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Abstract

Empirical rate equations such as R = k(1� c/ceq)
n in the dissolution of minerals are common in nature, e.g. limestone. The

quantity c is the concentration of a major ion contained in the mineral, and ceq its concentration at equilibrium. If experimental

data obey such a rate equation, by plotting log(R) versus log(1� c/ceq) straight lines are found from which k and n can be

determined. In many experiments, however, especially for natural minerals ceq is not known exactly. If one uses wrong values of

ceq that deviate only a few percent from true equilibrium such plots are severely distorted and one may conclude that above

some value cs the true order n changes to a new value, even when a rate equation as given above is valid. We present an iterative

computational procedure, which allows to find the valid rate equation from experimental data, even when ceq is not known. The

method is applied to limestone and synthetic calcite as well as to natural and synthetic gypsum. New experimental data are

given for the dissolution rates of anhydrite (CaSO4). By use of our new method, we find that this mineral exhibits a surface

controlled rate equation with k = 5.0F 1.0� 10� 6 mmol cm� 2 s� 1, n= 4.5F 0.2 and ceq = 23.5F 0.1 mmol/l at T= 10 jC.
D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Dissolution processes of minerals in aqueous envi-

ronments play a role of utmost importance in the

evolution of geochemical systems. It is therefore

mandatory to investigate dissolution rates in the

laboratory to find their dependence on the chemical

composition of the solution. Most simple linear rate

equations are exhibited in the dissolution of rocksalt

(Alkattan et al., 1997), expressed by

R ¼ k 1� c

ceq

� �
ð1Þ
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where c is the concentration of sodium in the solution

and ceq its equilibrium concentration with respect to

halite. The quantity k is a rate constant in mol cm � 2

s� 1, and the concentrations are in mol/cm 3. Rate

equations have also been expressed in terms of the

ion-activity product (IAP) by

R ¼ k 1� IAP

Kc

� �
ð2Þ

where Kc is the solubility product of the correspond-

ing mineral.

For many minerals, such simple rate equations are

not adequate and a more complex equation must be

used. A common empirical rate equation is

R ¼ kn 1� c

ceq

� �n
ð3Þ

where, n p 1, is an empirical reaction order (Lasaga,

1998). Such nonlinear rate equations indicate a com-

plex interplay of transport and chemical processes at

the surface of the mineral. In studies of the dissolution

kinetics of calcite in seawater rate equations in the

form

R ¼ k 1� ðCa2þÞðCO2�
3 Þ

KcV

� �n

ð4Þ

have commonly been reported. KcVis the stochiometric

solubility product of calcite in seawater. In a detailed

laboratory work for calcite in seawater, Keir (1980)

found n = 4.5, and KcV= 4.8� 10� 7 mol 2 kg� 2.

More complicated rate equations have been found

for natural calcite minerals, e.g. Iceland spar (Plum-

mer and Wigley, 1976; Plummer et al., 1978; Palmer,

1991) and limestone (Svensson and Dreybrodt, 1992;

Eisenlohr et al., 1999), and also for natural gypsum

(Jeschke et al., 2001) These rate equations show a

switch from order n1 to order n2 by

R1 ¼ kn1 1� c

ceq

� �n1

for cVcs

R2 ¼ kn2 1� c

ceq

� �n2

for c > cs

ð5Þ

where c is the calcium concentration in the solution,

ceq the corresponding equilibrium concentration, and

cs, the concentration where the kinetics switch to

higher order. cs is between 0.7 and 0.9ceq for lime-

stone, and about 0.95ceq for gypsum.

To find the rate constants k and n from experimen-

tally determined rates one must use a fitting proce-

dure. The most simple one is to plot log(R) versus

log(1� c/ceq). Rate equations such as in Eqs. (1)–(4)

will then plot as straight lines,

logðRÞ ¼ nlog 1� c

ceq

� �
þ logðkÞ ð6Þ

from the slope of which one can read n. log(k) can be

read from the point of intersection of the curve with

the log(R) axis at c = 0. For rate equations such as Eq.

(5), the same procedure reveals two segments of

straight lines, with slopes n1 and n2. log(kn1) and

log(kn2) can be found by extrapolation to c = 0. This

method, however, has to be applied with extreme care,

because the result depends critically on the value of

ceq that one uses.

