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Abstract

A new method is presented for a purely kinematic analysis of relative motion data of crustal deformation. We start
by developing a general integral formulation that links the relative motion between two positions to the velocity
gradient field. Next, fault slip is explicitly incorporated, leading to the final observation equation. This equation
provides a new, complete and, in practice, exact description of the time-dependent relation between surface motion
and the underlying kinematics. The combination of equations belonging to pairs of observation sites (e.g. of a
geodetic network) leads in a natural way to a linear inverse problem from which the velocity gradient field and slip on
active faults can be estimated. The method is successfully tested in a synthetic experiment.
. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Relative motions between points at the solid
Earth’s surface constitute important kinematic
boundary conditions for modeling of crustal de-
formation. For instance, observed motions near
active fault zones are often used to constrain cer-
tain fault properties [1^3]. In such analysis a pop-
ular model for fault behavior is an elastic disloca-

tion embedded in an elastic crust. Dislocation
modeling is an example of a more general class
of crustal modeling techniques in which observa-
tions of surface motion are compared to predic-
tions derived from an assumed physical model of
crustal or fault behavior. This implies that result-
ing kinematic properties, such as the surface £ow
¢eld and crustal strain rate ¢eld, are dependent on
the assumptions made. This dependence can be
avoided by adopting pure kinematic inversion be-
cause in this case knowledge of crustal dynamics
and rheology is not required. In a kinematic ap-
proach the motion observations are converted
into a velocity gradient ¢eld and, if possible, esti-
mates of slip on active faults. This provides quan-
titative information about e.g. the distribution of
strain accumulation in the shallow crust and is
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useful in obtaining qualitative insight into the
underlying dynamics. The surface ¢elds obtained
from a kinematic analysis, which includes a pre-
diction of the surface velocity ¢eld, can be used as
a spatially continuous boundary condition for
subsequent dynamic modeling [4].

Kinematic inversion is the subject of this paper.
Several inversion methods exist which focus on
determining the velocity gradient ¢eld 99v(r,t)
from observations of relative crustal motion vv.
Two classes can be identi¢ed: Methods based on
interpolation in v(r,t)-data space and those based
on interpolation in 99v(r,t)-model space.

Data space methods ¢rst perform a spatial in-
terpolation of the observed vv and next obtain 99v
by spatial di¡erentiation. The interpolation is
often based on assuming speci¢c spatial correla-
tions between velocity observations [5^8], but can
also be obtained by parameterizing the unknown
velocity ¢eld by general shape functions of which
coe⁄cients are determined by ¢tting a smooth
velocity ¢eld to the velocity data [9]. The latter
approach is based on earlier data space methods
developed for interpolating earthquake-derived
strain rate data [10], or for a combination of
strain rate data and relative motion data [11].
The interpolation methods are derived from geo-
metrical concepts rather than from physical
theory relating observations to the velocity gra-
dient ¢eld. Contributions of fault motion to ob-
served relative motion are not explicitly incorpo-
rated.

Model space methods usually involve a param-
eterization of the unknown 99v ¢eld. This is done
by shape functions, for instance de¢ned on trian-
gular domains, for which the coe⁄cients are de-
termined in an inversion of the velocity data. Now
99v is a direct result of data inversion. Impor-
tantly, model space methods are based on a phys-
ical theory linking observations with model quan-
tities in terms of an observation equation. Theory
in applications has generally been restricted to
assuming locally constant 99v, e.g. in triangular
regions spanned by the observation network
[12^14]. This leads to velocity gradient ¢elds
which are discontinuous across edges of triangles.
A velocity gradient ¢eld that varies continuously
across an entire observation network can be ob-

tained by assuming locally constant 99v combined
with a prescribed parameter weighting scheme
based on distance to observation points [15].
Apart from Lamb [16] we are not aware of any
attempt to incorporate fault motion explicitly in a
kinematic theory.

In this paper we develop a new kinematic in-
version method which in a natural way leads to
working in model space. This leads to a general-
ization and extension of earlier model space ap-
proaches. From basic principles we derive an ob-
servation equation which relates observations of
relative motions to path integrals over the un-
known velocity gradient ¢eld. The combination
of many of such equations leads to an inverse
problem for which there is no theoretical restric-
tion on the spatial complexity of the velocity gra-
dient ¢eld. In practice, model complexity is deter-
mined by the resolving power of the data. A
particular novelty is that we also incorporate
terms that account for the e¡ects of fault motion
on observed relative motions. In the second part
of this paper we put the proposed analysis meth-
od to the test in a synthetic experiment of crustal
deformation.

