УДК 552.16 (571.56+571.65)

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ ЗАКОРОННОГО ВЫСТУПА ДОКЕМБРИЯ ОМОЛОНСКОГО МАССИВА

В.М. Шевченко

Северо-восточный Научный Центр, г. Магадан

Рассмотрены две метаформации закороннинской метаморфической серии Закоронного выступа докембрия в юго-восточной части Омолонского массива: сланцево-эндербитовая высокотемпературных и высокобарических гранулитов и гнейсо-кальцифировая супракрустальных гранулитов. По цирконам U-Pb методом определено время гранулитового метаморфизма в 1901–2058 млн лет и интенсивного гранитообразования в 1952 млн лет.

Ключевые слова: метаморфизм, гранулиты, докембрий, U-Pb-возраст, Омолонский массив.

Метаморфические образования докембрия юго-восточной окраины Омолонского массива представлены двумя крупными выступами: Ауланджинским и Закоронным, а также мелкими блоками в бассейне руч. Ледяного и р. Мал. Ауланджи (рис. 1).

Описанию Ауланджинского выступа посвящены многие работы [1, 2–5, 7, 10, 13, 16, 18].

Ауланджинский выступ расположен в нижнем течении р. Бол. Ауланджа, на площади 300 км² и представляется в виде западного крыла субмеридионального антиклинала, ограниченного с востока субмеридиональным глубинным разломом [13]. Ценральная часть антиклинала слагается чарнокитоидами, тесно сопряженными с двупироксеновыми и амфибол-двупироксеновыми сланцами. Чарнокитоиды представлены широкой гаммой гранитоидов: от лейкогранитов до эндербитов. Углы падения метаморфитов в ядре - 25-30°, на крыльях несколько возрастают до 40° и в зонах разломов увеличиваются до 70°. Т.е. структура может быть отнесена к купольным с инфракрустальным базитчарнокитоидным ядром и супракрустальными гранулитами на крыльях. Ввиду того, что ауланджинские метаморфиты неоднократно подробно описаны, остановимся на характеристике почти не известного в литературе Закоронного выступа.

Закоронный выступ докембрия обнажается в бассейне левых и правых притоков р. Омолон – рек Закоронной и Докумичной на площади около 450– 500 км². Как и Ауланджинский, Закоронный выступ имеет северо-восточное, близкое к субмеридиональному направление, разбит и ограничен системой северо-восточных и субмеридиональных разломов. На западной окраине выступа докембрийские метаморфиты перекрыты вулканогенно-осадочными образованиями кедонской серии среднего палеозоя. В центральной части правобережного блока метаморфиты прорываются фанерозойскими гранитоидами (массив Орлиный раннепалеозойского абкитского комплекса) и множеством даек и силлов разновозрастных комплексов (рис. 2). В правобережном блоке выступа широко распространены диафториты, катаклазиты и милониты. Метаморфические образования Закоронного выступа выделены в закороннинскую метаморфическую серию.

ЗАКОРОННИНСКАЯ МЕТАМОРФИЧЕСКАЯ СЕРИЯ

Распространена в бассейнах рек Закоронной, Докумичной, Мал. Ауланджи.

Центральная часть блока в бассейне р. Закоронной (рис. 2) образована разнообразными кристаллосланцами и эндербитами, выделенными в *сланцево-эндербитовую метаформацию*; окраинные зоны представлены супракрустальными плагиогнейсами и гнейсами с гранатом, биотитом, реже с силлиманитом, кальцифирами и биотит-амфиболовыми плагиогнейсами. Гнейсы и кальцифиры объединены в гнейсо-кальцифировую метаформацию.

В левобережном блоке, в бассейне р. Докумичной, по данным геологической съемки м:ба 1:50 000 (Шамин В.Н., 1987 г.), сланцево-эндербитовая метаформация слагает западную окраину блока, гнейсокальцифировая метаформация – центральную и восточную его части.

Характеристика метаформаций приводится по авторским материалам из бассейна р. Закоронной.

СЛАНЦЕВО-ЭНДЕРБИТОВАЯ МЕТАФОРМАЦИЯ

Кристаллосланцы в междуречье Закоронной и Лев. Закоронной образуют синклинальную чашевидную структуру, которая вырисовывается по элементам залегания полосчатости и сланцеватости метаморфитов. Обычно считающиеся более молодыми по отношению к кристаллосланцам супракрустальные гранулиты и кальцифиры в общей структуре Закоронного блока падают под кристаллосланцы и эндербиты. Возможно, здесь имеет место надвиг, так как по границе кристаллосланцев и кислых гранулитов широко развиты катаклазиты, а также интрузивные и метасоматические образования.

В междуречье Закоронной и Лев. Закоронной кристаллосланцы тесно ассоциируют с эндербитами, отличающимися от сланцев более лейкократовым обликом и нередко массивным строением. Эндербиты образуют согласные тела: линзы, силлы, т.е. достаточно мощные и протяженные образования. Судя по элементам залегания сланцеватости и полосчатости, одно из таких тел имеет протяженность около 5 км и мощность – первые сотни метров (рис. 2).

ПЕТРОГРАФИЯ, МИНЕРАЛОГИЯ, ПЕТРОХИМИЯ И ИЗОТОПНЫЙ ВОЗРАСТ КРИСТАЛЛОСЛАНЦЕВ

В междуручье Лев.Закоронной и Закоронной распространены двупироксен-амфиболовые, клинопироксен-скаполит-амфиболовые, гранат-биотитортоклазовые сланцы и амфиболиты. Все разновид**Рис. 1.** Тектоническая схема южной окраины Омолонского массива и окружающих его Сугойского прогиба и Охотско-Чукотского вулканогенного пояса. Составил В.Г. Корольков [12].

Омолонский срединный массив: 1 – дорифейский кристаллический фундамент: О – Ольдянинский, К – Коаргычанский, 3 - Закоронный, А - Ауланджинский выступы; 2 – нижняя часть (нижний и средний этажи) вулканогенно-осадочного чехла (рифей – девон); 3 – верхняя часть чехла (карбон - юра), Гж - Гижигинский прогиб. 4 - Сугойский прогиб. 5,6 - Охотско-Чукотский вулканогенный пояс: 5 – вулкано-тектонические депрессии: Уч – Учинейская, Ах – Ахавеемская, Тр – Туромчинская; 6 – зоны базальтового вулканизма; 7 – неотектонические впадины; 8,9 - интрузивные массивы: 8 – гранитоидные мезозойские: а – на поверхности, б - невскрытые; 9 - гранитоидные и сиенитовые палеозойские; 10 - разломы: а - контролирующие фации осадочных толщ, б - прочие крутопадающие, в надвиги и взбросы; 11 – антиклинали (а), синклинали (б); 12 – отрицательные вулканоструктуры: а – простые, б – сложные вулкано-тектонические депрессии; 13 – интрузивно-купольные структуры со вскрытыми (а) и предполагаемыми (б) гранитными ядрами; 14 границы структур и структурных комплексов установленные и предполагаемые.

ности сланцев представляют собой темно-зеленые, бутылочно-зеленые мелко- и среднезернистые породы, сланцеватые, нередко тонко-параллельно-полосчатые.

Модальный состав:

 $33-75Pl_{_{30-49}}+1-10Hyp_{_{48-49}}+5-21Cpx_{_{25-35}}+0-45Hbl_{_{43-47}}+0-18Bt_{_{38-39}}+0-8Gr_{_{77-80}}+0-16~Sk_{_{me74}}+0-5Q~+1-4Mt,~Ap,~Zr$

Структура – кумулатобластовая. Минералы сконцентрированы в слойки и цепочки; длинные оси их ориентированы по сланцеватости.

В двупироксен-амфиболовых кристаллосланцах наблюдается дифференциация минералов, обусловливающая полосчатость: 1) плагиоклаз + гиперстен + клинопироксен + кварц; 2) плагиоклаз + амфибол (примерно в равных количествах); в амфиболе заключены реликты гиперстена и клинопироксена. Большая часть табличек плагиоклаза пронизана по спайности антипертитами; последние линейно-вытянуты, либо образуют овальной формы вростки прозрачно-чистого санидиноподобного ортоклаза с малым углом оптических осей (2V=36°). Отмечаются гранобластовые скопления кварца, идиоморфные включения которого появляются в плагиоклазе.

В кристаллосланцах, где увеличивается роль роговой обманки, ортопироксен часто замещен хлорит-баститовыми псевдоморфозами. Значительно меньше подвержен изменению клинопироксен, частично замещающийся хлоритом, карбонатом, амфиболом. В амфиболовых сланцах возрастает роль магнетита, апатита и сфена.