Hales and Emerson (1997) re-examined seawater

dissolution rates from Keir (1980). Using the most

recent data for KcVc 3.9� 10� 7 mol 2 kg� 2, which

is lower by about 20% compared to that used by Keir,

who proposed a nonlinear rate law, they claimed an

entirely linear rate equation. Employing this rate

equation, in situ measurements of pore waters on

calcite-rich sea floor sediments could be explained

more consistently than by applying Keir’s equation.

In the present article, we will elaborate a method to

determine the kinetic parameters n, k, and ceq from

experimental data and to show the pitfalls, which can

lead to wrong conclusions.

2. Theory and method

In the following, we will demonstrate the pitfalls

arising by using incorrect values of ceq in the evalua-

tion of experimental data and we suggest a systematic

numerical procedure to avoid them. To this end, we

construct a set of virtual experimental data from a

known rate equation. By this way, we obtain data

which relates the rates to the chemical composition x

of the solution. We truncate this set to some final

value xf < xeq, where, e.g. a free drift experiment has

been terminated. Such a set of virtual data is equiv-

alent to a real set of experimental data. We can
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demonstrate the validity of our method, if we can

recover the rate law, known in the case of virtual data,

by use of the truncated virtual data exclusively with-

out any further information. We first deal with a rate

equation given by

R ¼ k 1� x

xeq

� �n

ð7Þ

In Eq. (7), x stands for c or IAP, respectively, and xeq
is the corresponding true equilibrium value. In the

following, we will call this a homogeneous equation.

From the truncated data set, we only know that

xeq>xf. When plotting the rates versus (1� x/xeq) in a

double logarithmic plot, we therefore have to estimate

some value x0 which could deviate from xeq by Dx;

x0 = xeq +Dx. The rates which one finds by plotting the

data using x0 instead of xeq are shown by Fig. 1.

The full straight line presents Eq. (7) with true xeq,

or in other words Dx = 0. The dashed lines above this

curve are obtained, when Dx =� 0.1xeq or � 0.01xeq,

respectively. Note that for each of the curves the

corresponding value of Dx is used in log[1� x/

(xeq +Dx)]. Therefore with respect to x, each curve

has a different scale on the abscissa. The upper curves

represent the case, when x0 < xeq. It may also happen

that for some reasons, the estimated value of x0 could

be above xeq. This case is shown by the lower set of

curves, where Dx= + 0.1xeq or + 0.01xeq, respectively.

In all cases, there is good agreement to the correct

plot with x0 = xeq for x close to zero. The range of

agreement depends on Dx. Considering that most data

in dissolution experiments are obtained below x =

0.99xeq (log[1� x/xeq] =� 2.0), one envisages from

Fig. 1 that plotting the rates with Dx p 0 leads to

curves, which easily could be misinterpreted as a

change of the order of the kinetics.

In Fig. 2a, we have replotted the upmost curve of

Fig. 1 with Dx=� 0.1xeq, and in Fig. 2b the lowest

curve with Dx = + 0.1xeq is depicted. Such curves will

likely be obtained from plots of experimental data

where x0 = xeq +Dx has been taken for true equilibrium

erroneously. The aim is now to find from such a plot

the true value of xeq and the correct values of k and n,

provided the rate equation follows Eq. (7).

Let us assume that experimental data has been

obtained from a mineral with a homogeneous non-

linear kinetics as described by Eq. (7). These are given

by data points which relate the rate R to the chemical

composition x of the solution. To find out whether

these can be described by Eq. (7) in a first step log(R)

is plotted versus log(1� x/x0), where x0 is a first guess

of xeq. Fig. 2 shows a plot of such data for x0 = 0.9xeq
(a), and x0 = 1.1xeq (b). From such curves xeq must be

determined, such that a plot of log(R) versus

log(1� x/xeq) plots as a straight line from which k

and n can be determined. If the rates obey Eq. (7), this

is trivial. One just has to vary x0 until a straight line is

obtained which coincides with all data points.

The problem arises for minerals exhibiting an

inhomogeneous kinetics as given by Eq. (5), with a

switch from order n1 to n2 at a switch value xs. A few

comments should be given first at that point: (1) The

experimentally observed switch is not sudden as

Fig. 1. Various double logarithmic plots of a rate equation

R= k(1� x/xeq)
n. The full line depicts the plot of rates versus

log(1� x/xeq). The dotted lines present plots of the rates versus

log[1� x/(xeq +Dx)]. The value of Dx is given by the numbers on

the curves. Note that by plotting the rates to this new scale, each

point from the full line is shifted parallel to the abscissa to the point

on the corresponding curve. This is illustrated by arrows A and B.
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assumed in our idealized equations, but is steady from