2. The forward problem

Geodetic observation of crustal deformation
yields changes in relative position of points at-
tached to the deforming surface. In a ¢xed refer-
ence frame, adopted at time t=0, the position of
a point i is given by ri+u(ri,t), where u is the dis-
placement ¢eld that evolved since t=0. The rela-
tive displacement of a point j with respect to i that
developed during time increment vt= t23t1 is :
vuij = [u(rj,t2)3u(ri,t2)]3[u(rj,t1)3u(ri,t1)]. When
vuij is caused by pure continuous deformation
both terms can be related in a general way to
the displacement gradient ¢eld 99u(r,t) by integra-
tion at ¢xed time over arbitrary paths Lij(t1) and
Lij(t2) :

vuij ¼
Z

Lijðt2Þ
9uðr; t2ÞWdr3

Z
Lijðt1Þ

9uðr; t1ÞWdr ð1Þ
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The integration paths can be taken the same in
the analysis of short term crustal deformation be-
cause the relative error in vuij , due to the mis-
match at the endpoints of integration paths, is
of the order of Mu(r,t2)3u(r,t1)M/lij , where lij is
the length of the integration path. This error is

usually negligible in the analysis of crustal defor-
mation based on geodetic data. Taking Lij(t1) =
Lij(t2), vvij =vuij/vt and vu= u(r,t2)3u(r,t1), Eq. 1
is rewritten as:

vvij ¼
Z

Lij

9
vu
vt

� �
Wdr ð2Þ

vvij is the relative motion derived from repeated
geodetic observation of sites i and j. Eq. 2 relates
vvij to the linear approximation vu/vt of the crus-
tal £ow ¢eld v(r,t) = du/dt that developed between
t1 and t2. If vt is su⁄ciently small, as in contin-
uous observation with GPS stations, we get:

vvijðtÞ ¼
Z

Lij

9vðr; tÞWdr ð3Þ

An important property of Eq. 3 is that it is
applicable to time-variable crustal £ow. However,
this holds only for integration paths that do not
cross faults, where the 99v ¢eld can be discontin-
uous. E¡ects of fault motion on vvij can be in-
corporated by considering the relative motion be-
tween two points on the integration path at either
side of a slipping fault (see Appendix A). If a path
Lij crosses K faults, the relative motion due to
fault slip is:

vvijðtÞ ¼
XK
k¼1

K k f kðrkij ; tÞ ð4Þ

6

Fig. 1. Schematic representation of model geometry. (a) A
study region with a ‘Y’-shape fault system is triangulated be-
tween model nodes (black dots). Triangles do not intersect
faults. Nodes at the fault are doubled to allow the velocity
gradient ¢eld to be discontinuous across faults. The curved
path Lij connects two observation sites i and j with relative
motion vvij . (b) Ten observation sites (open circles) are con-
nected by 45 geodesics, yielding 135 component equations in
the forward problem. (c) For observation sites at opposite
sides of faults extra path equations (denoted by curved lines)
can be included to force internal consistency between fault
slip and the velocity gradient ¢eld in the inversion.
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where fk is the slip rate on fault k at time t (or the
average slip rate over a period vt) and occurring
at the intersection rkij between Lij and the fault.
The factor Kk has value +1 or 31 depending on
fault orientation with respect to the direction of
integration along Lij (see Appendix A).

For general crustal £ow the combination of
Eqs. 3 and 4 relates observed relative motion
vvij to the velocity gradient ¢eld and fault slip
(Fig. 1a):

vvij ¼
XKþ1

l¼1

Z
Ll

ij

9vðr; tÞWdrþ
XK
k¼1

K k f kðrkij ; tÞ ð5Þ

The integration over 99v is done in parts be-
cause 99v can be discontinuous at faults. Eq. 5
needs to be extended if vvij results from two ve-
locity vectors that are taken from independent
geodetic networks. In that case an unknown rela-
tive rotation between network solutions may exist.
The terms to be added to Eq. 5 are:
66jUrj366iUri, where 66m denotes the rotation
vector for the observation network to which site
m belongs. One rotation vector can be set to zero,
in which case the remaining 66m describe the rel-
ative rotations with respect to this ¢xed network.
These additional terms are the same as in other
kinematic approaches [9,17].

We will use observation Eq. 5 for the inversion
of relative motion data. It has the nice property of
being purely linear in the unknown quantities 99v
and fk. Eq. 5 provides a purely kinematic descrip-
tion, hence does not assume anything about crus-
tal or fault dynamics. Most importantly, Eq. 5
gives a complete description of the relative crustal
motion data vvij resulting from time-variable
crustal £ow, including co-seismic motion. Note
that the choice of Lij is completely free. Although
this property hints at an inherent non-uniqueness
in the interpretation of relative motion data we
will turn it to our advantage in the inversion
stage.

3. The inverse problem

We restrict our analysis to time-independent or

time-averaged problems and leave non-steady mo-
tion to future developments. Assume a set of P
point positions with known relative motions.
These positions yield at least P(P31)/2 vector
Eqs. 5 along geodesics or other connecting paths
Lij for all combinations of sites i and j. These
equations are coupled through the velocity gra-
dient ¢eld 99v and the relative fault slip rate fk
on fault segments k. In Fig. 1b this coupling is
visualized by the sampling of the surface by inte-
gration paths Lij . The resulting inverse problem is
to solve this coupled set of integral equations. We
note that the forward and inverse problem share
strong parallels with those of seismic travel-time
tomography (e.g. [18]).