Шевченко

1-8. Интрузивные и ультраметаморфические комплексы: 1 – дайки и силлы диорит-порфиритов позднемелового викторинского комплекса ($\delta\pi K_2v$); 2 – дайки и силлы щелочных базальтоидов раннемелового омолонского комплекса (EvK_1o); 3 – дайки и силлы риолитов, дацитовых порфиров кедонского комплекса (λ - $\zeta\pi D_{2-3}k$); 4 – песчаники, гравелиты, кремнеаргиллиты крестикской свиты (D_3 - C_1kr). 5 – гранодиориты – тоналиты раннепалеозойского абкитского комплекса ($\gamma \delta P_{21}a$); 6 – кварцевые диориты абкитского комплекса ($q\delta P_{21}a$). 7 – граниты раннепротерозойского бургалинского комплекса (γPR_1b); 8 – гранит-мигматиты раннепротерозойского бургалинского комплекса (γmPR_1b). 9–13. *Ауланджинский метаморфический* комплекс, закороннинская метаморфическая серия (AR_1 zk): 9–11 – гнейсо-кальцифировая метаформация: 9 – биотит-амфиболовые и амфиболовые плагиогнейсы и гнейсы (g); 10 – кальцифиры (c); 11 – гранатовые, биотит-гранатовые, силлиманит-гранат-биотитовые гнейсы и плагиогнейсы (g); 12, 13 – сланцево-эндербитовая метаформация: 12 – эндербиты (е), 13 – двупироксен-амфиболовые, клинопироксен-скаполит-амфиболовые сланцы и амфиболиты (s); 14 – элементы залегания; 15 – места отбора проб и их номера: а – на силикатный анализ пород и минералов, б – на изотопный возраст; 16 – контакты тектонические и интрузивные: а – достоверные, б – предполагаемые.

Клинопироксен-скаполит-амфиболовые кристаллосланцы состоят из полос, в которых "слойки" ассоциации клинопироксен+скаполит чередуются со "слойками" плагиоклаз +амфибол ±скаполит ±клинопироксен. Гранобластовые скопления полигональных зерен скаполита окружают клинопироксен и заполняют интерстиции между зернами. Клинопироксен также окружен гранобластами болотно-зеленого амфибола, последний образует нередко слойчатые скопления с таблицами плагиоклаза. В амфиболплагиоклазовых "слойках" чаще всего сосредоточены округлые зерна циркона, призмочки апатита и магнетита.

Гранат-биотит-ортоклазовые сланцы отличаются содержанием значительного количества калинатрового полевого шпата (до 33%). Гранобластовые скопления плагиоклаза, калинатрового полевого шпата, биотита и граната распределены неравномерно; идиобласты граната (до 2 мм) окружены мелкозернистым плагиоклазом и содержат округлые зерна кварца. Биотит образует струйчатые скопления и выполняет вместе с калинатровым полевым шпатом межзерновые пространства. В плагиоклазе по спайности и вдоль двойниковых швов развиты антипертиты ортоклаза (2V=-72–74°). Самостоятельные кристаллы обнаруживают близкие кристаллооптические свойства (2V=-79°). Характерны биотитмагнетит-ортоклазовые слойки без плагиоклаза. В таких слойках отмечается значительное количество округлых зерен циркона.

Ортопироксен – гиперстен – сохраняется в неизмененном виде сравнительно редко. С краев и по петельчатым трещинкам замещается хлоритом и красновато-бурым баститом. Угол оптических осей 2V = -60–62°. Химический состав (табл. 1) отвечает гиперстену с железистостью 47–49%; минальный состав: ферросилита – 47–49%, энстатита – 50–51%, волластонита – 2%, при незначительной примеси Na, Ti, Al⁺³.

Клинопироксен тесно ассоциирует с гиперстеном, наблюдаются взаимопрорастания двух пироксенов; слабо изменен, cNg = 39°, 2V = +61-63°. Химический состав (табл. 1) показывает сравнительно низкую железистость (f = 35-39%), при высоком содержании кальция. Состав близок салит-авгиту [9]. Кальциевый минал в клинопироксене возрастает в скаполитовом сланце (до 65%) и увеличивается роль алюминия в 3 и 4-валентной форме. На диаграмме сосуществующих орто- и клинопироксенов [8, 9] оба минерала попадают на линии "серии Мадрас", образование которой происходит примерно в интервале температур 900–1000°С.

Амфибол окружает клинопироксен и нередко замещает его. Минерал – буровато-зеленый, количество его колеблется от первых процентов до 40–50%. Характерен большой угол оптических осей (2V =- $81-85^{\circ}$). Химический состав (табл. 2) отличается низкой кремнеземистостью и значительным количеством щелочей. По содержанию алюминия в четверной координации (1,6 до 2 атомов) и щелочей (0,8– 1,0 атомов) амфиболы относятся к магнезиальным гастингситам [14]. Железистость колеблется в пределах 43–47% и близка железистости гиперстена. Отме-

Компоненты,		Ортопирокс	ены		Клинопироксены					
коэффициэнты	50в	39	50	50в	39	50	61a	42		
SiO ₂	50.85	52,43	52,00	51,40	51,02	49,07	50,39	51,63		
TiO ₂	0,30	0,05	0,09	0,39	0,26	0,18	0,43	0,38		
Al_2O_3	1,74	1,02	0,92	3,43	2,70	1,75	3,26	2,98		
Fe общ	28,46	22,54	23,20	12,37	9,54	11,94	8,59	9,03		
MnO	0,76	0,65	0,79	0,27	0,34	0,50	0,25	0,38		
MgO	16,98	22,67	22,11	11,37	13,88	14,21	13,92	12,35		
CaO	0,76	0,54	0,61	20,77	21,42	21,24	22,60	22,19		
Na ₂ O	0,26	0,05	0,03	0,30	0,49	0,47	0,56	0,78		
K ₂ O	0,00	0,01	-	-	-	-	0,01	0,01		
Cr_2O_3	0,03	0,02	0,02	0,07	0,13	0,06	0,14	0,04		
Сумма	100,14	99,98	99,77	100,37	99,77	99,42	100,16	99,77		
f	48	36	37	37	27	32	25	29		
Fs	47	35	36	20	15	19	13	14		
En	51	64	63	34	40	39	40	33		
Wo	2	1	1	46	45	42	47	53		
n	3	3	3	2	2	1	1	3		

Таблица 1. Химический состав пироксенов.

Кристаллохимические формулы пироксенов:

50в – двупироксен-амфиболовый сланец:

гиперстен – $(Na_{0,02}Ca_{0,03}Mg_{0,97}Fe_{0,90}Ti_{0,01}Al_{0,05})_{1,98}(Si_{1,98}Al_{0,02})_{2,00}O_6$

- салит-авгит $(Na_{0,02}Ca_{0,84}Mg_{0,64}Fe_{0,37}Ti_{0,01}Al_{0,10})_{1,98}(Si_{1,95}Al_{0,05})_{2,00}O_6$ 39 – эндербит:
- гиперстен $(Ca_{0,02}Mg_{1,25}Fe_{0,69}Mn_{0,07}Ti_{0,01}Al_{0,02})_{2,06}(Si_{1,97}Al_{0,03})_{2,00}O_6$
- салит $(Na_{0,04}Ca_{0,85}Mg_{0,77}Fe_{0,28}Mn_{0,01}\ Ti_{0,01}Al_{0,01})_{1,98}(Si_{1,90}Al_{0,10})_{2,00}O_6$ 50 эндербит:
- гиперстен $(Ca_{0,03}Mg_{1,23}Fe_{0,72}Mn_{0,03}Ti_{0,01}Al_{0,04})_{2,03}(Si_{1,95}Al_{0,05})_{2,00}O_6$

салит – $(Na_{0,03}Ca_{0,86}Mg_{0,80}Fe_{0,38}Mn_{0,01}Ti_{0,01})_{2,09}(Si_{1,85}Al_{0,08})_{1,93}O_6$

61а – амфиболит:

- салит -Na_{0,04}Ca_{0,90}Mg_{0,77}Fe_{0,26}Mn_{0,05}Ti_{0,01}Al_{0,01})(Si_{1,87}Al_{0,13})_{2,00}O₆ 42 - пироксен-скаполит-амфиболовый сланец:
- салит $(Na_{0,05}Ca_{0,89}Mg_{0,69}Fe_{0,28}Mn_{0,02}Ti_{0,01}Al_{0,08})_{2,02}(Si_{1,95}Al_{0,05})_{2,00}O_6$