n1 to n2 in narrow region as can be visualised from the

experimental data of Jura limestone in Fig. 5. The

transition region, however, is sufficiently small, to

allow the mathematical idealisation. As a conse-

quence, the experimental data cannot be perfectly

fitted in this narrow region. (2) The aim of our

procedure is not to reveal the mechanistic processes

which cause the nonlinear kinetics, but rather to find a

reliable way to extract a correct empirical rate equa-

tion, by which n, k, and ceq can be obtained. Now

plotting log(R) versus log(1� x/xeq), one obtains a

curve as given by the full line in Fig. 3. One does not

know then from the experimental data whether the

change of slope is caused by a wrong estimation of xeq
or by the inhomogeneous kinetics of the mineral. In

the case of inhomogeneous kinetics, simply varying

xeq will not suffice. Therefore, we must divide the

data set into two sections. The first covers the region

below xs and the second one above xs, whereby xs can

only crudely be estimated. Both data sets are in-

complete since they do not cover the entire region

of x-values.

To find out whether such an incomplete set can be

described by a nonlinear rate equation, we use the

following systematic procedure. We turn back to Fig.

2 where we have presented plots with x = 0.9xeq and

Fig. 2. Plot of log(R) versus an erroneous value x0, which deviates

from xeq. (a) x0 = 0.9xeq, (b) x0 = 1.1xeq. The tangent drawn to the

curve at xt has slope nt and the value log(kt) is given by its

intersection with the ordinate at log(1� x/x0) = 0. The dotted line

depicts the tangent to the curve at xt = 0. log(k) and n can be read

from it.

Fig. 3. (a) Plot of an inhomogeneous rate equation (cf. Eq. (5)) with

n1 = 1 and n2 = 5, xs = 0.77xeq with curves for various values of x0.

See text. The full line is for x0 = xeq and represents the correct plot.

Curve 0 is a plot with x0 = 0.77xeq (using only data x< xs), and curve

0* results by using x0 = 0.97xeq (for the data x>xs). (b) Magnified

plot of the upper right-hand side corner of (a). Curves 1, 2, 3, and 4

result from the iterative procedure with values of x0 as depicted by

the arrows in Fig. 4a.
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x0 = 1.1xeq. We select an arbitrary point with xt on that

curve and draw a tangent to it. Then the rate at xt can

be written as

Rt ¼ kt 1� xt

x0

� �nt

ð8Þ

where nt is the slope of the tangent in the double

logarithmic plot of Fig. 2, and log(kt) can be read from

the point of intersection of the tangent with the log(R)-

axis at log(1� x/x0) = 0.

On the other hand, for the point xt the true rate

equation

R ¼ k 1� xt

xeq

� �n

ð9Þ

is also valid. By equating Eqs. (8) and (9), one obtains

for each point xt.

xeq ¼
xt

1� kt

k

� �1
n

1� xt

x0

� �nt
n

ð10Þ

In this equation, nt, kt, xt, and x0 are known. The

parameters n and k must be estimated from the tangent

to the (virtual) experimental points at xt = 0. If data

points are not available there, as is the case for the

data set with x>xs (part n2), n and k must be estimated

to a lower degree of accuracy from the tangent to the

data points with lowest x available. In any case, k

and n are first estimations only and consequently

only a first approximation xeq
(1) can be obtained from

Eq. (10).

If x0 p xeq then nt and kt are functions of xt and xeq
(1)

is a function of xt. On the other hand, if x0 = xeq the

plot will be a straight line with nt = n and kt = k

everywhere and consequently xeq
(1) = xeq is independent

of xt.

We use this fact to find xeq by an iterative proce-

dure. We start to plot the data with some first

approximation x0 and calculate xeq
(1) from Eq. (10). If

it exhibits a functional dependence on xt, we use the

maximum or minimum value xeq
m = x0 for the next plot.

From this, we calculate xeq
(2) by use of Eq. (10).

Employing the result, which shows the lowest func-

tional variation in dependence on xt. We repeat this

procedure, until the variation of xeq
(i) stays within a

limit Dxeq. The final average value of xeq
(final)(xt)F

Dxeq then gives a satisfactory value for xeq.

We demonstrate this procedure in what follows. In

Fig. 3a, we have plotted a hypothetical inhomoge-

neous rate equation with n1 = 1, n2 = 5 and xs =

0.77xeq. The full line shows the correct plot to the

rate equation, with x0 = xeq, with two sections: one

with slope n1 = 1 and the other with steeper slope

n2 = 5 for x>xs.

