useful to know this
range, both for assessing the stability of hypothetical structures (calculated by DLS
[Distance Least-Squares] refinement, Dempsey and Strens 1976; Baur 1977) and for
assessing the accuracy of experimentally determined structures.

Here, we examine the variation in P-¢ distances in minerals and review previous
work on polyhedral distortions in (P¢s) tetrahedra. Data for 408 (P¢4) tetrahedra were
taken from 244 refined crystal structures with R < 6.5% and standard deviations of
<0.005 A on P-¢ bond-lengths; structural references are given in Appendix A.
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Variation in <P-¢> distances

The variation in <P-¢,> distances (< > denotes a mean value; in this case, of P in
tetrahedral coordination) is shown in Figure 1. The grand <P-¢> distance (i.e., the mean
value of the <P-¢> distances) is 1.537 A, in agreement with the value of 1.537 A given
by Baur (1974). The minimum and maximum <P-¢> distances are 1.459 and 1.602 A,
respectively (the larger values in Fig. 1 are considered unreliable), and the range of
variation is 0.143 A. Shannon (1976) lists the radius of /P as 0.17 A; assuming a mean
anion-coordination number of 3.25 and taking the appropriate O/OH ratio, the sum of the
constituent radii is 0.17 + 1.360 = 1.53 A, in accord with the grand <P-¢> distance of
1.537 A. Brown and Shannon (1973) showed that variation in <M-O> distance correlates
with bond-length distortion A (= Z[I(0) — I(m)] / I(m); I(0) = observed bond-length, I(m) =
mean bond-length) when the bond-valence curve of the constituent species shows a
strong curvature, and when the range of distortion is large. There is no significant
correlation between <P-¢> and A; this is in accord with the bond-valence curve for P-O
given by Brown (1981).

180

160 4

140 4

120

100 A

FREQUENCY

60 -

40

20 A

1.45-1.46
1.47-1.48
1.49-1.50
1.561-1.52
1.63-1.54
1.55-1.56
1.57-1.58
1.69-1.60
1.61-1.62

AVERAGE P - O BOND-LENGTHS

Figure 1. Variation in average P-O distance in minerals containing (P¢,) tetrahedra.

Variation in P-¢ distances

The variation in individual P-¢ distances is shown in Figure 2; the grand mean P-¢
distance is 1.537 A, in close agreement with the value of 1.537 A found by Baur (1974).
The minimum and maximum observed P-¢ distances are 1.439 and 1.625 A, respectively,
and the range of variation is 0.186 A; the distribution is a skewed Gaussian. According to
the bond-valence curve for P (the universal curve for second-row elements) from Brown
(1981), the range of variation in P-¢ bond-valence is 1.05-1.67 vu (valence units).

General polyhedral distortion in P-bearing minerals

Baur (1974) considered geometrical distortion in (PO,) tetrahedra in great detail. In
particular, he examined the variation in <P-¢> distance as a function of the mean
coordination number of the simple anions of the phosphate group, and as a function of the
dispersion of P-O distances, O-P-O angles and O-O angles from their respective mean
values (described as distortion parameters). Baur (1970) found a correlation between <P-
O> (corrected for dependence on the dispersion of the individual P-O distances from their
mean value in the [PO4] group) and the mean coordination numbers (including hydrogen
bonds) of the constituent simple anions: <P-O> = 1.514(2) + 0.0059(7) CN, r = 0.49; the
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amount of variation explained is 24% in a sample size of 211. The correlation is shown in
Figure 3, together with the regression line and the ideal relation calculated from the anion
radii of Shannon (1976).

Figure 2. Variation in individual P-O distance in minerals containing (P¢4) tetrahedra.
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Figure 3. Variation in <T-O>-(T-0) for (PO,4) groups as a function
of <p>-p, the deviation of the anion from exact agreement with
Pauling’s second rule; after Baur (1974).

Baur (1974) and Griffen and Ribbe (1979) have considered polyhedral distortions in
general. Baur (1974) identified three types of distortion: (1) bond-length distortion;
(2) bond-angle distortion; (3) polyhedron edge-length distortion, whereas Griffen and
Ribbe (1979) considered two of these three distortion parameters, omitting bond-angle
distortion. Baur (1974) showed that the variation in P-O distances (expressed as deviation
from the <P-O> distance) correlates well with the deviation from ideal agreement with
Pauling’s second rule (Pauling 1929, 1960) (Fig. 4). This correlation is in accord with the
general concepts of bond-valence theory (Brown and Shannon 1973; Brown 1981). Baur
(1974) also showed that the dispersion (distortion) of P-O distances is much higher than
the dispersion in corresponding O-O distances, and stated that the (PO,) group can be
“viewed, to a first approximation, as a rigid regular arrangement of O atoms, with the P
atom displaced from their centroid”.
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Figure 4. Variation in BLDP (Bond-Length Distortion Parameter) and ELDP (Edge-Length
Distortion Parameter) for second-, third- and fourth-period non-transition elements in tetrahedral
coordination by oxygen. Used by permission of E. Schweizerbart’sche Verlagsbuchhandlung, from
Griffen and Ribbe (1979), Neues Jarhrbuch fiir Mineralogie Abhandlungen, Vol. 137, Fig. 2, p. 59.

Griffen and Ribbe (1979) considered two ways in which polyhedra may distort (i.e.,
depart from their holosymmetric geometry): (1) the central cation may displace from its
central position [bond-length distortion]; (2) the anions may displace from their ideal
positions [edge-length distortion]; these authors designate these as BLDP (Bond-Length
Distortion Parameter) and ELDP (Edge-Length Distortion Parameter), respectively.
Figure 4 shows the variation in both these parameters for the second-, third- and fourth-
period (non-transition) elements in tetrahedral coordination. Some very general features
of interest (Griffen and Ribbe 1979) are apparent from Figure 4:

(1) A BLDP value of zero only occurs for an ELDP value of zero; presuming that ELDP
is @ measure also of the O-T-O angle variation, this is in accord with the idea that
variation in orbital hybridization (associated with variation in O-T-O angles) must
accompany variation in bond-length.

(2) Large values of BLDP are associated with small values of ELDP, and vice versa.
The variation in mean ELDP correlates very highly with the grand mean tetrahedral-
edge length for each period (Fig. 5).
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Figure 5. Variation in grand mean tetrahedral edge-length with mean
ELDP for the second-, third- and fourth-period elements of the periodic
table. Used by permission of E. Schweizerbart’sche Verlagsbuch-
handlung, from Griffen and Ribbe (1979), Neues Jarhrbuch fir
Mineralogie Abhandlungen, Vol. 137, Fig. 6a, p. 65.

Griffen and Ribbe (1979) suggested that the smaller the tetrahedrally-coordinated
cation, the more the tetrahedron of anions resists edge-length distortion because the
anions are in contact, whereas the intrinsic size of the interstice is larger than the cation
which can easily vary its cation-oxygen distances by ‘rattling’ within the tetrahedron.
This general conclusion is in accord with the conclusion of Baur (1974) for the (PO,)

group.
HIERARCHICAL ORGANIZATION OF CRYSTAL STRUCTURES

The most fundamental characteristic of a mineral is its crystal structure, a complete
description of which involves the identities, amounts and arrangement of atoms that
constitute the mineral. The physical, chemical and paragenetic characteristics of a
mineral arise as natural consequences of its crystal structure and the interaction of that
structure with the environment in which it occurs. A structural hierarchy is an
arrangement of crystal structures that reflects the systematic change in the character of
their bond topologies. As the bond topology is a representation of the energetic
characteristics of a structure (Hawthorne 1994, 1997), an adequate structural hierarchy of
minerals should provide an epistemological basis for the interpretation of the role of
minerals in Earth processes. This is not yet the case for any major class of minerals, but
significant advances have been made. Bragg (1930) classified the major rock-forming
silicate minerals according to the type of polymerization of (Si,Al)O, tetrahedra, and this
scheme was extended by Zoltai (1960) and Liebau (1985); it is notable that this scheme
parallels Bowen's reaction series (Bowen 1928) for silicate minerals in igneous rocks.
Much insight can be derived from such structural hierarchies, particularly with regard to
controls on bond topology (Hawthorne 1983a, 1994), mineral chemistry (Schindler and
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Hawthorne 2001a,b; Schindler et al. 2002) and mineral paragenesis (Moore
1965b, 1973a; Hawthorne 1984, 1998; Hawthorne et al. 1987; Schindler and Hawthorne
2001c).

Hawthorne (1983a) proposed that structures be ordered or classified according to the
polymerization of those cation coordination polyhedra with higher bond-valences. Higher
bond-valence polyhedra polymerize to form homo- or heteropolyhedral clusters that
constitute the fundamental building block (FBB) of the structure. The FBB is repeated,
often polymerized, by translational symmetry operators to form the structural unit, a
complex (usually anionic) polyhedral array (not necessarily connected) the excess charge
of which is balanced by the presence of interstitial species (usually large, low-valence
cations) (Hawthorne 1985a). The possible modes of cluster polymerization are obviously
(1) unconnected polyhedra; (2) finite clusters; (3) infinite chains; (4) infinite sheets;
(5) infinite frameworks.

POLYMERIZATION OF (P¢s) AND OTHER (T¢4) TETRAHEDRA

Bond valence is a measure of the strength of a chemical bond, and, in a coordination
polyhedron, can be approximated by the formal valence divided by the coordination
number (the Pauling bond-strength). Thus, in a (PO4) group, the mean bond-valence is
5/4 = 1.25 vu. The valence-sum rule (Brown 1981) states that the sum of the bond
valences incident at an atom is equal to the magnitude of the formal valence of that atom.
Thus any oxygen atom linked to the central P cation receives ~1.25 vu from that cation,
and hence must receive ~0.75 vu from other coordinating cations. Hence an oxygen atom
is unlikely to link to two P atoms as it would receive, on average, 2 x 1.25 = 2.50 vu and
the linking oxygen atom would violate the valence-sum rule. For this reason (PO,4) groups
are unlikely to polymerize in crystal structures. This conclusion is not completely
followed, as there are three (very rare) minerals in which (PO,) groups polymerize
[canaphite: Na,Ca[P,O;] (H.0)s, wooldridgeite: Na,CaCu®**;[P,07](H20)10 and
kanonerovite: MasMn?*[P3010](H20)12], and polyphosphates are common among
synthetic compounds (Corbridge 1985). It was commonly thought that polyphosphates
would be unstable in the presence of any H-bearing species as H would attack the
bridging anion, resulting in depolymerization. However, the common existence of
hydrated polyphosphates (Corbridge 1985) vitiates this argument. The only attempt to
consider this problem in any detail is due to Byrappa (1983) who presented very limited
experimental data and concluded that polyphosphates cannot form under hydrothermal
conditions with P(H,O) > 6 atm. This conclusion accounts for the absence of condensed
phosphates in many phosphate parageneses (e.g., granitic pegmatites). However, many
phosphate minerals crystallize under surficial conditions and yet only three minerals with
polymerized phosphate groups are currently known. Our lack of understanding
concerning this issue is obviously an important gap in our knowledge of phosphate
crystal chemistry. Suffice it to say here that polymerized (PO,4) groups are sufficiently
rare in minerals that phosphates cannot be classified in an analogous way to silicates (i.e.,
by the polymerization characteristics of the principal oxyanion).

The simple anions of a (PO,4) group each require ~0.75 vu to satisfy their bond-
valence requirements. What type of linkage with other tetrahedral oxyanions is possible
with this constraint? Obviously, any tetrahedral oxyanion with a mean bond-valence of
<0.75 vu, which includes (AlO,), (BO,4), (BeOs) and (LiO4) groups. Moreover, P-O
bonds in specific structural arrangements may have bond valences somewhat less that
1.25 vu, raising the possibility that (PO,) groups might polymerize with (SiO4) groups.
Phosphates show all of these particular polymerizations, in accord with the valence-
sum rule.
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POLYMERIZATION OF (P¢s) TETRAHEDRA AND
OTHER (Mn) POLYHEDRA

In oxysalt minerals, the coordination number of oxygen is most commonly [3] or [4].
This being the case, the average bond-valence incident at the oxygen atom bonded to one
P cation is ~0.75/3 = 0.25 vu and ~0.75/2 = 0.38 vu for the other cation-oxygen bonds.
The more common non-tetrahedrally coordinated cations available in geochemical
systems are [6]-coordinated divalent (e.g., Mg, Fe**, Mn?") and trivalent (e.g., Al, Fe**)
cations, and [7]- and higher coordinated monovalent (e.g., Na, K) and divalent ﬂe.g., Ca,
Sr) cations. The average bond-valences involved in linkage to these cations are °'M 2* »~
0.33, "M ¥~ 0.50, ""M** ~ 0.14, "IM #* ~ 0.29 vu. Hence, (PO.) groups link easily to all
of these cations, particularly in hydroxy-hydrated phosphates where hydrogen bonds (0.1-
0.3 vu) commonly supply additional bond-valence to the (simple) anions of the structure.

A STRUCTURAL HIERARCHY FOR PHOSPHATE MINERALS

This promiscuous polymerization suggests that we should classify the phosphates
according to the types of polymerization of their principal coordination polyhedra, as
suggested by Hawthorne (1983a, 1998) and discussed briefly above. The most common
polymerizations in phosphate minerals are between tetrahedra and tetrahedra, between
tetrahedra and octahedra, and between tetrahedra and large-cation polyhedra (i.e.,
[7]-coordinated and above). Hence we will divide the phosphates into the following three
principal groups, involving

(1) polymerization of tetrahedra;
(2) polymerization of tetrahedra and octahedra;

(3) polymerization of tetrahedra and > [6]-coordinated polyhedra.

Large-cation polyhedra occur in group (1) and group (2) phosphates, as cations such
as Al and Ca often occur together in minerals. In principle, octahedra should not occur
(by definition) in group (3) phosphates; however, in some cases, the structural affinity of
the mineral indicates it to be a large-cation phosphate mineral (e.g., whitlockite,
Ca18Mg2(PO4)12(POz{OH}),).

In accord with the above discussion, phosphate minerals are classified into three
distinct groups. The first group, involving polymerization of (T¢,) tetrahedra (T = P plus
Be, Zn, B, Al and Si), is fairly small, in accord with the observation that mixed oxyanion
minerals are uncommon. The second group, involving polymerization of (PO,) tetrahedra
and (Mde) octahedra, is very large. Within this group, the structures are arranged as
suggested by Hawthorne (1983a), similar to the classification of the sulfate minerals
given by Hawthorne et al. (2000), according to the mode of polymerization of the
tetrahedra and octahedra: (1) unconnected polyhedra; (2) finite clusters of polyhedra;
(3) infinite chains of polyhedra; (4) infinite sheets of polyhedra; (5) infinite frameworks
of polyhedra. Within each class, structures are arranged in terms of increasing
connectivity of the constituent polyhedra of the structural unit. Detailed chemical and
crystallographic information, together with references, are given in Appendix A. In the
following figures, (PO4) groups are dashed-line-shaded, and cell dimensions with an
arrow on one end only are (slightly) tilted to the plane of the figure.

STRUCTURES WITH POLYMERIZED ( 7¢s) GROUPS

As noted above, (PO,) tetrahedra can polymerize with other (PO,4) groups, plus
tetrahedrally coordinated Be, Zn, B, Al and Si. However, in minerals, only the following
polymerizations are known: (PO4)-(PO4), (PO4)-(Beds), (PO4)-(ZnOy4) and (PO4)-(AIO,).
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Although there seems no obvious reason why (PO,4) should not polymerize with (Bds) or
(Sid4) groups, this has not been observed, although there are several minerals containing
both (PO,) and (Bds) or (Sids) groups in which the different polyhedra do not
polymerize.

Table 1. Phosphate minerals* based on (T¢,) clusters.

Mineral Cluster Space group  Figure
Canaphite [P204] Pc 6a,b
Wooldridgeite [P.O-] Fdd2 6c,d,e
Kanonerovite [P3010] P2:/n 7a
“Pyrocoproite”** P,0O, - -

“Pyrophosphate”**  P,0; - -

“Arnhemite”** P,0O; - -
Gainesite * [Be(PO4)4] 14,/amd 7b
McCrillisite [Be(POy)4] 14,/amd 7b
Selwynite [Be(PO4)4] 14,/amd 7b

* For isostructural minerals, the name of the group is indicated
by a * in this and all following tables;

** These names are used in the literature, but have not been
approved by CNMMN of IMA.

Finite clusters of tetrahedra

The minerals in this class (Table 1) are dominated by polymerized (PO,4) groups;
only in gainesite do (PO,) tetrahedra polymerize with another type of (T¢4) group.

In canaphite, Na,Ca(H,0)4[P.0-], (PO,) tetrahedra link to form [P,O-] groups in the
eclipsed configuration. When viewed down [100], the structure consists of layers of
(Nads) and (Cads) octahedra intercalated with intermittent layers of [P,O;] groups (Fig.
6a). The layers of octahedra are not completely continuous (Fig. 6b); staggered a-PbO,-
like chains of (Nads) octahedra extend along a and are linked in the b-direction by (Cade)
octahedra to form a sheet of octahedra punctuated by dimers of vacant octahedra.
Additional linkage is provided by an extensive network of hydrogen bonds involving the
(H20) groups of the (CaOs{H,0}) and (NaOs{H,0O}3) octahedra.

In wooldridgeite, Na;Ca(H20)s[Cu* 2(P207)2(H20)2](H20).], [P207] groups occur in
the eclipsed configuration. A key part of the wooldridgeite structure is the
[Cu® (P,07)(H20)] chain (Fig. 6¢) in which (Cuds) octahedra link by sharing one set of
trans ligands (H,O) to form a 7-A chain (Moore 1970), decorated by [P,O;] groups, that
extends along [101] (and [101]). Each chain is flanked by a chain of corner-sharing
(Nads) octahedra in which the Na- ¢-Na linkage is through cis vertices and each (Nads)
octahedron shares an edge with a (Cudg) octahedron, and these chains are linked in the
[101] direction into a sheet by (Cads) octahedra (Fig. 6d). These sheets stack along the
[010] direction (Fig. 6e), with each sheet rotated 90° with respect to the adjacent sheets.

In kanonerovite, NasMn?*[P301](H20)12, three (PO,) tetrahedra link into a [P3010]
fragment. All three (PO,) tetrahedra of this trimeric group share one vertex with the same
(Mn? ¢g) octahedron (Fig. 7a) to form an [Mn?*(H,0)3sPs01] cluster. (Na¢s) octahedra
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Figure 6. The crystal structures of canaphite and wooldridgeite: (a) canaphite projected onto (100);
(b) canaphite projected onto (001); (Cads) octahedra are 4*-net-shaded, (Na¢s) octahedra are
shadow-shaded; (c) a perspective view of the [Cu*(P,0;)(H,O)] chain in wooldridgeite;
(d) wooldridgeite projected onto (010); (e) wooldridgeite, showing two orthogonal sets of
[Cu®*(P,0;)(H,0)] chains; (Cu®*¢g) octahedra are shadow-shaded, Na atoms are shown as small
dark circles, (H,O) groups are shown as large shaded circles.
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Figure 7. The crystal structures of kanonerovite and gainesite:
(a) kanonerovite projected onto (010) showing the [P3040] trimers linked to
(Mn% ¢g) octahedra (dot-shaded); the resulting clusters are linked by (Nad)
octahedra (shadow-shaded) and by hydrogen bonding involving (H,O)
groups (not shown); (b) the [BeP,O14] pentamer that is the finite tetrahedron
cluster in gainesite linked by (ZrOg) octahedra (4*-net-shaded).

link by sharing vertices to form clusters that link [Mn®*(H,0)sP3010] clusters adjacent in
the c-direction. All other linkage is via hydrogen bonds emanating from the (H.O) groups
of the [Mn**(H20)3P3010] cluster and involving interstitial (H20) groups.

In gainesite, NayZr,[Be(PO4)s], and the isostructural minerals mccrillisite,
Cs,Zry[Be(PO4)4], and selwynite, Na,Zr[Be(PO,)4], a (BeO,) tetrahedron links to four
(PO,) tetrahedra to form the pentameric cluster [BeP4O;¢] that is topologically identical
to the [SisOy6] cluster in zunyite, Al1304[SisO16](OH)1sCl. These clusters are linked
in a continuous framework through (ZrOg) octahedra (Fig. 7b). The Be and P sites in
the gainesite structure are only half-occupied, and in the tetrahedral-octahedral
framework, tetrahedral clusters alternate with cavities occupied by interstitial
Na atoms.

Infinite chains of tetrahedra

The minerals in this class can be divided into two broad groups based on the (bond
valence) linkage involved in the infinite chains. Minerals of this class are listed in
Table 2.

Moraesite, [Be(PO4)(OH)](H20)4, contains chains (ribbons) of (PO4) and (BeOs)
tetrahedra. The (PO,) tetrahedra are four-connected and the (BeQ,) tetrahedra are three-
connected, and the resulting [Be,(PO4)(OH)] ribbons extend along the c-direction (Fig.
8a). These ribbons form a face-centered array (Fig. 8b) and are linked by hydrogen bonds
involving interstitial (H.0) groups.
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Table 2. Phosphate minerals based on (T¢,) chains.

Mineral Chain Space Group Figure
Moraesite [Be2(PO,)(OH)] c2/C 8a,b
Vayrynenite [Be(PO,)(OH)] P2,/A 8c,d

Fransoletite [Bez(PO4),(POs{OH}).] P2,/A 9a,b
‘arafransoletite [Be,(PO,),(PO:{OH}),]  P1 -

Roscherite [Bes(PO4)s(OH)s] c2/C 9c,d
Zanazziite [Be4(PO,)s(OH)e] c2/C 9c,d
Spencerite [Zn(PO4)(OH)(H,0)] P2,/C Oe f

Vayrynenite, Mn**[Be(PO4)(OH)], contains chains of (PO4) and (BeO,) tetrahedra
extending in the a-direction (Fig. 8c). (BeO,) tetrahedra link by corner-sharing to form a
pyroxenoid-like [TO3] chain that is decorated on both sides by (PO,) tetrahedra to form a
ribbon in which the (BeO,) tetrahedra are four-connected and the (PO,) tetrahedra are
two-connected. These ribbon-like chains are linked by edge-sharing pyroxene-like
chains of (Mn?'Og) octahedra that also extend parallel to the a-axis. The resulting
structural arrangement consists of modulated sheets of tetrahedra and octahedra (Fig. 8d).

