Российская академия наук · Уральское отделение

Уральский минералогический сборник, 2002, № 12

П. М. Вализер

ВЕРХНЯЯ СЕРИЯ МАКСЮТОВСКОГО КОМПЛЕКСА: МЕТАМОРФИЗМ

P. M. Valizer

METAMORPHISM OF THE UPPER SERIES OF MAXYUTOVSKY COMPLEX

The P-T-conditions of metamorhism of the upper series were determined according with mineral associations, composition and zonality of the garnet, amphibole, pyroxene, muscovite – phengite and stilpnomelane. P-T-conditions for the greenstones, green shales, mica and graphitic quartzite-shales are T=320–358°, for garnet-amphibole rocks T=380–410 °C, for «calcium» eclogites T=380–495 °C at P=10 kBar and for variuos lavsonite-chlorite rocks T=380–467 °C, P=7–11 kBar.

Максютовский эклогит-глаукофансланцевый комплекс всесторонне изученный объект, геологическому строению, метаморфизму и возрасту пород которого посвящены монографии и многочисленные статьи. В то же время остаются дискуссионными многие вопросы в истории его эволюции, в том числе – минералогии, метаморфизма и другие – для пород верхней серии. Последние данные о внутреннем строении комплекса позволяют в пределах его выделить три тектонические совмещенные серии: нижнюю, существенно терригенную, субконтинентальную; среднюю (юмагузинскую) – кварцитовую, кварцито-сланцевую и аркозовую с конгломератами в основании; верхнюю – офиолитоподобную, представленную зеленокаменными породами и зелеными сланцами, с подчиненным количеством графитистых кварцитов, слюдистых и стильпномелановых сланцев и линз мраморов. В основании серии выделяются фрагменты серпентинитового меланжа с телами «кальциевых» эклогитов, метародингитов и разнообразных лавсонит-хлоритовых и хлоритовых пород [1-6, 11].

Породы верхней серии обычно слагают полосы северовосточного простирания. Полосы представляют чаще всего опрокинутые на юго-восток синклинали, разделенные выходами пород нижней серии (рис. 1–2). Зеленокаменные породы и зеленые сланцы

Рис. 1. Структурная схема максютовского эклогит-глаукофансланцевого комплекса [11].

 отложения мезозоя и кайнозоя;
граувакковый флиш зилаирская серия;
кремнистые и глинистые сланцы, вулканиты силура;
суванякский комплекс;
зоны бластомилонитов;
верхняя серия максютовского комплекса;
нижняя серия максютовского комплекса;
серпентиниты и серпентинитовый меланж;
лаббро-диабазы.

слагают горизонты мощностью до нескольких сотен метров или отдельные тела (будины). Составляют более 50 % объема серии. По химическому составу представлены породами с нормальным содержанием кальция и с дефицитом кальция, высоконатриевые (табл. 1, рис. 3). Метабазитам подчинены графитистые и слюдяные кварциты и сланцы, линзы кальцитовых и тремолит-кальцитовых мраморов. Фрагменты серпентинитового меланжа в основании разреза верхней серии представляют собой линзовидные, реже неправильные по форме тела антигоритовых серпентинитов, представленные крупными и мелкими телами, часто по периферии серпентиниты преобразованы в актинолитовые, хлорит-тальковые, тальковые породы. Включения в серпентинитах представлены «кальциевыми» эклогитами, лавсонит-хлоритовыми и хлоритовыми породами, графитистыми кварцитами (рис. 2) [2, 6].

Рис. 2. Схематическая геологическая карта фрагмента офиолитового разреза в районе д. Караяново [2]. 1 – зона меланжа; 2 – антигоритовые серпентиниты; 3 – «кальциевые» эклогиты, лавсонитовые родингиты; 4 - зеленокаменные породы массивной текстуры (метаморфизованные горн-

редко с гранатом); 6 – графитистые кварциты; 7 – слюдянные сланцы, частью графитистые; 8 – элементы залегания: а – нормального, б – опрокинутого; 9 – зона надвига.