What could have been found by an experimentalist

is shown by curves 0* and 0, which have been

obtained by plotting the experimental data using

x0 = 0.97xeq (curve 0*) or x0 = 0.77xeq (curve 0). From

curve 0, first estimations of n and k can be obtained

drawing the tangent to the curve at the lowest values

of xt available. These values are used as n and k in Eq.

(10) for x < xs to obtain xeq
(1) shown by Fig. 4a, curve 1.

Clearly, xeq
(1) is a function of xt and does not fulfil the

requirement of independence of xt. We now use the

largest value of xeq
(1) = 0.9xeq, at xt = 0.77xeq (curve 1 in

Fig. 4a) as a new value xeq
(1) to plot the rate equation

with (1� x/xeq
(1)). The result is given by the dotted

curve 1 in Fig. 3b. Using this curve to estimate n and k

and iteratively applying Eq. (10), we obtain a second

iteration xeq
(2) which is shown by curve 2 in Fig. 3b.

Repeating this procedure, we find iteratively curves 2,

3, 4 in Fig. 3b, and corresponding curves 2, 3, and 4

for xeq
(n) in Fig. 4a. Although the initial guess of x0

deviates by 23% from the true value, our procedure

reveals the true value of xeq = 1 after only four

iterations, and the resulting curve 5 fits perfectly to

the true plot of the rate equation. Note that by

employing this procedure we have also obtained the

values k and n iteratively.

We now turn to the remaining points in Fig. 3a

covering the region with order n2, i.e. x>0.77xeq. The

last point of the true curve in Fig. 3a is at x= 0.97xeq.

We could take this as a first approximation for x0.

Curve 0* in Fig. 3a shows the plot with x0 = 0.97xeq.

Estimating n and k from the experimental data close

to xs and using the above value of x0 = 0.97xeq to

estimate xeq
(1*), we find curve 1* depicted in Fig. 4b.

There is only a slight dependence of xeq
(1*) on xt, such

that xeq
(1*) = xeqF 0.005xeq. Plotting the data of curve

0* with this value of x0 yields a curve which coincides

with the curve of the true rate equation. These

examples show that the iterative fitting procedure is
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a suitable tool to recover the rate equation and the

values of the corresponding parameters. If minerals

show rate equations according to Eqs. (1)–(5), our

method enables us to find the true value of ceq or Kc

from first crude estimations of about 10% accuracy. It

should be pointed out here that ceq obtained from the

region with n1, and ceq obtained from the region with

n2 are determined independently. Only if these two

values coincide within the limits of error the fitting

procedure can be regarded as reliable, and describes

correctly all experimental values far and close to

equilibrium.

3. Application to limestone

In the following, we will discuss the application of

the iterative procedure to real experimental data

obtained from calcium carbonate minerals. Fig. 5

shows a plot of such experimental data obtained in

our laboratory by employing a free drift batch experi-

ment on Jura limestone under conditions closed with

respect to CO2 in an aqueous solution with an initial

CO2-pressure of 0.05 atm at a temperature of T= 10

jC. Dissolution for pure limestone, such as used

proceeds stoichiometrically and carbonate concentra-

tions can be obtained by use of PHREEQC (Parkhurst

and Appelo, 1999) from initial pCO2
and Ca-concen-

tration in the solution. Details of such an experimental

set-up are reported by Eisenlohr et al. (1999). Plotting

the experimental points, the value c0 = 2.3 mmol/l was

used. The resulting curve shows a switch from order

n1 = 1.1 to n2 = 3.4. To verify this as a valid rate

equation, we use the method described in the previous

chapter.

We first investigate the n1-part of the data. Plotting

this data using c0 = 1.82 mmol/l one gets curve 0.

Fig. 5. Dissolution rates of limestone: The points depict the

experimental data plotted versus the correct ceq = 2.30 mmol/l.

Plotting with ceq
(0) = 1.82 mmol/l would put these points on curve 0.

The numbers on the upper left corner depict the values of ceq
(i). The

corresponding curves are plots using the respective values. Curve 3

fits to the correct plot with ceq
(3) = 2.29 mmol/l. Using an initial

c0* = 2.24 mmol/l would put the experimental points to curve 0*.

The values of ceq
(i)* on the lower right corner depict the values of

ceq
(i)* from the iterative procedure. Curve 4* coincides with the

correct plot. Note that curves 1, 2, and 3 have been extended beyond

the region of the available data points for better visualisation.