The dimorphs, fransoletite and parafransoletite, have the composition
Cas[Be2(PO4)2(PO3{OH}),](H20)4. The principal motif in each structure is a complex
chain consisting of four-membered rings of alternating (PO,4) and (BeO,) tetrahedra that
link through common (BeQ,) tetrahedra; these chains extend in the a-direction (Fig. 9a).
Viewed end-on (Fig. 9b), the chains form a square array and are linked by [6]- and [7]-
coordinated Ca atoms that form sheets parallel to {001}; further interchain linkage occurs
through H-bonding involving (H,O) groups. The fransoletite and parafransoletite
structures differ only in the relative placement of the octahedrally coordinated Ca atom
and the disposition of adjacent chains along their length (Kampf 1992).

Roscherite and zanazziite are composed of very convoluted chains of Be¢, and
(POy) tetrahedra extending in the [101] direction (Fig. 9c; note that in this view, the two
chains appear to join at a mirror plane parallel to their length; however, the plane in
question is a glide plane and the two chains are displaced in the c-direction). The chain
consists of four-membered rings of alternating Be¢, and (PO,) tetrahedra linked through
(POy) tetrahedra that are not members of these rings (Fig. 9¢). These chains are linked by
(Al,[1)Os and (Mg,Fe*")Og octahedra that form edge-sharing chains parallel to [110] and
[110]; the octahedral chains link to each other in the [001] direction by sharing trans
vertices (Fig. 9d). The resultant octahedral-tetrahedral framework is strengthened by [7]-
coordinated Ca occupying the interstices.

The structure and composition of these minerals is not completely understood.
Roscherite (Slavik 1914) is the Mn**-dominant species and zanazziite (Leavens et al.
1990) is the Mg-dominant species. Lindberg (1958) also reported an Fe®*-dominant
species from the Sapucaia pegmatite, Minas Gerais, that is currently unnamed. The
situation is complicated by the fact that the original crystal-structure determination of
roscherite (Fanfani et al. 1975) was done on a crystal of what was later determined to be
zanazziite with the ideal end-member formula Ca;Mga(Alos7Go.33)2[Bea(PO4)s(OH)e]
(H,0)s. Fanfani et al. (1977) report a triclinic structure for roscherite that is Mn?"
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Figure 8. The crystal structures of moraesite and véyrynenite: (a) moraesite projected down the a-
axis; (b) moraesite projected down the c-axis; (BeO,) tetrahedra are cross-shaded, (H,O) groups are
shown as circles; (c) vayrynenite projected down the c-axis; Al atoms are shown as circles; (d)
vayrynenite projected down the a-axis.

dominant, i.e., roscherite with the ideal end-member formula Ca,Mn?*4(Fe**)6:Go.23)(G)
[Be4(PO4)6(OH)4(H20)2](H20)4 Note that the trivalent-cation content (AI1 33 Vs. Fe¥067)
and type are different in the two species, and electroneutrality is malntalned by
replacement of OH by H.O via the exchange Fe** + O (vacancy) + 3 H,0 e AI 2+ 3
OH. Whether the monoclinic — triclinic transition is caused by the Mn* — Mg
replacement or by the reaction noted above is not yet known.

Spencerite, Zny[Zn(OH)(H20)(PO4)]2(H20), contains simple linear chains of
alternating (Znd¢s) [d4 = O2(OH)(H,0)] and (PO,) tetrahedra extending along the c
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Figure 9. The crystal structures of fransoletite, roscherite and spencerite: (a) fransoletite projected
onto (010); Mn®* atoms are shown as circles; (b) fransoletite projected down the a-axis; a view in
which the chains are seen end-on; (c) the structural unit in roscherite projected down the c-axis; note
that the (PO,) tetrahedra in the center of the figure do not share a common anion, but are separated
in the c-direction; (d) roscherite projected onto (010); note that the trivalent octahedra (4*-net-
shaded) are only two-thirds occupied (by Al) and that Ca atoms are omitted for clarity;
(e) spencerite projected onto (010); (f) spencerite projected onto (001); chains of (PO,) and (ZnO,)
are seen ‘end-on’.
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Table 3. Phosphate minerals based on (T¢,) sheets.

Mineral Sheet Space Figure
group
Herderite [Be(PO4)(OH)] P2;/a 10ab
Hydroxylherderite [Be(PO,)(OH)] P2,/a  10a,b
Uralolite [BesP301,(0OH)5] P2,/n  10c,d
Ehrleite [BeZn(PO,),(PO:{OH})] P 1 10e,f
Hopeite [Zn(POy)] Pnma 1lab
Parahopeite [Zn(PO.)] P1 11c,d
Phosphophyllite  [Zn(PO,)] P2,/c  12ab
Veszelyite [Zn(PO,)(OH)] P2,/a 12cd
Kipushite [Cu?*5Zn(PO,),(OH)s(H,0)] P2i/c  12ef
Scholzite [Zn(POY)] Pbc2; 13ab
Parascholzite [Zn(PO,)] 12/c 13c,d

direction (Fig. 9e) and cross-linked into heteropolyhedral sheets by (Znds) octahedra.
These sheets are also shown in Figure 9f, where it can be seen that the (Zn¢s) octahedra
share all their vertices with (Zn¢,) and (PO,) tetrahedra. The heteropolyhedral sheets link
solely via hydrogen bonding that involves one (H,O) group (not shown in Figs. 9e or 9f)
held in the structure solely by hydrogen bonding.

Infinite sheets of tetrahedra

The minerals in this class (Table 3) can be divided into two groups: (PO,)-(BeQy)
linkages, and (PO,4)-(Zn0,) linkages.

Hydroxylherderite, Ca[Be(PO.,)(OH)] and herderite, Ca[Be(PO4)F], are
isostructural, although the structures were reported in different orientations, P2;/c and
P21/a, respectively. The sheet unit consists of (PO,4) and (Bed,) tetrahedra at the vertices
of a two-dimensional net (Fig. 10a). Four-membered rings of alternating (PO,) and
(Bed,) tetrahedra link directly by sharing vertices between (PO,) and (Beds) tetrahedra;
thus the sheet can be considered to be constructed from chains of four-membered rings
that extend in the [110] and [110] directions (Fig. 10a). These sheets stack in the c-
direction (Fig. 10b) and are linked by layers of [8]-coordinated Ca atoms. Note that the
structure reported by Lager and Gibbs (1974) seems to have been done on
hydroxylherderite rather than herderite.

Uralolite, Cay[BesP3012(0OH)3](H20)s, contains (PO,) and (BeO,) tetrahedra linked
into a sheet (Fig. 10c). Eight-membered rings of tetrahedra (P-Be-P-Be-P-Be-P-Be) link
through common (PO,4) groups to form chains that extend along [101]. These chains link
in the (010) plane via sharing of tetrahedral vertices, forming three-membered (Be-Be-Be
and Be-Be-P) and four-membered (Be-Be-Be-P) rings. Interstitial [7]-coordinated Ca
atoms lie within the eight-membered rings (in projection). The layers stack along the b-
direction (Fig. 10d) and are linked by Ca atoms (circles) and H-bonding; in this view, the
three- and four-membered rings are easily seen.

Ehrleite, Cay[BeZn(PO,)2(POs{OH})](H20)4, has a very complicated sheet of
tetrahedra, both from topological and chemical viewpoints. There is one distinct (BeO,)
tetrahedron that links to four (P¢s) groups (Fig. 10e); similarly, there is one (ZnO,)
tetrahedron and this links to four (P¢4) groups. The (Pd4) groups link only to three or two
other tetrahedra. Four-membered rings of alternating (PO4) and (BeQ,) tetrahedra link
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Figure 10. The crystal structures of herderite, uralolite and ehrleite: (a) herderite projected onto
(001); (b) herderite projected onto (010); (c) uralolite projected onto (010); (d) uralolite projected
down the a-axis; (e) the structural unit in ehrleite projected onto (010); (ZnO,) tetrahedra are 4*-net-
shaded; (f) ehrleite projected down the a-axis. Ca atoms are shown as circles.
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through common (BeO,) tetrahedra to form chains in the a-direction (Fig. 10e). These
chains are linked in the c-direction by four-membered rings of alternating (PO4) and
(Zn0y) tetrahedra to form additional four-membered rings (Zn-P-Be-P). The result is an
open sheet, parallel to (010), with buckled twelve-membered rings (Fig. 10e) into which
project the H atoms of the acid-phosphate groups. These sheets stack along the b-
direction (Fig. 10f) and are linked together by [7]-coordinated and [8]-coordinated
interstitial Ca atoms.

Figure 11. The crystal structures of hopeite and parahopeite: (a) hopeite projected onto (010);
(b) hopeite projected onto (001); hydrogen bonds are omitted for clarity; (c) parahopeite projected
onto (010); (d) parahopeite projected onto (001). (Zn¢,) tetrahedra and (Zn¢s) octahedra are
shadow-shaded.

In hopeite, Zn(H,0)4[ZNn(PO,)],, kinked chains of (Zn¢,) tetrahedra extend in the c-
direction, and adjacent chains are linked by (PO,) tetrahedra to form a sheet parallel to
(101) (Fig. 11a). The (ZnQ,) tetrahedra are four-connected, but the (PO,) tetrahedra are
only three-connected; this difference in connectivity is very important as it promotes
structural linkage perpendicular to the sheet. A continuous sheet with this connectivity
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requires unusual coordination numbers for some of the simple anions of the sheet: for the
(POg4) group, the anion coordination numbers within the sheet are [1], [2] x 2 and [3], and
for the (ZnO.) group, the anion coordination numbers within the sheet are [2] x 2 and [3]
x 2. Hence the sheet is quite corrugated, as can be seen in Figure 11b: the (ZnO,)
tetrahedra form a central Iayer and the (PO,) tetrahedra form two outer (or sandwiching)
layers. The sheets are linked in the b-direction by (ZnO,{H,O},) octahedra (Fig. 11b)
the [1]-coordinated anion of the phosphate group forming a ligand of the linking ®'zn
cation. In parahopelte Zn(H20)4[Zn(PO4)]2, (PO4) and (ZnO,) tetrahedra lie at the
vertices of a 4* net to form a sheet in which (PO,) tetrahedra link only to (ZnO,)
tetrahedra, and vice versa. Thus all tetrahedra are four-connected, and all vertices (simple
anions) are two-connected within the resultant sheet (Fig. 11c). These sheets are parallel
to (101) and are linked in the b-direction by (ZnO,{H,0},) octahedra in which the trans
O-atoms belong to adjacent sheets (Fig. 11d).

In phosphophyllite Fe?*(H,0)4[Zn(PO.)], (PO4) and (Zn¢4) tetrahedra form a sheet
(Fig. 12a) that is topologically |dent|cal to the [Zn(PO,)] sheet in hopeite (Fig. 11a).
These sheets are linked by (Fe**0,{H,O}) octahedra, similar to the linkage by
(ZnO{H,0},) octahedra in hopelte However, in phosphophyllite, the O-atoms of the
(Fe**0,{H,0}.) octahedron are in a trans conflguratlon (Fig. 12b), whereas in hopeite,
the O-atoms of the (ZnO,{H,0},4) octahedron are in a cis configuration (Fig. 11b).

In veszeylite, Cu2+2(0H)z(HZO)z[Zn(PO4)(OH)] (POy4) and (Znd,) tetrahedra occur
at the vertices of a 4.8% net (Fig. 12c) in which each type of tetrahedron points both up
and down relative to the plane of the sheet. Both (PO,4) and (Zn¢,) tetrahedra are three-
connected within the sheet and (PO,) tetrahedra and (Zn<|>4) tetrahedra always alternate in
any path through the 4.82 net. In the four-membered ring, the tetrahedra point uudd, and
in the eight-membered ring, the tetrahedra point uuuudddd. The (Cu?*¢s) octahedra form
an interrupted [M¢,] sheet (Hawthorne and Schindler 2000; Hawthorne and Sokolova
2002) in which the vacant octahedra are ordered as dimers. The sheets of tetrahedra and
octahedra stack in the c-direction (Fig. 12d) with hydrogen bonds (not shown) providing
additional linkage between octahedra and tetrahedra.

Kipushite, [Cu*sZn(PO.).(OH)s(H20)], contains (PO,) and (ZnO4) tetrahedra that
are arranged at the vertices of a 4.8° net (as occurs in veszelyite) and link by corner-
sharing (Fig. 12e, c.f. Fig. 12c). (Cu®*¢s) octahedra share edges to form a sheet with
ordered vacancies. It is actually a sheet of the form [Med12] = [Md2]s with Mg = Cu®*s [,
where [] is a vacant octahedron; these ‘vacant octahedra’ share a face with a (PO4)
tetrahedron on one side of the sheet of octahedra. Two of these sheets then link by
sharing the apical vertices of their (PO,) tetrahedra with octahedron vertices of the
adjacent sheet to form a thick slab (Fig. 12f). These slabs stack in the a-direction and are
linked by the (PO4)-(Zn0,) sheet through sharing of vertices between tetrahedra and
octahedra.

In scholzite, Ca(H,0),[Zn(PO,)]2, (ZnOy,) tetrahedra share pairs of vertices to form
simple linear chains parallel in the c-direction. Adjacent (ZnQO,) tetrahedra are further
linked by sharing vertices with a (PO,) tetrahedron, and the (PO,) tetrahedra are in a
staggered arrangement along the length of the chain. Chains adjacent in the b-direction
link through (PO,) tetrahedra to form a sheet parallel to (100) (Fig. 13a). In this sheet, the
(Zn0,) tetrahedra are four-connected and the (PO,) tetrahedra are three-connected. The
bridging anions of the chain of (ZnO,) tetrahedra are three-connected; all other anions
of the sheet are two-connected except for the one-connected anion of the (POy)
tetrahedron. The resulting sheet (Fig. 13a) forms quite a thick slab that is linked by
two crystallographically distinct octahedrally coordinated Ca atoms (Fig. 13b). In
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Figure 12. The crystal structures of phosphophyllite, veszelyite and kipushite: (a) phosphophyllite
showing (PO,) and (Zn¢,) tetrahedra at the vertices of a 4.82 net; (b) phosphophyllite projected onto
(010); (Znds) tetrahedra are shadow-shaded, (Znds) octahedra are 4*-net-shaded; (c) veszelyite
projected onto (001); tetrahedra are arranged at the vertices of a 4.8% net; (d) veszelyite projected
onto (100); (Cu®*¢s) octahedra are line-shaded; (e) the sheet of corner-linked (PO,) and (ZnO.,)
tetrahedra in kipushite projected onto (100); (f) the structure of Kipushite projected onto (001);
(Zn¢,) tetrahedra are shadow-shaded.
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Figure 13. The crystal structures of scholzite and parascholzite: (a) scholzite projected onto (100);
(b) scholzite projected onto (010); (c) parascholzite projected onto (100); (d) parascholzite projected
onto (010). (Zn¢,) tetrahedra are shadow-shaded, Ca atoms are shown by small shaded circles,
(H,O) groups are shown by large shaded circles.

parascholzite, Ca(H,0),[Zn(PO,)]2, the sheet of (PO,) and (ZnO,) tetrahedra (Fig. 13c)
is topologically identical to the analogous sheet in scholzite (Fig. 13a). Scholzite and
parascholzite are dimorphs, and the difference between these two structures involves
linkage of the sheets in the a-direction (Figs. 13b,d). The details of the coordination of
the interstitial Ca atoms differ in the two structures, leading to a different arrangement of
adjacent sheets that produces an orthorhombic arrangement in scholzite and a monoclinic
arrangement in parascholzite.

Infinite frameworks of tetrahedra

The minerals of this class (Table 4) are also dominated by PO4-BeO, linkages. Only
berlinite is different, as it is the only structure with polymerized (PO,4) and AlO4 groups.
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Table 4. Phosphate minerals based on (T¢,)

frameworks.

Mineral Framework Space group  Figure
Berlinite [AIPO4] P3,2 -
Beryllonite  [BePQO,] P2,/n 14a,b
Hurlbutite [Be2(PO4),] P2./a l4c,d
Babefphite  [Be(PO,)F] F1 14ef
Tiptopite [Bes(PO4)s] P65 15a,b
Weinebeneite [Bes(PO,).(OH),] Cc 15¢,d
Pahasapaite  [Be,sP240gs] 123 15e

Berlinite, [AIPOy], is a framework structure, topologically identical to the structure
of a-quartz. Both structures have the same space group, P321, but the ¢ dimension in
berlinite is twice that of a-quartz in order to incorporate two distinct types of tetrahedra,
A|O4 and PO,.

Beryllonite, Na[Be(PO.)], consists of a well-ordered framework of alternating four-
connected (PO,4) and (BeO,) tetrahedra arranged at the vertices of a 6° net, with (PO,) and
(BeQy) tetrahedra pointing in opposing directions along the b-axis (Fig. 14a). This
arrangement is topologically identical to the tridymite framework. These sheets stack
along the b-direction and share tetrahedron corners to form four-membered and eight-
membered rings (Fig. 14b). The resultant framework has large channels containing
[6]- and [9]-coordinated interstitial Na.

Hurlbutite, Ca[Be,(POy),], consists of an ordered array of (PO,;) and (BeO,)
tetrahedra in which all tetrahedra are four-connected and there is alternation of (PO,) and
(BeQy) tetrahedra in the structure. Viewed down [001] (Fig. 14c), the tetrahedra are
arranged at the vertices of a 4.8% net with [7]-coordinated Ca occupying the interstices;
these sheets link along the [001] direction by vertex-sharing (Fig. 14d).

Babefphite, Ba[Be(PO,4)F], is a rather unusual mineral; it is an ordered framework
of (PO4) and (BeOsF) tetrahedra. Projected down the c-direction, tetrahedra are arranged
at the vertices of a 6° net (Fig. 14e) with the tetrahedra pointing (uuuddd). Projected
down the a-direction, again the tetrahedra occur at the vertices of a 6° net (Fig. 14f) but
the tetrahedra point (uuuuuu). Both the (PO,) and the (Be¢s) tetrahedra are three-
connected, and the F anions are the non-T-bridging species in the (Be¢,) tetrahedra. The
interstices of the framework are occupied by [9]-coordinated Ba.

Tiptopite, Ka(LizoNa17Ca07Go.7)[Bes(PO4)s](OH)2(H20)s, is isotypic with the
minerals of the cancrinite group: Ca;Nag[Als(Si04)s(CO3),](H20), for the silicate species.
The (PO,) and (BeO,) tetrahedra are arranged at the vertices of a two-dimensional net
(Fig. 15a) such that all tetrahedra are three-connected when viewed down [001].
Prominent twelve-membered rings are arranged at the vertices of a 3° net such that they
two-connect four-membered rings and three-connect through six-membered rings. These
sheets link in the c-direction such that all tetrahedra are four-connected and, projected
down the b-direction, form a two-dimensional net of four- and six-membered rings (Fig.
15b). The latter can be considered as a 6° net in which every third row of hexagons have
a linear defect corresponding to an a-glide operation along c, i.e., double chains of
hexagons extending in the c-direction and interleaved by single ladders of edge-sharing
squares. Details of the rather complex relations between the interstitial species are
discussed by Peacor et al. (1987).
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Figure 14. The crystal structures of beryllonite, hurlbutite and babefphite: (a) beryllonite projected
onto (010); (b) beryllonite projected onto (001); (c) hurlbutite projected onto (001); (d) hurlbutite
projected down the c-axis; (€) babefphite projected onto (001); tetrahedra occur at the vertices of a
6° net; (f) babefphite projected down the a-axis; tetrahedra occur at the vertices of a 6° net.
Interstitial cations are shown as circles.
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Figure 15. The crystal structures of tiptopite, weinebeneite, and pahasapaite: (a) tiptopite projected
onto (001); (b) tiptopite projected onto (010); (c) weinebeneite projected down the c-axis;
(d) weinebeneite projected onto (010); in both (c) and (d), 4.8* nets of tetrahedra link in the
a-direction through an additional (BeO,) group, (H,O) groups are omitted for clarity; (e) pahasapaite
projected onto (001); Li and (H,O) are omitted for clarity. Interstitial cations are shown as circles.
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Weinebeneite, Ca[Be3(PO4).(OH),](H20)4, contains an ordered framework of (PO,)
and (BeQ,) tetrahedra; the (PO,) tetrahedra connect only to (BeO,) tetrahedra, but the
(BeQ,) tetrahedra connect to both (PO4) and (BeO,) tetrahedra, the Be-Be linkages
occurring through the (OH) groups of the framework. Viewed down [100;, the structure
consists of alternating (PO,4) and (BeO,) tetrahedra at the vertices of a 4.8 net (view not
shown). Projected onto (001) (Fig. 15c) and viewed down [010] (Fig. 15d), the 4.8
sheets stack in the [100] direction and link together through additional (non-sheet) (BeO,)
tetrahedra. Interstitial [7]-coordinated Ca is situated to one side of the large channels thus
formed, with channel (H,0O) also bonded to the Ca.

Pahasapaite, CasLig[Be2sP24096](H20)3s, has an ordered array of (PO,4) and (BeO,)
tetrahedra arranged in a zeolite-rho framework, topologically similar to the minerals of
the faujasite group and related to the synthetic aluminophosphate zeolite-like frame-
works. Viewed along any crystallographic axis, the structure consists of prominent eight-
membered rings of alternating (PO,4) and (BeQO,) tetrahedra (Fig. 15e) in an I-centered (F-
centered in projection) array. The eight-membered rings are connected along the axial
directions by linear triplets of four-membered rings, and to nearest-neighbor eight-
membered rings through six-membered rings. All tetrahedra are four-connected; (PO,)
tetrahedra link only to (BeO,) tetrahedra, and vice versa. The structure has large cages
(Rouse et al. 1989) and prominent intersecting channels (Fig. 15e) that contain interstitial
Li, [7]-coordinated Ca and strongly disordered (H,O) groups.