Минеральные ассоциации: 1. Зеленокаменные породы и зеленые сланцы: Tr+Chl+Ab+Q, Gt+Tr+Chl+Ab+O, Tr+Chl+Stil+Ab+O; 2. Кварциты: Phe+Ab+Q, Graph+Q, Graph+Phe+Q, Phe+Still+Ab+Q; 3. Амфиболовые породы: Gt+Hb+Win+Ab+O, Cpx+Tr+Ab+O; 4. «Кальииевые» эклогиты и лавсонито-хлоритовые породы: Gt+Cpx+[Law]+Ep, Gt+Cpx+[Law]+Zo+Mu+Ab, Gt+[Law]+Zo+Mu-Phe+Chl+Ab+Q: Gt+Tĸ+[Law]+Chl, Gt+Zo+Ca+[Law]+Chl+Ab.

Амфибол отвечает минеральным видам тремолит, ферротремолит, ферровинчит и ферримагнезогорнбленде (табл. 2, № 1–7, рис. 4). Ферротремолит с невысоким количеством кремнезема (7.57–7.60 ф. е.), октаэдрического алюминия А (0.05–0.22 ф. е.) и кальция (1.55–1.63 ф. е.), с повышенным натрия (до 0.4 ф. е.)

Таблица 1

Химический состав пород верхней серии максютовского комплекса

Ком- по- тент	1	2a	2b	2c	2d	3	4	5	8	10	13	14	15	17	18	20	21	22 (15)	23 (31)
SiO ₂	47.18	47.90	45.30	48.32	47.08	47.48	50.64	48.96	40.51	38.03	36.83	32.38	78.72	38.35	69.80	37.24	93.28	<u>47</u> 43-50	<u>51.6</u> 45-60
${\rm TiO}_2$	1.48	1.03	1.18	1.22	1.18	1.44	0.78	0.50	1.37	0.67	1.53	0.91	0.26	0.95	0.62	2.48	0.11	<u>0.97</u> 0.4-1.6	$\frac{1}{0.3-2.8}$
Al_2O_3	15.96	17.87	18.49	17.60	17.04	15.10	17.57	17.03	29.16	30.37	23.32	23.25	9.08	14.07	10.70	17.98	1.27	<u>_15.1_</u> 19-10	<u>16_</u> 12.9-20
Fe_2O_3	4.36	3.72	3.67	3.67	3.92	3.37	2.57	3.07	3.37	2.40	5.51	5.72	2.00	2.66	5.43	5.50	0.66	<u>3.2</u> 0.9-6.1	<u>2.7</u> 0.4-7.2
FeO	5.98	4.49	5.16	5.70	5.17	6.11	5.34	5.66	2.39	3.83	7.46	8.02	1.35	5.53	1.44	11.04	2.25	<u>8.2</u> 5-11.5	<u>8.3</u> 4.6-13.6
MnO	0.14	0.14	0.16	0.12	0.11	0.13	0.17	0.12	0.45	0.14	1.47	0.41	0.06	0.18	0.38	0.30	0.21	-	-
MgO	6.42	5.36	4.63	5.48	5.27	7.59	6.57	7.26	0.97	5.78	6.62	10.71	1.34	5.55	2.71	7.90	0.56	<u>6.8</u> 4.1-9.3	<u>5.8</u> 2.6-8.4
CaO	11.26	11.42	12.12	9.23	11.89	9.54	6.02	10.79	16.25	8.43	9.41	6.76	0.31	16.32	0.59	10.85	0.31	<u>10.8</u> 8.4-13.7	<u>5.3</u> 1.2-9
Na ₂ O	3.26	3.20	3.82	3.90	3.40	3.90	5.10	3.52	< 0.20	0.20	< 0.20	< 0.20	0.92	1.19	1.62	0.80	<0.20	$\frac{2.9}{1.4-4.2}$	$\frac{4.3}{2.3-6.2}$
K_2O	0.20	1.40	0.40	0.88	0.40	0.17	0.13	0.04	2.29	3.39	2.13	1.81	3.20	0.64	2.30	0.30	0.20	0.40-1.2	<u>0.7</u> 0-2.8
п.п.п.	3.48	3.26	4.80	3.82	4.26	4.78	4.01	2.98	2.92	6.08	4.72	8.64	2.60	13.98	4.06	4.94	0.48		
P_2O_5	0.20	0.18	0.10	0.22	0.15	0.22	0.15	0.08	< 0.05	0.23	0.27	0.27	0.06	0.13	0.17	0.14	0.20		
Σ	99.92	99.97	99.83	100.16	99.87	99.83	99.43	100.01	99.68	99.33	99.29	99.48	99.90	99.55	99.82	99.47	99.53		