Компоненты, коэффициенты	50в	39	50	61a	42	52
SiO ₂	41,67	44,95	43,22	40,75	43,42	42,45
TiO ₂	2,47	1,23	1,93	1,39	1,85	0,85
Al_2O_3	12,54	10,53	10,11	11,54	11,07	15,81
Fe общ.	16,99	11,86	12,91	16,50	13,22	3,87
MnO	0,22	0,05	0,09	0,38	0,31	0,03
MgO	10,45	15,02	14,11	12,04	13,06	18,78
CaO	11,38	11,74	13,25	12,08	11,28	13,23
Na ₂ O	1,17	1,62	1,52	1,80	1,92	2,38
K ₂ O	2,50	0,82	2,01	2,01	1,96	2,32
Cr_2O_3	0,11	0,06	-	0,15	0,08	0,01
Сумма	99,48	97,90	99,15	98,64	98,17	99,73
n	1	1	1	1	1	2
f	47	29	35	43	35	11
Fe ⁺³ +Al ⁺³ +Ti	1,32	0,84	0,74	0,88	0,96	0,79
N a+K	0,82	0,61	0,79	0,89	0,93	1,07

Таблица 2. Химический состав амфиболов

Кристаллохимические формулы амфиболов:

50в – двупироксен-амфиболовый кристаллосланец:

- $(Na_{0,34}K_{0,48}Ca_{1,81})_{2,63}(Mg_{2,31}Fe_{2,03}Mn_{0,03}Ti_{0,28}Al_{0,41})_{5,06}(Si_{6,20}Al_{1,80})_{8,00}O_{22}$ 39 — эндербит:
- $(Na_{0,45}K_{0,16}Ca_{1,82})_{2,43}(Mg_{3,23}Fe_{1,38}Ti_{0,13}Al_{0,29})_{5,03}(Si_{6,50}Al_{1,50})_{8,00}O_{22}$ 50 эндербит:
- $(Na_{0,42}K_{0,36}Ca_{2,07})_{2,86}(Mg_{3,07}Fe_{1,64}Ti_{0,21}Al_{0,06})_{4,98}(Si_{6,31}Al_{1,69})_{8,00}O_{22}$ 61а амфиболит:
- $(Na_{0,52}K_{0,37}Ca_{1,93})_{2,82}(Mg_{2,68}Fe_{1,99}Mn_{0,04}Ti_{0,18}Al_{0,08})_{4,97}(Si_{6,05}Al_{1,95})_{8,00}O_{22}$ 42 — пироксен-скаполит-амфиболовый сланец:

 $(Na_{0,56}K_{0,37}Ca_{1,79})_{2,72}(Mg_{2,99}Fe_{1,59}Ti_{0,06}Al_{0,40})_{5,04}(Si_{6,45}Al_{1,55})_{8,00}O_{22}$ 52 — форстерит-амфибол-флогопитовый кальцифир:

 $(Na_{0,65}K_{0,42}Ca_{2,00})_{3,07}(Mg_{3,84}Fe_{0,46}Ti_{0,08}Al_{0,56})_{4,94}(Si_{5,99}Al_{2,01})_{8,00}O_{22}$

чаются значительная доля калия (0,37–0,48 атомов), т.е. более 50% суммы Na+K. Высока сумма Na+K (0,95–0,99 атомов) в сланцах со скаполитом. Это типичный амфибол роговообманково-пироксен-плагиоклазовых сланцев гранулитовой фации Анабарского щита, Алданской флогопитовой провинции, Центральной Австралии, основных гранулитов штата Мадрас в Индии [9].

Находящийся в равновесии с амфиболом плагиоклаз № 43–50 (табл. 3), обычен для парагенезиса двупироксен-гранулитовой фации.

Скаполит составляет около 16% минералов клинопироксен-скаполит-амфиболовых сланцев; окружает клинопироксен и заполняет интерстиции. Минальный состав: мариолита – 26%, мейонита – 74% (табл. 4). Близкий состав скаполита (70–74% мейонита) описан Д.С.Коржинским [11] для высокотемпературных известковых пород архея Алданского щита. Такое содержание мейонита является пограничным для парагенезиса "скаполит (74Me) – плагиоклаз № 38–45". Образование скаполита представляется как результат разложения основного плагиоклаза в присутствии избытка CaCO₃, но разложения, идущего до образования андезина [11].

Калинатровый полевой шпат в антипертитах и в самостоятельных зернах по кристаллооптике отвечает низкому ортоклазу (Nm: $\perp 001=0-1^{\circ}$, $2V=-72-78^{\circ}$). Химический состав (табл. 4) свидетельствует о незначительном содержании Na₂O: Or = 85–91%, Al = 9–15%.

Биотит характерен для сланцев с гранатом. Химический состав (табл. 5) отличается пониженной железистостью (f = 38–39), высоким содержанием титана (TiO₂ = 5,42%). Как и амфиболы, биотиты характеризуются высоким содержанием алюминия в четверной и шестерной координациях.

Гранат, пироп-альмандинового ряда; минальный состав: Alm = 72–75%, Pyr = 19–21%, Gros = 4– 5%, Sp = 2% (табл. 5).

Пара биотит-гранат с помощью дискриминантных функций определяет фациальную принадлежность гранат-биотит-ортоклазовых сланцев [17]. Дискриминантная функция биотита $D_{tr} = +20,30$, дискриминантная функция граната $D_{tr} = -13,04$,

Компоненты				плаги	оклазы			
коэффициенты, минальныи состав	50в	39	50	61a	42	506	26	503
SiO ₂	56,87	58,23	59,90	56,03	56,35	58,53	61,48	55,45
TiO ₂	-	-	0,07	0,03	0,04	-	-	0,03
Al_2O_3	27,96	26,19	25,21	27,62	27,30	25,62	24,03	27,30
Fe общ.	0,14	0,11	0,16	0,07	0,06	1,50	-	0,15
MnO	0,04	0,05	-	-	-	0,07	-	0,01
MgO	0,10	-	-	0,01	-	0,36	-	-
CaO	9,18	7,81	6,49	8,98	9,05	4,40	5,44	10,21
Na ₂ O	5,15	7,04	7,73	6,86	6,57	7,53	8,44	6,27
K ₂ O	0,51	0,35	0,62	0,29	0,46	2,14	0,50	0,44
Cr_2O_3	-	0,04	-	-	-	-	-	0,03
Сумма	99,96	99,82	100,2	99,89	99,83	100,15	99,90	99,89
n	1	1	1	2	1	1	1	2
№ Pl	48	43	28	42	42	30	26	47
анортит	48	43	28	42	42	30	26	47
альбит	49	50	70	57	55	53	73	51
ортоклаз	3	7	2	1	3	17	1	2

Таблица 3. Химический состав полевых шпатов.

Кристаллохимические формулы:

- $50 \text{ B} (\text{N} \ a_{0,45} \text{K}_{0,03} \text{C} a_{0,44})_{0,92} \text{Al}_{1,49} \text{Si}_{2,56} \text{O}_8,$
- $39\ -\ (Na_{0,60}K_{0,09}Ca_{0,51})_{1,20}Al_{1,34}Si_{2,53}O_8,$
- $50\ -\ (Na_{0,67}K_{0,03}Ca_{0,26})_{0,96}Al_{1,33}Si_{2,69}O_8,$
- $61a\ -\ (Na_{0,60}K_{0,02}Ca_{0,44})_{1,06}Al_{1,48}Si_{2,48}O_8,$
- $42\ -\ (Na_{0,62}K_{0,03}Ca_{0,48})_{1,13}Al_{1,58}Si_{2,76}O_8,$
- $506 (N \ a_{0,63}K_{0,12}Ca_{0,31})_{1,04}Al_{1,36}Si_{2,74}0_8,$
- $26 \ \ (N \ a_{0,73}K_{0,03}Ca_{0,26})_{1,02}Al_{1,26}Si_{2,74}O_8$
- $503 (N a_{0.54}K_{0.02}Ca_{0.49})_{1.05}Al_{1.45}Si_{2.49}O_8$

Таблица 4. Химический состав скаполита и калинатровых полевых шпатов.

Компоненты	скаполит	калинатровый	полевой шпат
минальный состав	42	506-1	506-2
SiO ₂	46,79	64,67	64,01
TiO ₂	0,01	0,04	0,06
Al_2O_3	25,59	19,23	19,45
Fe общ.	0,13	0,02	0,02
MnO	0,03	-	-
MgO	-	-	-
CaO	16,78	0,25	0,94
N a ₂ O	3,23	0,89	2,11
K ₂ O	0,12	14,63	13,28
Cr_2O_3	-	-	-
Сумма	92,67	99,73	99,95
мариолит	26	-	-
мейонит	74	-	-
альбит	-	9	25
ортоклаз	-	91	75

Анализы минералов выполнены на микроанализаторе САМЕВАХ в лаборатории рентгеноспектрального анализа СВКНИИ ДВО РАН. Аналитик М.И. Парфенов.