The study region (which can be the entire
Earth’s surface) is subdivided into a network of
N nodes connected by triangulation. The N nodes
at the vertices of the triangles need not coincide
with observation sites. The only restriction is that
triangles cannot intersect with faults. We adopt a
linear dependence of 99v on the spatial coordinates
in each triangle. This parameterization allows for
quadratic velocity variation within triangles and
continuity of 99v across the edges of the triangles.
Hence, for each component of the velocity gra-
dient tensor in a particular triangle we assume
that:

½9vðrÞ�kl ¼
X3
m¼1

½9v�klðrmÞgmðrÞ ð6Þ

where rm is a vertex of the triangle and gm(r) are
interpolation functions. In Appendix B we carry
this out in more detail. Faults are divided into
segments (Appendix A) and for each segment k
the relative fault slip rate fk is parameterized as a
(segment-dependent) constant rate.

Substitution of these parameterizations in Eq. 5
leads, after integration, to an ordinary set of
coupled linear equations. These can be cast into
a matrix^vector form by assembling all velocity
gradient parameters into one vector of length
9N and by assembling all fault parameters in a
vector of length 3K. Denote these vectors by p
and s, respectively, then the matrix^vector equiv-
alent of P(P31)/2 vector Eqs. 5 is :
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½VMF� p
s

h i
¼ d ð7Þ

where all data vvij have been put into one vector
d. Details of the above steps are presented in Ap-
pendix B. The submatrix V represents the coe⁄-
cients linked to continuous deformation, and the
non-zero elements of F are +1 or 31 associated
with fault segments. It is important to note that
going from Eq. 5 to Eq. 7 only involves the as-
sumptions of linear velocity gradient in triangles
and constant slip on fault segments. Higher-order
parameterizations, e.g. cubic splines, are of course
possible and do not a¡ect the principle of the
interpretation method we propose here.

The matrix system Eq. 7 can be extended with
more data equations using the same observation
set vvij . For each observation pair i and j many
alternative integration paths Lij can be invented
which all lead to the same relative motion vvij
(Fig. 1c). In particular, closed integration paths
Lij3Lji between sites i and j will always render
zero relative motion. Such equations are welcome
because they put constraints on the null space of
the inverse problem. If line integration of a con-
tinuous vector (tensor) ¢eld yields zero for every
closed path, then the vector (tensor) ¢eld is curl-
free. We exploit this by requiring that 99U99v= 0
within each triangle, which replaces adding
closed-path equations in regions of continuous
deforming crust. After substitution of the param-
eterization (Eq. 12) this constraint leads to three
additional equations for each triangle. Additional
paths Lij may be required across faults to ensure
internal consistency between fault slip and the ve-
locity gradient ¢eld. Augmenting Eq. 7 with these
extra equations leads to:

VMF

GM0

" #
p

s

" #
¼

d

0

" #
ð8Þ

where G contains for each triangle the coe⁄cients
that result from the constraint 99U99v= 0.

Data errors cause Eq. 8 to be an inconsistent
set of equations. These include implicit data er-
rors that may arise from the di¡erence between
the spatial variation of true crustal deformation

Fig. 2. A synthetic model computed with 6238 ¢nite elements
and generated by application of a shear stress to the top
boundary. The bottom boundary is kept ¢xed. The top, left
and right boundaries are free to deform. (a) Velocity ¢eld
computed at 81 observation points. (b) Contoured e¡ective
strain rate ¢eld (�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þ _OO _OO

p
). The discontinuous transitions

in the contouring result from our choice to add a minus sign
to the e¡ective strain rate in case contraction dominates in
amplitude. (c) Principal strain rates at 150 arbitrary loca-
tions. The two black lines represent the two frictionless
faults.
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and our parameterized approximation. The im-
plicit errors can be made small by taking su⁄-
ciently small triangles and fault segments. In prac-
tice, a detailed parameterization combined with a
limited amount of data will lead to a mixed-de-
termined or underdetermined inverse problem. To
deal with problems associated with data errors,
non-uniqueness, and ill-conditioning of the ma-
trix, we adopt an inversion procedure which se-
lects a solution that ¢ts the data best in a least-
squares sense and at the same time minimizes
some model norm. Details can be found elsewhere
[19^21]. The following notation is used: A repre-
sents the coe⁄cient matrix of Eq. 8, d“ = [dM0]T,
m= [pMs]T, Cd denotes the data covariance matrix,
and D stands for a damping or regularization
operator that will be speci¢ed later. Assuming
that the data and model are uncorrelated we
choose to minimize the object function x(m) =
(Am3d“)TC31

