Уральский минералогический сборник, 2002, № 12

В. Г. Кориневский, Е. В. Кориневский

МАГНЕЗИТ ИЗ ИЛЬМЕНСКИХ ГОР

V. G. Korinevsky, E. V. Korinevsky

MAGNESITE FROM ILMEN MOUNTAINS

The first data about chemical composition and physical properties (IR-spectrum, diffractogramma) coarse-grained magnesite from the Ilmen mountains are given. Magnesite together with chromian clinochlore and talc form the nest and veins in small bodies of olivinites at North-West bottom of Savelkul mountain in Ilmen Nature Reserve (Southern Urals).

Магнезиту из Ильменских гор в существующей литературе [2, 3] посвящено всего ... одно слово. О его наличии упоминается лишь в списке минералов Ильменских гор [3, стр. 188]. Никаких дополнительных сведений о местах находок магнезита, вмещающих его породах, формах выделения и т. д. не приводится. Даже в наиболее полной сводке по минералам Ильмен [4] и в специализированной работе по гипербазитам [1] термин магнезит не употребляется. Вероятно, этот минерал не выделялся из массы других карбонатов, нередко отмечаемых в составе гипербазитовых тел.

Магнезит обнаружен нами в двух точках у северо-западного подножья горы Савелькуль в Ильменском заповеднике (квартал 112, рис. 1), а также на южном побережье оз. Бол. Таткуль у Клюквенного болота. Вмещающими его породами являются небольшие тела крупнозернистых (1–2 см) существенно оливиновых пород светло-бурого цвета, вскрытые старыми разведочными канавами. Прозрачные светлые медово-желтые кристаллы оливина, рассеченные тонкими прожилками серпентиновых минералов, содержат мелкую вкрапленность буровато-черного хромита. Оливины принадлежат к разновидностям, характерным для дунитов Таловского и Кемпирсайского массивов Южного Урала (железистость 9.5 %). Высокохромистые (Cr_2O_3 – 60.5 %) хромиты, содержащие заметные количества Al_2O_3 (6.3 %), также обычны для дунитов, а не для метасоматически измененных [1] метагипербазитов. Гнездообразные

1

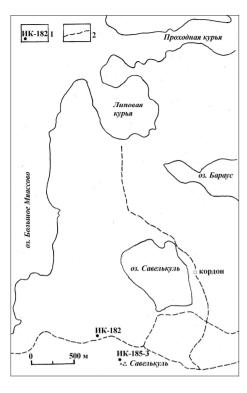


Рис. 1. Места находок магнезита в окрестностях горы Савелькуль.

1 – место находки магнезита и номер пробы, 2 – проселочные дороги.

скопления и прожилки в оливинитах слагают магнезит-тальк-клинохлоровые крупнокристаллические агрегаты. Размеры минералов в них достигают 10-15 мм в попе-Прозрачные речнике. светло-лиловые пластинчатые кристаллы слюды по составу (табл. 1) хромовому отвечают клинохлору. По содержанию Cr₂O₃ (2.88 %) это самые высокохромистые разновидности клинохлора, известные на сегодня в Ильменских горах [1].

Таблица 1 Химический состав (мас. %) минералов из оливинита с магнезит-тальк-клинохлоровыми прожилками (проба ИК-185-3)

		_	-		
Компонент	Оливин	Хромит	Клинохлор	Тальк	Магнезит
SiO_2	40.46	-	31.51	57.71	-
TiO_2	-	0.26	0.03	-	-
Al_2O_3	-	6.30	14.15	0.11	-
Cr_2O_3	-	60.50	2.88	-	-
FeO	9.32	28.28	2.59	1.27	5.32
MnO	0.16	0.50	-	-	0.26
MgO	49.76	4.35	34.85	28.26	41.83
CaO	-	-	-	0.12	0.24
Na_2O	-	-	-	0.10	-
K_2O	-	-	-	-	-
NiO	0.175	-	-	-	-

Примечание: анализы выполнены на микрозонде JXA-733 при U=20~kv,~I=30~nA в ИМин УрО РАН, аналитик Е. И. Чурин. Прочерк — значения меньше чувствительности прибора

FL			
C	6	4	а
Pue 2	Кристан	шы магне	

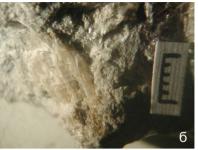


Рис. 2. Кристаллы магнезита: а – ромбоэдрические осколки, б – магнезит в оливините. Проба ИК-185-3.

Мягкие белые пластинки талька содержат очень мало железа (FeO - 1.27 %). Магнезит, клинохлор и тальк не обнаруживают следов замещения друг друга. Они синхронно отлагались в полостях трещин среди оливиновых зерен.

Магнезит образует разобщенные бесцветные водяно-прозрачные кристаллы с максимальным поперечником до 15 мм. Они обладают совершенной ромбоэдрической спайностью (рис. 2), высоким двупреломлением, являются одноосными оптически отрицательными кристаллами. Микрозондовый анализ магнезита (табл. 1) показал в нем малые количества FeO (5.32 %) и MnO (0.26 %). По этой причине ИК-спектр минерала содержит полосы поглощения, практически идентичные с полосами чистого магнезита (см⁻¹: 400; 412; 747; 887; 1440; 1844. Снято на UR-20, в таблетке с КВг). Столь же характерной для магнезита оказалась и дифрактограмма нашего образца ИК-185-3 (табл. 2).

Таким образом, совокупность физических и химических свойств бесцветных прозрачных кристаллов карбоната из прожилков в оливинитах Ильменских гор подтверждает правильность его

Таблица 2 Дифрактограмма магнезита (проба ИК-185-3)

d,A	I	hkl	d,A	I	hkl
2.745	100	104	2.105	18	113
2.506	12	006	1.940	4	202
2.318	2	110	1.702	19	116

Примечание: дифрактометр ДРОН-2.0. FeK $_{\alpha}$ -излучение с монохроматором, интервал съемки 5°–76°, шаг сканирования 0.02°. Аналитик П. В. Хворов (ИМин УрО РАН).

Параметры ячейки: a_0 =4.64, b_0 =15.04 A, V=280.21A³.

диагностики как магнезита. Некоторый интерес представляет то обстоятельство, что охарактеризована относительно редко встречаемая крупнокристаллическая разновидность магнезита.

Работа выполнена при финансовой поддержке РФФИ (проект 01-05-65446).

Литература

- 1. Варлаков А. С., Кузнецов Г. П., Кораблев Г. Г., Муркин В. П. Гипербазиты Вишневогорско-Ильменогорского метаморфического комплекса (Южный Урал). Миасс: ИМин УрО РАН, 1998. 195 с.
- 2. Кобяшев Ю. С., Никандров С. Н., Вализер П. М. Минералы Ильменских гор, 2000. Миасс: ИГЗ УрО РАН, 2000. 118 с.
- 3. *Макарочкин Б. А., Макарочкина М. С.* Классификация минералов Ильменского государственного заповедника // Краеведческие записки, вып. 1; сб. статей Челябинского областного краеведческого музея. Челябинск, 1962. С. 186–189.
- 4. Минералы Ильменского заповедника. Под редакцией акад. А. Н. Заварицкого. М.-Л.: АН СССР, 1949. 659 с.