Кристаллохимические формулы:

скаполит: (Na_{0,50}Ca_{1,42})_{1,92}Al_{2,38}Si_{3,69}O₈

калинатровый полевой шпат:

 $506\text{-}1\ -\ (Na_{0,08}K_{0,86})_{0,94}Al_{1,05}Si_{2,99}O_8$

 $506\text{-}2\ -\ (Na_{0,18}K_{1,00})_{1,18}Al_{1,00}Si_{2,78}O_8.$

Таблица 5. Химический состав гранатов и биотитов.

Компо-		гранати	Ы		био	ТИТЫ	
ненты, коэффи- шиенты	506	26	503	506	26	503	52
SiO2	39.72	39.33	39.04	36.13	36.29	37.10	39.81
TiO ₂	0,02	0,04	0,07	5,35	9,47	5,25	1,06
Al_2O_3	22,46	23,37	20,96	17,64	17,78	14,51	16,97
FeO общ	30,52	25,97	27,90	15,28	10,82	16,22	2,29
MnO	0,92	0,49	1,26	-	-	-	0,01
MgO	4,50	9,27	5,67	13,27	13,31	14,49	26,02
CaO	1,54	1,29	4,96	-	0,03	-	0,02
Na_2O	0,04	0,03	-	0,03	0,20	0,08	0,27
K ₂ O	-	-	0,01	10,94	8,28	10,43	11,72
Cr_2O_3	0,05	-	0,06	0,12	0,04	0,02	0,07
Сумма	99,76	99,79	99,92	98,76	96,23	98,10	98,24
n	2	1	1	2	1	2	4
f	78	62	73	38	30	39	4
Pyr	20	36	22				
Alm	73	59	61				
Gros	5	4	14				
Sp	2	1	3				

Кристаллохимические формулы гранатов:

50б – гранат-биотит-ортоклазовый сланец:

 $(Mg_{0,53}Fe_{1,98}Ca_{0,13}Mn_{0,06})_{2,70}Al_{2,10}Si_{3,17}O_{12}$

26 – биотит-гранатовый плагиогнейс:

 $(Mg_{0,99}Fe_{1,62}Ca_{0,10}Mn_{0,03})_{2,74}Al_{1,62}Si_{3,04}O_{12}\\$

503 – гранат-биотитовый сланец:

 $(Mg_{0,66}Fe_{1,83}Ca_{0,42}Mn_{0,08})_{3,00}Al_{1,94}Si_{3,06}O_{12}$

Кристаллохимические формулы биотитов:

 $506\ -\ K_{1,10}(Mg_{1,56}Fe_{0,94}Ti_{0,32}Al_{0,48})_{3,30}(Si_{2,84}Al_{1,16})_{4,00}O_{10}$

 $26\ -\ Na_{0,03}K_{0,79})_{0,82}(Mg_{1,58}Fe_{0,66}Ti_{0,54}Al_{0,30})_{3,08}(Si_{2,72}Al_{1,28})_{4,00}O_{10}$

 $\begin{array}{l} 503-(Na_{0,02}K_{1,00})_{1,02}(Mg_{1,62}Fe_{1,02}Ti_{0,30}Al_{0,07})_{3,01}(Si_{2,79}Al_{1,21})_{4,00}O_{10}\\ 52-(Na_{0,02}K_{1,03})_{1,05}(Mg_{2,68}Fe_{0,12}Ti_{0,06}Al_{0,13})_{2,99}(Si_{2,75}Al_{1625})_{4,00}O_{10}\\ \end{array}$

52 – кальцифир.

Рис. 3. Диаграмма зависимости содержаний Rb-Sr от мощности земной коры [6].

1, 2 – породы закороннинской метаморфической серии: 1 – двупироксен-амфиболовые кристаллосланцы; 2 – эндербиты (табл. 6,9); 3 – поля метабазитов и гранитоидов эндербитовых куполов Алданского щита [6]; 4 – граница поля метабазитов инфракрустального комплекса [6].

дискриминантная функция пары "биотит-гранат" D_{bt-gr} =+7,26 (D рассчитаны в единицах кристаллических формул). Значения дискриминантных функций попадают либо в зону гранулитовой фации (D_{bt}), либо в зону перекрытия гранулитовой и амфиболитовой фаций (D_{gr}, D_{gr-bt}). Магнезиальность граната и биотита на диаграмме температурных изотерм Л.Л.Перчука [17] соответствует примерно 680–700°С.

Т.е. температура кристаллизации гранат-биотит-ортоклазовых сланцев ниже температур образования двупироксен-амфиболовых сланцев.

Химический состав двупироксен-амфиболовых сланцев (табл. 6) отвечает базальтоиду. Резко отличаются гранат-биотит-ортоклазовые сланцы низким содержанием кремнезема и нормативным оливином, в то время как двупироксен-амфиболовые сланцы с $SiO_2 = 50-51\%$ содержат нормативный кварц.

По содержанию Rb-Sr кристаллосланцы попадают в поле протокоры (15–20 км) (рис. 3), обнаруживая сходство с раннеархейскими метабазитами Алданских эндербитовых куполов [6].

Габлица б	5. X	Симический	состав	кристаллосланцев
-----------	------	------------	--------	------------------

Компоненты		N₂N₂ o	образца (III-88)	
Коэффициенты	50д	62	42	50б	среднее
SiO ₂	50,70	51,03	48,08	45,35	48,79
TiO ₂	1,52	0,39	1,25	1,10	1,06
Al_2O_3	18,89	14,78	16,32	25,35	18,83
Fe общ	11,82	6,96	8,93	12,89	10,15
MnO	0,21	0,18	0,20	0,21	0,18
MgO	3,89	7,89	7,52	4,21	5,88
CaO	5,87	9,13	11,37	2,29	7,16
Na ₂ O	2,63	4,83	2,90	2,70	2,93
K ₂ O	1,34	1,26	1,51	4,73	2,16
P_2O_5	0,13	0,08	0,73	0,13	0,36
п.п.п.	2,69	4,92	1,17	1,09	2,46
Сумма	100,00	99,99	99,98	100,00	99,96
Rb	50	10	19	139	54
Sr	276	394	578	282	382
Y	40	17	29	41	32
Zr	167	70	270	176	171
Nb	7	-	10	17	8
	Норматив	ный сост	ав (CIPW	7)	
Альбит	22,02	29,36	24,64	23,07	24,77
Анортит	27,06	21,42	26,98	10,57	21,51
Ортоклаз	8,35	6,68	8,90	27,83	12,92
Кварц	8,53	0,24	-	-	-
Энстатит	9,74	19,68	5,02	2,11	9,37
Ферросилит	9,23	0,53	2,24	2,64	3,66
Волластонит	-	9,64		10,45	-
Форстерит	-	-	19,28	11,68	-
Фаялит	-	-	6,32	12,43	-
Корунд	3,16	-	-	12,17	-
Апатит	1,01	0,34	1,68	0,34	0,84
Магнетит	5,56	3,24	4,17	6,25	4,80
Ильменит	2,88	7,44	2,43	2,12	3,72
А	21	24	21	30	24
F	60	36	43	53	48
М	19	40	36	17	28

Рис. 4. Морфология и внутреннее строение цирконов кристаллосланцев закороннинской серии: а – метаморфогенный циркон, б – предположительно магматический циркон.