Fig. 4. (a) Values of xeq
(i) as a function of xt for the iterative procedure

to recover the true plot from curve 0 of Fig. 3b. (b) The first iterative

step to recover true xeq from curve 0* in Fig. 3a. After only one

iteration, true xeq is found with an accuracy of F 0.5%. Plotting

curve 0* with this value gives satisfactory agreement with the

correct plot. Note that we plot xt/xeq in the abscissa.
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From this curve, we now recover the true rate equa-

tion. The iterative procedure using this data points

yields as a first approximation the ceq
(1)-curve 1 in Fig.

6a. Using the maximal value of ceq
(1) as a first approx-

imation, we obtain curve 1 in Fig. 5. Further iterations

yield curves 2 and 3 in Figs. 5 and 6a, respectively.

The curves show some ‘‘noise’’ since experimental

data has been used. The final rate equation from curve

3 yields n1 = 1.1, k1 = 2.1�10� 7 mmol cm� 2 s� 1

and ceq = 2.29F 0.006 mmol/l. (Note that curves 1,2,

and 3 have been extended beyond the region of the

available data points for better visualisation.)

We now turn to the part with higher slope n2. The

experiment has been terminated at cend = 2.24 mmol/l.

Starting the iterative procedure with this value, one

obtains curves 0*, and by iteration the curves 1*, 2*,

3* and 4* in Figs. 5 and 6b, respectively. From this,

we find ceq
(4) = 2.315F 0.005 mmol/l. As one has to

expect, both values of ceq obtained from the two

regions are close together. Using a final average value

ceq = 2.30F 0.01 mmol/l, one obtains a reliable rate

equation. From this, we find n1 = 1.1, n2 = 3.4, k1 =

2.1�10� 7 mmol cm� 2 s� 1, k2 = 1.1�10� 5 mmol

cm� 2 s� 1. The rate equation with these values is also

plotted by the curves 3 and 4* in Fig. 5. It fits well to

the experimental data, except in a region close to the

switch concentration. Therefore, within the limit of

accuracy, the procedure assures that a switch of the

kinetic order is correct. This switch is characteristic

for natural calcite-minerals and has also been ob-

served in experiments with natural gypsum (Jeschke

et al., 2001).

Batch experiments on synthetic calcite, however,

reveal an almost linear rate equation, according to

theoretical predictions (Dreybrodt et al., 1996; Svens-

son and Dreybrodt, 1992). We have also evaluated

this experimental data. Fig. 7 shows the experimental

points of a free drift batch experiment plotted with

c0 = 2.13 mmol/l. As in the previous case, we assume

that the experiment has been terminated at lower

concentration of ceq
(0) = 1.72 mmol/l. A plot using this

value is depicted by curve 0 in Fig. 7a. Now again

using the iterative procedure, we obtain from curve 0

in Fig. 7a and curve 1 in Fig. 7b which depicts a new

ceq
(1). After seven iterations, we obtain curve 7 with

ceq
(7) = 2.13 mmol/l in Fig. 7b from which we obtained

curve 7 in Fig. 7a. It fits well to the experimental

points and reveals a rate equation with n = 0.8 and

k= 2.5� 10� 7 mmol cm� 2 s� 1. This rate equation is

in close agreement to theoretical calculations, which

have considered the empirical equations of Plummer

et al. (1978) and the slow conversion of CO2 into H+

Fig. 6. (a) Values of ceq
i for the n1-part of Fig. 5 as a function of c. (b) Values of ceq

(i)* for the n2-part of Fig. 5 as a function of c.
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and HCO3
� (Dreybrodt et al., 1996; Buhmann and

Dreybrodt, 1985a,b). It should be noted at this point

that the equilibrium value ceq = 2.13 mmol/l is in close

agreement to calculations performed with PHREEQC

(Parkhurst and Appelo, 1999). For natural Jura lime-

stone, a somewhat higher value ceq = 2.30 mmol/l is

obtained. This is due to a concentration of 3.1 mol%

of Mg in the solid (Eisenlohr et al., 1999) which

changes the solubility product (Appelo and Postma,

1999).

It should be pointed out that gypsum also exhibits

inhomogeneous nonlinear rate equations. We revised

the data given by Jeschke et al. (2001) by use of our

method and have found them to be valid. The results

are not presented here because they are analogous to

those of limestone.