d (Am3d“)+K2mTDTDm, where K con-
trols the trade-o¡ between ¢tting the data and
minimizing the weighed model norm. The model
m that minimizes x is formally m= ATC31

d A+
K
2DTD)31ATC31

d d“ with a posteriori model cova-
riance given by C= (ATC31

d A+ K
2DTD)31 and

model resolution kernel R= CATC31
d A. The data

covariance Cd incorporates the uniform variance
c
2
r which acts as a row-weight for the exact equa-

tions c
31
r Gp= 0. Variation of c31

r is used to tune
the relative importance of these equations with
respect to the data equations in determining a
solution. In this paper we will work with a com-
bination of amplitude and second derivative reg-
ularization. This requires minimizing the object
function x(m) = (Am3d“) TC31

d (Am3d“)+K2
am

Tm+
K
2
dm

TDT
2D2m, where D2 stands for a second-deriv-

ative operator. The solution that minimizes x is :

m ¼ ðATC31
d Aþ K

2
aI þ K

2
dD

T
2D2Þ31ATC31

d d̂d ð9Þ

Inversion is now dependent on three tuning pa-
rameters : cr, Ka and Kd . Target of inversion is a
model that can ¢t the data properly and that has
acceptable covariance C and resolution R. This
requires investigation of a range of solutions ob-
tained for di¡erent combinations of the tuning
parameters. Of particular importance is the rela-
tive weighting between the actual data equations
and the additional equations c

31
r Gp= 0. If cr is

taken too small the least-squares inversion will be
dominated by satisfying the latter equations,
which may lead to a solution with poor ¢t to
the actual data. This is the disadvantage of imple-
menting exact equations as soft constraints.

4. Synthetic experiment

4.1. Design

To create synthetic velocities that are consistent
with an underlying crustal deformation ¢eld a
forward ¢nite-element calculation is performed
¢rst. In spherical geometry a 2‡U2‡ model area
with two frictionless faults is deformed by apply-
ing a plane shear stress at the top boundary. The
lower boundary is kept ¢xed and the top, left and
right boundaries are free to move. An isotropic
elastic rheology is assumed and relative displace-
ments are derived by solving the equation of me-
chanical equilibrium with the method of [22]. Di-
vision of the displacements by an arbitrary time

Fig. 3. The distribution of fault motion, denoted by slip vec-
tors, on faults I and II (see Fig. 2b). Fault I accommodates
right-lateral normal slip rates on 26 splitted nodes with a
maximum of about 10 mm/yr at the center. Fault II is a
right-lateral thrust with 32 splitted nodes and with a maxi-
mal slip rate of about 36 mm/yr.
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scale of one year leads to the synthetic velocities
that become the data for our inverse modeling.
Synthetic velocities v= (va ,vP ) and strain rates
OO= (1/2)(99v+(99v)T) are plotted in Fig. 2 and fault
slip rates f= (fa ,fP ) in Fig. 3. The velocity ¢eld
varies rather smoothly and e¡ects of fault slip
rate are not easily recognized in the velocity ¢eld
displayed. In contrast, the relatively strong varia-
tions in strain rate due to the presence of the
faults are more striking. We note that in absence
of faults the e¡ective strain rate ¢eld would be
symmetric about the central a-axis of the model.

We invert the 81 synthetic velocities displayed
in Fig. 2 into estimates of fault slip rate f and the
lateral components of velocity gradient ¢eld 99v.
The latter is denoted by:

9v ¼
va a va P
vP a vP P

" #

Contributions of the radial derivatives of the
lateral components of velocity can be neglected,
because in essence we perform a two-dimensional
experiment. The inversions are performed on
three di¡erent grids P1, P2 and P3, consisting of
38, 134 and 394 triangles, respectively (Fig. 4).
Fault I(II) consists of 6(8) segments in grids P1
and P2 and of 12(16) segments in grid P3. The
spatial domains of the model parameters (trian-
gles and fault segments) are much larger than
those used in the forward ¢nite-element modeling
(see captions of Figs. 2 and 3). Compared to the
density of data points grid P3 represents probably
the most detailed parameterization one would at-
tempt to use in practice. Consequently, in our test
we will not be able to retrieve all details of the
synthetic deformation ¢eld. In turn, this implies
that in general the synthetic data will be inconsis-
tent with (ideal) data predictions from the left
hand side of Eq. 8. Thus, the signal mis¢t will
act as correlated noise in the inversion. As anoth-
er link to practice we assume that the synthetic
data have been acquired from a geodetic experi-
ment that yielded a uniform observation error of
cd =3 mm/yr on all velocity components.