STRUCTURES WITH ( 7$s) AND (Mobs) GROUPS

As noted above, we classify the structures within each sub-group in terms of the
connectivity of the constituent polyhedra of the structural unit. We use the nomenclature
of Hawthorne (1983a) to denote the linkage: - denotes corner-sharing (e.g., M-M),
= denotes edge-sharing (e.g., M=M), and = denotes (triangular) face-sharing (e.g.,
M= M).

Structures with unconnected (PO,) groups

Phosphate minerals of this class are listed in Table 5. In these minerals, the (POj)
groups and (M¢g) octahedra are linked together by hydrogen bonding.

In struvite, [Mg(H,0)s][PO4], the (PO,) tetrahedra and (Mg{H.O}s) octahedra are
linked solely by hydrogen bonding from the (H,O) groups bonded to Mg directly to the
anions of the (PO,4) groups, or by hydrogen bonding from the interstitial (NH4) group
|

Table 5. Phosphate minerals based on isolated tetrahedra and
octahedra and finite clusters of tetrahedra and octahedra.

Mineral Structural unit Space group Figure

Isolated polyhedra

Strivite [Mg(H20)6][PO4] Pmn2; 16a

Phosphorrosslerite [Mg(H,0)e][PO3(OH)] C2/c 16b
Clusters

Anapaite [Fe?*(PO,)2(H20)4] P1 17a,b

Schertelite [Mg(POz{OH},(H,0)4] Pbca 17cd

Morinite [Alz(PO4)2F4(OH)(H20)2] P21/m 17e,f




146 Huminicki & Hawthorne

Figure 16. The crystal structures of struvite and phosphorrgsslerite: (a) struvite projected onto
(100); (b) phosphorrosslerite projected onto (100). (Mg{H,O}¢) octahedra are shadow-shaded,
hydrogen atoms are shown by small shaded circles, N [as part of the (NH,) group] is shown as
cross-hatched circles, O-atoms of interstitial (H,O) groups are shown as large shaded circles.

(Fig. 16a). In phosphorrosslerite, [Mg(H,0)s][PO3(OH)](H20), the phosphate group is
an acid phosphate, one of the phosphate anions being an (OH) group. The (Mg{H.0}s)
octahedron hydrogen bonds to the (P¢s) group, but there is also an interstitial (H,0)
group that is held in the structure solely by hydrogen bonding (Fig. 16b), acting both as a
hydrogen-bond donor and as a hydrogen-bond acceptor.

Structures with finite clusters of tetrahedra and octahedra
Phosphate minerals of this class are listed in Table 5.

M-T linkage. In anapaite, Cay[Fe?*(PO4)»(H-0)4], two (PO.) groups link to trans
vertices of an (Fe?*¢g) octahedron to form an [M(TO4).¢4] cluster, where M = Fe?*, T = P,
and ¢ = (H,O) (Fig. 17a). These clusters are arranged in open layers parallel to (001)
(Fig. 17b), and these layers are linked by Ca atoms and by hydrogen bonding. The atomic
arrangement in schertelite, (NH4)2[Mg{PO3(OH)}2(H20)4], is similar to that in anapaite
(and also the sulfate minerals bloedite, Nay[Mg(SO04)2(H20)s], and leonite,
Ko[Mn?*(S04)2(H20)4], Hawthorne 1985b). The [Mg(POs{OH})2(H20)s] clusters are
arranged in a centered rectangular array (Fig. 17c), with the projection of the long axis of
the cluster parallel to the a-direction. The clusters are arranged in layers parallel to (010)
(Fig. 17d), and the clusters are linked by hydrogen bonding involving (H,O) groups of
the cluster and interstitial (NH;) groups.

M-M, M-T linkage. In morinite, NaCay[Aly(PO4).F4(OH)(H20),], two (Alds)
octahedra link through one vertex to form a dimer, and (two pairs of) vertices from each
octahedron, cis to their common vertex, are linked by (PO4) groups to form a cluster of
the general form [M2(TOy)207]. These clusters are arranged in a centered array when
viewed down [001] (Fig. 17¢). Adjacent clusters are linked by ®!Ca (Fig. 17f), ®)Na in
triangular-bipyramidal coordination, and by hydrogen bonds. As shown by Hawthorne
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Figure 17. The crystal structures of anapaite, schertelite and morinite: (a) anapaite projected onto
(001); (b) anapaite projected onto (010); (c) schertelite projected onto (010); N shown as circles;
(d) schertelite projected onto (001); (e) morinite projected onto (001); Ca atoms are shown as
circles, Na atoms and hydrogen bonds are not shown; (f) morinite, showing the linkage of adjacent
clusters by interstitial Ca atoms.
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Table 6. Phosphate minerals based on infinite chains of
tetrahedra and octahedra.

Mineral Structural unit Space group  Figure
Baggildite [Al(PO,)Fq] P2,/c 19a,b
Cassidyite [Ni(PO4),(H,0),] P1 19¢

Collinsite* [Mg(PO,),(H,0),] P1 19c

Fairfieldite* [MnZ*(PO,),(H,0),] P1 19d

Messelite [Fe**(PO4),(H,0),] P1 19d

Childrenite* [AI(PO4)(OH),(H.0)] Bbam 20a,b
Eosphorite [AI(PO,)(OH),(H,0)] Bbam 20a,b
Jahnsite* [Fe* (PO.),(OH)], P2/a 20c,d
Rittmanite [AI(PQO4)2(OH)], P2/a 20c,d
Whiteite [AI(PO,),(CH)], P2/a 20c,d
Whiteite-(CaMnMg)  [AI(PO,),(OH)]2 P2/a 20c,d
Lun'okite [AI(PO,)2(OH)], Pbca 21a,b
Overite* [AI(PO4)2(OH)]. Pbca 21a,b
Segelerite [Fe**(PO,),(OH)], Pbca 21a,b
Wilhelmvierlingite [Fe**(PO4)2(OH)], Pbca 21a,b
Tancoite [AI(PO4)2(OH)] Pbcb 21cd
Sinkankasite [AI(PO3{OH}),(OH)] P1 21ef
Bearthite [AI(PO,)2(OH)] P2,/m 22a,b
Brackebuschite * [Mn**(VO,),(OH)] P2./m 22a,b
Goedkenite [AI(PO4)2(OH)] P2,/m 22a,b
Tsumebite [Cu**(PO,)(SO4)(OH)] P2,/m 22a,b
Vaugquelinite [Cu**(PO,)(CrO,)(OH)] P2,/n 22c,d

(1979a), this [M2(TO4)207] cluster is the basis of a short hierarchy of phosphate minerals
of higher connectivity: minyulite, olmsteadite, hureaulite, phosphoferrite, kryzhanovskite,
melonjosephite and whitmoreite.

Structures with infinite chains of (PO,) tetrahedra and (M¢s) octahedra

The minerals of this class are listed in Table 6. The topologically distinct chains and
their corresponding graphs are shown in Figure 18.

M-T linkage. Baggildite, Na,Sra[Al,(PO4)Fg], is a rare phosphate-aluminofluoride
mineral. The structural unit consists of a chain of alternating (PO,) tetrahedra and
(AlO;F,) octahedra that is decorated by flanking (AIOFs) octahedra attached to the (PO,)
groups (Figs. 18a, 19a). The (PO,) groups are three-connected and alternately point up
and down along the length of the chain. The chain extends along the b-direction (Fig.
19b) and are linked by [8]- and [9]-coordinated Sr, and [7]- and [9]-coordinated Na.
Baggildite is the only phosphate-aluminofluoride mineral currently known.

The minerals of the collinsite, Cay[Mg(PO4)(H20),], and fairfieldite,
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Figure 18. Topologically distinct chains of (PO,) tetrahedra and (M¢s) octahedra, and their
corresponding graphs: (a) the [M(TO,) ¢o] chain in bgggildite; (b) the [M(TOg)2¢,] chain in the
minerals of the collinsite and fairfieldite groups; (c) the [M(TO,) ¢3] chain in the minerals of the
childrenite group; (d) the [M(TO,),¢] chain in the minerals of the jahnsite group; (e) the [M(TO,),¢]
chain in bearthite (and the minerals of the brackebuschite group).

Cay[Mn®*(PO4)2(H20),], groups are both based on a general [M(TO.,)20,] chain that also
occurs in the (non-phosphate) minerals of the krohnkite, Na,[Cu®**(SO4)(H20).], group.
This chain is formed of alternating (M #*0.{H,0},) octahedra and pairs of (PO,)
tetrahedra (Figs. 19c¢,d), with the (H>O) groups in a trans arrangement about the divalent
cation (Fig. 18b). The repeat distance along the length of the chain is ~5.45 A, and this is
reflected in the c-dimensions of these minerals. The minerals of the collinsite and
fairfieldite groups are often incorrectly grouped together as the fairfieldite group because
they all have triclinic symmetry. However, the interaxial angles in the two groups are
significantly different (see Appendix). Adjacent chains in both structures are linked by
[7]-coordinated Ca atoms and by hydrogen bonding. The two structures differ in the
details of their hydrogen bonding (Figs. 19c,d).

M-M, M-T linkage. Childrenite, Mn?*(H,O)[AI(PO,)(OH),], consists of [Alds]
chains in which (Alds) octahedra link through pairs of trans vertices. The chains are
decorated by (PO,4) groups that link adjacent octahedra and are arranged in a staggered
fashion along the length of the chain (Fig. 18c) to give the general form [M(TO4)¢s]. The
chains extend in the c-direction in childrenite (Fig. 20a) and are cross-linked by [6]-
coordinated Mn?*, the coordination octahedra of which form an edge-sharing chain in the
c-direction. Viewed down [001], the chains are arranged at the vertices of a primitive
orthorhombic net, and four adjacent chains are linked through one (Mn®*¢s) octahedra
(Fig. 20Db).

Jahnsite, CaMn**Mgz[Fe**(PO4)2(OH)](H20)s, consists of [Fe**¢s] chains of trans-
corner-sharing octahedra that are decorated by bridging (PO,4) groups to give the general
form [M **(TO4)20] (Fig. 18d). These chains extend in the b-direction and have a repeat
distance of ~7.1A, leading Moore (1970) to designate these, and related, chains as the
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Figure 19. The crystal structures of baggildite, collinsite and fairfieldite: (a) the [Al;(PO4)Fo] chain
in baggildite; (b) baggildite projected onto (100); Ca atoms are shown as dark circles, Na atoms are
shown as shaded circles; (c) collinsite projected onto (100); (d) fairfieldite projected onto (100); Ca
atoms are shown as shaded circles, H atoms are shown as small dark circles.

7-A chains. These chains are linked in the a-direction by [6]-coordinated Ca (Fig. 20c)
that form chains of edge-sharing polyhedra in the b-direction, forming slabs (Fig. 20d)
parallel to (100) that are linked by octahedrally coordinated divalent-metal cations and by
hydrogen bonding. In addition to the minerals of this group listed in Table 6, Matsubara
(2000) reports the Fe* equivalent of jahnsite, ideally CaFe®*Fe?*;[Fe**(PO,),(OH)].
(H20)s, but this has not been approved as a valid species by the IMA.

Overite, Ca;Mg,[AI(PO4)2(OH)]2(H20)s, and tancoite, Na,LiH[AI(PO,),(OH)], are
both based on the [AI(PO,)2(OH)] chain that is shown in Figure 18d, and in both
structures, this chain defines the c-dimension, 7.11 A in overite and 7.03 x 2 = 14.06 A in
tancoite. (Aldg) octahedra link through one set of trans vertices, corresponding to the
(OH) groups, to form an [Alds] chain. Adjacent octahedra are linked by pairs of (PO,)
tetrahedra that point alternately up and down the b-direction in overite (Fig. 21a) and the
a-direction in tancoite (Fig. 21c). In overite, the chains are linked in the a-direction by
[8]-coordinated Ca to form slabs parallel to (010), the Ca linking to both tetrahedra and
octahedra. These slabs are linked in the b-direction by (MgO,{H,0},) octahedra (Fig.
21Db), and the resulting structure is strengthened by hydrogen bonds from the (H.O)
groups, all of which are bonded to the interstitial Mg cations. In tancoite, the chains are
linked in the b-direction by [8]-coordinated Na and [5]-coordinated Li, forming slabs
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Figure 20. The crystal structures of childrenite and jahnsite: (a) childrenite prolected onto (100); (b)
childrenite projected onto (001); (Aldg) octahedra are shadow-shaded, Mn®" cations are shown as
circles; (c) jahnsite projected onto (001); (d) Jahn3|te projected onto (010); (Fe**ds) octahedra are 4°-
net-shaded, Ca atoms are shown as circles, (Mn* ¢g) and (Mgdg) octahedra are shadow-shaded.

parallel to (100) (Fig. 21c). These slabs are linked in the a-direction by [8]-coordinated
Na (Fig. 21d). In addition, there is a symmetrical hydrogen-bond between two anions of
adjacent (PO4) groups.

Sinkankasite, Mn?*(H,0)4[Al(POs{OH})»(OH)](H.0),, is also based on the
[M(Td4)20] chain of Figure 18d, extending in the c-direction to give a repeat of ~7 A.
However, it is topochemically different from the analogous chain in overite and tancoite
because one of the tetrahedron vertices is occupied by (OH), formlng an acid-phosphate
group. The chains are linked in the b-direction (Fig. 21e) by (Mn?*0,{H,0}.) octahedra
to form a thick slab parallel to (100). These slabs stack in the a-direction (Fig. 21f) and
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Figure 21. The crystal structures of overite, tancoite and sinkankasite: (a) overite projected onto
(010); (b) overite projected onto (001); Ca atoms are shown as small shaded circles; (c) tancoite
projected onto (100); (d) tancoite projected onto (001); Na atoms are shown as small shaded circles,
Li atoms are shown as large shaded circles; (e) sinkankasite projected onto (100); (f) sinkankasite
projected onto (001); hydrogen atoms and bonds are omitted for clarity, (Al¢s) octahedra are 4*-net-
shaded.
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Figure 22. The crystal structures of bearthite and vauquelinite: (a) bearthite projected onto (001);
(b) bearthite projected onto (010); (Aldg) octahedra are shadow-shaded in (a) and 4*-net-shaded in
(b), interstitial Ca is shown as shaded circles; (c) vauquelinite projected onto (100); (d) vauquelinite
projected onto (010); (CrO,) tetrahedra are square-pattern-shaded, (Cu®*¢s) octahedra are shadow-
shaded in (c) and 4*-net-shaded in (d), Pb?* is shown as shaded circles.

are linked solely by hydrogen bonds involving the H atom of the acid-phosphate group,
the (H20) groups of the interstitial (Mn**O{H,0}4) octahedron, and interstitial (H,O)
groups not bonded directly to any cations.

M=M, M-T linkage. Bearthite, Ca[AlI(PO,4),(OH)], contains (Alds) octahedra
which share one set of trans edges with adjacent octahedra to form an [Ald4] chain.
Adjacent octahedra are linked (bridged) by (PO,) tetrahedra in a staggered arrangement
on either side of the chain to form a decorated chain of the general form [M(TQO4).¢] (Fig.
18e). These chains are linked in the a-direction by [10]-coordinated Ca (Fig. 22a).
Viewed along [010] (Fig. 22b), the chains resemble four-membered pinwheels; linkage in
the c-direction is also provided by interstitial Ca cations. A topologically identical chain,
[M(TO4)20], occurs in vauquelinite, Pb?*;[Cu® (PO4)(CrO4)(OH)]; however, there are
two symmetrically (and chemically) distinct tetrahedra in vauquelinite, (PO,) and (CrO,)
(Fig. 22c). In vauquelinite, (Cu“*¢s) octahedra form the [Md4]-type chain, (PO,)
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tetrahedra bridge vertices of adjacent octahedra in the chain, and (CrO,) tetrahedra link to
one vertex of the edge shared between adjacent octahedra (Fig. 22c). The resulting
[Cu** (PO4)(CrO4)(OH)] chains extend in the b-direction, and are linked in the a-direction
and c-direction by [9]-coordinated Pb?*. When viewed end-on (Fig. 22d), the chains
resemble four-membered pinwheels.

Structures with infinite sheets of (PO,) tetrahedra and (M¢g) octahedra
The minerals of this class are listed in Table 7.

Table 7. Phosphate minerals based on infinite sheets of
tetrahedra and octahedra.

Mineral Structural Unit Space Group Figure
Johnwalkite [Nb(PO,4),0,] Pb2;m 23a.b
Olmsteadite* [Nb(PO,),0;] Pb2;m 23a,b
Brianite [Mg(PQOy):] P2,/c 23c,d
Merwinite* [Mg(SiOy).] P2,/c 23c,d
Newberyite [Mg(PO3;0OH)(H,0)3] Pbca 24a,b
Hannayite [Mg3(POs{OH}).] P1 24c¢,d
Minyulite [Al(PO,),F(H20).] Pba2 25a,b
Benauite [Fe* 3(PO.)(PO:{OH})(OH)¢] R3m  25cd
Crandallite [Al3(PO4)(PO:{OH})(OH)¢] R3m 25c,d
Eylettersite [Al3(PO4)(PO:{OH})(OH)¢] R3m 25c,d
Florencite-(Ce) [Al3(PO4)(PO:{OH})(OH)¢] R3m 25c,d
Florencite-(La) [Al3(PO4)(PO:{OH})(OH)¢] R3m 25c,d
Florencite-(Nd) [Al3(PO4)(PO:{OH})(OH)¢] R3m 25c,d
Gorceixite [Al3(PO4)(PO:{OH})(OH)¢] R3m 25c,d
Plumbogummite  [Al;(PO,)(PO:{OH})(OH)s] R3m 25c,d
Waylandite [Al3(PO4)(PO:{OH})(OH)¢] R3m 25c,d
Zairite [Fe* 3(PO.)2(OH)e] R3m  25cd
Gordonite [Al,(PO,)2(OH),(H,0),] P1 26a,b
Laueite* [Fe*, (PO.),(OH),(H,0),] P1 26a,b
Mangangordonite  [Al,(PO,),(OH),(H;0),] P1 26a,b
Paravauxite [Al,(PO,)2(OH),(H,0),] P1 26a,b
Sigloite [Aly(PO,),(OH),(H,0),] P1 26a,b
Ushkovite [Fe*", (PO.),(OH),(H,0),] P1 26a,b
Curetonite [AI(PO,)(OH)] P2i/n 26¢,d
Kastningite [Al,(PO,)2(OH),(H,0),] P1 27a,b
Stewartite* [Fe*, (PO.),(OH),(H,0),] P1 27a,b
Pseudolaueite [Fe* (PO.)(OH)(H,0)], P2./a 27c,d
Strunzite* [Fe* (PO,)(OH)(H,0)], P1 28a,b
Ferrostrunzite [Fe* (PO.)(OH)(H,0)], P1 28a,b
Metavauxite [AI(PO,)(OH)(H,0)], P2./c 28c,d
Montgomeryiteeeee [MgAIl4(PO,)s(OH)4(H,0)] C2lc 29a,b
Mitryaevaite [Als(PO,)2(POs{OH}),F>(OH),(H,0)s] P 1 29c,d
Bonshtedite [Fe**(PO,)(CO3)] P2./m 2%, f
Bradleyite* [Mg(PO4)(COs)] P2,/m 29, f
Sidorenkoite [Mn%(PO,)(COs3)] P2./m  29%f

Bermanite* [Mn**(PO,)(OH)], P2, 30a,b
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30a,b
30c,d
31a,b,c
32a,b,c
32d,e
32d,e
33a
33a
34a,b
34a,b
34c,d

Figure 23. The crystal structures of olmsteadite and brianite: (a) olmsteadite projected onto (100);
(b) olmsteadite projected onto (010); (NbOg) octahedra are line-shaded, Fe?*atoms are shown as
line-shaded circles, (H,O) groups are shown as dot-shaded circles; (c) brianite projected onto (001);
(d) brianite projected onto (010); (MgQOg) octahedra are shadow-shaded, interstitial cations are

shown as circles.
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M-T linkage. The minerals of the olmsteadite, KoFe**4(H,0)4[Nb2(PO.)40.], group
consist of (PO,) tetrahedra and (NbOg) octahedra at the vertices of a 4* plane net, linked
by sharing corners to form a sheet parallel to (100) (Fig. 23a, above). In the c-direction,
the (PO,) groups link to trans vertices of the (NbOg) octahedra, but in the b-direction, the
(POy) groups link to cis vertices of the (NbOg) octahedra, and these cis vertices alternate
above and below the plane of the sheet in the b-direction. The sheets link in pairs by
sharing octahedron corners to form slabs that incorporate the interstitial [8]-coordinated
K (ZFig. 23b). These slabs are linked in the a-direction by rutile-like [M¢4] chains of
(Fe*" ) octahedra that extend in the c-direction.

Brianite, Na,Ca[Mg(PQO,),] is a member of the merwinite group (Table 7) and
consists of (PO,) tetrahedra and (MgOs) octahedra at the vertices of a (4%), 4° plane net.
The (PO,) groups link to both the upper and lower corners of the octahedra (Fig. 23c) to

Figure 24. The crystal structures of newberyite and hannayite: (a) newberyite projected onto (010);
(b) newberyite projected onto (001); (Mgde) octahedra are line-shaded, H atoms are shown as small
shaded circles; (c) hannayite projected onto (010); (d) hannayite projected onto (001); (Mgde)
octahedra are shadow-shaded.
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form pinwheels (Moore 1973b) and the resulting sheet has a layer of octahedra
sandwiched between two layers of tetrahedra (Fig. 23d). These sheets are linked in the
c-direction by interstitial Na and Ca.