и низкой железистостью (24–39 %) характерен для зеленокаменных пород и зеленых сланцев. В гранат-амфиболовых породах определен 1) ферривинчит с низким содержанием кремнезема (до 7.62 ф. е.), октаэдрического алюминия (до 0.18 ф. е.) и натрия (до 0.46 ф. е.) при высоком кальция (\approx 1.46 ф. е.), с низкой железистостью (32 %) и 2) ферримагнезиогорнбленде с значительными вариациями кремнезема (6.97–7.49 ф. е.), высоким количеством натрия (0.46–0.65 ф. е.) и низким – октаэдрического алюминия (0.07–0.18 ф. е.) и кальция (1.58–1.67 ф. е.), с железистостью 32 %. В разнообразных лавсонит-хлоритовых и хлоритовых породах зон меланжа тремолит-ферротремолит имеет более кремнеземистый (7.50–7.90 ф. е.) и кальциевый (1.67–1.80 ф. е.) состав, по содержанию октаэдрического алюминия (0.05–0.45 ф. е.) и натрия (0.28–0.66 ф. е.) аналогичен ферротремолитам зеленокаменных пород и зеленых сланцев.

Примечание: 1-4 - зеленокаменная порода, район д. Караяноворуч. Тиляк. 1 - обр. 88-1, Tr-Ab-Chl-Q; 2a - обр. 88-2, Tr-Che-Ab-Q; 2b обр. 88-3, Gt-Chl-Ab-Q; 2c - обр. 88-4, Tr-Ab-Q; 2d- обр. 88-5, Gt-Chl-Tr-Ab-O; 3 – обр. 88-6, Tr+Chl+Ab+O; 4 – обр. 88-9, Amph-Chl-Ab; 5 – гранатамфибол-плагиоклазовая порода, (Gl-Hb-Win+Ab+Kb), обр. 88-33, руч. Урускунган; 6 – тремолит-хлорит-альбитовая порода, (Tr-Zo-Mu-Chl-Ab), обр. 95-14, правый берег р. Сакмары, ≈ 0.5 км выше д. Караяново; 7 – гранат-тремолитовая порода (Gt+Tr+Ab), обр. 87-16, руч. Карамалы; 8 – гранат-лавсонит-хлоритовая порода, обр. 87-23, район. д. Караяново; 9 – то же, обр. 87-23а, там же; 10 – лавсонит-цоизит-хлоритовая порода, ([Law]+Zo+Mu+Chl+Ab), обр. 87-52, район п. Антинган, 11 – мусковитцоизитовый прожилок в гранат-лавсонит-хлоритовой породе, обр. 87-25, район д. Караяново; 12 – гранат-лавсонит-хлоритовая порода, (Gt+[Law]+ +Zo+Mu+Chl+Ab), обр. 1818-3, район д. Ишаново, 13 – гранат-хлоритовая порода, (Gt+Kzo+Phe+Chl+Ab), обр. 87-24, район д. Караяново, 14 – лавсонит-хлоритовая порода, (Law+Mu+Zo+Chl+Ab), обр. 87-1, район д. Староякупово, 15 - слюдяной кварцит, (Phe+Still+Q), обр. 87-43ф, район д. Караяново, 16 – гранат-слюдяно-кварцовый сланец, (Gt+Phe+Ab+O), обр. 87-2, район д. Староякупово; 17 – зеленокаменная порода с гранатом, (Gt+Phe+Chl+Ab+Q), обр. 87-39, район д. Сабырово, 18 - зеленый сланец, (Still+Phe+Ab+ Chl+Q), обр. 87-44, район д. Караяново; 19 - то же, обр. 1823-2, район д. Шубино; 20 – гранат-тремолитовая порода, (Gt+Tr+Kzo+ Chl+Ab), обр. 87-13, руч. Карамалы; 21 – графитовый кварцит, (Gt+Phe+ Still+Graph+Q), обр. 87-37, район ур. Альмухометова; 22 - средний состав зеленокаменных пород с нормальным содержанием кальция. 23 средний состав зеленокаменных пород высоконатриевых. В числитеде среднее содержание элементов, в знаменателе – предел колебоний.