Weight factors Ka and Kd (Eq. 9) control the
e¡ect of amplitude damping of 99v, which is ap-

plied on boundary nodes only, and of second-de-
rivative regularization on all model nodes, respec-
tively. Fault slip parameters are not damped. We
compute the inverse matrix of Eq. 9 by Cholesky

Fig. 4. Three grids P1, P2, and P3 de¢ning di¡erent details
of model parameterization. Grid P1 consists of 38 triangles
and 14 fault segments; grid P2 consists of 134 triangles and
14 segments (the white dots indicate the 81 station positions
which almost all coincide with model nodes); grid P3 con-
sists of 394 triangles and 28 fault segments.
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decomposition, which also provides us with its
spectrum of eigenvalues.

We denote the synthetic model with WW. A solu-
tion vector m will be expanded on the ¢nite-ele-
ment grid to facilitate comparison with WW. Simi-
larly to m, the synthetic model consists of two
parts: WW= [pW MsW ]T, with pW (of length Nc) the
components of (99v)W and sW (of length Nf ) the
components of fault slip rate. The total length
of model vectors de¢ned on the geometry of the
synthetic model is N=Nc+Nf . The model mis¢t
vector m3WW is split into NNpW = pW3pm and
NNsW = sW3sm.
For the analysis of the inversion results we

de¢ne a root-mean-square mis¢t function
8I(x,y) =Nx3yN/NxN for comparison of vectors
of length I. Thus, the model mis¢t is 8N (WW,m).
Mis¢t is also computed separately for the two
parts of the model : 8Nc(pW , pm) and 8Nf (sW ,sm),
respectively. Data mis¢t is given by 8M (d,dm)
which compares the synthetic data d with pre-
dicted data dm. M includes the 81(8131) data
constraints plus the number of equations of the
c
31
r Gp= 0 constraint. The latter adds two equa-

tions per triangle. We also compute the usual
model correlation coe⁄cients b(WW,m) = WWWm/
(NWWNWNmN).

4.2. Inversion results

Some input and output parameters belonging
to inversions on each grid are listed in Table 1.
The 8-measures for model and data mis¢t belong
to the preferred solutions on each grid, which
were obtained by scanning a wide range in each
of the three tuning parameters [23]. Preferred so-
lutions have minima in 8N (WW,m) and 8M (d,dm)
for more or less similar values of the damping
parameters. The minimum in the data mis¢t
8M (d,dm) is constrained to be in accord with the
adopted uniform data noise of 3 mm/yr. Fig. 5
shows the in£uence on normalized spectra of
C31 of adding extra constraints (in the form of
99U99v= 0 and damping). Many of the small ei-
genvalues are associated with eigenvectors per-
taining to fault slip and, as we will infer later,
trade-o¡ between fault slip and 99v as a result of
lack of resolution. The extra constraints repre-

Fig. 5. Eigenvalue spectra of C31 (normalized by the smallest
eigenvalue) pertaining to inversions on grids P1, P2 and P3.
Key: dotted line, cr =Ka =Kd =0; dashed line, cr =c

W

r ,
Ka =Kd =0; solid line, cr =c

W

r , Ka =K
W

a and Kd = K
W

d (see
Table 1); (A), (BP) and (CP) display the complete spectra, (B)
and (C) show the ¢rst part of (BP) and (CP), respectively.
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sented by c
31
r Gp= 0 considerably lower the spec-

tra (dashed lines in Fig. 5) by factors of about 2,
20 and 200 on the grids P1, P2 and P3, respec-
tively. The values of cr were tuned to render an
acceptable ¢t to the actual relative motion data.
Thus, these extra constraints considerably im-
prove the conditioning of the inverse problem.
Still, additional damping proved necessary to con-
trol solution contributions from the low end of
the spectrum. This reduces the roughness of the
solution and still renders the data mis¢t in accord
with the imposed noise level. From Table 1 we

also infer a general improvement of model and
data ¢t for increasing density of the parameter-
ization. Further, the model correlation coe⁄cient
b(WW,m) is generally high and ranges between 0.87
(P1) and 0.97 (P3) for s and between 0.95 (P1)
and 0.98 (P3) for p. We note that the overpara-
meterization of P3 with respect to station density
still improves the model ¢t. This shows that plac-
ing model nodes at station positions only (experi-
ment on grid P2) can be a too conservative choice
of parameterization.

Only on grid P3 we obtain minimal values of

Fig. 6. Selected solution m on grid P3. The contouring (note the di¡erent scales) displays each of the components of 99v in units
yr31. The top panels show the exact synthetic model pW . The central panels show the preferred solution pm, and the bottom pan-
els show the di¡erence NpW = pW3pm. The faults slip is plotted in the third column. From top to bottom: (3a) synthetic slip sW ;
(3b) the inversion result sm, and (3c) the mis¢t NNsW = sW3sm.
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data and model mis¢t for similar values of the
damping parameters. This model is obtained for
cr =c

W

r , Ka =K
W

a and Kd =K
W

d (see Table 1). The
solution is plotted in Fig. 6 (panels (b)) and in
general compares well with the synthetic model
(panels (a)). We infer three di¡erent types of mis-
¢t patterns (panels (c)). First, the largest part of
8Nc(pW ,pm) is caused by the small-scale, but large-
amplitude, mis¢t near fault tips. Apparently, the
model parameterization is still too coarse to ac-
commodate these variations. However, further
densi¢cation of the triangular grid proved of no
use, because the local variations near the fault tips
are not su⁄ciently detected by the observation
network. Second, we ¢nd model mis¢ts of some-
what smaller magnitude surrounding the faults.
Part of these patterns vary linearly over the tri-
angles and correlate with the slip mis¢t vectors
NNsW (Fig. 6.3c). For instance, a slight overestima-
tion of the thrusting component on fault II is
compensated by extension near the fault (Fig.