Newberyite, [Mg(PO3{OH})(H20)3] consists of (P¢s) tetrahedra and (Mgde)
octahedra at the vertices of a 6° plane net; the two different types of polyhedra alternate
on any path through the net (Fig. 24a), and the (PO,) tetrahedra point both up and down
relative to the plane of the sheet. Both tetrahedra and octahedra are three-connected, and
all one-connected vertices in the net are ‘tied-off’ by H atoms. Thus the (P¢4) group is
actually an acid-phosphate group, (POs{OH}), and the three one-coordinated anions of
the (Mgds) octahedron are (H,O) groups. Hawthorne (1992) used newberyite as an
example of the role of H atoms in controlling the dimensional character of a structural
unit. The sheets in newberyite stack in the b-direction (Fig. 24b) and are linked solely by
hydrogen bonds. Newberyite is an unusual structure in that it undergoes a low-
temperature crystal-to-amorphous transition (Sales et al. 1993). When heated above
150°C (but below 600°C), newberyite becomes amorphous. With continued heating
above 150°C, the amorphous phase develops chains of polymerized (PO,) tetrahedra (up
to 13 tetrahedra long), until at 600°C, crystalline Mg,P,0O; forms. Heating under
(unspecified) pressure results in a phase of the form Mgs(POs{OH})[P.07](H20)4s,
the only known crystalline phosphate containing two different phosphate anions (Sales et
al. 1993).

Hannayite, (NH4)2[Mgs(PO3{OH})4(H20)s], consists of a very exotic sheet of
alternating (PO3{OH}) tetrahedra and (Mgds) octahedra in a very open array. Alternating
tetrahedra and octahedra fuse to form an [M(TQO4)d4] chain. Pairs of these chains meld by
sharing corners between tetrahedra and octahedra to form ribbons of the type [M(TO4) s3]
that extend in the c-direction. These ribbons are linked in the a-direction by trans
[Mg(PO4)204] clusters to form an open sheet parallel to (010) (Fig. 24c). These sheets
stack in the b-direction (Fig. 24d) and are linked by hydrogen bonds directly from sheet
to sheet, and by hydrogen bonds involving the interstitial (NH;) groups.

M-M, M-T linkage. Minyulite, K[Al>(PO,).F(H20)4], contains a sheet that is made
up of [Aly(PO4).F(H,0)40,] clusters that are topologically identical to the
[AI2(P04)2F4(OH)(HZO)2] clusters in morinite (Fig. 17e). These clusters occur at the
vertices of a 4* net (Fig. 25a) and link by sharing vertices between tetrahedra and
octahedra. This arrangement leads to large interstices within the sheet, and these are
occupied by [10]-coordinated K atoms (Fig. 25a); the sheet is parallel to (001). When
viewed in the b-direction, it can be seen (Fig. 25b) that each sheet consists of a layer of
tetrahedra and a layer of octahedra. The interstitial K atoms actually lie completely within
each sheet and hence do not participate in intersheet linkage. All (H,O) groups of the
structural unit occur on the underside of each sheet (Fig. 25b) and adjacent sheets are
linked solely by hydrogen bonds.

The minerals of the crandallite, Ca[Al3(PO4)(POs{OH})(OH)e], group are based on
an open sheet of corner-sharing (Aldps) octahedra that is decorated with (PO,) and
(PO3{OH}) groups. This sheet can be envisaged as parallel [M¢s] chains of octahedra
that extend in the a- (plus symmetrically equivalent) direction (Fig. 25c) and are linked
into a sheet by sharing corners with linking octahedra; thus all octahedra are four-
connected within this sheet. There are prominent three-membered and six-membered
rings of octahedra within this sheet, and the (P¢4) tetrahedra share three vertices with
octahedra of the three-membered rings (Fig. 25c). There is only one crystallographically
distinct (P¢4) group in the structure of crandallite, and hence the normal and acid
phosphate group must be disordered. The resultant [M **3(Td4)ds] sheets (Fig. 25¢) stack
in the c-direction (Fig. 25d) and are linked by hydrogen bonds between the (OH)g anions
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Figure 25. The crystal structures of minyulite and crandallite: (a) minyulite projected onto (001);
(b) minyulite projected onto (010); (c) crandallite projected onto (001); (d) crandallite projected
onto (001). (Alds) octahedra are shadow-shaded, H atoms are shown as small shaded circles, K
atoms are shown as large shaded circles, Ca atoms are shown as dark circles.

of the octahedra and the ‘free’ vertex of the (P¢4) group in the adjacent sheet, and by
[10]-coordinated Ca. Viséite is a poorly crystalline mineral that McConnell (1952, 1990)
has proposed as an aluminophosphate isotype of analcime. However, Kim and
Kirkpatrick (1996) showed that viséite is a mixture of several phases; the dominant phase
has a structure similar to that of crandallite, plus admixed phases that include an
unidentified aluminophosphate, opal and a zeolitic framework aluminosilicate.

A prominent feature in laueite, Mn**(H,0)4[Fe**2(PO4)2(OH),(H20),](H20),, and
the minerals of the laueite group (Table 7) is the 7-A chain shown in Figure 18c. (Fe**¢¢)
octahedra link by sharing trans vertices to form an [M¢s] chain that is decorated by
flanking (PO.) groups, and the resulting chains extend in the c-direction, giving a c-
repeat of ~7.1 A (see Appendix). These chains meld in the a-direction by sharing one
quarter of the flanking (PO,4) vertices with octahedra of adjacent chains to form an
[Fe**5(PO,)2(OH),(H20),] sheet (Fig. 26a); note that the sheet is written with two
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Figure 26. The crystal structures of laueite and curetonite: (a) laueite projected onto (010);
(b) laueite projected onto (001); (H,O) groups not bonded to any cations are not shown; (c)
curetonite projected onto (010); (d) curetonite prozjected onto (001). (Fede) and (Aldg) octahedra are
dot-shaded and 4*-net-shaded, respectively; Mn** and Ba are shown as shaded circles, selected
(H20) groups are shown as grey circles.

octahedrally coordinated cations, rather than as [M(TOg)¢2]. because the two octahedra
are topologically distinct. In the resulting sheet, the (PO,) tetrahedra are three-connected.
Note that there are two distinct octahedra in these sheets, one of which is six-connected
within the sheet, and the other of which is only four-connected and has (H,O) at two
vertices. Another prominent feature of this sheet is the [M(TO4)2¢,] chain (Fig. 18b) that
extends from SE to NW in Figure 26a. Thus we could also think of the laueite sheet as
composed of [Fe**(PO,),0] chains that are linked by (Fe**Og) octahedra. This occur-
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rence of two different types of chain in a more highly connected structural unit is a
common feature in minerals, and reflects Nature’s parsimony in designing structural
arrangements in crystals. These sheets stack in the b-direction and are linked by
(Mn?*0,{H,0},) octahedra (Flg 26b), and by hydrogen bonds |nv0IV|ng the interstitial
(H,0) groups bonded to Mn** and interstitial (H,O) groups held in the structure solely by
hydrogen bonds.

Curetonite, Bay[Aly(PO4)2(OH),F,], contains an [Aly(PO4)2(OH),F,] sheet (Fig.
26c¢) topologically identical to the analogous sheet in laueite (Figs. 26a). Note that the
formula of curetonite has previously been written as half the formula unit given above,
but that formulation ignored the fact that there are two topologically distinct (Aldg)
octahedra in the structural unit. There is another |nterest|ng wrinkle in the chemistry of
curetonite, replacement of Al by Ti and (OH) by O%, which can give local areas of
titanite-like arrangement within the sheet. The sheets stack in the b-direction (Fig. 26d)
and are linked by interstitial [10]-coordinated Ba.

Stewartite, Mn**(H20)4[Fe**2(PO4)2(OH),(H-0),](H20),, and  pseudolaueite,
Mn2+(H20)4[Fe 2(PO4)2(OH)2(H20)2](Hzo)z, are polymorphs of laueite. Both contain
[Fe**5(PO,)2(OH),(H20)0;] chains (cf. Fig. 18c), but the way in which these chains
cross-link to form a sheet is different from the analogous linkage in laueite. In stewartite,
there are three symmetrically distinct (Fe¢s) octahedra in the 7-A chain, with
coordinations ({OH},0,{H,0},), ({OH},0.,{H.0},) and ({OH},04) with multiplicities
of 1, 1 and 2, resgectively. In laueite, there are two symmetrically distinct (Fedg)
octahedra in the 7-A chain, with coordinations ({OH},0,{H.0},) and ({OH}204) with
multlpllcmes of 2 and 2, respectively. However, the cross-llnkage of chains is different
from in laueite, as is apparent from the presence of [Fe**(PO.)20,] chains in laueite (Fig.
26a) and only fragments of this chain in stewartite (Fig. 27a). These sheets stack in the c-
direction, linked by (Mn?*0.{H,0}.) octahedra (Fig. 27b) and hydrogen bonds involving
(H20) bonded to interstitial catrons and (H20) held in the structure solely by hydrogen
bonding. In pseudolaueite, the [Fe 2(P04)2(OH)2(H20)O 2] chains condense to form a
sheet (Fig. 27¢) topologlcally distinct from those in laueite and stewartite; Moore (1975b)
discusses in detail the isomeric variation in these (and related) sheets. These sheets stack
along the c-direction (Fig. 27d) and are linked by (Mn?*O,{H,0}.) octahedra and by
hydrogen bonds.

The sheets in strunzite, Mn®"(H,0)4[Fe**(PO,).(OH)(H20)], and metavauxite,
Fe2+(H20)6[AI(PO4)(OH)(H20)]2, are built from topologically identical [M(TO4)ds]
chains. In strunzite, the 7-A chains extend in the c-direction and cross-link to form an
[Fe3+(PO4)(OH)(H20)] sheet (Fig. 28a) that is a graphical isomer of the
[Fe**2(PO4)2(OH),(H,0),] sheet in stewartlte (Fig. 27a). These sheets stack in the a-
direction (Fig. 28b) and are linked by (Mn?*0,{H,0}.) octahedra and hydrogen bonds. In
metavauxite, the 7-A chains also extend in the c-direction, and cross-link to form an
[AI(PO4)(OH)(H20)] sheet (Fig. 28c). These sheets stacklnthea direction (Fig. 28d) and
are linked by hydrogen bonds emanating from the interstitial (Fe**{H,O}s) groups.

Montgomeryite, CasMg(H20)1:[Al2(PO,)3(OH),]2, contains 7-A chains of the form
[M(Td4)d2] (Fig. 18c) in which alternate octahedra are decorated by two tetrahedra that
attach to trans vertices (Fig. 29a) to give a chain of the form [M2(TO4)4¢4] that extends in
the [101] direction. These chains meld in the [101] direction by sharing flanking (PO,)
groups to form an [Al,(PO4)3(OH),] sheet that is parallel to (010) (Fig. 29a). These sheets
stack in the [010] direction (Fig. 29b). The decorating tetrahedra of the 7-A chains project
above and below the plane of the sheet, and one Ca cation occurs in the interstices
created by these tetrahedra, being coordinated by four O-atoms of the sheet and four
interstitial (H,O) groups. The second Ca cation links to four anions of the sheet and
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Figure 27. The crystal structures of stewartite and pseudolaueite: (a) stewartite projected onto (010);
(b) stewartite projected onto (001); (c) pseudolaueite projected onto (001); (d) pseudolaueite
projected onto (010). (Fe**¢s) octahedra are dot-shaded, Mn?* and (H,O) are shown as shaded
circles.

shares four interstitial (H,O) groups with an adjacent Ca that, in turn, links to the adjacent
sheet. Further intersheet linkage is provided by octahedrally coordinated interstitial Mg
that bonds to four interstitial (H,O) groups.

Mitryaevaite, [Als(PO4)2(PO3{OH}).F2(OH)2(H20)s](H20)s5, has quite a complex
sheet that, nevertheless, can be related to other sheets in this group. An important motif in
this sheet is an [Ms(TOa4)4917] fragment (Fig. 29c) of the [M(TO,)¢] chain (Fig. 18c) that
extends along ~[120]. These fragments meld in the ~[110] direction through tetrahedron-
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Figure 28. The crystal structures of strunzite and metavauxite: (a) strunzite projected onto (100); (b)
strunzite projected onto (001); (Fe**¢s) octahedra are dot-shaded; (c) metavauxite projected onto
(100); (d) metavauxite projected onto (001); (Alds) octahedra are 4*-net-shaded, interstitial Mn®*
and (H,0) groups are shown as shaded circles.

octahedron linkages to form a sheet (Fig. 29c) parallel to (110). The chain fragments are
inclined to the plane of the sheet, giving it a very corrugated appearance in cross-section
(Fig. 29d). These sheets stack in the c-direction and are linked by hydrogen bonds via
inclined sheets of interstitial (H.O) groups that do not bond to any cation.

Figure 29 (next page). The crystal structures of montgomeryite, mitryaevaite and sidorenkoite:
(a) montgomeryite projected onto (010); (b) montgomeryite projected onto (001); (c) mitryaevaite
projected onto (001), showing the [Als(P¢4)ad12] sheet that is made up of [Ms(TOg)417] fragments
(one is shown in black) of the 7-A [M(TO,) ¢] chain; (d) mitryaevaite projected onto (100); (Aldg)
octahedra are 4*-net-shaded, Mg are shown as small shaded circles, (H,0) groups are shown as large
shaded circles in (b) and small unshaded circles in (d); (e) sidorenkoite projected onto (100);
() sidorenkoite projected onto (010); (Mn* ¢¢) octahedra are shadow-shaded, (CO3) groups are
lined triangles.
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Sidorenkaoite, Nag[Mn2+(PO4)(C03)] and the other minerals of the bradleyite group
consist of (PO4) groups and (M ?*Og) octahedra at the vertices of a 4* plane net and link
by sharing corners to form a sheet parallel to (100) (Fig. 29e). This leaves two octahedron
vertices that do not link to (PO,4) groups; these link to (CO3) groups that decorate the
sheet above and below the plane of the sheet (Fig. 29f). These sheets are linked in the a-
direction by [6]- and [7]-coordinated interstitial Na cations.

M=M, M-T linkage. Bermanite, Mn*"(H;0)s[Mn®*(PO,)(OH)]., and ercitite,
Nag(H20)4[Mn3+(PO4)(OH)]2, are not formally isostructural as they have different space-
group symmetries, but they contain topologically and chemically identical structural
units. (Mds) octahedra share pairs of trans edges to form an [Md4] chain decorated with
flanking tetrahedra that link vertices of adjacent octahedra (Fig. 18e). These chains
extend parallel to [101] and link together by sharing octahedral vertices to form an
[M(TO4)¢] sheet that is parallel to (010) in bermanlte and ercitite (Fig. 30a). These sheets
stack in the b-direction and are linked by (Mn**0,{H,0},) octahedra and by hydrogen
bonds (Fig. 30b). The interstitial Imkage is somewhat different in ercitite. One Mn** atom
plus one > vacancy (space group P2;) is replaced by two Na atoms (space group P2;/m),
the Mn*" and [ being ordered in bermanite and giving rise to the non-centrosymmetric
space group.
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M=M, M-M, M-T linkage. Schoonerite, [Mn?'Fe?*,ZnFe® (PO.,)3(OH),(H,0)7]
(H20),, is a very complicated structure, and its assignment to a specific structural class is
somewhat ambiguous. Figures 30c,d show the polyhedra and their connectivity.
Inspection of Figure 30c indicates the sheet-like nature of the structure. However, the
sheet includes both divalent and trivalent cations, and is further complicated by the fact
that Zn is [5]-coordinated. There are two prominent motifs within the sheet, an [Fe?*¢]
chain of edge-sharing octahedra extending in the c-direction, and an [Fe** P'Zn(PO,)ad]
cluster. These link in the a-direction to form a continuous sheet (Fig. 30d) that is further
strengthened by (Mn?*0,{H,0}) octahedra occupying dimples in the sheet. These sheets
stack in the b-direction and are linked by hydrogen bonds. Assigning the divalent cations
as interstitial species results in a finite-cluster structure, not in accord with the dense
distribution of polyhedra in the sheet arrangement of Figure 30d. However, we must
recognize a somewhat arbitrary aspect of the assignment here. Another aspect that
suggests a sheet structure is the 7-A chain that extends in the a-direction; this chain
involves both Fe*" and Fe?".

Nissonite, [Cu”"Mg(PO4)(OH)(H20),]2(H20), consists of a thick slab of polyhedra
linked solely by hydrogen bonds. (Mgds) octahedra and (PO,) tetrahedra lie at the
vertices of a 6° plane net (Fig. 31a); this layer, [Mb(PO,)(OH)(H0),], is topologically
identical with the [Mg(PO3{OH})(H.0)3] sheet in newberyite (Fig. 24a). However, the
tetrahedra in newberyite point alternately up and down relative to the plane of the sheet,
whereas the tetrahedra in nissonite all point in the same direction; hence these sheets are
topologically identical but graphically distinct, and are geometrical isomers (Hawthorne
1983a, 1985a). Edge-sharing [Cu®**,05(OH),] dimers link by sharing corners to form the
sheet shown in Figure 31b. The [Mg(PO.)(OH)(H.0),] sheets sandwich the
[Cu?*,04(OH),] sheet to form a thick slab parallel to (100). These slabs link through
hydrogen bonds both directly and involving interstitial (H,O) groups not bonded to any
cation (Fig. 31c).

Foggite, Ca[Al(PO4)(OH)2](H20), contains [Alds] o-PbO,-like chains of edge-
sharing (Aldg) octahedra that extend in the c-direction and are cross-linked into a sheet by
(POy) tetrahedra (Fig. 32a). These sheets are parallel to (010), and are linked by [8]- and
[10]-coordinated interstitial Ca (Fig. 32b) and by hydrogen bonds involving interstitial
(H20) groups. The structure of foggite is strongly related to the pyroxene structure,
specifically calcium tschermakite. Figure 32c depicts the structure of foggite projected
onto (100), showing the M(1)-like chains and their associated tetrahedra. Moore et al.
(1975b) expressed the relation as follows:

Foggite [CaAl,P,0g(OH),4]-Ca(H,0);
Px [CaAl, ®IT,04,]-Cal*IT,

Whitmoreite, Fe*"(H20)a[Fe>"(PO4)(OH)]., consists of a fairly densely packed sheet
of (POy) tetrahedra and (Fe**¢s) octahedra parallel to (100) (Fig. 32d). Pairs of Fe**¢g
octahedra condense to form edge-sharing [Fe®*2¢10] dimers that occupy the vertices of a
4* plane net and link by sharing corners. This results in an interrupted sheet of octahedra,
the interstices of which are occupied by (PO,) tetrahedra (Fig. 32d). These sheets stack in
the a-direction, and are linked by interstitial (Fe**O,{H,O}4) octahedra and by hydrogen
bonds (Fig. 32e).

Figure 30 (opposite page). The crystal structures of bermanite and schoonerite: (a) bermanite
projected onto (010); (b) bermanite projected onto (001); (c) schoonerite projected onto (001); note
that Zn is [5]-coordinated; (d) schoonerite prolected onto (010). (Mn**¢s) octahedra and (Znds)
tetrahedra are shadow-shaded, ({Mn*",Fe®*, Fe**}¢s) octahedra are dot-shaded, Mn?* and (H,O)
groups are shown as shaded circles.
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Figure 31. The crystal structure of nissonite: (a) the [Mg(PO4)(OH2(HZO)2] layer parallel to (100);
(b) the [Cu*",04(OH),] layer parallel to (100); (c) a view of the [Cu®"Mg(PO,)(OH)(H,0),] sheet in
the b-direction, showing the [Cu?*,0g(OH),] layer sandwiched by two [Mg(PO4)(OH)(HZO)2]
layers. (Mgds) octahedra are square-pattern-shaded, (Cu®*¢s) octahedra are shadow-shaded, Cu®*
cations are shown as light circles, H atoms are shown as small black circles, O atoms of interstitial
(H20) groups are shown as shaded circles.
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Figure 32. The crystal structures of foggite and whitmoreite: (a) foggite projected onto (010);
(b) foggite projected onto (001); (c) foggite projected onto (100), showing its similarity to the
monoclinic pyroxene (calcium tschermaks) structure; (d) whitmoreite frojected onto (100);
(e) whitmoreite projected onto (010). (Alds) octahedra are 4*-net-shaded, (Fe**¢s) octahedra are dot-
shaded, Ca atoms are shown as small shaded circles, (H,O) groups are shown as large shaded
circles, Fe** atoms are shown as small shaded circles in (e).
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Figure 33. The crystal structure of mitridatite projected onto (100); (Fe**ds)
octahedra are shadow-shaded.

Mitridatite, Cag(H0)s[Fe® s06(PO4)s](H20)s, has a sheet structural unit of exotic
complexity. (Fe**¢s) octahedra share edges to form nonameric triangular rings that are
braced by a central (PO,4) group that shares corners with six octahedra (Fig. 33). These
clusters link by their corners linking to the mid-points of the edges of adjacent clusters.
The resulting interstices are occupied by (PO,) tetrahedra that point in the opposite
direction to the tetrahedra occupying the centres of the clusters. These sheets are linked
by [7]-coordinated interstitial Ca and by hydrogen bonds involving interstitial (H,O)
bonded to Ca and interstitial (H,O) groups not bonded to any cation.

Vivianite, [Fe®*3(PO4).(H,0)s], contains two crystallographically distinct Fe**
cations that are octahedrally coordinated by (O2{H.0},) and (O4s{H,O},), respectively.
Pairs of (Fe**04{H,0},) octahedra share edges to form a dimer that is decorated by two
(PO,) groups that each link to corners of each octahedron, forming an [Fe?*,(PO4)206]
cluster. These clusters are linked in the c-direction by (Fe**0,{H,O}.) octahedra (Fig.
34a). These chains link in the a-direction (Fig. 34b) by corner-sharing between tetrahedra
and octahedra to form sheets parallel to (010). The sheets are linked solely by hydrogen
bonds in the b-direction (Fig. 34a). Bobierrite, [Mgs(PO,)(H,0)s], has a structure very
similar to that of vivianite. The sheets of octahedra and tetrahedra are topologically
identical (Figs. 34c,d), but the attitude of adjacent sheets in the b-direction is sufficiently
different such that the hydrogen-bond linkage between the sheets differs from that in
vivianite. In vivianite, the hydrogen-bond linkages are at an angle to the plane of the
sheet (Fig. 34a), whereas in bobierrite, the hydrogen-bond linkages are orthogonal to
the plane of the sheet (Fig. 34c). These difference in the attitude of adjacent sheets
is reflected in the symmetries of the two structures: C2/m (vivianite) versus C2/c
(bobierrite).

Structures with infinite frameworks of (PO,) tetrahedra and (M¢g) octahedra

The minerals of this class are listed in Table 8; graphs are not shown for framework
structures because representing such a structure in two dimensions is not satisfactory and
the representation can be confusing.
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Table 8. Phosphate minerals based on infinite frameworks of

tetrahedra and octahedra.