В метабазитах выделяется два типа циркона (табл. 7, проба 16, рис. 4): 95% циркона метаморфогенного и 5% – предположительно магматического. Метаморфогенный циркон представлен тремя морфологическими разновидностями: 1 – проба 16/1 – короткопризматические рубинового цвета крис-

<u>№№ Минерал,</u>			Содержание мкг/г		Изотопный состав свинца			Изотопные соотношения и возраст в млн лет			Dho*
пробы	фракция	Вес мг	[Pb]	[U]	$\frac{\frac{206}{Pb}}{204}$	$\frac{\frac{206}{Pb}}{207}$ Pb	$\frac{\frac{206}{Pb}}{\frac{208}{Pb}}$	$\frac{207}{Pb}}{235}U$	$\frac{\frac{206}{Pb}}{238}$ U	$\frac{\frac{207}{Pb}}{\frac{206}{Pb}}$	Rho*
Цирконы первого типа (метаморфогенные)											
16/1	>0,125 мм Ку* – 1,5–2,0	0,14	95	256	1800	8,064	8.454	5,528	0,3429	1910	
16/2	>0,125 мм	0,21	133	373	4760	8,386	10,694	5,495	0,3413	1907	
16/6	>0,2 мм Ку – 2,0–2,5	0,10	206	555	1110	7,785	8,597	5,501	0,342	1905	
			Ц	ирконы вто	рого типа	и (магмато	генные?)				
16/3	>0,125мм Ку – 3,0–5,0	0,11	44	108	965	7,23	6,651	6,229	0,3614	2029	
16/4	0,075–0,125 мм	0,095	43	101	450	6,511	5,462	6,174	0,3594	2023	
16/5	0,025-0,075 мм	0,003	67	139	220	5,412	3,839	6,218	0,3608	2029	
14/1	0,15-0,275 мм	0,65	67,5	213,8	1580	7,377	7,191	5,002	0,2853	2059	0,99
14/2	до 0,2 мм	1,10	28,5	123,4	2430	7,535	6,824	4,216	0,2404	2061	0,96
14/3	до 0,15 мм	0,80	22,5	76,9	860	7,015	4,089	3.661	0,2086	2060	

Табл.ица 7. U-Pb изотопные данные для монофракций циркона из метаморфических пород закороннинской серии.

Примечание. 1. Цирконы пробы № 16 отобраны из объединенной пробы кристаллосланцев закороннинской серии (обр. 50д, 62, 42, 50б), минеральный и химический состав которых приводится в табл. 1–6. Цирконы пробы № 14 отобраны из объединенной пробы эндербитов (обр. 39, 47, 48, 49, 50, 61, 61в, 527), минеральный и химический состав которых приводится в табл. 1–5, 9.

2. Анализы пробы № 14 проведены в ГИ КНЦ РАН Т.Б Баяновой, анализы пробы № 16 сделаны в ГИ КНЦ РАН Н.М.Кудряшовым.

3. Все отношения скорректированы на холостое загрязнение 0,1 нг по Pb, 0,04 нг по U и масс-дискриминацию 0,17±0,05%. 4. Коррекция на примесь обыкновенного свинца определена на возраст по модели Стейси и Крамерса [27].

5. В этой и во всех остальных таблицах приводятся результаты анализов образцов пород и минералов из коллекции В.М.Шевченко, 1988 г. * Ку – коэффициент удлиннения, Rho – коэффициент корреляции ошибок по координатным осям.

Рис. 5. U-Pb диаграмма с конкордией для цирконов первого (метаморфогенного) типа из кристаллосланцев закороннинской серии, по данным табл. 7.

таллы, прозрачные, со сглаженными гранями, 2 – проба 16/2 – многогранные округлые кристаллы, прозрачные, рубинового цвета, 3 – проба 16/6 – красно-коричневые короткопризматические кристаллы (рис. 4а). U-Pb возраст метаморфогенного циркона – 1908±4 млн лет; три точки определений находятся практически на конкордии (дискордантность меньше 1%, рис. 5). Второй тип циркона

Рис. 6. U-Pb диаграмма с конкордией для цирконов второго (условно магматического) типа из кристаллосланцев закороннинской серии, поданным табл. 7.

(рис. 4б), предположительно магматический, представлен также тремя морфологическими разновидностями кристаллов: 1 – проба 16/3 – длиннопризматические, прозрачные, бледно-розовые кристаллы, 2 – их осколки – проба 16/4, 3 – проба 16/5 – округлопризматические, прозрачные, розоватые кристаллы. U-Pb возраст предположительно маг-

Рис. 7. Диаграмма Rb-Sr изохроны для кристаллосланцев закороннинской серии, по данным табл. 8.

Таблица 8. Изотопные Rb-Sr даты для кристаллосланцев закороннинской метаморфической серии.

№ п/п	Номер пробы	Rb, мкг/г	Sr мкг/г	87Rb/86Sr	$^{87}Sr/^{86}Sr(\pm 2\sigma)$
1	506	136,3	284,1	1,39308	0,74572±24
2	61	11,2	477,8	0,06795	$0,70457\pm8$
3	50д	52,9	287,3	0,53344	0,71735±20
4	62	12,3	403,6	0,08819	0,70493±22
5	42	18,9	600,4	0,0925	0,70521±26

Примечание. Определения В.Н. Кудряшова, Геологический институт Кольского научного центра РАН.

матического циркона составляет 2028±5 млн лет (дискордантность 1%, рис. 6, табл. 7).

Образцы проб кристаллосланцев (№№ 42, 50б, 50д, 61, 62) из объединенной пробы которых проанализированы цирконы, были исследованы методом Rb-Sr изохроны. Расчет изохроны произведен по 4 точкам (исключена проба 50б). Возраст составил 1920±60 млн лет (рис. 7, табл. 8).

Таким образом, все даты изотопного возраста кристаллосланцев Закоронного блока 1908±4, 2028±5, 1920±60 близки и определяют время кристаллизации "гранулитовой" генерации циркона, которое синхронно с образованием цирконов двупироксеновых сланцев Ауланджинского выступа 1950 млн лет [4]. Подчеркнутое Е.В. Бибиковой [4] отсутствие "магматического" циркона подтверждает базальтоидную природу сланцев, не содержащих акцессорного циркона.

ПЕТРОГРАФИЯ, ПЕТРОХИМИЯ И ИЗОТОПНЫЙ ВОЗРАСТ ЭНДЕРБИТОВ

Все минералы эндербитов близки минералам двупироксеновых сланцев. Однако в отличие от кристаллосланцев, в которых кварц составляет 4–5% объема, эндербиты богаты кварцем – 24–33%. Амфибол отмечается в единичных случаях, редки гранат и биотит.

Модальный состав:

 $\begin{array}{rl} 57-68Pl_{28:53}+24-33Q&+2-11Hyp_{35:38}+0-4Cpx_{27}+\\ 0-6Hbl_{35}+0-1Bt&+1-2Mt, \ Ap, \ Zr \end{array}$

Структура – идиобластовая, текстура – квазимассивная. Отчетливо заметна директивность, выраженная в субпараллельной ориентировке длинных осей кристаллов, но нет характерной дифференционной полосчатости.

Удлиненные и близкие к изометричным таблицы плагиоклаза в соседстве с кварцем образуют обычные для метаморфитов гранобластовые скопления разноориентированных кристаллов. Отмечаются идиобласты кварца (до 3 мм).

Оптические свойства и химический состав темноцветных минералов близки одноименным минералам двупироксеновых кристаллосланцев.

Гиперстен представлен двумя генерациями: близкой по идиоморфизму плагиоклазу и отчетливо ксеноморфной по отношению к плагиоклазу и кварцу; нередко ассоциирует с клинопироксеном – и оба минерала прорастают друг друга. Гиперстен в некоторых зернах ярко плеохроирует в розово-серых тонах. Угол оптических осей $2V = -57^{\circ}$, увеличивается до $2V = -63^{\circ}$ в ассоциации с амфиболом. Химический состав гиперстена (табл. 1) характеризуется низкой железистостью (f = 36–37%), минальный состав: энстатита – 62–64%, ферросилита – 35–36%, волластонита – 1–2%.

Клинопироксен в эндербитах – второстепенный минерал. Редкие мелкие зерна тесно связаны с амфиболом. Клинопироксен отчетливо зеленоват, cNg = 39° , $2V = +67^{\circ}$. Химический состав клинопироксена совершенно идентичен клинопироксену сланцев (табл. 1). Минальный состав: Fs = 18-22%, En = 34-39%, Wo = 42-47%.

Появляющийся в эндербитах буровато-зеленый амфибол ксеноморфен по отношению к пироксенам, плагиоклазу и кварцу, как и единичные пластинки биотита. Характерен большой угол оптических осей (2V=-83°). Химический состав (табл. 2): низкая кремнеземистость и большое количество Al в четверной координации, а также повышенное содержание (Na+K) > 0,50 – позволяет относить амфибол к магнезиальным гастингситам [14, 19].

Отметим также, что, как и в кристаллосланцах, состав плагиоклаза колеблется от 35 до 53% анортита (табл. 3), основность понижается с появлением амфибола и биотита. В отличие от сланцев антипертиты проявлены сравнительно редко.

Акцессории те же, что и в кристаллосланцах: много рудного минерала и апатита, мелкие зернышки циркона.

Химический состав эндербитов (табл. 9) обусловлен значительным содержанием кварца – содержание кремнезема колеблется от 61 до 67%, при

Таблица 9. Химический состав эндербитов.