6.2c). The trade-o¡ can best be limited by placing
additional stations along the faults, which demon-
strates that the trade-o¡ is predominantly due to
lack of data and to a much lesser extent is forced
by the coarseness of the model parameterization
[23]. The third source for mis¢t is represented by
relatively long-wavelength patterns of alternating
positive and negative amplitude. Path integration
over these mis¢t patterns yields zero or near-zero
relative velocity, which demonstrates their close-
ness to the null space. This e¡ect is similar to that
observed in synthetic travel-time tomography ex-
periments [24], where geometrical symmetry in the
experiment design caused zero eigenvalues, with
associated eigenvectors possessing large-scale var-
iation (i.e. with respect to the details of parame-
terization).

We ¢nd that the predominant part of the model
mis¢t is contained within the bounds imposed by
the model errors for 99v (Fig. 7). Only in narrow
zones along the model boundaries and along the

Fig. 7. Di¡erence between model mis¢t NNpm and model error cm for each of the components of 99v of the selected solution m de-
termined on grid P3. The contouring denotes NNNpWN3cm, only if this di¡erence is larger than zero. Otherwise the value plotted
is set to zero.

Table 1
Parameters for inversion for 99v and s

Grid Tn Tt c
W

r c
W

p c
W

s 8Nc 8Nf 8M

(myr31) (yr31) (m yr31) (%) (%) (%)

P1 32 38 1.4U10312 1U1038 0.004 23 30 3.5
P2 88 134 2.1U10312 3U1038 0.001 21 26 2.5
P3 218 394 4.6U10312 4U1038 0.0008 17 20 2

Key for the input parameters: Tn, number of grid nodes; Tt, number of triangles; and c
W

r , the standard deviation for G. Key for
the output parameters: c

W

p , c
W

s average model standard deviation for components of 99v and s, respectively; 8Nc , 8Nf , model
mis¢t for velocity gradient parameters, slip parameters, and 8M , the data mis¢t.
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faults the model mis¢t for 99v exceeds the model
errors. For the fault slip the mis¢t exceeds the
model errors by on average 2^3 mm/yr. An in-
crease of the adopted data error to 6 mm/yr
would remedy this situation. However, it is
more important to acknowledge that true model
errors can exceed the formal error as a result of
solution trade-o¡ caused by lack of data and by
correlated data noise not accounted for by the
data covariance matrix.

Fig. 8 shows the diagonal components Rii of
the resolution kernel R and Cii of the model co-
variance C, The va a and vP a components have
equal resolution and are in general better resolved
than the va P (and vP P ) components and exhibit
smaller covariance. A similar observation is made
for fault II with respect to fault I, of which the
latter accommodates mostly P-oriented fault slip.
Less well resolved model parameters with rela-
tively large model errors are located along the
faults, re£ecting the inferred solution trade-o¡,
and along the boundaries of the model area,
where the baseline sampling is poorer than in
the interior of the model.

5. Discussion and conclusions

The synthetic data for our experiments were
constructed to be internally consistent with the
synthetic deformation ¢eld. Further, to mimic
data complexities of real data sets the synthetic
model possessed more detail than could be re-

solved with the parameterization adopted. The
synthetic experiment demonstrates that our pro-
posed kinematic inversion method works well to
obtain joint estimates of the velocity gradient ¢eld
and slip rate on active faults. Additional con-
straints in the form of 99U99v= 0 data equations
improve the conditioning of the inverse problem
and increase the model ¢t. Model mis¢t patterns
could be su⁄ciently minimized by increasing the
density of parameterization. Remaining mis¢t
patterns could basically be understood as a result
of (the imposed) lack of data.