Mineral Structural unit Space group  Figure
Kolbeckite [Sc(PO4)(H,0),] P2:/n 35a,b
Metavariscite* [AI(PO4)(H20)2] P2i/n 35a,b
Phosphosiderite [Fe**(PO,)(H,0),] P2i/n 35a,b
Strengite [Fe**(PO4)(H,0),] Pbca 35c,d
Variscite* [AI(PO,)(H,0),] Pbca 35¢,d
Kosnarite [Zr,(POL)s] R3c 35e,f
Isokite [Mg(PO4)F] C2/c 36a,b
Lacroixite [AI(PO,)F] C2/c 36a,b
Panasqueraite [Mg(PO4)(OH)] C2/c 36a,b
Titanite * [Ti(Si0,4)0] C2/c 36a,b
Amblygonite * [AI(PO4)F] C1 36¢,d
Montebrasite [AI(PO,)(OH)] c1 36¢,d
Natromontebrasite [AI(PO4)(OH)] - 36¢,d
Tavorite [Fe**(PO,)(OH)] - 36¢,d
Cyrilovite [Fe**3(PO,)2(OH)4] P4,2,2 37a,b
Wardite* [AI3(PO4)2(OH)4] P4,2:2 37a,b
Fluellite [Al(PO4)F,(OH)] Fddd 37¢,d
Wavellite [Al3(PO4),(OH)3(H,0),] Pcmn 37e,f
Augelite [Al;(PO,)(OH)s] C2/m 38a,b
Jagowerite * [AI(PO,)(OH)], P1 38c,d
Marigite [Fe**(PO.)] Pmnb 38e,f
Kovdorskite [Mg»(PO4)(OH)(H,0)s] P2;/a 39a,b
Libethenite [Cu®*,(PO,)(OH)] Pnnm 39c,d
Adamite* [Cu?*,(AsO4)(OH)] Pnnm 39c¢,d
Tarbuttite [Zn,(PO,)(OH)] P1 39 f
Paradamite* [Zn,(AsO4)(OH)] P1 39, f
Mixite* [Cu®(AsO4)3(OH)g] P6s/m 40a,b
Petersite-(Y) [Cu®§(PO4)3(OH)e] P6s/m 40a,b
Brazilianite [Al3(PO4),(OH)4] P2:/n 40c,d
Pseudomalachite [Cu®*5(PO4)2(OH),(H,0)] P2,/c 41a,b
Reichenbachite [Cu®5(PO4)2(OH)4(H,0)] P2,/a 41c,d
Ludjlbalte [CU2+5(PO4)2(OH)4(H20)] P1 41ef
Magniotriplite [Mg2(PO,)F] 12/a 42a,b
Triplite * [Mn*,(PO,)F] 12/c (?) 42a,b
Zweiselite [Fe**2(PO,)F] 12/a (?) 42a,b
Triploidite * [Mn?*,(PO,)(OH)] P2,/a 42c,d
Wagnerite [Mg2(PO,)F] P2,/a 42c,d
Wolfeite [Fe**,(PO,)(OH)] P2,/a 42c,d
Alluaudite * [Fe**(Mn,Fe** Fe** MQ),(PO4)s]  12/a 43a,b
Hagendorfite [Mn?*(Fe** Mg,Fe*"),(PO4)s] 12/a 43a,b
Maghagendorfite [Mn®*(Mg,Fe*" Fe*"),(PO,)4] - 43a,b
Quingheite 43a,b
Varulite [Mn?*(Mn,Fe*" Fe*"),(PO,)4] - 43a,b
Rosemaryite [Mn**Fe** Al(PO,)s] C2/c (?) 43c,d
Wyllieite * [Mn?*Fe?*Al(PO.)s] P2/n 43c,d
Bobfergusonite [MnZ*Fe**Al(PO.)¢] P2/n 43e f
Ludlamite [Fe?*3(PO,),(H,0)4] P2./a 45a,b
Melonjosephite [(Fe** Fe*")(PO4)(OH)] Pnam 45¢,d
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Bertossaite * [AI(PO,)(OH)]4 I*aa 45e f
Palermoite [AI(PO,)(OH)]4 Imcb 45e,f
Arrojadite* [Fe* L AI(PO,)12(OH),] C2lc -
Dickinsonite [Mn?*,Al(PO,)1(OH),] C2lc -
Farringtonite [Mg3(PO,),] P2:/n 46a,b
Beusite [Mn?*3(PO,),] P2./c 46¢,d
Graftonite* [Fe?*3(PO.),] P2,/c 46¢,d
Bederite [Mn?*, Fe**, Mn**,(PO.)¢] Pcab 47a,b,c
Wicksite [Fe®*s MgFe** (PO,)e] Pcab 47a,b,c
Aheylite Alg(PO,)4(OH P1 47d,e
ChaI)::osiderite EFeggs(ng;(Ol)-%g] P1 47d,e
Coeruleolactite [Alg(PO,)4(OH)g] P1 47d,e
Faustite [Alg(PO,)4(OH)g] P1 47d,e
Planerite [AIG(PO4)2(P03{OH})2(OH)g] P :l. 47d,e
Turquoise * [Als(PO,)4(OH)g] P1 47d,e
Leucophosphite* [Fe**,(PO,),(OH)(H,0)] P2,/n 48a,b,c
Tinsleyite [Aly(PO,),(OH)(H,0)] P2,/n 48a,b,c
Cacoxenite [Fe** 25(P04)1706(OH)12] P63/m 49a,b,c,d
Althausite [Mg, (PO4),(OH)F] Pnma 50a,b
Hureaulite [Mn2+5(P03{OH})Q(PO4)2(HQO)4] C2/c 50C,d
Thadeuite [CaMg3(PO,)2(OH),] C222, 50e,f
Bakhchisaraitsevite ~ [Mgs(PO4)4(H20)s] P2./c 51a,b
Kryzhanovskite [Mn**Fe®*,(PO,4)2(OH),(H,0)] Pbna 51c,d
Phosphoferrite* [Fe**5(PO4)-(H,0)s] Pbna 51c,d
Grlphlte [A24Fez+4A|8(PO4)24] Pa3 52&,b,C,d
gﬁlrngti_t_e EKZ/IUB(SF()I;O;)](OH)g] II:b_ca 52¢,f
adniite 97(PO4)s 3 -~
Fillowite* [Mn?*7(PO4)e] R3 -
Galileiite [Fe®*/(PO.)e] R3 -
Johnsomervilleite [Mg7(PO4)s] R3 -
Gladiusite [Fe®* Fe**,(PO,)(OH)11(H,0) P24/n 53a,b,c
Lipscombite [Fe®*Fe**,(PO4)o(OH)] P452,2 53d,e
Burangaite [Fe®*Als(PO,)4(OH)s(H20),] C2lc 54a
Dufrénite [Fez+Fes+5(PO4)4(OH)e(HzO)z] C2/c 54a
Natrodufrénite [Fe*Fe**5(PO4)4(OH)s(H-0)] C2lc 54a
Frondellite [Fe*Fe**4(PO4)3(OH)s] Bbmm 54b,c
Rockbridgeite* [Fe*Fe**4(PO4)3(OH)s] Bbmm 54b,c
Barbosalite [Fe**(PO,)(OH)]. P2i/c 54d,e
Hentschelite [Fe**(PO,)(OH)]. P2i/c 54d,e
Lazulite* [AI(PO,)(OH)], P24/ 54d,e
Scorzalite [AI(PO4)(OH)]. P2,/c 54d.e
Trolleite [Al4(PO,)3(OH)s] 12/c 55a,b
Seamanite [Mn?*3(PO4)(B{OH}.)(OH),] Pbnm 55¢,d
Holtedahlite [Mg12(POz{OH})(PO4)s(OH)e] P31m 55e,f
Satterlyite [Fe* 4(PO4)-(OH),] P31m 55e,f
Triphylite* [Fe**(PO,)] Pbnm 56a,b
Lithiophylite [Mn**(PO,)] Pbnm 56a,b
Natrophilite [Mn**(PO,)] Pbnm 56a,b
Ferrisicklerite [Mn**,Fe**(PO,)] Pbnm 56¢,d
Sicklerite* [Fe?* Mn**(PO,)] Pbnm 56¢,d
Heterosite* [Fe* (PO.)] Pmnb 56e,f
Purpurite [Mn**(PO,)] Pmnb 56e,f
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58c,d
58c,d
58¢c,d
58¢c,d

Figure 34. The crystal structures of vivianite and bobierrite: (a) vivianite projected onto (001);
(b) vivianite projected onto (010); (c) bobierrite projected onto (100); (d) bobierrite projected onto
(010). (Fe**¢g) octahedra are square-pattern-shaded, (Mgds) octahedra are shadow-shaded, donor-

acceptor pairs for hydrogen bonds are shown by dotted lines.

M-T linkage. The minerals of the metavariscite, [AI(PO4)(H20),], and variscite,
[AlI(PO4)(H20)2], groups consist of simple frameworks of alternating (PO,) tetrahedra
and (Al¢s) octahedra. As there are equal numbers of tetrahedra and octahedra, both



172 Huminicki & Hawthorne

polyhedra are four-connected, and hence two vertices of the (Alds) octahedron must be
one-connected. The local bond-valence requirements of the anions at these one-connected
vertices require that the anions be (H,O) groups. When viewed down the c-direction,
octahedra and tetrahedra occupy the vertices of a 6° net, and Figures 35a,c show two
layers of such nets. When metavariscite is viewed in the a-direction (Fig. 35b), the
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tetrahedra and octahedra occupy the vertices of a 4.8% plane net. Note how the one-
connected vertices of the octahedra project into the large eight-membered ring, giving
room for the H atoms of the (H,O) groups at these vertices. When viewed down [100]
(Fig. 35d), variscite shows alternating tetrahedra and octahedra occupying the vertices of
a very puckered 8% net. As with metavariscite, the one-connected vertices of the
octahedra project into the large cavities.

Kosnarite, X[Zr,(PO,)s], contains octahedrally coordmated Zr. In projection down
[001] (Fig. 35e), (ZrOs) octahedra occupy the vertices of a 6° net, and all octahedron
vertices link to (PO,) tetrahedra, forming a slab with prominent interstices. These slabs
stack in the c-direction and link by sharing of octahedron-tetrahedron vertices (Fig. 35f),
with [6]-coordinated X cations in the interstices of the framework.

M-M, M-T linkage. The minerals of the amblygonite, Li[Al(PO4)F], group and the
phosphate members of the titanite group, such as lacroixite, Na[Al(PO4)F], have
topologically identical structural units. However, lacroixite is monoclinic, whereas the
amblygonite-group minerals are triclinic; because of their topological identity, we use the
unconventional space group C1 to emphasize the congruity of these two structures (Table
8). A key feature of both structures is the 7-A [M¢s] chain of corner-sharing octahedra
that extends in the c-direction (Figs. 36a,c). This chain is decorated by staggered flanking
(POy4) groups that link the chains in both the a- and b-directions, a feature that is very
apparent in an end-on view of the chains (Figs. 36b,d). The frameworks are strengthened
by interstitial alkali cations Na and Li in the minerals of the amblygonite group and both
Ca and Na in the minerals of the titanite group.

Cyrilovite, Na[Fe**s (PO4)2(OH)4(H20)2] is a member of the wardite group (Table
8). The principal motif in cyrilovite is the [Fe**¢s] chain that is decorated by (PO.)
tetrahedra arranged in a staggered fashion at the periphery of the chain (the [M(TO4)ds]
chain shown in Fig. 18c). These chains extend parallel to the a- and b-directions (note the
tetragonal symmetry) to form a slab of corner-sharing octahedra and tetrahedra (Fig.
37a), tetrahedra on opposite sides of each chain pointing in opposing directions along c.
The tetrahedral vertices that project out of the plane of the slab link to octahedra of
adjacent slabs (Fig. 37a) to form a framework that consists of successive layers of
octahedra and tetrahedra along the c-direction. [8]-coordinated Na occupies the large
interstices in this framework (Fig. 37b), and hydrogen bonds strengthen the framework.

Fluellite, [Alx(PO4)F2(OH)(H,0)3](H20)4, is an open framework of corner-sharing
(PO,) tetrahedra and (Aldg) octahedra. The principal motif of the framework is a 7-
chain of the form [M(TO4)ds] (Fig. 18c) consisting of (AIF,{OH}(H.0)s) octahedra
linked through pairs of trans vertices (= F) and decorated by (PO,) tetrahedra that link
adjacent octahedra along the chain. These chains extend in both the a- and b-directions
(Fig. 37c) by sharing (PO,4) groups between chains extending in orthogonal directions
(Fig. 37d). There are large interstices within the framework that accommodate (H,O)
groups held in the structure solely by hydrogen bonds emanating from the (H,O) groups
bonded directly to the Al of the structural unit.

Wavellite, [Al3(PO4)2(0OH)3(H.0)4](H20), is an open framework of corner-sharing
octahedra and tetrahedra (Fig. 37e) with interstitial non-transformer (H,O) groups held in
the interstices by hydrogen bonds. (Alds) octahedra share one set of trans corners with
each other to form [M¢s] chains that are decorated by (PO,) tetrahedra bridging adjacent

Figure 35 (opposite page). The crystal structures of metavariscite, variscite and kosnarite:
(a) metavariscite projected onto (001); (b) metavariscite projected onto (100); (c) variscite projected
onto (001); (d) variscite projected onto (100); (Alds) octahedra are 4*-net-shaded; (e) kosnarite
projected onto (001); (f) kosnarite projected onto (010); (Zr¢s) octahedra are square-pattern-shaded.
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octahedra (Fig. 37e) to give chains of the form [M(TO4)¢] extending in the c-direction
(Fig. 18c). These chains cross-link in the a-direction by sharing octahedron-tetrahedron
corners (Fig. 37f) with undecorated [Alds] chains (i.e., the tetrahedra linked to these
chains do not bridge octahedra within the chain). The resulting framework (Figs. 37e,f)
has large cavities that contain the interstitial (H,O) groups held in the structure solely by
hydrogen bonds.

0 —Pp

t—o—)

(c) (d)

Figure 36. The crystal structures of lacroixite and amblygonite: (a) lacroixite projected onto (100);
(b) lacroixite projected onto (001); (c) amblygonite projected onto (100); note the similarity with
(a); (d) amblygonite projected onto (001); note the similarity with (b). (Al¢s) octahedra are 4*-net-
shaded.

M=M, M-T linkage. Augelite, [Al>(PO,)(OH)3], contains Al in both octahedral and
trigonal-bipyramidal coordinations. Pairs of (Aldps) octahedra share an edge to form
[Al2d10] dimers that are oriented with their long axis in the b-direction. The dimers are
arranged at the vertices of a centered orthorhombic plane net (Fig. 38a), and dimers
adjacent in the b-direction are linked through pairs of (PO,) tetrahedra to form
[Al2(PO4)206] chains. The dimers are decorated by (Alds) trigonal bipyramids that bridge
pairs of vertices from each octahedron. These (Algs) groups link to (PO4) groups of
adjacent chains to link them in the a-direction. Viewed in the b-direction (Fig. 38b), the
structure appears as layers of dimers linked by chains of (PO,4) and (Alds) groups.
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Figure 37. The crystal structures of cyrilovite, fluellite and wavellite: (a) cyrilovite projected a few
degrees away from onto (001); (b) cyrilovite projected onto (100); (c) fluellite projected down
[110]; (d) fluellite projected onto (010); (e) wavellite projected onto (010%; (f) wavellite projected
onto (001). (Alds) octahedra are 4*-net-shaded and shadow-shaded, (Fe**¢s) octahedra are dot-

shaded.
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Figure 38. The crystal structures of augellite, jagowerite and maricite: (a) augelite projected onto
(001); (b) augelite projected onto (010); (c) jagowerite projected onto (001); (d) jagowerite
projected a few degrees away from onto (010); (e) maricite projected onto (100); (e) maricite
projected a few degrees away from onto (001). Legend as in Figure 37.
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Maricite, Na[Fe2+(PO4)] is a dense-packed framework of (Fe?*Og) octahedra and
(PO,) tetrahedra. Each (Fe?*Os) octahedron links to six (POs) groups to form what Moore
(1973b) calls a ‘pinwheel’. The octahedra occupy the vertices of a 3° net, and the
resulting sheet (Fig. 38e) is topologically identical to the [Mg(PO,),] sheet in brianite
(Fig. 23c). These sheets stack along the a-direction with octahedra from adjacent sheets
sharing edges to form [MOy]-type chains extending in the a-direction when viewed down
[001] (Fig. 38f). [10]-coordinated Na occupies interstices in the framework.

Kovdorskite, [Mgz(PO4)(OH)(H20)3] consists of two distinct (Mgds) octahedra that
condense to form tetramers via edge-sharing. These tetramers are decorated by pairs of
(PO,) tetrahedra to form [Mga(PO4).dg] clusters. The clusters occur at the vertices of a 4*
plane net and link together by sharing octahedron-tetrahedron vertices to form open
sheets parallel to (001) (Fig. 39a). These sheets stack in the c-direction by sharing
octahedron-tetrahedron vertices (Fig. 39b) to form a very open framework that is
strengthened by extensive hydrogen bonding involving the (OH) and (H,O) groups of the
structural unit.

Libethenite, [Cu2+2(PO4)(ZOH)] is a member of the adamite group (Table 8)
(Hawthorne 1976) in which Cu“" is both [5]- and [6]- coordlnated triangular blpyramldal
and octahedral, respectively. Chains of trans edge- sharlng (Cu* ¢s) octahedra extend in
the c-direction and are decorated by (PO,) tetrahedra to give chains of the general form
[M2(TO4)204] (Fig. 39c). These chains link in the a- and b-directions by sharing
octahedron-tetrahedron corners (Fig. 39d) to form an open framework with channels
extending in the c-direction. These channels are clogged with dimers of edge-sharing
(Cuds) triangular bipyramids. Note that this is also the structure of andalusite,
[Aly(SiO4)Q].

Tarbuttite, [Zny(PO4)(OH)], is a member of the paradamite group (Table 8)
(Hawthorne 1979b). (Zn¢s) bipyramids share edges to form a chain extending in the b-
direction: [Znd4]. (PO4) groups and (Znd3) bipyramids alternate along a chain of corner-
sharing polyhedra that also extends in the b-direction. These chains link in the a-direction
by sharing polyhedron vertices (Fig. 39e) to form a rather thick slab parallel to (001).
These slabs stack in the c-direction (Fig. 39f) by sharing polyhedron edges and corners.
Apart from the presence of both [5]-coordinated divalent cations, there is no structural
relation with the stoichiometrically similar libethnite, Cu2+2(PO4)(OH)

Petersite-(Y), Y[Cu2+6(PO4)3(OH)6](HZO)g, is the only phosphate member of the
mixite group (Table 8). Cu”" is [5]-coordinated with a long sixth distance to (H20). Six-
member rings of corner-sharing alternating (PO,) tetrahedra and (Cu®¢s) square-
pyramids occur parallel to (001) and link by corner-sharing to form four-membered and
twelve-membered rlngs of polyhedra (Flg 40a). An alternative description is as six-
member rings occupying the vertices of a 6° net. The layers of Flgure 40a stack along the
c-direction (Fig. 40b), and link by edge-sharing between the (Cu®*¢s) square pyramids. In
the cross-linkage of the rings in the (001) plane, note how the (PO,) groups bridge apical
vertices of square pyramids adjacent along the c-direction (Fig. 40b). The interstitial
(H20) groups occupy the channels of the twelve-membered rings, and interstitial Y
occupies the channels generated by the six-membered rings (Fig. 40a).

Brazilianite, NaJAl3(PO4)2(OH)4], contains chains of edge-sharing (Alds) octahedra
that extend in the [101] direction (Fig. 40c). These chains are fairly contorted as the
shared edges are not in a trans configuration and hence a slight helical character results.
The chains are decorated by (PO,) tetrahedra which link next-nearest-neighbor octahedra,
a rather unusual linkage that is promoted by the helical nature of the chains (Fig. 40c).
Adjacent chains link by sharing octahedron vertices with the decorating tetrahedra (Fig.
40c,d). Interchain linkage is also promoted by [7]-coordinated interstitial Na.
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Figure 39. The crystal structures of kovdorskite, libethenite and tarbuttite: (a) kovdorskite projected
onto (001); (b) kovdorskite projected onto (010); (Mgde) octahedra are shadow-shaded; (c)
libethenite projected onto (010); (d) libethenite projected onto (001); (Cu®*¢s) are dot-shaded,
(Cu®* ¢s) are shadow-shaded; (e) tarbuttite projected onto (001); () tarbuttite projected onto (100);
(Znds) octahedra and (Znds) polyhedra are square-pattern-shaded.
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(c) (d)

Figure 40. The crystal structures of petersite-(Y) and brazilianite: (a) petersite-(Y) projected onto
(001); (b) petersite-(Y) projected onto (010); (Cu®*¢g) octahedra are shadow-shaded, Y is shown as
shaded circles; (c) brazilianite projected onto (001); (d) brazilianite projected onto (010); (Alde)
octahedra are shadow-shaded, Na is shown as shaded circles.