Химический анализ пород выполнен по стандартной методике. Аналитик Г. К. Звонарева.

Таблица 2

Состав минералов из пород верхней толщи максютовского комплекса

Мицерац/						А	мфибол	[*						Гранат*			
компонент	1		2		3	4	5			6		6	7	1	l	4	5
Romitorient	с	r	1	2			1	2	3	с	Г			с	Г	с	Г
SiO ₂	54.15	54.23	54.52	53.82	54.89	55.54	48.53	52.79	54.83	52.44	53.20	53.18	65.24	37.04	37.21	36.50	39.95
TiO ₂																	
Al ₂ O ₃	2.92	3.09	2.89	3.88	2.97	3.06	6.51	3.49	3.38	3.35	2.79	2.98	2.49	19.68	20.41	19.77	19.93
Fe ₂ O ₃																	
FeO	13.85	14.45	13.29	15.76	13.29	10.16	18.06	14.70	13.28	15.32	14.75	15.07	10.89	19.20	27.71	22.72	22.22
MnO														11.42	0.75	6.27	6.21
MgO	15.98	15.35	16/04	13.91	15.92	18.06	12.49	15/09	15.85	14.90	14.82	14.93	16.48	0.26	0.36	1.82	1.78
CaO	10.55	10.30	10.87	10.28	10.55	10.73	10.39	10.93	9.79	10.67	11.19	11.06	11.55	11.84	13.02	12.69	12.59
Na ₂ O	0.80	1.97	0.77	0.86	0.64	0.78	2.11	1.24	1.31	1.60	1.35	1.07	1.70				
K ₂ O																	
Σ	98.25	98.49	98.38	98.53	98.26	98.33	98.09	98.24	98.44	98.28	98.10	98.29	98.35	99.44	99.46	99.77	99.68
	Продолжение табл. 2																

Минерал/								I ранат*									
компонент	7				8	3		9									
Romitonent	с	i	Г	с	i	r	k	с	i	r	с	i	r	с	i	r	
SiO ₂	37.73	37.48	37.74	37.55	37.73	37.72	38.42	36.59	37.15	37.13	36.87	37.07	37.76	37.05	37.12	37.29	
TiO ₂																	
Al ₂ O ₃	20.54	20.80	20.86	20.55	21.01	20.72	20.92	20.10	20.40	20.32	20.08	19.72	20.34	20.05	20.03	19.76	
Fe ₂ O ₃																	
FeO	25.58	25.68	26.82	21.00	25.92	28.80	20.18	28.76	22.69	20.84	23.63	28.76	21.98	29.17	27.10	27.98	
MnO	1.40	2.40	0.95	11.82	5.80	0.87	1.69	1.73	1.44	3.38	6.67	1.26	2.94	1.78	1.72	0.63	
MgO	1.60	1.52	1.95	0.79	1.00	1.05	1.22	0.85	1.46	0.80	0.78	0.84	0.80	10.82	0.59	0.81	
CaO	13.06	11.82	11.52	8.24	8.36	10.80	17.40	11.77	16.84	17.30	11.75	12.33	15.92	1.93	12.81	13.27	
Na ₂ O																	
K ₂ O																	
Σ	99.91	99.70	99.82	99.95	99.82	99.96	99.83	99.80	99.98	99.77	99.78	99.98	99.74	99.80	99.97	99.74	