The only basic problem we encountered is the
trade-o¡ between fault slip and the velocity gra-
dient ¢eld. We stress that this e¡ect is due to lack
of data. Any inversion method of relative motions
will one way or another encounter this problem
and have to deal with it. Our method o¡ers su⁄-
cient £exibility to study trade-o¡ phenomena. For
instance, inversion can be restricted to solving for
the velocity gradient only, which leads to a test of
the hypothesis that all faults are essentially locked
at the surface. Similarly, one can test the hypoth-
esis that the velocity gradient is zero and that
fault slip purely re£ects crustal block motion.
The trade-o¡ may complicate the interpretation
of estimated fault slip in inversions of real data.
If only observation sites are used far away from
faults, the estimated fault slip will re£ect predom-
inantly (long-term) crustal block motion, i.e. in-
dependent of fault locking. If sites are used close
to faults, the actual fault motion will prevail in
the estimate, which includes obtaining zero mo-

Fig. 8. The diagonal elements Rii of the resolution kernel R : (a,b), and Cii of the covariance C : (c,d) for components of 99v. The
spatial resolutions for va a and vP a (a) and for va P and vP P (b) are the same. Similarly for the covariances (c) and (d). The cova-
riance is scaled by a factor of 1U10314.
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tion if a fault has been locked during the obser-
vation period. Using observation sites close to
faults is the only remedy (for any method) to
break the trade-o¡.

With regard to a comparison with existing in-
terpretation techniques (see Section 1) we note
that our proposed method completely generalizes
earlier developments in model space approaches.
In contrast to data space interpolation techniques
our model space approach is explicitly based on a
general and valid physical relation between obser-
vations and the underlying kinematic ¢elds. Fur-
ther, it includes the contributions of slipping
faults to observed crustal £ow.

One interesting development would be to in-
clude time as an independent parameter in the
inversion and invert time series obtained from
permanent observation with GPS. We foresee no
conceptional problems for this application be-
cause time is already included in the observation
equation (Eq. 5). In areas with high seismicity this
application would allow one to map the spatial
and temporal development of the velocity gra-
dient ¢eld and fault slip, which includes elastic
fault loading, co-seismic motion, and post-seismic
relaxation. We leave this for future development.

Concluding, we developed and tested a new ki-
nematic analysis method to simultaneously esti-
mate the velocity gradient ¢eld and fault slip
from an inversion of relative motion data. The
method is based on ¢rst principles of kinematic
deformation and (in theory) applicable to general
short-term time-variable crustal £ow. The obser-
vation Eq. 5 provides a complete description of
the kinematic contributions to relative motion.
The quality of estimated quantities is primarily
determined by the quality of the data and to a
lesser extent depends on the few assumptions
underlying model parameterization. The proposed
method is independent of spatial scale and can be
applied to local deformation problems or studies
of global crustal deformation and plate motion.
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Appendix A. Fault motion and fault
parameterization

Consider an arbitrary integration path Lij

crossing a fault in a deforming medium. We pa-
rameterize Lij with the arc-length parameter l and
take l=0 at the intersection of Lij with the fault.
The Eq. 3 is split into three parts :

vvij ¼
Z 3O

li

9vW
dr
dl
dl þ

Z þO

3O

dv
dl
dl þ

Z lj

þO

9vW
dr
dl
dl

ð10Þ

where O is a small arc distance. The second term
on the right hand side reduces to v(+O)3v(3O),
which is the di¡erence in velocity across the fault
over an interval 2O. If the fault is locked and OC0
this term vanishes because of the continuity of v.
To simulate a slip rate on the fault we let v de-
pend on O and generate a sequence of di¡erentia-
ble velocity functions vO(l) which converge to v
when OC0. Since the fault is slipping, the velocity
pro¢les vO converge to a step function at the fault
with v(3O)Cv (03) and v(+O)Cv(0þ). Substitut-
ing vO for v in Eq. 10 and letting OC0 reduces the
second term on the right hand side to non-vanish-
ing fault slip rate, while integration in the ¢rst
term ends at the fault at l=03 and in the last
term integration starts at l=0þ. This leads to
the addition of path integration and fault slip-
rate terms which, after de¢ning sign conventions,
leads to Eq. 5.

The sign Kk of the fault slip term in Eq. 4
depends on the direction of integration. To devel-
op a consistent way of adding fault slip terms we
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¢rst de¢ne the parameterization of fault geometry
and relative sense of fault motion. Fault geometry
is parameterized on the Earth’s surface as straight
(or great-circle) fault segments connected by sup-
port points rk, k=1,2,... (Fig. 9a,b). Let
Tk = (rkþ13rk)/Mrkþ13rkM denote the tangential
unit vector of a segment, then the unit normal
Nk on the segment is taken at 90‡ counterclock-
wise from Tk. The upward pointing unit vector is
denoted by Bk. We label the two crustal blocks
separated by a fault segment as block 1 and block
2, where Nk always points into block 1. Let vs1k
and vs2k represent the absolute 3-D block displace-
ment of block 1 and block 2, respectively. We
de¢ne the relative fault slip as: vsk =vs1k3vs2k
which gives the relative displacement of block 1

with respect to block 2. This de¢nition is com-
pletely determined by Tk and changes sign if Tk

is reversed in direction. However, the sense of rel-
ative displacement is preserved independent of the
direction of Tk. Let vsTk , vsNk and vsBk denote the
projections of vsk on the three unit vectors. Right
lateral displacement is given by vsTk s 0, left lat-
eral displacement by vsTk 6 0, normal faulting by
vsNk s 0, and thrusting by vsNk 6 0. Note that vsk
also ¢xes the fault dip.