M=M, M-M, M-T linkage. There are three polymorphs of [Cu®**s(PO4)2(OH)4(H20)],
pseudomalachite, reichenbachite and ludjibaite, and their structures are all based on
sheets of octahedra that are linked by (PO,) tetrahedra. The sheets of octahedra are
somewhat unusual in that they are not close-packed octahedra interspersed with
vacancies (as is common in this type of structure). In pseudomalachite (Fig. 41a), linear
[Md4] chains of octahedra extend in the b-direction at z ~ /4 and 3/, and are linked by
trimers of edge-sharing octahedra packed such that there are square interstices in the
sheet. The sheets stack in the a-direction and are linked by (PO,4) groups that share two
vertices with each sheet (Fig. 41b). In reichenbachite (Fig. 41c), the arrangement of
octahedra within the sheet is fairly irregular. It can be envisioned as edge-sharing trimers
of octahedra at (0 1/2 z) and (1/2 0 z) linked by edge-sharing with dimers of edge-sharing
octahedra at (0 1/8 z) and at (5/8 3/8 z) (Fig. 41c). These sheets stack in the c-direction
(Fig. 41d) and are linked by (PO,4) groups that each share two vertices with adjacent
sheets. In ludjibaite (Fig. 41e), linear [Md4] chains extend in both the b and c-directions,



180 Huminicki & Hawthorne

(f)

Figure 41. The crystal structures of pseudomalachite, reichenbachite and ludjibaite: (a) pseudo-
malachite projected onto (100); (b) pseudomalachite projected onto (001); (c) reichenbachite
projected onto (001); (d) reichenbachite projected onto (100); (e) ludjibaite projected onto (100);
(f) ludjibaite projected onto (001). (Cu®*¢g) octahedra are shadow-shaded.
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and link together by sharing edges with a [Mds] chain of corner-sharing octahedra that
extends in the c-direction. These sheets stack in the a-direction (Fig. 41f) and, as with the
other two structures, are linked by (PO,4) groups that share pairs of vertices with adjacent
sheets.

In the minerals of the triplite, [Mn**,(PO4)F], group (Table 8), (M **¢¢) octahedra
share edges to form [M **2¢10] dimers (Fig. 42a) that share corners with (PO,) tetrahedra
to form slightly corrugated layers that are parallel to (010) (Fig. 42a). These layers link in
the b-direction by sharing corners between tetrahedra and octahedra (Fig. 42b).

The minerals of the triploidite, [Mn**,(PO4)(OH)], group have divalent cations in
both octahedral and triangular bipyramidal coordinations. Pairs of octahedra share an
edge to form [M **2¢10] dimers, and these dimers are linked by sharing corners with both

Figure 42. The crystal structures of triplite and triploidite: (a) triplite projected onto (010); (b)
triplite projected onto (100); (c) triploidite projected onto (001); (d) triploidite projected onto (001).
(Mnds) octahedra are shadow-shaded, (Mnds) polyhedra are line-shaded.
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triangular bipyramids and (PO,) groups, and by sharing one octahedron edge W|th a
tetrahedron (Fig. 42c). Triangular bipyramids also form edge-sharing dimers, [M % 2¢s],
and chains of corner-sharing octahedra, triangular bipyramids and tetrahedra extend in
the b-direction (Fig. 42d). It should be noted that this is an extremely complicated
structure, and is not easily related to any other structure, except at a trivial level.

Table 9. Cell dimensions for the different structures of the
alluaudite-group (sensu lato) minerals.

a(A) b(A) c(A) BC) Spgrp V(@AY Ref.
Alluaudite 12.004(2) 12533(45) 6.404(1) 1144(1) C2lc 8774 (1)
Wyllieite 11.868(15) 12.382(12)  6.354(9) 1145(1) P2/n 8495  (2)

Bobfergusonite  12.776(2) 12.488(2) 11.035(2) 97.21(1) P2y/n 1746.7(4) (3)
References: (1) Fisher (1965); (2) Moore and Molin-Case (1974); (3) Ercit et al. (1986a,b)

The minerals of the alluaudite, wyllieite and bobfergusonite groups are
topologically identical but are distinguished by different cation-ordering schemes over
the octahedrally coordinated cation sites in the basic structure. The cell dimensions of the
principal mineral in each group are given in Table 9. The principal feature of each
structure is a linear trimer of edge-sharing octahedra (Figs. 43a,c,e). These trimers link
together by sharing edges to form chains of octahedra in (010) that are linked by sharing
octahedron corners with (PO,4) groups to form thick sheets parallel to (010). These sheets
link in the b-direction by sharing corners between tetrahedra and octahedra (Figs.
43b,d,f). The minerals of these three groups differ primarily in their Al content and the
pattern of cation order over the trimer of edge-sharing octahedra. The minerals of the
alluaudite group (sensu stricto) contain negligible Al (Al,0; < 0.10 wt %), the minerals
of the wyllieite group contain moderate Al (Al,O; ~ 3 wt %), and bobfergusonite
contains far more Al than wyllieite (Al,O3 ~ 7.5 wt %). In addition, there is a fourth (as
yet undescribed) structure type with ~15 wt % Al,O3 (unpublished data). The differences
in cation order in these three structure types are summarized in Figure 44. In alluaudite,
there is no Al, and hence Al is not involved in the ordering scheme. There are only two
distinct srtes |n the trimer in alluaudite, and the pattern of cation order can vary from
complete M #*~cation disorder to complete Fe**-M % order (Fig. 44a). In wyllieite, there
are three distinct sites in the trimer; AI IS completely ordered at one S|te and the other
two sites can vary from complete M %*-cation disorder to complete Fe**-M 2* order (Fig.
44b) In bobfergusonlte there are two crystallographlcally distinct trlmers (Fig. 44c); Al
is ordered in one trimer, Fe** is ordered in the other trimer, and M ?* is disordered over
the other sites. This picture is somewhat idealized, and each structure-type may show
minor ordering characteristic of one or more of the other structure types. Moore and Ito
(1979) discuss the nomenclature of the alluaudite and wyllieite groups in detail
and propose a nomenclature based on suffixes, but this has not been used very
extensively.

Figure 43 (opposite page). The crystal structures of alluaudite, wyllieite and bobfergusonite:
(a) alluaudite projected onto (00 Z) (b) alluaudite projected onto (100); shadow-shaded octahedra are
occupied predominantly by Mn?*, 4*-net-shaded octahedra are occupied predominantly by Fe**
(c) wyllieite projected onto (010) (d) wyllieite projected onto (100); dot-shaded octahedra are
occupied predominantly by Fe, 4*net-shaded octahedra are occupied by Al; (e) bobfergusonite
projected onto (010); (f) bobfergusonite projected onto (100); shadow-shaded octahedra are
occupied by Mn®*, Fe** and Al.
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Figure 44. Octahedral-cation-ordering patterns in (a) alluaudite; (b) wyllieite; (c) bobfergusonite;
shadow-shaded octahedra are occupied by any divalent M % cation, dot-shaded octahedra are
occupied by Fe**, line-shaded octahedra are occupied by Al. In (a) and (b), the arrows indicate the
range of possible ordering within a single chain; in (c), there are two distinct chains (shown here) in
which the ordering is different (after Ercit et al. 1986a).

Ludlamlte [Fe**3(PO,)2(H20)4] consists of (Fe**¢s) octahedra that share edges to
form [Fe® 3014] linear trimers with (PO,) tetrahedra brldglng between adjacent octahedra
in a staggered fashion on each site of the trimer: [Fe**3(PO4)2010]. These trimers extend in
the c-direction and link by sharing octahedron corners (Fig. 45a). The crankshaft chains
link in the b-direction by sharing octahedron corners and by sharing corners between
tetrahedra and octahedra (Fig. 45a) to form a sheet parallel to (100). These sheets link in
the a-direction by sharing corners between (PO,) tetrahedra and octahedra (Fig. 45b).
Note that the chains of octahedra shown in this figure are not completely edge-sharing;
for every third octahedra, the linkage is by corner-sharing, as is apparent by the change in
direction of the top triangular faces of the octahedra (Fig. 45a).

In melonjosephite, Ca[Fe?'Fe**(PO,4),(OH)], there are two crystallographlcally
distinct octahedra, both of which are occupied by equal amounts of Fe** and Fe**. One
type of octahedron forms linear chains of edge-sharing octahedra ([M¢4] of the rutile-
type) extending in the c-direction. This chain is decorated by (PO,) tetrahedra linking free
vertices of adjacent octahedra in a staggered arrangement, producing an [M(T¢4)¢2] chain
(Fig. 18e). The other crystallographically distinct octahedron links to (PO,) tetrahedra to
form [M(PO4)ds] chains. These [M(PO4)d4] chains link in a pair-wise fashion by the
octahedra sharing edges, and the resulting structure consists of the two types of chains,



Crystal Chemistry of the Phosphate Minerals 185
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Figure 45. The crystal structures of ludlamite, melonjosephite and palermoite: (a) ludlamite
projected onto (100); (b) ludlamite projected onto (010); (c) melonjosephite projected onto (010);
(d) melonjosephite projected onto (001); ({Fe®*,Fe**}¢s) octahedra are dot-shaded; (e) palermoite
projected onto (001); (f) palermoite projected onto (100); (Alds) octahedra are 4*-net-shaded, Ca is
shown as small shaded circles.
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both extending in the c-direction and cross-linked by sharing octahedron-tetrahedron and
octahedron-octahedron corners (Fig. 45c). Viewed down the length of the chains (Fig.
45d), the dimers that link the two [M(PQO4)¢4] chains are very prominent, and the key role
of the (POy4) groups in cross-linking the chains is very apparent. The interstices of the
framework are occupied by [7]-coordinated Ca.

In palermoite, SrLi>[AlI(PO4)(OH)l4, (Alds) octahedra condense by sharing edges to
form [Alxdio] dimers, and these dimers share corners to form an [Al.¢g] chain that
extends in the a-direction. One pair of octahedron vertices in each dimer is bridged by a
(POy) tetrahedron to form an [Alx(PO4)ds] chain (Fig. 45e); these chains link in the b-
direction by sharing octahedron-tetrahedron vertices. These chains are seen end-on when
viewed in the a-direction (Fig. 45f), cross-linked by (PO,) tetrahedra. The framework has
large interstices that are occupied by [8]-coordinated Sr and [5]-coordinated L.i.

Arrojadite, KNasCa[Fe?*14Al(PO.)12(OH),], and dickinsonite, the Mn?* analogue,
are infernally complex structures, each with several partly occupied cation sites, and the
complete details of their structure exceeds our spatial parameters. Moore et al. (1981)
describe the structure as six distinct rods (columns) of cation polyhedra decorated by
(POy) tetrahedra and occurring at the vertices of a {6-3:6-3} and {6-6-3-3} net. Moore et
al. (1981) also compare the structure of arrojadite with wyllieite, but the relation to the
general alluaudite-type structures has not been explored.

Farringtonite, [Mgs(PO,),], contains Mg in both octahedral and square-pyramidal
coordinations. As is common with [5]-coordinated polyhedra, [Mgds] square pyramids
share an edge to form [Mg.ds] dimers, and the terminal edges of this dimer are shared
with (PO,) tetrahedra to form a [Mg.(PO4).04] cluster (Fig. 46a). These clusters are
linked by sharing corners with (Mgds) octahedra. When projected onto (010), prominent
[Mg(PO.)202] chains are evident, extending in the c-direction (Fig. 18b). These chains are
bridged in the a-direction by [Mg2(PO4)204] clusters (Fig. 46b).

Beusite, [Mn**3(PO.),], and graftonite, [Fe2+3EPO4)2], show unusual coordination
numbers for the divalent cations: ["M(1), PIM(2), )M (3). Perhaps as a result of this
unusual coordination these minerals can accept considerable Ca at the M(1) site (Wise et
al. 1990), and the latter authors report a composition for Ca-rich beusite close to
CaFe**Mn(PO4),. "M (1) polyhedra share an edge to form a dimer; these dimers occur at
the vertices of a 4* net and share corners to form a sheet parallel to (100) that is
strengthened by (PO,) groups (Fig. 46¢). Pyroxene-like edge-sharing chains of M(3)
octahedra extend in the c-direction and are linked by chains of alternating (PO,) groups
and M(2) square pyramids (Fig. 46d), and these two types of sheet alternate in the [100]
direction.

Wicksite, NaCa,[Fe?*,(Fe? Fe*")Fe®*,(PO.)s(H20),], and the isostructural bederite,
OCay[Mn®*,Fe® ,Mn* 5 (PO,)s(H20)2], are complex heteropolyhedral — framework
structures that may be resolved into layers parallel to (001). In wicksite at z ~ 1/4,
(Fe®*¢g) and (Fe**¢s) octahedra share an edge to form [M.d1] dimers that are canted to
both the a and b axes, and are linked by (PO,) tetrahedra to form the sheet shown in
Figure 47a. At z =~ 0, two (Fe**¢s) octahedra share edges with an (Nags) octahedra to
form an [Msdi4] trimer that is decorated by (PO,) tetrahedra linking adjacent free
octahedron vertices to form a cluster of the form [M3(PO4)2¢6]. These clusters link by
sharing of octahedron-tetrahedron vertices to form the layer shown in Figure 47b. There
are two types of interstice within this layer. In the first type of interstice is the Ca site
coordinated by nine anions, and in the second type of interstice are four H atoms that
belong to the two peripheral (H,O) groups (Fig. 47b). The layers of Figure 47a and 47b
link by edge-sharing between the (Fe**¢s) [= M(1)] octahedron of one sheet with the
(Fe®*¢g) [= M(3) octahedron of the other sheet (Fig. 47c). The relation between wicksite
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Figure 46. The crystal structures of farringtonite and beusite: (a) farringtonite projected onto (001);
(b) farringtonite projected onto (010); (MgQs) octahedra are shadow-shaded, (MgOs) polyhedra are
line-shaded; (c) a layer of the beusite structure projected onto (100); (d) another layer of the beusite
structure projected onto (100); [7]- and [6]-coordinated polyhedra are shadow-shaded, [5]-
coordinated polyhedra are dark-shadow-shaded.

and bederite is as follows: the Fe?* = Na = Fe®" triplet in wicksite (cf. Fig. 47b) is
replaced by the [Mn®" = [ = Mn®*] triplet in bederite.

Chalcosiderite, [Cu®*Fe**¢(PO,)4(OH)s(H20)4], is a member of the turquoise group
(Table 8). The structure contains trimers of edge-sharing octahedra, two (Fe**¢s) and one
(Cu®* ¢g) octahedra that link by sharing corners with (PO,) tetrahedra and other (Fe**¢g)
octahedra parallel to (100) (Fig. 47d). This linkage is also seen in Figure 47e, with addi-
tional linkage between trimers through corner-sharing with additional (Fe**¢s) octahedra
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(c) (d)

Figure 47. The crystal structures of bederite and chalcosiderite: (a) layer 1 of bederite projected
onto (001); (b) layer 2 of bederite projected onto (001); (c) stacking of layers projected onto (100);
(Fe**¢s) octahedra are 4*-net-shaded, (Fe®*¢g) octahedra are shadow-shaded, Ca atoms are shown as
shaded circles; (d) chalcosiderite projected onto (100); (e) chalcosiderite projected onto (001); (f)
chalcosiderite projected onto (010); (Fe**¢¢) octahedra are dot-shaded and shadow-shaded.
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Figure 48. The crystal structure of leucophosphite: (a) the [Fe**,(PO4)4012] cluster; (b) projected
onto (100); (c) projected onto (010). (Fe**¢s) octahedra are cross/dot-shaded, K is shown as shaded
circles.

and (PO4) groups to form a thick slab parallel to (001). These slabs stack along the c-
direction (Fig. 47f) and are linked through bridging (PO,) tetrahedra. The structure is
fairly open to accommodate the extensive hydrogen-bonding associated with the (OH)
and (H,0) groups of the structural unit.

Leucophosphite, Ko(H,0)[Fe**5(PO4)-(OH)(H20)]»(H-0), and tinsleyite, KZ(HZO)
[Al2(PO4)2(OH)(H20)]2(H20), are based on a prominent tetramer of octahedra in which
two (Fe*"Og) octahedra share an edge and an additional (Fe**Og) octahedron links to the
anions at each end of the shared edge. Moore (1972b) notes that the topologically
identical cluster occurs in the sulfate mineral amarantite. This cluster is decorated by four
(PO,) tetrahedra to form an [Fe**4(SO4)sd12] cluster (Fig. 48a). These clusters link by
sharing vertices between octahedra and tetrahedra to form a framework (Figs. 48b,c) with
K in the interstices. Inspection of Figure 48a shows that the decorated tetramer can be
regarded as a condensation of two [Ma(TO4)297] clusters (Fig. 17e), a group that
Hawthorne (1979a) showed is common as a fragment in several complex phosphate
structures. In fact, when the structure is viewed down [100], it can be considered as
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sheets of corner-shared [M2(TO4)203] clusters, similar to those in the structure of
minyulite (Fig. 25a).

Cacoxenite, [Fe**,4Al(PO4)1706(0OH)12(H20)24](H20)s1, surely has to qualify as one
of the more complicated of Nature’s masterpleces Moore and Shen (1983a) identified
two key FBBs in this structure. Pairs of (Fe**¢s) octahedra share an edge to form dimers,
and three dimers share octahedron corners to form a ring that has a (PO,4) group at its
core, linking to one end of each of the shared edges in the cluster (Fig. 49a). The resulting
FBB has the form [Fe**s (PO4)d24] and resembles the [Fe* 6(PO4)d24] group in mitridatite
(Fig. 33) and the central girdle of the Keggin molecule. The second FBB consists of one
dimer of edge-sharing octahedra with two additional octahedra linked by sharing corners
with each end of the shared edge of the dimer. Four (PO,4) groups each share two corners
with octahedra at the periphery of the cluster, and a fifth (PO,4) group shares corners with
three of the octahedra (Fig. 49b). The resulting FBB has the form [Fe**3Al(PO4)sts], and
has some similarities with clusters in melonjosephite (Fig. 45c) and leucophosphate (Fig.
48a). These two FBBs polymerize by sharing polyhedron corners to form rings consisting
of twelve FBBs each type alternating around the ring. These rings are arranged at the
vertices of a 3° net (Fig. 49c). The layer shown in Figure 49c repeats in the c-direction
(Fig. 49d), linking by sharing polyhedron edges and corners, with the addition of some
linking octahedra, to form a framework with extremely wide channels that are filled with
(H20) groups.

(@) (b)

Figure 49. The structure of cacoxenite: (a) the [Fe**s(PO4) d24] cluster; (b) the [Fe* ;AI(POL)sto]
cluster. (Fe**¢s) octahedra are 4*-net-shaded, (Al¢g) octahedra are shadow-shaded.

Althausite, [Mg4(PO4)2(OH)F], and satterlyite, [Fe* 4(PO4)2(OH);], have their
divalent cations in both [5]- and [6]-coordination, triangular bipyramidal and octahedral.
In althausite, [Md4] chains of trans edge-sharing (Mgds) octahedra extend in the b-
direction. These chains link in the a-direction by sharing corners between tetrahedra and
octahedra (Fig. 50a) to form a sheet parallel to (001). These sheets are linked in the c-
direction by sharing octahedron edges with (Mg¢5) triangular blpyramlds (Fig. 50b). In
althausite, ~20% of the (OH) is replaced by O* and the excess charge is compensated by
omission (i.e., incorporation of vacancies) of F.

In hureaulite, [Mn**5(POs{OH}),(PO.)2(H.0)4], five (Mn®*¢s) octahedra share
edges to form a kinked linear pentamer that extends in the a-direction (Fig. 50c). These
pentamers occur at the vertices of a plane centered orthorhombic net and link by sharing
corners (4 per pentamer) to form a sheet of octahedra parallel to (001). Adjacent
pentamers are also linked through (PO,) groups with which they share corners to form a
thick slab parallel to (001). These slabs link in the c-direction through corner sharing
between octahedra and tetrahedra (Fig. 50d). There are fairly large interstices within the
resulting framework (Fig. 50c), but these are usually unoccupied. However, Moore and
Araki (1973) suggest that alkalis or alkaline earths could occupy this cavity with loss of
the acid character of the acid-phosphate groups.
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Figure 49 (continued). The structure of cacoxenite: (c) projected onto (001);
(d) projected onto (010). (Fe**¢s) octahedra are 4*-net-shaded, (Algs) octahedra are
shadow-shaded.
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Figure 50. The crystal structures of althausite, hureaulite and thadeuite: (a) althausite projected onto
(010); (b) althausite projected onto (100); (Mgds) octahedra are shadow-shaded, (Mgds) triangular
bipyramids are line-shaded; (c) hureaulite projected onto (001); (d) hureaulite projected onto (010);
(Mn?*¢g) octahedra are shadow-shaded; (e) thadeuite projected onto (010); (f) thadeuite projected
onto (100); (Mgde) octahedra are shadow-shaded.
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Thadeuite, [CaMg3(PO4)2(OH),], is a densely packed framework of (PO,) tetrahedra
and both (Cads) and (Mgds) octahedra. (Mgds) octahedra share edges to form chains that
extend in the c-direction (Fig. 50e). These chains are decorated by (PO,) tetrahedra that
link octahedra along the chain, and also link between chains in the a-direction. Interchain
linkage also occurs by edge-sharing with (Ca¢s) octahedra (shown as ball-and-stick in
Fig. 50e). The resulting layers stack in the b-direction (Fig. 50f) and are linked by (PO,)
groups. In this view, the more complicated nature of the chains of octahedra is apparent:
two single [Md4] chains are joined by edge-sharing between octahedra, and these two
chains twist together in a helical fashion. Despite its common stoichiometry, Ma(Td4)d,
thadeuite shows no close structural relation with any other minerals of this stoichiometry.

Bakhchisaraitsevite, Nay(H20)[Mgs(PO4)4(H20)s](H20), has to be one of Nature’s
masterpieces of complexity. Pairs of (Mgds) octahedra meld to form [Mgad10] dimers
which then link by sharing edges to form zig-zag [Mg¢4] chains that extend in the a-
direction (Fig. 51a). The vertices of the shared edge of each dimer link to (PO4) groups
which also link to the corresponding vertices of the neighboring dimer in the chain, and
chains adjacent in the b-direction link by octahedron-tetrahedron and octahedron-
octahedron corner-linkages, forming a complex sheet parallel to (001). These sheets are
cross-linked in the c-direction by [Mg.d10] dimers, leaving large interstices between the
sheets (Fig. 51b). Within these interstices are interstitial Na and (H,O) groups: [5]- and
[7]-coordinated Na each bond to one (H,O) group and four and six O-atoms, respectively,
of the structural unit, and there is one interstitial (H,O) group not bonded to any cations,
but held in the structure solely by hydrogen bonds.