Fig. 7. Dissolution rates of synthetic calcite: (a) Iterative procedure. Meaning of ceq
(i) and curves 0 to 7 is analogous to Figs. 5 and 6. (b) The

values of ceq
(i) used in (a) as function of c.
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4. Application to anhydrite

Anhydrite (CaSO4) plays an important role in the

evolution of gypsum karst (Klimchouk et al., 1996).

Furthermore, dissolution of anhydrite contributes to

geohazard in the vicinity of hydraulic structures, such

as damsites, or upon extraction of groundwater

(James, 1992; Cooper, 1986). The knowledge of its

dissolution kinetics is therefore highly relevant.

The equilibrium concentration of Ca with respect

to anhydrite is 22.9 mmol/l at 10 jC, higher than that

with respect to gypsum at 14.44 mmol/l. These values

have been found employing the program PHREEQC

(Parkhurst and Appelo, 1999) with the database

PHREEQC.dat. Therefore, reliable measurements of

the dissolution kinetics of anhydrite can only be

performed for concentrations below saturation with

respect to gypsum. For concentrations above this

value gypsum precipitation is likely. Although in free

drift batch experiments higher concentrations are

obtained until precipitation starts, one cannot be sure

that gypsum does not precipitate from the supersatu-

rated solution. If this is the case, the dissolution rates

for anhydrite measured in such an experiment are no

longer reliable. Therefore, only a limited experimental

data set with c < 0.62ceq
anh is available, from which one

has to recover the rate equation. This may be the

reason, why up to now little is known on the dis-

solution kinetics of anhydrite.

We have performed free drift batch experiments on

anhydrite at 10 jC, using anhydrite particles of about

565 Am diameter. The anhydrite samples contained

0.85 wt.% MgO and some trace elements below 0.1

wt.%. In a free drift experiment for such pure minerals

dissolution is stoichiometrical and SO4 can be calcu-

lated from the Ca-concentration in the solution.

Details of the experimental set-up and the methods

are given elsewhere (Jeschke et al., 2001). The exper-

imental conditions are such that dissolution is con-

trolled by surface reactions and that transport control

does not limit the rates. Details will be reported

elsewhere. In this context, we only give the basic

results. The particles were obtained from a piece of

natural anhydrite taken from a bore core of anhydrite

rock from Sangershausen, Harz, Germany. The sam-

ple was analysed by X-ray fluorescence. It contained

0.85 wt.% Mg and 1500 ppm Sr. The sample was

heated at 300 jC until no further weight loss occurred.

Maximal weight loss detected was about 1xof the

weight, showing that the sample is pure anhydrite.

Fig. 8a shows the time dependence of the calcium

concentration for a free drift batch experiment. After a

steep rise, the concentration increases slowly reaching

a value well above the equilibrium concentration of

gypsum and then decreases as gypsum is precipitated.

Finally when anhydrite dissolution and precipitation

of gypsum balance a stationary value will be obtained.

Only the data below ceq with respect to gypsum is

Fig. 8. Dissolution of anhydrite: (a) Calcium concentration in

dependence on time (upper scale) obtained in a free drift batch

experiment. The full line depicts the entire evolution of Ca-

concentration of anhydrite. Precipitation of gypsum is seen from the

declining concentration. The open circles show the experimental

data points obtained for concentrations below the equilibrium

concentration with respect to gypsum during the first 30 h (lower

time scale). (b) Rates as a function of the calcium concentration

obtained from the data points of (a).
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reliable to obtain dissolution rates. From this curve,

the rates are calculated by

R ¼ V

A

dc

dt
ð11Þ

where V is the volume of the solution and A the

surface area of the mineral it has been estimated from

the geometry of the particles. Fig. 8b shows the rates

as obtained by Eq. (11) as a function of concentration.

We have also performed experiments on anhydrite by

use of the rotating disk set up, as described by Jeschke

et al. (2001). Rates obtained from such experiments

by using the geometric area of the disk, compare

reasonably well to those obtained from the batch

experiment within 40%. This justifies the use of the

geometrical surface area in the batch experiments. Fig.