Окончание табл. 2

Минерал/	П рироксен *						Белая слю да**										
компонент	6		7	8	9	8	1 0	1 1	1 2	1 3	14	1 5	1 6	17	1 8	19	
	с	r															
SiO ₂	52.44	50.19	53.17	52.39	53.80	47.66	45.63	45.93	4 5 .1 8	50.02	46.98	52.29	51.02	51.09	53.82	45.46	
T iO 2						0.33	0.13	< 0.05	0.83	0.71	0.33	0.47	0.56	0.31	0.55	0.60	
A 12 O 3	2.48	3.64	10.62	13.72	11.29	30.80	34.29	34.44	34.10	26.68	28.97	24.55	24.29	25.35	7.69	6.16	
Fe ₂ O ₃						0.83	-	0.53	-	1.92	1.32	2.69	2.39	1.41	17.05	24.42	
FeO	9.82	11.35	6.83	11.00	12.20	0.68	0.92	0.35	1.17	1.19	1.98	1.47	1.97	1.87	1.91	2.46	
M n O				0.56	0.15	< 0.0 5	-	< 0 .0 5	< 0 .0 5	< 0 .0 5	0.07	< 0 .0 5	< 0 .0 5	< 0.0 5	1.22	0.48	
M g O	13.03	1 3 . 5 0	8.82	4.99	4.13	1.81	1.19	1.00	0.99	4.26	2.73	3.38	4.56	4.68	6.60	6.78	
СаО	21.17	19.28	14.07	8.66	11.61	0.58	0.58	0.45	0.94	0.99	0.93	< 0 .1 0	0.58	0.48	0.53	1.04	
N a 2 O	1.04	1.82	6.34	9.07	6.65	0.48	0.78	0.57	0.46	0.32	0.28	0.20	0.30	0.24	0.39	0.70	
K 2 O						10.80	10.60	1 1 .0 0	10.80	10.30	1 0 .2 0	9.10	9.40	10.06	2.00	1.95	
Σ	99.98	99.98	99.85	99.79	99.83	93.97	94.12	94.27	94.47	96.41	93.79	93.95	95.07	95.49	91.76	90.05	

Примечание. Микрозондовый анализ минералов выполнен на растровом микрозонде РЭММА-202М с микроанализатором в лаборатории КМИМИМИМУРО РАН, аналитик В.А.Котляров. Стандарты пироп-альмандин № 87375, ферримагнезиогорнбленде № 111356, глаукофан, тремолит, мусковит и биотит NSTD19. Химический анализ минералов выполнен по стандартной метидике, аналитик Л.А.Ганеева. Номера образцов минералов соответствуют номерам образцов в табл. 1. * – зондовый, ** – силикатный.

ферротремолитов в некоторых разновидностях лавсонит-хлоритовых пород.

<u>Гранат</u> в породах верхней толщи представлен минеральными видами: спессартин-гроссуляр-альмандин, марганцевосодержащий гроссуляр-альмандин (или альмандин-гроссуляр), гроссуляр-альмандин (или альмандин-гроссуляр) и пиропсодержащий гроссуляр-альмандин (или альмандин-гроссуляр) (рис. 5, табл. 2, № 1, 5, 7–9).