Компоненты				NoN	№ проб (III-	88)			
Коэффициенты	39	47	48	49	50	61	61в	527	Среднее
SiO ₂	64,84	68,96	61,76	67,73	67,32	65,36	65,81	64,98	65,91
TiO ₂	0,76	0,36	0,63	0,45	0,50	0,50	0,50	0,63	0,58
Al_2O_3	14,87	15,54	16,18	15,72	15,84	16,67	16,92	17,56	16,09
Fe ₂ O ₃ общ	6,11	3,21	6,52	4,43	4,32	2,91	4,12	4,00	4,67
MnO	0,10	0,03	0,10	0,04	0,04	0,06	0,06	0,04	0,06
MgO	3,22	1,50	3,67	1,32	1,74	1,25	1,78	1,28	2,07
CaO	4,81	3,83	4,99	3,69	4,20	4,76	4,14	4,73	4,26
Na_20	3,86	4,48	4,22	4,48	4,20	4,83	4,86	4,73	4,40
K ₂ O	0,72	0,70	0,68	0,95	0,80	1,26	0,73	1,26	0,83
P_2O_5	0,16	0,08	0,10	0,11	0,11	0,08	0,08	0,10	0,10
П.п.п.	0,59	1,32	1,16	1,07	0,92	2,31	1,01	1,22	1,04
Сумма	100,00	100,01	100,01	99,99	99,99	99,99	100,01	99,99	100,01
Rb (Γ/τ)	6	7	8	13	6	9	7	12	8
Sr	410	375	410	374	442	464	483	677	399
Y	14	-	18	-	8	6	5	7	-
N b	-	-	-	-	-	3	-	-	-
			Нормативн	ые составы	(CIPW)				
Альбит	32,51	38,27	35,65	38,27	35,65	40,90	40,90	40,37	37,81
Анортит	21,14	18,91	23,36	18,64	20,03	20,03	20,58	20,86	20,44
Ортоклаз	3,90	3,90	3,90	5,57	5,00	7,79	3,90	7,24	5,25
Кварц	23,42	28,59	16,45	26,07	27,98	20,06	22,10	19,88	23,07
Энстатит	8,03	3,71	9,14	3,21	2,41	3,11	4,52	3,21	4,66
Ферросилит	4,75	2,51	5,28	3,96	3,01	1,98	3,03	2,37	3,36
Корунд	-	0,41	-	0,51	0,71	-	0,71	0,82	0,39
Апатит	0,34	0,34	0,34	0,34	0,34	-	0,34	0,34	0,34
Магнетит	2,78	1,62	3,90	3,01	2,08	2,08	1,39	2,08	2,37
Ильменит	1,52	0,61	1,21	0,76	0,91	0,91	0,91	1,21	1,12
А	33	52	33	48	45	59	49	53	46
F	44	33	43	40	39	29	36	36	38
М	23	15	24	12	16	12	15	11	16

этом количество оксида калия не достигает одного процента. Количество нормативного гиперстена с железистостью 37–40% приближается к модальному, с возрастанием роли амфибола и биотита увеличивается железистость нормативного гиперстена до 55% с одновременным раскислением нормативного плагиоклаза от № 39–40 до № 33–36, что связано с проявлением наиболее раннего железо-натриевого метасоматоза.

Количество оксида калия больше в кристаллосланцах, ввиду более интенсивно проявленной в них гранитизации (калишпатизация, биотитизация).

На классификационной диаграмме нормативных составов "альбит-анортит-ортоклаз" О'Коннора [26] (рис. 8) эндербиты образуют плотный рой точек в тоналитовом поле и в поле низкокалиевых эндербитов Талакитского и Суннангинского эндербитовых куполов раннего архея Алданского щита [6]. По соотношению коэффициента глиноземистости (щелочности) и содержанию кремнекислоты [20–22] эндербиты относятся к умеренно-глиноземистым J-гранитам.

Рис. 8. Классификационная диаграмма О'Коннора [26]: А – тоналиты, Б – гранодиориты, В – адамеллиты, Γ – трондьемиты, Д – граниты.

Докембрийские гранитоиды: 1 – эндербиты закороннинской серии; 2 – гранит-мигматиты, метатектиты бургалинского комплекса, по данным табл. 9,11; 3 – раннеархеские эндербитовые купола Алданского массива ([6]; 4 – поле низкокалиевых эндербитов куполов раннего архея Алданского щита [6].

Рис. 9. Цирконы из эндербитов закороннинской серии. а, б, в – разновидности: а – 14/1, б – 14/2, в – 14/3 (табл. 7).

Рис. 10. U-Pb диаграмма с конкордией для цирконов из эндербитов закороннинской серии, по данным табл. 7.

Из объединенной пробы эндербитов на U-Pb датирование были отобраны три типа цирконов (табл. 7, проба 14, рис. 9).

Первый тип цирконов (рис. 9а, проба 14/1) – призматические кристаллы, со слабо окатанными гранями призм и дипирамид; прозрачные, бледнорозового цвета, с характерным стеклянным и алмазным блеском. В иммерсионной среде обнаруживают однородное и малозональное строение, размер зерен до 0,15 мм и удлинением до 0,275 мм.

Второй тип цирконов (рис. 96, проба 14/2) характеризуется изометрическим габитусом, бледноаметистовым цветом, алмазным блеском, нечеткой огранкой граней призм и многогранным строением головок дипирамид; размеры кристаллов до 0,2 мм; кристаллы малозональны с газово-жидкими и минеральными включениями.

Третий тип цирконов (рис. 9в, проба 14/3) имеет типичный гранулитовый облик, согласно Е.В. Бибиковой [4]. Это многоплоскостные кристаллы со слабо окатанными гранями аметистового цвета, с алмазным блеском, размером до 0,15 мм. В иммерсионной среде эти кристаллы однородны, содержат газово-жидкие и минеральные включения.

U-Pb изохрона, построенная по трем точкам, имеет верхнее пересечение с конкордией, равное 2058 ±10 млн лет. Концентрация урана и свинца – низкие, характерные для цирконов гранулитовой фации метаморфизма (рис. 10).

Изотопный возраст гиперстеновых плагиогнейсов Ауланджинского выступа, близких по минеральному и химическому составу эндербитам закороннинской серии, определялся Е.В. Бибиковой [4] U-Pb методом по цирконам "тоналитовой" (магматической) генерации со следами перекристализации. Он колеблется от 2960 до 3170 млн лет и, вероятно, должен приниматься за возраст магматических эндербитов и на Закоронном выступе.

Возраст метаморфического циркона 2058±20 млн лет близок времени гранулитового метаморфизма двупироксеновых сланцев.

ГНЕЙСО-КАЛЬЦИФИРОВАЯ МЕТАФОРМАЦИЯ

На западе, юго-западе Закороннинского выступа кристаллосланцы и эндербиты сменяются образованиями гнейсо-кальцифировой метаформации: биотит-гранатовыми, гранатовыми, силлиманит-грабиотит-амфиболовыми, амфибонат-биотитовыми, ловыми плагиогнейсами и гнейсами. По контакту между образованиями метаформаций наблюдается серия субвулканических даек риолитов и дацитов кедонского комплекса девона, раннемеловых базальтоидов омолонского комплекса и мощный силл (до 500 м мощности и около 5 км протяженности) мелкои среднезернистых почти массивных гранитов раннего протерозоя (рис. 2).

В разрезе по р. Лев. Закоронной биотит-гранатовые плагиогнейсы залегают моноклинально с падением на юго-восток под углом 25–35°. На биотитгранатовых плагиогнейсах согласно лежат кальцифиры с гнездами графита и линзами кварцита.

ПЕТРОГРАФИЯ, ПЕТРОХИМИЯ И ИЗОТОПНЫЙ ВОЗРАСТ ГНЕЙСО-КАЛЬЦИФИРОВОЙ МЕТАФОРМАЦИИ

Гранатовые, биотит-гранатовые, силлиманитбиотит-гранатовые плагиогнейсы и гнейсы – белесые, средне- до крупнозернистых, линзовидно-полосчатые породы.

Модальный состав:

19–54Pl₂₆₋₃₅+ 2–53Or,Mi + 16–34Q + 3–16Gr₆₂+ 4–6Bt₃₀ \pm Si + 1–5Zr, Mt, Ap

Биотит-гранатовые "слойки" перемежаются с плагиоклазовыми и кварц-плагиоклазовыми. Кристаллобласты граната образуют цепочки, в которых кристаллы плотно прилегают к друг другу либо разделены пластинками биотита и табличками плагиоклаза. Разнозернистый плагиоклаз образует гранобластовые скопления с редкими вкраплениями кварца, биотита и калинатрового полевого шпата.