9a, curve 0, shows a logarithmic plot of the exper-

imental rate data for concentrations of Ca below 14.44

mmol/l plotted against c0 = 22.0 mmol/l. Starting with

this value, we employ the iteration procedure. Fig. 9b

depicts the curves of ceq
(i), i = 1� 4. After four itera-

tions, ceq
(4) becomes almost independent on c. Using

this value, ceq
(4) = 23.5F 0.1 mmol/l, one finds curve 4

in Fig. 9a, where also the experimental data points are

plotted. Therefore, we conclude that in the region

where experimental data is available a nonlinear rate

equation is valid, with n = 4.5F 0.2 and k = 5.0F
1�10� 6 mmol cm � 2 s� 1. It should be pointed

out that by simply using logarithmic plots it would

not be possible to decide whether curve 0 or curve 4 is

correct, because due to the incomplete data set both

plot as straight lines in that regions. As a further

confirmation of our method, we have measured dis-

solution rates of anhydrite for T= 5 jC. Due to the

lower temperature, this solution has a lower equili-

brium concentration of 21.96 mmol/l, calculated with

PHREEQC. From the experimental data, we find a

rate equation with ceq = 21.4F 0.2 mmol/l, k = 3.2F
0.8� 10� 6 mmol cm � 2 s � 1 and n = 4.8F 0.2.

Details about the dissolution kinetics of anhydrite in

dependence on temperature and concentration of

sodium chloride will be presented in a separate paper.

Just one comment should be given. Our findings

are in contrast to the results of James and Lupton

(1978) and James (1992) who reported a second-order

rate equation (n = 2). One has to consider, however,

that the experimental set-up employed in their work

does not provide surface controlled rates. Instead, the

experimental data reveal that transport control is

involved. In such a case of mixed kinetics one cannot

find, without further information, the surface con-

trolled rate equation (Jeschke et al., 2001). We have

calculated the effective rates using the surface-con-

trolled rate equation for anhydrite as described above

and a linear transport equation Rt = kt(1� c/ceq). If one

assumes kt = 0.37ks, the effective rates show a second-

order rate equation, fitting well to the experimental

data of James and Lupton. This reconciles the appa-

rent contradiction.

Our experimental data give also some hints on the

mechanism of the anhydrite-gypsum conversion. The

Fig. 9. (a) Iterative procedure to find the rate equation for anhydrite

from experimental data of the free drift batch experiment. (b) The

iterative values of ceq
(i) for the anhydrite data from (a). The final

equilibrium value ceq
(4) = 23.5F 0.1 mmol/l is close to the theoretical

value.
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initial dissolution rates of anhydrite measured in this

experiment are by about two orders of magnitude

smaller than those of gypsum measured in the same

experimental set up (Jeschke et al., 2001). If anhydrite

would convert to gypsum by uptake of H2O-mole-

cules into the lattice then the gypsum originating at

the surface of the particles would be removed imme-

diately by dissolution. Thus, at lower concentrations,

one would expect a sum of two rates: (a) dissolution

of anhydrite and (b) a constant additional dissolution

rate of the gypsum converted from anhydrite by direct

uptake of water molecules. It is extremely unlikely

that this complicated mechanism can be described by

a single rate equation using solely the correct value of

ceq with respect to anhydrite. Anhydrite-gypsum con-

version by direct uptake of water at least must be very

slow. Under our experimental conditions, anhydrite-

gypsum conversion is driven by dissolution of anhy-

drite until a supersaturated solution with respect to

gypsum is reached, and gypsum is precipitated sub-

sequently.

5. Conclusion

Dissolution rates of some minerals in aqueous solu-

tions obey either a linear rate equation R = k1(1� c/ceq)

or a nonlinear one, R = kn(1� c/ceq)
n. To find k and n

reliably from a double logarithmic plot of R against

(1� c/ceq), the value of ceq must be known to a high

degree of accuracy. Small deviations from true ceq
could mimic a change of the order n in the empirical

rate equation. In most experiments, the data close to

equilibrium is incomplete such that ceq cannot be

determined with sufficient accuracy. We have pre-

sented a method to find reliable values of ceq, k, and

n from such incomplete data sets.

Some minerals, however, close to equilibrium,

exhibit a switch from linear to nonlinear kinetics,

e.g. limestone and gypsum rocks. To establish such

rate equations, we suggest a fitting procedure to the

experimental data of free drift dissolution experi-

ments, from which k, n, and ceq can be obtained.

This is of high significance since in most natural

conditions, e.g. natural minerals, due to impurities in

the solid and aqueous phases, ceq deviates slightly

from what one obtains by using thermodynamical

data of the idealized pure CaCO3–H2O–CO2 system.

Therefore, especially close to equilibrium the rate

equations must be determined with extreme care.

Using values of ceq deviating only slightly from the

true values yields unreliable results, especially close

to equilibrium where many geochemical processes are

operative.