The minerals of the phosphoferrite group have the general formula
M(1)M(2)2(PO4)2X3, where the M cations may be divalent or trivalent and X = (OH),
(H20); these minerals are isostructural, despite differences in both cation and anion
charges (Moore and Araki 1976; Moore et al. 1980). The currently known species of this
group are phosphoferrite, [Fe?*3(PO4)-(H-0)s], reddingite, [Mn?*3(PO4)-(H-0)4],
landesite, [Fe**Mn?*,(PO.),(OH)(H.0).], and kryzhanovskite, [Fe**3(PO4),(OH)s]. A
prominent feature of these structures is a trimer of edge-sharing octahedra that is canted
at about 20° to the c-axis (Fig. 51c). These trimers link by sharing octahedron edges to
form chains of en-echelon trimers that extend in the c-direction. These chains link in the
b-direction by sharing octahedron vertices to form a sheet of octahedra parallel to (100).
The upper and lower surfaces of the sheet are decorated by (PO,) tetrahedra, and a
prominent feature of this decorated sheet is the [M,(TO4).07] cluster (Fig. 17e)
(Hawthorne 1979a). These sheets stack in the a-direction, and link by sharing octahedron
and tetrahedron vertices (Fig. 51d). Moore and Araki (1976) showed that single crystals
of phosphoferrite can be transformed by heating (oxidation-dehydroxylation) in air to
single crystals of kryzhanovskite.

Griphite, CasFs[AxFe® 4Alg(PO4)2s], Where A ~ Li,NasCaFe**,Mn**14 and has
triangular bipyramidal coordination, is rather complicated from both a chemical and a
structural perspective, and we could not write a satisfactory end-member chemical
formula; even the simplification of the above formula produces a substantial charge
imbalance (~2"). (AlOg) octahedra share all vertices with (PO,) tetrahedra, forming -
(AlOg)-(PO4)-(AlOg)-(POy)- chains that extend in the a-, b- and c-directions to form a
very open framework of the form [Alg(PO4)24] (Fig. 52a). The (Fe**Os) octahedron links
to six (PO,) groups by sharing corners, and the resultant clusters link to a framework of
corner-sharing (PO,4) groups and (CaOg) cubes (Fig. 52b). The triangular bipyramids of
the A cations share corners to form a very irregular sheet centered on z = 0.62 (Fig. 52c).
The three sheets of Figures 52ab,c meld to form a very complicated hetero-
polyhedral framework (Fig. 52d, in which the A cations are shown as circles for
simplicity).
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Figure 51. The crystal structures of bakhchisaraitsevite and kryzhanovskite/phosphoferrite:
(a) bakhchisaraitsevite projected onto (001); (b) bakhchisaraitsevite projected onto (100);
(c) kryzhanovskite/phosphoferrite projected onto (010); (d) kryzhanovskite/phosphoferrite projected
onto (100). (Fe¢s) octahedra are shadow-shaded.

Cornetite, [Cu®*3(PO4)(OH)4], contalns Cu* in both octahedral and trlangular
bipyramidal coordinations. Pairs of (Cu?*¢s) octahedra share an edge to form [Cu 2010]
dimers that are inclined at ~30° to the b-direction (Fig. 52e). Dimers adjacent in the c-
direction show opposite cants and link by an octahedron from one dimer bridging the
apical vertices of the adjacent dimer to form serrated ribbons that extend in the c-
direction. These rlbbons are linked by sharing corners with (PO,) tetrahedra, and edges
and corners with(Cu® ¢s) triangular bipyramids (Fig. 52f).

Gladiusite, Fe?*;Fe**,(PO,)(OH)11(H-0), is an open framework structure with
extensive hydrogen bonding. In the structure, (Fe**¢s) and (Fe**s) octahedra form [Mda]
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Figure 52. The crystal structures ot griphite and cornetite: (a) griphite layer at z ~ 0.25% projected
onto (001); (b) griphite layer at z ~ 0.50% projected onto (001); (c) griphite layer at z ~ 0.62
projected onto (001); (d) griphite structure projected onto (001); (Alds) octahedra are 4*-net-shaded,
(Cadg) cubes are shadow-shaded, (Fe* ¢g) octahedra are dot-shaded, triangular bipyramids are line-
shaded; in (d), the triangular-bipyramidally coordinated cation is shown as a circle; (e) cornetite
projected onto (100); (f) cornetite projected onto (001); (Cu®*¢¢) octahedra are shadow-shaded,
(Cu® ¢s) polyhedra are dot-shaded.
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chains of edge-sharing octahedra that extend in the c-direction (Fig. 53a). Pairs of these
chains meld by sharing edges to form ribbons, and these ribbons link in triplets by
sharing corners between octahedra such that the plane of each succeeding ribbon is offset
from the first (Fig. 53b). The ribbons are further linked through (P¢4) groups that share
one vertex with each ribbon (Figs. 53a,b). Figure 53c illustrates the linkage between these
ribbons in three dimensions. The ribbons are inclined at ~45° to the c-axis and are
repeated by the b-translation to form a row of parallel ribbons centered on z ~ 0. Adjacent
rows centered on z ~ /> have the ribbons arranged with the opposite inclination to the a-
axis, and adjacent ribbons link by sharing octahedron vertices (Fig. 53c). The resultant
framework is very open, and the interstitial space is criss-crossed by a network of
hydrogen bonds.

M=M, M-M, M-T linkage. Lipscombite, [Fe**Fe**,(PO,),(OH).], is an enigma.
Katz and Lipscomb (1951) applied this name to synthetic Fe;(PO,)4(OH)4 with symmetry
14,22 and a = 5.37, ¢ = 12.81 A Gheith (1953) used the name for tetragonal synthetic
compounds varying between Fe**g(PO4)s(OH)s and Fe**35(PO,)4(OH)s. More recently,
Vochten and DeGrave (1981) and Vochten et al. (1983) gave the cell parameters of
synthetic lipscombite as a = b = 5.3020(5), ¢ = 12.8800(5) A. However, Lindberg (1962)
reported natural manganoan lipscombite with symmetry P4,2,2 and a = 7.40, ¢ = 12.81
A. Vencato et al. (1989) presented the structure of synthetic lipscombite with symmetry
P4;2:2 and a = 7.310(3), ¢ = 13.212(7) A, in accord with the results of Lindberg (1962),
who seems to be the only person who has actually characterized the mineral.

The structure reported by Vencato et al. (1989) consists_of face-sharing chains of
(Fe®*¢g) and (Fe* ¢s) octahedra that extend in the [110] and [110] directions (Fig. 53d,e).
These chains link by corner-sharing between octahedra of adjacent chains and also by
sharing corners with (PO,) tetrahedra. Because of the 43 symmetry, the structure consists
of layers in which the face-sharing chains extend only in a single direction, and adjacent
layers that are related by 4; symmetry have the chains extending in orthogonal directions.
A single layer is shown in Figure 50e, in which all the chains extend along [110] and are
linked within the layer by rows of bridging (PO,4) groups. Note that in the face-sharing
chain, two of the three symmetrically distinct octahedra are partly occupied.

The minerals of the burangaite Na[Fe2+AI5(PO4)4(OH)e(HZO)Q] group contain a
trimer of face-sharing octahedra that is a feature of several basic iron-phosphate minerals
(Moore 1970). An (Fe* ¢s) octahedron shares two trans faces with (Algg) octahedron to
form a trimer of the form [Msd12] (the h cluster of Moore 1970). This trimer is corner
linked to two (Alds) octahedra and two (PO,) tetrahedra to produce a cluster of the
general form [Ms(TO4)2018]. This cluster polymerizes in the c-direction to form a dense
slab by corner-sharing between (Alds) octahedra and by corner-sharing between
octahedra and tetrahedra. This slab is oriented parallel to (100) (Fig. 54a) and adjacent
slabs are weakly linked in the [100] direction by additional (Al¢s) octahedra that share
corners with both tetrahedra and octahedra. The resulting framework has large interstices
that are occupied by [8]-coordinated Na that is bonded to two (H,O) groups.
Note that Moore (1970) gave the formula of the isostructural dufrénite as
CaosFe? Fe**5(P0O4)4(OH)s (H20),, which is in accord with the requirements for an end-
member composition (Hawthorne 2002). However both Moore (1984) and Nriagu (1984)
incorrectly list the formula of dufrénite as CaFe**5(PO,4)4(OH)s(H20).; this formula has a
net charge of 2*. Van der Westhuizen et al. (1990) reported electron-microprobe analyses
for dufrénite, but many of the resultant formulae are incompatible with the dufrénite
structure.

The minerals of the rockbridgeite, [Fe?*Fe**4(PO4)3(OH)s], group are also based on
the h cluster, but the mode of linkage of these clusters is very different from that in the
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Figure 53. The crystal structures of gladiusite and lipscombite: (a) gladiusite projected onto (010);
(b) in gladiusite, the linking of adjacent pairs of chains to form a triplet of offset chains with linking
(PO,) tetrahedra; (c) gladiusite projected onto (001); (d) lipscombite projected onto 100);
(e) lipscombite projected onto (001). ({Fe®*,Fe**}g) octahedra are shadow-shaded.
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Figure 54. The crystal structures of burangaite, rockbridgeite and lazulite: (a) burangaite projected
onto (010); (Alds) octahedra are 4*-net-shaded, (Fe**¢s) octahedra are dot-shaded, Na is shown as
shaded circles; (b) rockbridgeite projected onto (001), (c) rockbridgeite projected onto (100);
({Fe®* Fe®*})ds) octahedra are dot-shaded; (d) lazulite projected onto (001); (e) lazulite projected
onto (100); ({Mg,Al}ds) octahedra are shadow-shaded.
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minerals of the burangaite group The face-sharing trimers link by sharing octahedron
corners to form chains of octahedra that extend in the b-direction (Fig. 54b). Chains
adjacent in the a-direction are linked by [M2(TO4)ds] clusters and (PO,) groups that link
to two adjacent trimers and two [M,(TO4)ds] clusters, forming complex sheets parallel to
(001). When viewed in the a-direction (Fig. 54c), the very layered aspect of the structure
is apparent, layers of octahedra alternating with layers of tetrahedra.

The minerals of the lazulite, [MgAl,(PO,)2(OH),], group contain the h cluster, a
trimer of face-sharing octahedra, that is characteristic of several basic phosphate
minerals. An (Mgds) octahedron is sandwiched between two (Alds) octahedra, and the
resulting trimers are arranged at the vertices of a 4* net and extending in the [110]
direction (Fig. 54d). Adjacent trimers are linked by sharing corners with (PO,) groups,
and when viewed down [001], the structure consists of layers of octahedra and tetrahedra.
When viewed down [100] (Fig. 54e), it can be seen that the trimers of adjacent layers are
canted in opposing direction, thereby promoting linkage of each (PO,) tetrahedron to four
different trimers. The resulting arrangement is quite densely packed.

Trolleite, [Al4(PO4)3(OH)3], is a very dense structure with some similarities to the
structural arrangement of the minerals of the lazulite group (Table 8). There are two
prominent chain motifs that constitute the building blocks of this structure. There is an
[AI(PO4)ds] 7-A chain (Fig. 18c) that extends in the c-direction (Fig. 55a), giving the
7.1 A repeat along the c-axis. There is also an [AI(PO4)d4] chain that assumes a very
contorted geometry (Fig. 55a) so that it has the same repeat distance along its length as
the [AI(PO4)d3] chain to which it is attached by sharing octahedron faces. These rather
complex double-chains link in the b-direction by sharing vertices of the tetrahedra of the
[AI(PO4)d3] chain with the octahedra of the [AI(PO4)¢4] chain (Fig. 55a). These slabs
repeat in the a-direction in a very complex manner. As shown in Figure 55b, these slabs
meld by sharing octahedron-tetrahedron vertices between adjacent [AI(PO4)¢s] chains to
form a thick slab: [AlI(PO4)d4]-[AI(PO4)d3]-[AI(PO4)d3]-[AI(PO4)d4] that constitute one-
half the cell in the a-direction. The thick slabs link by sharing octahedron vertices
between [AlI(PO,)d4] chains to form a very dense framework.

Seamanite, [Mn**3(B{OH}4)(PO4)], is a mixed phosphate-borate mineral based on
chains of (Mn¢g) octahedra that consist of free-sharing [Msdi2] trimers that link by
sharing octahedron edges to form an [Msdi0] chain that extends in the c-direction (Fig.
55c). The rather unusual [Msd12] trimer is apparently stabilized by the (B¢s) group that
spans the apical vertices of the edge-sharing octahedra (Moore and Ghose 1971).
Additional linkage along the length of the chain is provided by (PO,) tetrahedra that link
apical vertices on neighboring (Mds) octahedra such that the (PO,) and (B¢s) tetrahedra
adopt a staggered configuration on either side of the [M(Bd4)(POs)ds] chain. These
chains condense in pairs by sharing both octahedron-octahedron and octahedron-
tetrahedron vertices to form columns, seen end-on in Figure 55d. These columns link
together in the a- and b-directions by sharing vertices between tetrahedra and octahedra,
with additional linkage involving hydrogen bonds.

M=M, M=T, M-T linkage. Holtedahlite, [Mg12(PO3{OH})(PO,)s(OH)s], contains
dimers of face-sharing (Mgds) (Fig. 55e). These dimers link by sharing edges to form
ribbons that extend in the c-direction and contain (PO3{OH}) tetrahedra that link to all
three ribbons (Fig. 55e). These channels link in the a- and b-directions by sharing
octahedron corners and by sharing octahedron corners with bridging (PO,) tetrahedra
(Figs. 55e,f).

The crystallographic and chemical details of the minerals of the triphylite-
lithiophyllite, sicklerite-ferrisicklerite and heterosite-purpurite groups are summar-
ized in Table 10 (for consistency, some of the axial orientations have been changed from
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Figure 55. The crystal structures of trolleite, seamanite and holtedahlite: (a) trolleite projected onto
(010); (b) trolleite projected onto (100); (Alds) octahedra are 4*-net-shaded; (c) seamanite projected
onto (100); (d) seamanite projected onto (001); (Mn*¢¢) octahedra are 4*-net-shaded;
(e) holtedahlite projected onto (001); (f) holtedahlite projected onto (010); (Mgds) octahedra are

shadow-shaded.
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Table 10. Details of the minerals of the triphylite-lithiophyllite, sicklerite-
ferrisicklerite and heterosite-purpurite groups.

a(A) b(A) c(A) Spgrp  Ref.
Triphylite 4.704 10.347 6.0189 Pbnm (@H)
Lithiophyllite  4.744(10)  10.460(30) 6.100(20)  Pbnm 2
Sicklerite 4.794 10.063 5.947 Pbnm (3)
Ferrisicklerite  4.978 10.037 5.918 Pbnm (@)
Heterosite 4.769(5) 9.760(10) 5.830(10) Pbnm 5)
Purpurite 4.76 9.68 5.819 Pbnm (6)

References: (1) Yakubovich et al. (1977), (2) Geller and Durand (1960),
(3) Blanchard (1981), (4) Alberti (1976), (5) Eventoff et al. (1972), (6) Bjoerling
and Westgren (1938).

those reported in the original papers). All of these structures have the olivine
arrangement. [MO4] chains of edge-sharing (LiOg) or (ZNaos octahedra extend parallel to
the a-direction (Fig. 56a,c,e) and are decorated by (Fe**,Mn“"Og) or (O0O) octahedra (O
= vacancy). These decorated chains are linked in the b-direction by sharing octahedron
corners with (POy4) groups, although such ‘linkage’ is not effective when the decorating
octahedra are vacant (Fig. 56e); in this case, the chains link to other chains above and
below the plane (Fig. 56f).

Consider the Fe end-members of each group:

triphylite Li Fe?* (POy)
ferrisicklerite (Li,00)  (Fe*",Fe®") (PO,)
heterosite O Fe®* (POy)

As all three minerals have the same structure, the ranges in chemical composition
for triphylite and heterosite are LiFe**(PO4)B(LiosOos)(Fe* osFe® 05)(POs) and
OosLios(Fe*osFe* 05)(PO4)- OFe** (PO,), respectively. Ferrisicklerite is an unnecessary
name for intermediate-composition triphylite and heterosite. Similarly, sicklerite is an
unnecessary name for intermediate lithiophyllite and purpurite.

Senegalite, [Al,(PO4)(OH)3(H,0)], contains Al in both triangular bipyramidal and
octahedral coordinations. (Alds) and (Alds) polyhedra share an edge to form a dimer, and
these dimers_link by sharing corners to form a [P'AI®!Al¢g] chain that extends in the
[101] (and [101]) direction (Fig. 57a). These chains are decorated by (PO4) groups that
link them to form a slab parallel to (010). These slabs stack in the b-direction, and link by
sharing tetrahedron-octahedron and tetrahedron-bipyramid corners (Fig. 57b). This
framework is fairly open, and the interstices are criss-crossed by a network of hydrogen
bonds.

M=M, M-M, M=T, M-T linkage. Sarcopside, [Fe**3(PO.).], is chemically similar to
the minerals of the graftonite group but is structurally more similar to the structures of
triphylite-lithiophyllite and its derivatives (Table 8). When viewed down [100] (Fig. 58a),
the structure consists of a sheet of corner-linked octahedra at the vertices of a 4* net, and
further linked by edges and corners with (PO,) tetrahedra. When viewed down [010], the
structure consists of trimers of edge-sharing octahedra linked into a sheet by sharing
corners with (PO4) groups (Fig. 58b). Sarcopside usually contains significant Mn**, but
assuming complete solid-solution between graftonite and beusite, it seems that sarcopside
is a polymorph of graftonite.
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Figure 56. The crystal structures of lithiophylite, ferrisicklerite and heterosite: (a) lithiophylite
projected onto (100); (b) lithiophylite projected onto (010); (c) ferrisicklerite projected onto (100);
(d) ferrisicklerite projected onto (010); (e) heterosite projected onto (001); (f) heterosite projected
onto (010). (Fe?*Og) octahedra are dark-shadow-shaded, (Fe®*,Fe®*") octahedra are shadow-shaded,
({Li,O3}0s) octahedra are line-shaded, vacancies are shown as squares.
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Figure 57. The crystal structure of senegalite: (a) projected onto (100); (b) projected onto (010);
(c) projected onto (001). (Aldy,) polyhedra are 4*-net-shaded.

In bjarebyite, BaMn?*;[Al(PO4)3(OH)s], and the minerals of the bjarebyite group
(Table 8), pairs of (Alds) octahedra link by sharing edges to form dimers, and these
dimers link together by sharing corners to form a chain of the form [Alxdo], intermediate
between the corner-sharing [Al¢s] chain and the edge-sharing [Al¢.] chain (i.e., [Al2dg] =
2 [Ald4s]). Octahedra that share corners are also linked by a flanking (PO,) tetrahedron,
similar to the linkage in the chain of Figure 18c. The cis vertex of each octahedron also
links to a (PO,) tetrahedron to give a chain of the form [Al,(PO4)3(OH)s]. These chains
extend in the b-direction (Fig. 58c) and are linked in the a-direction by [6]-coordinated
Mn®* and by [11]-coordinated Ba (Fig. 58d). Kulanite and penikisite were originally
reported as triclinic (Mandarino and Sturman 1976; Mandarino et al. 1977). However,
Cooper and Hawthorne (1994a) showed that kulanite is monoclinic (and is isostructural
with bjarebyite). It is probable that penikisite is also monoclinic.

STRUCTURES WITH (7¢,) GROUPS AND LARGE CATIONS

Xenotime-(REE), (REE)(PO,), and pretulite, Sc(PO,) (Table 11), belong to the
zircon, Zr(SiO4), group. The larger trivalent cation is coordinated by eight O-atoms in an
arrangement that is known as a Siamese dodecahedron (Hawthorne and Ferguson 1975).
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Figure 58. The crystal structures of sarcopside and bjarebyite: (a) sarcopside projected onto (100);
(b) sarcopside projected onto (010); (Fe**¢s) octahedra are dot-shaded; (c) bjarebyite projected onto
(100); (d) bjarebyite projected onto (001). (Alde) octahedra are 4*-net-shaded, Mn?* are shown as
large shaded circles, Ba are shown as small shaded circles.

These dodecahedra link by sharing edges to form chains that extend in the b-direction
(Fig. 59a). These chains are linked in the c-direction by (PO,) tetrahedra that share an
edge with a dodecahedron of one chain and a vertex with a dodecahedron of the adjacent
chain, forming a layer in the (100) plane (Fig. 59a). These layers stack in the a-direction
by edge-sharing between dodecahedra of adjacent layers to form dodecahedral chains
orthogonal to the layers. Hence the zircon structure is tetragonal (Fig. 59b).
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Monazite-(REE), (REE)(PO,), is a dimorph of xenotime-(REE). In this structure,
the larger trivalent cation is coordinated by nine O-atoms in a rather irregular arrange-

Table 11. Large-cation phosphate minerals.

Mineral Formula Space group Figure
Xenotime group
Pretulite Sc(POy) 14,/amd  59a,b
Xenotime-(Y) Y(PO,) 14,/amd  59a,b
Xenotime-(Yb) Yb(PO,) 14,/amd  59a,b
Monazite group
Brabantite CaTh(PQOy)2 P2, 59c,d
Cheralite-(Ce) Ce(POy) P2:/n 59c,d
Monazite-(Ce) Ce(PO,) P2i/n 59c,d
Rhabdophane group
Brockite Aa 60a,b
Grayite Th(PO,)(H,0) P6,22 60a,b
Ningyoite U2(PO4)2(H20)1-2 P222 60a,b
Rhabdophane Ce(POy) P6,22 60a,b
General

Archerite K(POs{OH},) | 42d 60c,d
Biphosphammite (NH,)(PO{OH},) | 42d 60c,d
Brushite Ca(PO3{OH})(H.0). la 61a,b
Churchite-(Y) Y (PO,4)(H20). 12/a 6la,b
Ardealite Ca,(PO3{OH})(S0,4)(H0)4 Cc 61c,d.e
Dorfmanite Na,(PO3;{OH})(H.0), Pbca 62a,b,c
Monetite Ca(PO:x{OH}) Pmna 62d
Nacaphite Na,Ca(PO,)F P1 63a,b
Arctite (NasCa)CagBa(PO4)sF3 P1 63c,d
Nabaphite NaBa(POg4)(H,0)q P2,3 -
Nastrophite NaSr(PO,)(H20)q P2,3 -
Lithiophosphate [Liz(POy)] Pcmn 64a,b
Nalipoite NaLiy(POy) Pmnb 64c,d
Nefedovite NasCau(PO,)4F | 4 65a,b
Olgite NaSr(PO,) P3 65c,d,e
Phosphammite (NH,)2(POs{OH}) P2,/c 66a,b
Vitusite-(Ce) NazCe(POy), Pca2, 66¢
Stercorite Na(NH,)(PO;{OH})(H,0), P1 67a,b
Natrophosphate Na;(PO4):F(H20)19 Fd3c 67c
Buchwaldite NaCa(POy) Pn2;a 68a,b
Olympite LiNas(POy), Pcmn -
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ment. These polyhedra link by sharing edges to form chains that extend in the
b-direction (Fig. 59c). The chains are linked in the c-direction by (PO,) tetrahedra that
share edges with polyhedra of adjacent chain to form a layer parallel to (100) (Fig. 59c).
These layers stack in the a-direction by sharing edges between the ({REE}Og) polyhedra
to form rather staggered chains that extend in the [101] direction (Fig. 59d). The
monazite structure preferentially incorporates the larger light REEs whereas the xenotime
structure preferentially incorporates the smaller heavy REEs (Ni et al. 1995); this is in
accord with the difference in trivalent-cation coordination numbers in these two
structure-types, and is also in accord with Sc(PO,) crystallizing in the xenotime (zircon)
structure (as pretulite) rather than in the monazite-type structure.