Бурый биотит ксеноморфен по отношению к плагиоклазу и гранату. Химический состав биотита (табл. 5) показывает высокую магнезиальность (f = 30%), необычайно высокую титанистость (TiO₂ = 9,47%). Биотит ассоциирует с магнезиальным гранатом (табл. 5, f = 62%), минальный состав: пиропа – 36%, альмандина – 59%, гроссуляра – 4%, спессартина – 1%.

По магнезиальности биотита и граната точки пород приближаются к изотерме 900° на диаграмме зависимости распределения магния в гранате и биотите от температуры метаморфизма [23].

Кальцифиры – массивные, светло-серые породы с зеленоватой точечной вкрапленностью силикатов. Иногда слабо выражена слоистость, обусловленная струйчатым скоплением чешуек блестящего черного графита. Отмечаются кальцифиры, в которых слабо выраженная слоистость обусловлена скоплением зеленоватых алюмосиликатов, представленных новообразованиями хлорита, эпидота по оливинам и пироксенам. В кальцифирах присутствуют также альбит, кварц; акцессории – сфен, апатит, редкие зерна циркона.

Из кальцифира пробы 25 (обн. 25, рис. 2) на изотопный возраст были отобраны циркон и апатит. Минералы исследовались U-Pb методом (табл. 10, рис. 11). Оба анализа попадают на дискордию с верхним пересечением с конкордией 1901±63 млн лет, что практически повторяет возраст метаморфогенных цирконов из кристаллосланцев 1908±4 млн лет.

Биотит-амфиболовые и амфиболовые плагиогнейсы и гнейсы на Закоронном поднятии связаны с полями мигматитов, образуют экзоконтактовый ореол вокруг раннепалеозойского гранитоидного плутона (рис. 2) и представляют собой типичные диафториты.

Они условно отнесены к гнейсо-кальцифировой метаформации.

БУРГАЛИНСКИЙ КОМПЛЕКС ГРАНИТ-МИГМАТИТОВ, МЕТАТЕКТИТОВ

В междуречье Лев. Закоронной и Закоронной обнажается субмеридиональная залежь розовых мелко- и среднезернистых метатектитов. Ширина

			Содержан	ние мкг/г			Изотопные	соотношен	ия		
№№ про- Минерал бы	Вес мг	[Pb]	[U]	$\frac{\frac{206}{Pb}}{\frac{204}{Pb}}$	$\frac{^{207}\text{Pb}}{^{206}\text{Pb}}$	$\frac{^{208}\text{Pb}}{^{206}\text{Pb}}$	$\frac{\frac{207}{Pb}}{\frac{235}{U}}$	$\frac{\frac{206}{238}}{100}$ Pb	²⁰⁷ Pb ²⁰⁶ Pb Возраст млн лет	Rho	
25	Циркон	8,46	49.87	297.9	1443.9	0,11567±7	0,19335	2.3128 (0.33)	0,14502 (0,324)	1890.3±1.0	0,99
23	Апатит	10.91	32.33	13.05	20.256	0,11785±8	0,15945	3.0989 (1.74)	0,19381	1895±28	0,55
44/1	Циркон малиновый	2,08	75.49	172.8	366.42	0,11975±6	1,41927	5.4394 (0.325)	0,32943 (0,32)	1952±0.95	0,98
44/2	Циркон прозрачный	1,54	68.14	169.4	377.62	0,11974±6	0,38962	4.7042 (0.325)	0,28502 (0.321)	1952±1.5	0,98
44/3	Циркон крупный	1,92	111.6	375.5	382.19	0,11975±7	0,25259	4.1523 (0,32)	0,25150 (0,321)	1952.4±1.0	0,98
44/4	Апатит	9,14	21.41	18.37	27.188	0,11937±9	0,73223	3.0463 (0,895)	0,18509 (0,363)	1946.8±13	0,57

Таблица 10. Изотопные данные для монофракций циркона и апатита из кальцифиров и метатектитов Закороннинского выступа.

Примечание. Циркон и апатит пробы № 25 отобраны из кальцифиров правого борта р. Лев. Закоронной. Цирконы и апатит пробы № 44 отобраны из лейкогранитов бургалинского комплекса, минеральный и химический состав которых приводится в табл. 11.

Химическая подготовка и кислотное выщелачивание циркона проведены в лаборатории изотопной геохимии и геохронологии Института геологии и геохронологии докембрия РАН (Санкт-Петербург) по методике, описанной Т.Е.Кrogh [24, 25]. Все изотопные измерения выполнены на 8-коллекторном Finnigan MAT261 твердофазном масс-спектрометре в статистическом режиме одновременной регистрации ионных токов различных изотопов. Уровень общего опыта во время проведения аналитических процедур составил $0,2\pm0,1$ нг для Pb и 0,05 нг для U. Все изотопные отношения откорректированы на масс-дискриминацию, состав холостого опыта, трассера, и первичного Pb, по модели Stacey & Kramers [27] на возраст 1952 млн лет (за исключением 206 Pb/ 204 Pb – измеренные значения). Rho – коэффициент корреляции ошибок по координатным осям. Расчет величин U/Pb изотопных отношений, их погрешностей и коэффициента корреляции ошибок проводилось по программе PBDAT (Ludwig K.R., 1991) при 95% уровне значимости.

Рис. 11. U-Pb диаграмма с конкордией для циркона и апатита из кальцифиров закороннинской серии, по данным табл. 10.

выхода 5–500 м, протяженность около 5 км. Залежь фиксирует границу между сланцево-эндербитовой и гнейсо-кальцифировой метаформациями (рис. 2). По данным геологической съемки метатектиты бургалинского комплекса широко развиты на левобережье р. Омолон Закоронного выступа.

Метатектиты представлены розовыми кварцполевошпатовыми лейкогранитами, в которых наряду с гранобластовыми, катакластическими структурами наблюдаются гипидиоморфнозернистые, обусловленные идиоморфизмом таблиц микроклина и кристаллов кварца.

Модальный состав:

7Pl₅₋₈ + 35Mi + 57Q + 0,5Bt + 0,5Zr,Mt

Плагиоклаза мало, сохранился в виде небольших реликтовых зерен, серицитизированных, с мирмекитами кварца. Состав – альбит № 5-8. Микроклин и кварц представлены разновеликими зернами (0,2-5,0 мм). У большей части зерен хорошо проявлена микроклиновая решетка и тонкая пертитовая "рябь". Отмечаются единичные пластинки мусковитизированного и хлоритизированного биотита.

Химический состав метатектита (табл. 11) отвечает лейкограниту [15], характеризуется высоким содержанием кремнезема – 73,90 до 81,71%; количество оксидов железа, магния и кальция колеблется в пределах 1%; количество щелочей 6–10%, при преобладании оксида калия (4,44–6,00%).

Из лейкогранитов Закороннинской залежи (обн. и проба 44, рис. 2) изучены три типа цирконов, определенные как прозрачный, малиновый и крупный (табл. 10, рис. 12), возраст определен по изохроне трех цирконов и апатита: 1952,4±1,3 млн лет.

Компоненты	44	99a	87	561	
SiO ₂	81,71	73,90	74,03	74,39	
TiO ₂	0,08	0,05	0,09	0,02	
Al_2O_3	9,26	15,14	14,28	14,59	
Fe общ.	1,90	0,23	1,18	0,20	
MnO	н.о.	н.о.	0,01	н.о.	
MgO	0,22	0,09	0,31	0,17	
CaO	0,15	0,60	0,36	0,28	
Na ₂ O	1,61	3,53	3,52	3,24	
K ₂ O	4,44	6,00	5,53	6,43	
P_2O_5	0,06	н.о.	0,04	0,01	
п.п.п.	0,56	0,46	0,65	0,57	
Сумма	99,99	100,00	100,00	99,99	
Rb	71	111	148	166	
Sr	127	418	231	345	
Y	-	-	15	-	
Zr	443	-	174	75	
Nb	-	-	3	-	
Hop	мативный	состав (СР	WJ)		
Альбит	13,63	29,89	29,36	27,79	
Анортит	0,83	3,06	,67	1,39	
Ортоклаз	26,71	35,62	32,28	32,83	
Кварц	53,51	28,53	31,35	29,50	
Энстатит	0,60	0,30	0,70	0,20	
Ферросилит	1,72	0,53	0,92	0,53	
Корунд	0,41	1,94	2,04	1,63	
Магнетит	0,93	-	0,70	-	
Ильменит	0,15	-	0,15	-	

Примечание. Пробы проанализированы в рентгеноспектральной лаборатории СВКНИИ ДВО РАН, аналитики: В.И. Мануилова, В.Я. Барходоев.