This work here does not aim to elucidate the

physics and chemistry of the detachment mechanism

of ions from the mineral, but has the purpose to obtain

a reliable tool to find an empirical rate equation,

which depends on easily accessible parameters, such

as Ca-concentration in the solution. This is of rele-

vance as different limestones show values of n in the

range between 3 and 8 (Eisenlohr et al., 1999).

Therefore, for geological purposes at specific sites,

measurements of rate equations of the rocks are of

importance, and a reliable tool to evaluate the results

is needed.

Simple empirical rate equations are of high rele-

vance for modelling dissolution of limestone or gyp-

sum to understand the evolution of karst aquifers

under natural conditions, and under their changes by

the construction of damsites in terrains of these

soluble rocks (James, 1992; Dreybrodt, 1996; Drey-

brodt et al., 2002).

Furthermore, natural minerals differ from synthetic

pure compounds by incorporation of trace metals and

phosphate which give rise to inhibition of dissolution.

The reaction order n in these materials is an empirical

parameter and does not have a clear-cut interpretation

since many different mechanisms contribute. The rate

equations discussed here have been obtained in free

drift experiments and therefore can be applied to

many geological situations.

On the other hand, the empirical rate equations

can be converted to functions depending on the

relevant ion activity products. In all experimental

cases discussed here, it is straightforward to calculate

the ionic activity product by use of equilibrium

programs, such as PHREEQC, from the Ca-concen-

tration for gypsum and anhydrite. For calcite, addi-

tional knowledge of pCO2
of the solution is necessary.

By this way, measurements of rates in their depend-

ence of Ca-concentration may help to find rate laws,

which reflect the mechanistic principles of dissolu-

tion and its inhibition in natural materials close to

equilibrium. This could be a perspective for further

work.
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The inhibiting action of intrinsic impurities in natural cal-

cium carbonate minerals to their dissolution kinetics in aque-

ous H2O–CO2 solutions. Geochim. Cosmochim. Acta 63,

989–1002.

Hales, B., Emerson, S., 1997. Evidence in support of first-order

dissolution kinetics of calcite in seawater. Earth Planet. Sci. Lett.

148, 317–327.

James, A.N., 1992. Soluble Materials in Civil Engineering. Ellis

Horwood, Chichester.

James, A.N., Lupton, A.R.R., 1978. Gypsum and anhydrite in foun-

dations of hydraulic systems. Geotechnique 28, 249–272.

Jeschke, A.A., Vosbeck, K., Dreybrodt, W., 2001. Surface con-

trolled dissolution rates of gypsum in aqueous solutions exhibit

nonlinear dissolution kinetics. Geochim. Cosmochim. Acta 65,

27–34.

Keir, R.S., 1980. The dissolution kinetics of biogenic calcium car-

bonates in seawater. Geochim. Cosmochim. Acta 44, 241–252.

Klimchouk, A., Lowe, D., Cooper, A., Sauro, U. (Eds.), 1996. Int. J.

Speleol. 25, Physical Speleology, special issue: Gypsum Karst

of the World.

Lasaga, A.C., 1998. Kinetic Theory in the Earth Sciences. Princeton

Ser. in Geochem., Princeton Univ. Press, Princeton.

Palmer, A.N., 1991. The origin and morphology of limestone caves.

Geol. Soc. Amer. Bull. 103, 1–12.

Parkhurst, D.L., Appelo, C.A.J., 1999. User’s guide to PHREEQC

(version 2)—a computer program for speciation, reaction-path,

advective transport and inverse geochemical calculations. U.S.

Geol. Survey Water Resources Investigation. Report. 99-4259,

Denver, Colorado.

Plummer, L.N., Wigley, T.M.L., 1976. The dissolution of calcite in

CO2 saturated solutions at 25 jC and 1 atmosphere total pres-

sure. Geochim. Cosmochim. Acta 40, 191–202.

Plummer, L.N., Wigley, T.M.L., Parkhurst, D.L., 1978. The kinetics

of calcite dissolution in CO2–water systems at 5j to 60 jC and

0.0 to 1.0 atm CO2. Am. J. Sci. 278, 179–216.

Svensson, U., Dreybrodt, W., 1992. Dissolution kinetics of natural

calcite minerals in CO2–water systems approaching calcite

equilibrium. Chem. Geol. 100, 129–145.

A.A. Jeschke, W. Dreybrodt / Chemical Geology 192 (2002) 183–194194


	Introduction
	Theory and method
	Application to limestone
	Application to anhydrite
	Conclusion
	Acknowledgements
	References