В зеленокаменных породах и зеленых сланцах гранат представлен зональными кристаллами: в центральных частях зерен его состава отвечает спессартин-гроссуляр-альмандину (Ру₁Alm₄₁ Spess₂₅Ca-comp₃₃), а в краях – гроссуляр-альмандину (Ру₅Alm₈₈ Spess₂Ca-comp₃₅). В гранат-амфиболовых породах гранат незональный, имеет состав марганцевосодержащего гроссуляральмандина (Py₁Alm₄₇Spess₁₃Ca-comp₃₃). В различных гранатлавсонитовых и хлоритовых породах зон меланжа гранат соответствует: гроссуляр-альмандину со сложной зональностью (с-Py₆Alm₅₄Spess₃Ca-comp₃₇, i-Py₆Alm₅₅Spess₅Ca-comp₃₄ и г-Py₈ Alm₅₈Spess₂Ca-comp₃₂); спессартин-гроссуляр-альмандину (с-Ру₃ Alm₄₆Spess₂₇Ca-comp₂₄, i-Py₄Alm₅₈Spess₁₃Ca-comp₂₅, Γ-Py₄Alm₆₃ Spess₂Ca-comp₃₁ и k-Py₅Alm₄₃Spess₄Ca-comp₄₉) и марганцевосодержащему альмандин-гроссуляру (c-Py₃Alm₅₈Spess₄Ca-comp₃₅, i-Py₆Alm₄₄Spess₃Ca-comp₄₇ г-Py₃Alm₄₁Spess₈Ca-comp₄₈ или c-Py₃Alm₄₈Spess₁₅Ca-comp₃₆ i-Py₃Alm₅₈Spess₃Ca-comp₃₆ г-Py₃Alm₄₄Spess₇Ca-comp₄₆).

Рис. 5. Состав гранатов из пород верхней серии максютовского эклогит-глаукофансланцевого комплекса.

1 – зеленокаменных пород; 2 – гранат-амфиболовых пород; 3–4 гранат-пироксеновых пород; 5–6 – гранат-лавсонитовых и гранат-хлоритовых пород.

В «кальциевых» эклогитах отвечает пиропсодержащему гроссуляр-альмандину (или альмандин-гроссуляру), в которых представлен двумя разновидностями: 1. Ру₇Alm₅₃Spess≤₆Ca-comp₃₄, 2. Ру₇₋₁₅Alm₃₇₋₄₄Spess≤₁Ca-comp₄₄₋₅₄.

Зональность в гранатах обусловлена главным типом замещения $Fe^{2+}Mn = Ca$. Фиксируются все типы зональности – прямая, обратная и сложная (рис. 6).

Белая диоктаэдрическая слюда в различных лавсонитхлоритовых и хлоритовых породах представлена мусковитом двух разновидностей (рис. 7, табл. 2, № 8–17): 1) низкокремнеземистым и более натриевым (Si⁴⁺ ≈ 3.09 ф. е., Al_{общ.} ≈ 2.73 ф. е., Selad-comp ≈ 12 % и Na ≈ 0.08 ф. е.); 2) с большим содержанием кремнезема и низким натрия (Si⁴⁺ ≈ 3.23 ф.е., Al_{общ.} ≈ 2.40 ф. е., Selad-comp ≈ 27 % и Na ≤ 0.05 ф. е.). В слюдяных и графитистых кварцитосланцах и зеленых сланцах белая слюда отвечает фенгиту (Si⁴⁺ ≈ 3.35–3.44 ф.е., Al_{общ.} ≈ 1.92–2.02 ф.е., Selad-comp ≈ 44–47 % и Na ≤ 0.04 ф.е.) со средним содержанием кремнезема и низким натрия.

Рис. 6. Характер микрозональности гранатов.

1 – гроссуляр-альмандинах; 2 – марганцево-содержащих гроссуляральмандинах; 3 - спессартин-гроссуляр-альмандинах.

Стильпномелан характерен для слюдяных кварцито-сланцев и зеленых сланцев зон контакта верхней серии с подстилающими породами (в основном кварцитами юмагузинской серии). Характерной особенностью его состава является низкое значение величины (19-26 %) соотношение Al/(Al+Fe+Mg), среднее (48-66 %) Fe/(Al+Fe+Mg), высокая железистость 61-86 %. (табл. 2, № 18-16).