Rhabdophane, Ca(PO,), contains Ce coordinated by eight O-atoms in a dodeca-

Figure 59. The crystal structures of xenotime and monazite: (a) xenotime-(Y) projected onto (010);
(b) xenotime-(Y) projected onto (001); (c) monazite-(Ce) projected onto (010); (d) monazite-(Ce)
projected onto (100). (REE¢;) polyhedra are shadow-shaded.
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hedral arrangement. These dodecahedra polymerize by sharing edges to form chains that
extend in the a- and b-directions (Fig. 60a). These chains link in the c-direction by
sharing edges with (PO,) tetrahedra to form sheets parallel to (100) and (010) (Fig. 60a).
These sheets interpenetrate in the a- and b-directions (Fig. 60b) to form a framework with
large hexagonal channels extending parallel to the c-axis.

Archerite, K(PO,{OH},), and biphosphammite, (NH4)(PO.{OH},), are iso-
structural. In archerite, K is [8]-coordinated by O-atoms that are arranged at the vertices
of a Siamese dodecahedron. These dodecahedra share edges to form a chain in the b- (and
a-) directions, and adjacent chains link by sharing edges with (PO,) tetrahedra (Fig. 60c)
to form layers parallel to (011) and (101). These layers meld by sharing edges (i.e.,
mutually intersecting) to form a framework (Fig. 60d) that is topologically identical to the

+—b—> +—>b—

(c) (d)

Figure 60. The crystal structure of rhabdophane and archerite: () rhabdophane projected onto
(010); (b) rhabdophane projected onto (001); (REE¢;) polyhedra are shadow-shaded; (c) archerite
projected onto (100); (d) archerite projected onto (001); (K¢g) polyhedra are shadow-shaded.
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framework in xenotime (Figs. 59a,b), although geometrical distortions result in a lower
symmetry arrangement in archerite (142d) as compared with xenotime (14;/amd).

Brushite, Ca(H,0),(PO3{OH}), and churchite, Y(H,0),(PO,), are essentially
isostructural, although Curry and Jones (1971) report the space group la for brushite and
Kohlmann et al. (1994) report 12/a for churchite. The large cation is [8]-coordinated with
the bonded anions in a dodecahedral arrangement. The dodecahedra share edges with the
(Pd4) tetrahedra to form chains that extend in the [101] direction (Fig. 61a); these chains
are a common feature of large-cation structures, and occur in gypsum and other Ca-
sulfate minerals. These chains link in the [101] direction by sharing edges between
(Cadsg) polyhedra of adjacent chains, and by sharing of vertices between (P¢,) tetrahedra
and (Ca¢g) dodecahedra, forming a dense sheet parallel to (101) (Fig. 61a). These sheets
stack in the b-direction (Fig. 61b) and are linked solely by hydrogen bonds (not shown in
Fig. 61b).

Ardealite, Cay(H20)4(PO3{OH})(SO,), is an intriguing structure in that P and S
seem to be disordered over the two symmetrically distinct tetrahedrally coordinated sites
(Sakae et al. 1978); presumably, the acid H atom is locally associated with the (Pd¢s)
tetrahedra and hence shows analogous disorder. In the synthetic analogue, each of the
two Ca atoms is coordinated by six O-atoms and two (H,O) groups in a dodecahedral
arrangement (as is the case in brushite). Chains of (Ca¢g) and ({P,S}¢4) polyhedra are
formed by edge-sharing between the two types of polyhedra, chains that are topologically
identical to the corresponding chains in brushite (Fig. 61a). These chains extend along
[110] (Fig. 61c) and [001] (Fig. 61d), forming thick slabs that resemble the slabs in
brushite (cf. Figs. 61b,e). Intercalated between these slabs are sheets of [8]-coordinated
Ca and tetrahedra (Fig. 61e), and the structure is held together by a network of hydrogen
bonds, the details of which are not known.

Dorfmanite, Nay(PO3{OH})(H20),, contains Na in both [5]- and [6]-coordination.
(Nags) polyhedra occur at the vertices of a 6° plane net and link by sharing corners (Fig.
62a) to form a sheet that is decorated by (P¢4) tetrahedra. (Nads) octahedra share edges to
form chains that extend in the c-direction and are linked in the b-direction by the (Pd,4)
groups (Fig. 62b) that decorate the underlying sheet of Figure 62a. These two sheets stack
in the a-direction (Fig. 62c) and link through the (P¢4) groups.

Monetite, CaH(PO,), contains Ca in both [7]- and [8]-coordination, and the
polyhedra share edges to form chains that extend in the a-direction. These chains are
linked in the b-direction by sharing edges and vertices of the (Ca0O,) polyhedra with (P¢4)
groups (Fig. 62d). These sheets link in the c-direction via corner-sharing between (CaO,)
polyhedra and (P¢4) groups. Catti et al. (1977a) have carefully examined the evidence for
a symmetrical hydrogen-bond in monetite. In space group P1, one of the three sym-
metrically distinct H-atom sites lies on, or disordered off, a centre of symmetry, and
another H-atom is statistically distributed between two centrosymmetric positions. In
space group P1, the first H-atom is displaced slightly off the pseudo-centre of symmetry,
and another H-atom is either ordered or disordered. Catti et al. (1977a) propose that the
crystal they examined is a mixture of domains of both P1 and P1 structure.

Nacaphite, Na,Ca(PO,)F, contains six octahedrally coordinated sites, four of which
are each half-occupied by Ca and Na, and two of which are occupied solely by Na. Two
{(Ca;Nay)Og] and one (NaOg) octahedra link to form an [Msd1:] trimer, and there are two
such symmetrically distinct trimers in this structure. The trimers link in the (100) plane
by sharing corners (Fig. 63a), and the resultant sheet is braced by (PO,) tetrahedra that
link three adjacent trimers. The sheets stack in the a-direction (Fig. 63b), and are linked
by edge-and face-sharing between trimers and by corner-sharing between (PO,4) groups
and trimers of adjacent layers. This nacaphite structure is related to the structures of
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(e)

Figure 61. The crystal structures of brushite and ardealite: (a) brushite projected onto (010); (b)
brushite projected onto (001); (c) ardealite: one layer projected onto (010); (d) ardealite: the next
layer projected onto (010); (e) ardealite projected onto (001). (Cads) polyhedra are shadow-shaded.
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Figure 62. The crystal structures of dorfmanite and monetite: (a), (b) dorfmanite sheets projected
onto (100); (c) dorfmanite projected onto (001); (Nads) and (Nads) polyhedra are shadow-shaded;
(d) monetite projected onto (001); (Cady) polyhedra are shadow-shaded, (Cadg) polyhedra are line-
shaded.

arctite, quadruphite (Table 13, below) and several alkali-sulfate minerals (Sokolova and
Hawthorne 2001).

Arctite, (NasCa)CagBa(PO,)sF, contains one [12]-coordinated Ba, one [7]-coordi-
nated Ca, and one [7]-coordinated site occupied by both Na and Ca. The (CaO;) and
({Na,Ca}Oy) polyhedra link to form trimers (Fig. 63c), and these trimers link in the (001)
plane to form a sheet. These sheets stack in the c-direction, the trimers linking to form
truncated columns parallel to the c-direction; the result is a thick slab parallel to (001).
The (BaOj,) icosahedra form a hexagonal array parallel to (001) and are linked by
corner-sharing with (PO,4) groups in an arrangement that is also found in the glaserite
(and related) structures. This layer is intercalated with the thick slabs to form the rather
densely packed arctite arrangement (Fig. 63d).
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Nabaphite, NaBa(PO,4)(H20)y, and nastrophite, NaSr(PO4)(H20)e, are isostructural.
Their cation positions have been located but the (PO4) groups show extensive
orientational disorder. There is one Na site and one Ba(Sr) site; the former is octahedrally
coordinated and the latter is [9]-coordinated with the anions in a triaugmented triangular-
prismatic arrangement. Baturin et al. (1981) note that nastrophite dehydrates easily ‘in
air,” and the (PO,)-group disorder may be associated with incipient dehydration.

Lithiophosphate, LisPO4, consists of a framework of (LiO,) and (PO,) tetrahedra.

+— 00—
=0 —p

Figure 63. The crystal structures of nacaphite and arctite: (a) one layer of nacaphite projected onto
(100); (b) two layers of nacaphite projected onto (100); (c) two layers of arctite projected onto
(001); (d) the stacking of layers along [001] in arctite. ({Na,Ca}¢,) polyhedra are shadow-shaded,
Ba are shown as dark circles.
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From a geometrical perspective, it could also be classified as a member of the class
of structures with polymerized (TO4) groups (i.e., a framework structure of the types
listed in Table 4). However, because of the low bond-valence (~0.25 vu) of the (LiOj)
groups, we have chosen to classify it as a ‘large-cation’ phosphate. (LiO4) and (POy)
tetrahedra are arranged at the vertices of a 3° plane net (Fig. 64a) and link by sharing
corners; each (POy) group is surrounded by six (LiO4) groups, and each (LiO4) group is
surrounded by two (POg,) groups and four (LiO4) groups. Both types of tetrahedra point
both up and down the c-axis and link between adjacent sheets that stack in the c-direction
(Fig. 64b).

Figure 64. The crystal structures of lithiophosphate and nalipoite: (a) lithiophosphate projected onto
(002); (b) lithiophosphate projected onto (010); (c) nalipoite projected onto (001); (d) nalipoite
projected onto (010). (LiO,) are shadow-shaded, (NaOs) are line-shaded.
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Nalipoite, NaLi,(PO,4), contains octahedrally coordinated Na and tetrahedrally
coordinated Li. From a geometrical perspective, nalipoite could be classified as a structure
involving polymerization of tetrahedra. Conversely, it can be classmed as a large-cation
structure from a bond-valence perspective, as the bond valence of “Li-O is only 0.25 vu.
We adopt the latter approach here. The (PO,4) and (LiO,) tetrahedra occur at the vertices of
a (6-3:6-3)(3:6-6-3) net; all 3-rings consist of two (LiO4) tetrahedra and one (PQOg)
tetrahedron, and the 6-rings show the sequence (Li-Li-P-Li-Li-P). The result is a layer of
tetrahedra parallel to (100) (Fig. 64c,d) in which chains of corner-sharing (LiOs) tetrahedra
extend in the a-direction, and are linked in the b-direction by (PO,) tetrahedra. Tetrahedra
point along *c, and layers of tetrahedra meld in this direction to form a framework.
Octahedrally coordinated Na occupies the interstices within this framework.

Nefedovite, NasCay(PO4)4F, consists of [8]-coordinated Ca and both [7]- and [10]-
coordinated Na. The (Na¢io) polyhedra share apical corners to form chains that extend in
the c-direction (Fig. 65a) with (PO,) tetrahedra linked to half of the meridional vertices.
The (NaOy) polyhedra share apical corners to form chains extending in the c-direction,
and the individual polyhedra share corners with the (Nadio) polyhedra, each bridging
adjacent polyhedra along each chain (Fig. 65a). These chains are linked in the (001) plane
by (Cadg) polyhedra. The decorated (Na¢io)-polyhedron chains have a square pinwheel
appearance when viewed down [001] (Fig. 65b), and they are surrounded by a dense
edge-sharing array of (NaOy) and (Cads) polyhedra.

Olgite, NaSr(PQO,), contains one [12]-coordinated site occupied by Sr (+ Ba), one
[6]-coordinated site occupled by Na, and two [10]- coordlnated sites occupied by both Sr
and Na. The Sr site is situated at the vertices of a 3° plane net and is icosahedrally
coordinated; adjacent icosahedra share edges to form a continuous sheet parallel to (001)
(Fig. 65c¢) that is decorated by (PO,) tetrahedra that share edges with the icosahedra. The
[10]-coordinated Sr, Na sites share corners to form a sheet parallel to (001) (Fig. 65d).
The [10]-coordinated polyhedra each have six peripheral anions, one apical anion along
+c and three apical anions along -c (obscured in Fig. 65d). (NaOg) octahedra are
embedded on the underside of this sheet, sharing faces with the (Sr,NaOjg) polyhedra,
and only one octahedron face is visible in Figure 65d (except at the edges of the sheet).
This sheet is also decorated with (PO,) tetrahedra. These two types of sheets stack
alternately in the c-direction (Fig. 65¢).

Phosphammite, (NH4)2(PO3{OH}), consists of isolated (P¢s) groups linked by
hydrogen bonds involving (NH4) groups. Khan et al. (1972) show that there are five
oxygen atoms closer than 3.4 A, but give a persuasive argument (based on
stereochemistry) that there are only four hydrogen bonds from the (NH,4) group to the
coordinating oxygen atoms. Consequently, we have drawn the ‘large-cation’ polyhedron
as an {(NH;)O,} tetrahedron (Figs. 66a,b). The {(NH;)O4} tetrahedra occur at the
vertices of a 6° net, linking to adjacent {(NH4)O,} tetrahedra by sharing corners. The
(PO3{OH}) tetrahedra link to the {(NH;)O,} tetrahedra, bridging across the six-
membered rings of {(NH;)O.} tetrahedra (Fig. 66a). The resultant layers link in the
c-direction by corner-sharing between both {(NH;)O.} tetrahedra, and between
{(NH4)O4} and (PO3{OH}) tetrahedra (Fig. 66b).

Vitusite-(Ce), NasCe(PO,)2, is a modulated structure, the substructure of which is
related to the glaserite structure-type. The substructure contains two [8]-coordinated
REE sites and six Na sites, two of which are [6]-coordinated and four of which are
[7]-coordinated, together with four distinct (PO,4) groups. The typical unit of the glaserite
arrangement is a large-cation polyhedron surrounded by a ‘pinwheel’ of six tetrahedra. In
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Figure 65. The crystal structures of nefedovite and olgite: (a) nefedovite projected onto (100);
(b) nefedovite projected onto (001); (Na¢,) polyhedra are dark-shadow-shaded, (Cads) polyhedra
are light-shadow-shaded; (c) (SrOi,)-icosahedron layer in olgite projected onto (001); (d) the
(Sr,NaOy)-(NaO-)-polyhedron layer in olgite projected onto (001); (e) the stacking of layers along
[001] in olgite; (SrOy,) icosahedra are dark-shadow-shaded, (NaO,q) polyhedra are dark-shaded,
(NaOg) octahedra are dot-shaded.
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Figure 66. The crystal structures of phosphammite and vitusite: (a) phosphammite projected onto
(001); (b) phosphammite projected onto (010); ({NH,}O,) tetrahedra are shadow-shaded;
(c) vitusite-(Ce) projected onto (100); (d) vitusite-(Ce) projected onto (010). (REEOg) polyhedra are
shadow-shaded.

vitusite-(Ce), this unit is present (Fig. 66c¢), but is perturbed by edge-sharing between the
large-cation polyhedra. The layers of Figure 65e stack in the a-direction by linkage
between (PO,4) groups and the large-cation polyhedra. The structure is modulated in the
a-direction, producing 5a, 8a and 11a modulations; the 8a-modulated structure seems to
be the most common, and it was characterized by Mazzi and Ungaretti (1994). The
modulations involve displacements of some O-atoms of the structure such that there are
changes in the large-cation coordinations from those observed in the substructure.

Stercorite, (NH;)Na(H20)3(PO3{OH})(H,0), consists of octahedrally coordinated
Na that polymerizes by sharing trans edges to form an [Na¢4] chain that extends in the b-
direction and is decorated by acid (P¢4) groups that share vertices with the octahedra and
are arranged in a staggered fashion on each side of the chain (Figs. 67a,b). All ligands not
involving (P¢4) groups are (H,0) groups, i.e., (NaO{H,0}s). Chains are linked in the a-
and c-directions by a complicated network of hydrogen bonds (Ferraris and Franchini-
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Angela 1974) involving the interstitial (NH,) group and an interstitial (H,O) group that is
held in the structure solely by hydrogen bonds.

Natrophosphate, Naz(PO,4).F(H20)19, contains octahedrally and tetrahedrally

+—b/4 —»

(c)

Figure 67. The crystal structures of stercorite and natrophosphate: (a) stercorite projected
onto (001); (b) stercorite projected onto (010); (c) natrophosphate projected onto (001).
(Nag¢g) octahedra are shadow-shaded, (Na¢s) polyhedron is shadow-shaded, (NH,) are
shown as small black circles.
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coordinated Na. Six (Na¢s) octahedra share edges to form a compact cluster of the form
[Nasdig] (Fig. 67c). At the centre of this cluster is one F atom that is coordinated by six
Na atoms; the remaining anions of the cluster are either [2]- or [1]-coordinated and hence
are (H20O) groups. The (PO,) groups do not link directly to these clusters, but link to
(Nad,) tetrahedra that also bridge adjacent clusters (Fig. 67¢). The [4]-coordinated site is
only half-occupied (as required for electroneutrality) by Na, and is also half-occupied by
(H20), giving rise to the rather unusual stoichiometry (for such a high-symmetry
mineral).

Buchwaldite, NaCa(PO.), contains three unique Ca atoms, each with a coordination
number of [8], and three distinct Na atoms with coordination numbers of [7], [6] and [9],
respectively. The (CaOsg) polyhedra share edges to form two distinct chains that extend in
the a-direction (Fig. 68a). These chains link in the c-direction through (NaO,) polyhedra
and (PO,) groups. The (CaOg) polyhedra share both edges and vertices with (PO,4) groups
to link in the b-direction (Fig. 68b), further linkage being provided by (NaO,) polyhedra
to produce a densely packed structure.

(a) (b)

Figure 68. The crystal structure of buchwaldite: (a) projected onto (010); (b) projected onto (001).
(CaOg) polyhedra are shadow-shaded, (NaO,) polyhedra are line-shaded.

APATITE-RELATED MINERALS

The minerals with apatite-like structures are dealt with in detail elsewhere in this
volume and will not be considered here, except to list the relevant minerals (for
completeness) in Table 12.

SILICOPHOSPHATE MINERALS

The silicophosphate (and related phosphate) minerals are a small group of
extremely complicated structures that we will not describe here, because their complexity
requires extensive illustration. For completeness, these minerals are listed in Table 13.

HEXAVALENT-URANIUM PHOSPHATE MINERALS

The hexavalent-uranium phosphate minerals (Table 14) are important and
widespread uranyl-oxysalt minerals. Their structures and behavior are dominated by the
crystal chemistry of the (U%*0,)*" uranyl group; they have been described in detail by
Burns (1999) and will not be considered any further here.
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Table 12. Minerals with apatite-like structures.

Mineral Formula

Alforsite Bas(PO4)sCl
Belovite-(Ce) SrsNaCe(PO,);(OH)
Belovite-(La) SrsNaLa(POq)sF
Carbonate-fluorapatite Cas(P0,4,COs)3F
Carbonate-hydroxylapatite Cas(P04,C03)3(0OH)
Chlorapatite Cas(PO4)3(CILF)
Fluorapatite Cas(PO,)sF
Hydroxylapatite Cas(P0O,)3(OH)
Pyromorphite Pbs(PO,)sCl
Strontiumapatite SrsCas(PO4)sF

Table 13. Silicophosphate (and related phosphate) minerals.

Name Formula Space group
Attakolite CaMn?*Al,(SiOz{OH})(PO,)3(OH), C2/m
Clinophosinaite NazCa(SiOs3)(POy) P2/c
Harrisonite CaFe? (Si04)2(PO4), R3m
Lomonosovite NasTi**5(Si,07)(PO,4)0, P1
Polyphite Na;7CazsMgTis(Si,07)2(PO4)s0sFs P1
Quadruphite Nay,CaMgTi**4(Si,07)2(P04)404F> P1
Sobolevite Nay(Na,Ca),(Mg,Mn*")Ti** 4(Si,07)2(P04)s05F 5 P1

Na,CesMn? Mn**Fe**,Zr(Sig015)2(PO4)7(H20)3 R3m
Nay Ti**Nby(Si,07)2(PO,),03(0H) P1
Ba,Mn,TiO(Si,0;)(PO,)(OH) P1
(H,0,K),TiMn?,(Fe** | Ti),(PO.)4(OH)2(H,0)14 Pbca

Steenstrupine
Vuonnemite
Yoshimuraite

Benyacarite

AN ADDENDUM ON CRYSTAL-CHEMICAL RELATIONS
AMONG PHOSPHATE MINERALS

In providing a (fairly) complete hierarchical ordering of phosphate structures in this
chapter, of necessity we have adopted a fairly broad-brush approach. There is a wealth of
structural relations that we have not considered, and much of this is to be found in the
original literature. Some papers have considered broader issues of structure and variations
in bond topology in phosphates (and related minerals): Moore (1965b, 1970, 1973a,b;
1975b, 1976, 1984), Moore and Araki (1977c), Fanfani et al. (1978), Hawthorne (1979a,
1983a, 1985a,b; 1990, 1994, 1997, 1998). However, much work remains to be done in
this area.
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