When an integration path crosses K faults the
total fault slip contribution to relative motion
generalizes to Eq. 4, where Kk = sign(NkWlij) and
lij the local tangent to Lij in the direction of in-
tegration. In Eq. 4 fk denotes the fault slip rate
which represents either a time average of fault slip
vsk/vt or approximates the true rate (fault creep
rate or coseismic velocity) depending on the time
elapsed between observations of relative motion.

Appendix B. Parameterization of 99v

The parameterization of 99v is restricted to spec-
ifying its spatial behavior for each single triangle
Td by shape functions. Let Ld denote the path
segment in Td of an integration path L (where
we dropped the subscript ij to save on notation).
Then Eq. 3 can be written as:

vv ¼
X
d

ðvvÞd ¼
X
d

Z
Ld

9vðrÞWdr ð11Þ

Now we can concentrate on the contribution to
vv from one triangle Td . The vertices of Td cor-
respond to model nodes with position vectors rdm,
m=1,2,3. At each vertex m we have nine model
parameters assembled in 99v(rdm). We denote the kl
component (row index k) of 99v(rdm) by pdmkl , hence
in Cartesian geometry pdmkl = (Dvk/Dxl)(rdm). For
each component of 99v(r) the spatial variation in
triangle Td is determined by:

½9vðrÞ�dkl ¼
X3
m¼1

pdmkl gdmðrÞ ð12Þ

Fig. 9. Illustration of the parameterization of 3-D fault slip.
(a) Two crustal blocks that have experienced a 3-D relative
displacement and the triad of unit vectors T, N, B used for
the de¢nition of fault segments. (b) Map view of a fault be-
tween ‘block 1’ and ‘block 2’ at fault segment k and horizon-
tal unit vectors indicated. Also denoted are the absolute
(horizontal) block displacements vs1k and vs2k, and the rela-
tive displacement vsk.
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where gdm(r) are known functions that interpolate
between the unknown model parameters pkl

dm.
Substituting this parameterization in the path in-
tegral for Td gives for the kth component of
(vv)d :

ðvvÞdk ¼
Z

Ld

½9vðrÞWdr�k ¼
X3
m¼1

X3
l¼1

pdmkl Gdm
l ð13Þ

with:

Gdm
l ¼

Z
V 2

V 1

gdmðrðV ÞÞð
drðV Þ
dV

WqlÞdV

where r(V) = r1(V)q1+r2(V)q2+r3(V)q3, (V1 6 V6V2)
parameterizes Ld with arc length V. The qi are
unit axis-vectors in the coordinate frame adopted.
Except for Cartesian geometry, the qi may depend
on the arc-length parameter V. Substituting Eq. 13
in Eq. 11 gives:

ðvvÞk ¼
X
d

X3
m¼1

X3
l¼1

pdmkl Gdm
l ð14Þ

In the summation over d, the coe⁄cients Gdm
l

are zero for all triangles Td not intersected by
path L. Eq. 14 can be simpli¢ed. Certain combi-
nations of d and m relate to the same node num-
ber n because one node is usually at the vertex of
more than one triangle. Therefore, the summation
over d and m can be replaced by a summation
over model nodes n yielding:

ðvvÞk ¼
XN
n¼1

X3
l¼1

pn
klH

n
l ð15Þ

with Hn
l =gfor ‘‘dm’’¼nGl

dm. In order to arrive at a
set of linear equations incorporating all relative
motion data we assemble all model parameters
into one linear vector p of length 9N with
pj = pn

kl , j= l+3(k31)+9(n31). Label the set of M
relative motion vectors (i.e. all relative motion
vectors resulting from station combinations, in-
cluding additional closed-path constraints) as
vX v, X=1,2,...,M and assemble these into one
data vector d of length 3M with di = (vX v)k,

i= k+3(X31). Eq. 15 becomes for all data:

di ¼
X9N
j¼1

Vijpj ; i ¼ 1; :::;M ð16Þ

with Vij =Hn
l or d=Vp. In Cartesian geometry we

use linear interpolation functions gdm(r) as, for in-
stance, given in [26, p. 153]. For straight path
segments within triangles the integration of Eq.
13 can be performed analytically leading to the
coe⁄cients Gdm

l . In spherical geometry a study
region is triangulated with spherical triangles.
We have adopted (weakly nonlinear) interpolation
functions de¢ned by:

gdmðrÞ ¼ 13
arcðr; rdmÞ
arcðrdm;Rd

m

� �
ð17Þ

where arc(r,rdm) is the arc distance between r and
rdm. The point Rd

m is located at the triangle side
facing node rdm at the intersection with the great
circle arc spanned by rdm and r. Integration is per-
formed numerically.

We remark that all numbers 3 and 9 in this
appendix change to 2 and 4, respectively, if we
would consider a two-dimensional problem.
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