Пироксен присутствует только в породах зоны меланжа. В «кальциевых» эклогитах и большинстве лавсонит-хлоритовых пород он представлен омфацитом (Jd-comp. до 44 %) со значитель-

нентов Si⁴⁺=1.86-2.05 ф. е., $Al^{VI} = 0.27 - 0.47 \ \phi. \ e., \ Ca =$

Рис. 7. Соотношение Si⁴⁺-Аюбщ. в мусковите и фенгите из пород верхней толщи максютовского комплекса.

1 – фенгиты из кварцито-сланцев и зеленых сланцев, 2 – мусковиты и фенгиты из разнообразных лавсонит-хлоритовых пород зоны меланжа.

Рис. 8. Вариации Al₂O₃-Na₂O в пироксенах ₂ верхней толщи максютовского комплекса.

1 – из тремолит-хлоритальбитовых пород; 2 – из гранаттремолит-хлоритовых пород; 3 – из гранат-лавсонит-хлоритовых пород; 4 – из «кальцитовых» эклогитов; 5–8 – поля составов пироксенов [11]: 5 – из «титанистых» и омфацитовых эклогитов нижней толщи максютовского комплекса, 6 – из кварцгранат-жадеитовых пород максютовского комплекса, 7 – из пород юмагузинской серии, 8 – из пород кокчетавского комплекса.

0.33–0.64 ф. е. и Na = 0.39–0.64 ф. е.). Омфацит (Jd-comp. до 36 %) с низким содержанием натрия и высоким кальция (Si⁴⁺ > 1.90 ф. е., Al^{VI} до 0.06 ф. е., Ca = 0.82–0.95 ф. е. и Na = до 0.09 ф. е.) и диопсид (Si⁴⁺ = 1.81 ф. е., Al^{VI} = 0.03 ф. е., Ca = 0.95 ф. е. и Na = 0.01 ф. е.) встречен в некоторых гранат-лавсонит-эпидотовых и тремолит-хлоритовых породах (рис. 8, табл. 2, № 6–9).

Таблица 3

Оценка термодинамических условий минеральных ассоциаций верхней серии максютовского комплекса

Ассоциация	Метод	P – T min	P – T max
Gt+Tr+Chl+Ab±Q	Gt–Amph ¹	350 °C	358 ?C
Phe+Ab+Q	Phe ²	320 °C	330 ?C
Phe+Ab+Still+Q		5 Кбар	7 Кбар
Gt+Hb+Win+Ab+Q	Gt–Amph	388 ?C	410 ?C
Gt+Cpx+Tr+Ab+Q		380 ?C	
Gt+[Law]+Cpx+Zo+Mu±Chl+Ab	Gt-Cpx ³	420 ?C	492 ?C
		12 Кбар	10 Кбар
	Gt-Phe ⁴	380 ?C	467 ?C
		11 Кбар	19 Кбар
	Phe	380 ?C	467 ?C
		7 Кбар	11 Кбар
Gt+Cpx+Tr+Ab+Chl+Q	Gt-Cpx	495 ?C	
		10 Кбар	
	Gt–Amph	380 ?C	

Примечание: 1 – гранат-амфиболовый термометр [7]; 2 – фенгитовый термобарометр [2, 12]; 3 – гранат-клинопироксеновый термометр, среднее по [8, 10]; 4 – гранат-фенгитовый геобарометр [9].

Рис. 9. Р-Т-диаграмма оценки условий метаморфизма пород верхней толщи максютовского комплекса.

 гранат-клинопироксеновые породы из включений в меланже (II в); 2 – поле метабазитов верхней серии (II с);
сланцы и бластомилониты приконтактных зон (III).