Рис. 12. U-Pb диаграмма с конкордией для цирконов и апатита из умеренно-щелочного гранита (метатектита) бургалинского комплекса, по данным табл. 10.

ЗАКЛЮЧЕНИЕ

Метаморфические образования Закоронного выступа докембрия, выделенные в закороннинскую метаморфическую серию, разделяются на две метаформации: сланцево-эндербитовую и гнейсо-кальцифировую.

Таблица 11. Химический состав гранитов-метатектитов.

Сланцево-эндербитовая метаформация высокотемпературных и высокобарических гранулитов представляет собой инфракрустальные метабазиты и низкокаливые эндербиты, близкие по составу раннеархейским базит-эндербитовым куполам Алданского щита, формирующимся в условиях эмбриональной континентальной коры. Однако, в Закоронном выступе базит-эндербитовая ассоциация образует чашевидную структуру, которая не исключено, что представляет собой протоинтрузию в супракрустальных гранулитах, кварцитах и кальцифирах.

Время формирования сланцево-эндербитовой метаформации фиксируется близкими датами: сланцы 1908±63, 1920±60, 2028±5 млн лет; эндербиты – 2058±10 млн лет. Н.М. Кудряшов (ГИН Кольского НЦ РАН), анализирующий цирконы кристаллосланцев, считает, что дата 2028±5 млн лет, которую определяют цирконы, неуверенно магматического генезиса, отчетливо фиксирует определенное событие, возможно связанное с образованием эндербитов.

Супракрустальные гранулиты гнейсо-кальцифировой метаформации – глиноземистые и высокоглиноземистые гнейсы и плагиогнейсы, кальцифиры и кварциты метаморфизованы в тот же период, что и двупироксеновые сланцы – 1901±63 млн лет.

Гранулитовому метаморфизму двупироксеновых кристаллосланцев, эндербитов, кальцифиров практически синхронны лейкограниты бургалинского комплекса – 1952,4 ± 1,3. Не исключено,что гранитообразование и гранулитовый метаморфизм связаны с образованием двух структурно-формационных поясов: западного – серогнейсо-зеленокаменного протократона (Ольдянинский, Коаргычанский, Абкитский выступы) и восточного – гранулитового пояса (Закоронный и Ауланджинский блоки).

ЛИТЕРАТУРА

- 1. Бибикова Е.В., Макаров В.А. Грачева Т.В. и др. Возраст древнейших пород Омолонского массива // Докл. АН СССР, 1978. Т. 241, № 2. С. 431–436.
- Бибикова Е.В., Макаров В.А., Грачева Т.В. и др. Древнейшие породы Омолонского массива // Древнейшие гранитоиды СССР. Л.: Наука, 1981. С. 137–142.
- 3. Бибикова Е.В., Гриненко В.А., Кисилевский М.А., Шуколюков Ю.А. Геохронологическое и изотопно-кислородное исследование докембрийских гранулитов СССР // Геохимия. № 12. 1982. С. 1718–1728.
- 4. Бибикова Е.В. Уран-свинцовая геохронология ранних этапов развития древних щитов. М. Наука, 1989. 168 с.
- Гельман М.Л., Терехов М.И. Новые данные о докембрийском метаморфическом комплексе Омолонского массива // Метаморфические комплексы Востока СССР. Владивосток, 1973. С. 66–73.

- Глуховский М.З., Моралев В.М., Пузанов В.И. Тектоническая эволюция архейских эндербитовых куполов Алданского щита // Геотектоника. 1998. № 5. С.32–45.
- Гринберг Г.А., Гусев Г.С., Бахарев А.Г. и др. Тектоника, магматические и метаморфические комплексы Колымо-Омолонского массива. М.: Наука, 1981. 359 с.
- Добрецов Н.Л. Глобальные петрологические процессы. М.: Недра, 1981. 235 с.
- Добрецов Н.Л., Кочкин Ю.Н., Кривенко А.П., Кутолин В.А. Породообразующие пироксены. М.: Наука, 1971. 453 с.
- 10. Жуланова И.Л. Земная кора Северо-Востока Азии в докембрии и фанерозое. М.: Наука, 1990. 301 с.
- 11. Коржинский Д.С. Закономерности ассоциации минералов в породах архея Восточной Сибири // Тр. ГИНа, вып. 61, петрограф. серия, № 21, 1944. 111 с.вание. Магадан, 1991. С.30–45.
- Корольков В.Г. Государственная геологическая карта СССР. 1:200000. Серия Омолонская. Листы P-57-IV (Верховье р. Парень), P-57-XI (Верховье р. Большая Авлондя), P-57-XII (Устье р. Ичевеем). М.: Центр. спец. производ. хозрасчет. об-ние. "Союзгеолфонд", 1989. 149 с.
- Левин Б.С. Строение метаморфического цоколя юга Омолонского массива // Метаморфические комплексы Северо-Востока СССР, их рудоносность и геологическое картирование. Магадан, 1991. С.30–45.
- 14. Номенклатура амфиболов. Доклад подкомитета по амфиболам комиссии по новым минералам Международной минералогической ассоциации (КНМНМ ММА) // Зап. ВМО. 1997. № 6. С.82–87.
- Петрографический кодекс. Магматические и метаморфические образования. СПб.: ВСЕГЕИ, 1995. 127 с.
- 16. Терехов М.И. Стратиграфия и тектоника южной части Омолонского массива. М.: Наука, 1979. 114 с.
- 17. Ушакова Е.Н. Биотиты метаморфических пород. М.: Наука, 1971. 345 с.
- Шевченко В.М. Докембрийские комплексы Омолонского массива // Тихоокеан. геология. 1996. Т. 15, № 2. С. 40–59.
- 19. Шевченко В.М. Амфиболы в докембрии Омолонского массива – индикатор этапов метаморфизма и гранитизации // Магматизм и метаморфизм Северо-Востока Азии: Материалы IV регион. петрогр. совещ. по Северо-Востоку России (Магадан, 4-6 апреля 2000 г.). Магадан, 2000. С. 90–93.
- Шинкарев Н.Ф., Григорьева Л.В., Сурнин Н.А. О генетической и геодинамической типизации гранитов // Зап. ВМО. 1994. Ч. СХХІІІ. № 3. С. 49–59.
- 21. Шкодзинский В.С., Недосекин В.С., Сурнин Н.А. Петрология позднемезозойских магматических пород Восточной Якутии. Новосибирск: Наука, 1992. 238 с.
- 22. Шкодзинский В.С., Зедгенизов А.Н. Стадии образования Алданского щита (модель глобального магматического фракционирования) // Магматизм и металлогения Северо-Востока Азии: Материалы IV регион. петрогр. совещ. по Северо-Востоку России (Магадан, 4–5иапреля 2000 г.). Магадан, 2000. С. 232–237.

Шевченко

- Шульдинер В.И. Докембрийский фундамент Тихоокеанского пояса и окаймляющих платформ. М.:Недра, 1982. 226 с.
- 24. Krogh T.E. A low-contamination method for hydrothermal decomposicion of zircon and extraction of U and Pb for isotopic age determinations // Geochim et cosmoch. acta. 1973. V. 37, N. 3. P. 485–500.
- 25. Krogh T.E. Improved accuracy of U-Pb zircon ages by the

Поступила в редакцию 27 февраля 2001 г.

creation of more concordant systems using in air abrasion technique // Ibid. 1982. V. 46, N. 4. P. 637–649.

- 26. O'Connor J.T. A classification of quartz rich igneus based on feldspar ratios // US Geol. Surv. Prof. Paper. 1965. 552B. P. 79–84.
- 27 Stacey J.S., Kramers J.D. Approximation of terrestrial lead isotope evolution by a two-stage model // Earth and Planet. Sci. Lett. 1975. V. 26, N 2. P. 207–221.

Рекомендована к печати Л.П. Карсаковым

V.M. Shevchenko

Geologic structure of the Zakoronny nose of the Precambrian Omolon massif.

Two metaformations of the Zakoronny metamorphic series of the Precambrian Zakoronny nose, southeastern Omolon massif, are described: a schist-enderbite meta-assemblage of high-temperature and high-bar garnulites, and gneiss-calciphyre meta-assemblage of supracrustal granulites. By using U-Pb method, the granulite metamorphism was dated as 1901-2058 Ma, and intense garnite formation as 1952 Ma.