Р-Т условия метаморфизма для пород верхней серии зеленых сланцев, графитистых и слюдяных кварцито-сланцев, согласно минеральным ассоциациям, составу минералов, прямой зональности в гранате и расчету по гранат-амфиболовому и фенгитовому геотермобарометрам, отвечают интервалу температур 320-358 °C при давлении 5-7 кбар, что соответствует прогрессивному этапу зеленосланцевого метаморфизма (табл. 3, рис. 9). Для гранатамфиболовых пород рассчитываются более высокие температуры - 380-410 °C. Хлоритизация граната и тремолита, наблюдаемая по отдельным зонам, позволяет говорить о проявлении вторичных зеленосланцевых изменений. Для пород зон меланжа определяется более широкий диапазон Р-Т условий метаморфических процессов (табл. 3, рис. 9). Максимальные значения температуры 420-492 °С и давления 10-12 кбар расчитаны для ассоциации «гранат + пироксен» «кальциевых» эклогитов. Образование разнообразных гранат-[лавсонит]-хлоритовых пород происходит при более низких температурах (380-417 °C) и давлении (7-11 кбар) и отвечает регрессивному этапу метаморфизма, что подтверждается сложной обратной зональностью в гранате, разложением лавсонита на мусковит, альбит, цоизит-эпидот и др. Минимальная температура регрессивного этапа метаморфизма фиксируется образованием пумпеллиита и альмандин-гроссуляра (Са-сотр-74 %).

Литература

1. Алексеев А. А. Магматические комплексы зоны хребта Уралтау. М.: Наука, 1976. 172 с.

2. Вализер П. М., Ленных В. И. Амфиболы голубых сланцев Урала. М.: Наука, 1988. 203 с.

3. Добрецов Н. Я., Лаврентьев Ю. Г., Пономарева Я. Г., Поспелова Л. Н. Статистические исследования белых слюд глаукофансланцевых толщ // Статистические методы в геологии. Новосибирск, 1974. С.113–133 (Тр. ИГИГСО АН СССР; вып. 236).

4. Захаров О. А., Пучков В. Н. О тектонической природе максютовского комплекса зоны Урал-тау // Докл. Президиума УНЦ РАН. Уфа, 1994. 29 с.

5. Иванов К. С., Карстен Л. А., Эхтлер Х. Р-Т-t- эволюция и геодинамические условия образования максютовского эклогит-глаукофанового комплекса Южного Урала // «Магматизм, метаморфизм и глубинное строение Урала». Тез. докл. VI Урал. петрограф. совещ. Т. 1. Екатеринбург, 1997. С. 182–185.

6. *Ленных В. И., Вализер П. М.* Лавсонитовые родингиты максютовского эклогит-глаукофансланцевого комплекса // Ежегодник-1985. Институт геологии и геохимии УНЦ АН СССР. Свердловск. 1986. С. 73–76.

7. *Перчук Л. Л.* Равновесия породообразующих минералов. М.: Наука, 1970. 391 с.

8. *Ellis D. J., Green D. N.* An Experimentale study of offect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibrin // Contrib. Mineral. and Penrol. 1979. V. 71. P. 13–22.

9. *Krogh E. L., Rahcim A.* Temperatyre and pressure dependence of Fe-Mg partitioning betrocen garnet and phengite, with particulat reference eclogits // Contrib. Mineral. and Petroc. 1978. V. 66. № 1. P. 75–80.

10. *Krogh E. J.* The garnet–clinopyroxene Fe-Mg geothermometer – a reinterpretation of existing experimentale data // Contrib. Miner. and Petroc. 1988. V. 99. P. 44–48.

11. Lennykh V. L., Valizer P. M. High-pressure metamorphic rocks of the maksyutov complex (Southern Urals) // Fourth international eclogite field symposium, Novosibirsk. 1999. 64 p.

12. *Massone H. J., Sehreyer W.* Pheugite geobarometry based on the limiting assemblage with k-feldshpat, phlogopite and guarz // Contrib. Mineral. and Petrol. 1987. V. 96. P. 212–224.