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Summary

Melting of a spinel lherzolite with a spinel clinopyroxenite layer was investigated
experimentally from 3.5 to 20 kbar and from 1200 to 1450 °C. The melt fraction in the
spinel pyroxenite layer increases rapidly, and clinopyroxene disappears leaving olivine-
spinel residua according to the reaction Cpx+ Sp=OIl+Liq. The melt in the
pyroxenite layer reacts with the surrounding lherzolite resulting in the formation of an
essentially monomineral (olivine) zone with interstitial melt near the former pyroxenite.
Melt compositions in the central melt pool are similar to those produced by other
authors in melting experiments with peridotites similar to the bulk compositions of
our samples. It is suggested that similar small-scale mantle heterogeneities (i.e. thin
pyroxenite layers in lherzolite) may exert significant influence on mantle rheology and
melt segregation, whereas melt compositions are not strongly affected and controlled
by the dominating lherzolite lithology.

Introduction

Considerable experimental work has been dedicated to equilibrium melting of
mantle peridotite and generation of primary basalt magmas (lto and Kennedy,
1967; Jaques and Green, 1980; Stolper, 1980; Sen, 1982; Takahashi and Kushiro,
1983; Fujii and Scarfe, 1985; Falloon and Green, 1987, 1988). Recent studies
demonstrated the complex nature of initial magmas (e.g. Langmuir et al., 1977,
1992; O’Hara, 1985; Plank and Langmuir, 1992) including polybaric melting and
mixing of melts from different mantle zones and lithologies. There is increasing
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evidence on the heterogeneity on various scales in the source regions of mid-ocean
ridge and oceanic island basalt. Peridotite xenoliths and massifs often contain veins
and zones of pyroxene-rich rocks including pyroxenite and eclogite (Irving, 1980;
Sautter and Fabries, 1990; Jackson and Wright, 1970; Kornprobst, 1969; Bodiner
et al., 1987; Kumar et al., 1996). These veins are usually 1-10cm, occasionally up
to 2m thick. They could be formed either by recycling and stretching of oceanic
crust (Allegre and Turcotte, 1986; Kellogg and Turcotte, 1990) or crystal segregation
along magma conduits in the mantle (Kornprobst, 1969; Irving, 1980; Bodiner et al.,
1987; Kumar et al., 1996). Smaller scale mantle heterogeneity includes millimetre-
sized patches and lenses of spinel or plagioclase pyroxenites, which might represent
crystallised melts (e.g. Jousselin and Mainprice, 1998). Heterogeneities on a similar
scale are found in sheared mantle xenoliths, where they could form below the
mantle solidus in response to deformation (e.g. Witt and Seck, 1987).

Melting of such heterogeneous material will differ from that of homogeneous
lherzolite, and certain features of oceanic magmatism can be explained in this way.
Hirschmann and Stolper (1996) discussed the possible role of pyroxenite zones
(veins) in mantle lherzolite for the genesis of mid-ocean ridge basalts. Melting of
an inhomogeneous mantle was also considered to be crucial for the origin of
Hawaiian magmas (e.g. Sen, 1988; Yang et al., 1998). The solidus of clinopyroxenite
or eclogite may be lower than that of lherzolite (pyrolite) (Campbell, 1998),
whereby the experimental evidence on pyroxenite melting is limited and the de-
pendency on clinopyroxene composition is not adequately known. Another impor-
tant process is the interactions of the melt formed in the pyroxene-rich zones with
the enclosing lherzolitic or harzburgitic material. In order to study this process in
more detail we undertook experimental melting of layered lherzolite/spinel
pyroxenite samples at pressures from 3.5 to 20 kbar.

Experimental methods

Sample configuration (Fig. 1) was similar to that used in the basalt-peridotite
sandwich experiments (e.g. Stolper, 1980). Samples consisted of a clinopyroxene-
spinel disk, 2mm in diameter and 0.5 mm high, surrounded by an olivine-
orthopyroxene-clinopyroxene-spinel matrix. The disk and matrix were pressed from

Fig. 1. Schematic drawing of the experimen-
tal setup
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powdered (<10 pm grain size) mixtures of natural mineral separates. The bulk
composition of samples corresponded to the compositions of the lherzolites studied.

The sample was placed in a graphite container, 4 mm o.d. and 4.5 mm high,
loaded in a platinum tube, 4.2 mm o.d., and stored at 120 °C for at least 24 hours
before welding. The capsule was pressed (peridotite sample was approximately
3mm long after this procedure) and placed into a CaF,-based graphite furnace
assembly (Bulatov, 1990).

The graphite-Pt capsule assembly keeps oxygen fugacity near the C—CO-CO,
(CCO) buffer, i.e. within the wistite stability field (Thompson and Kushiro, 1972)
at 1200-1500°C and 1.0-2.0 GPa in the presence of a fluid phase. Since no gas
phase occurred in our experiments, oxygen fugacity must be lower than C—CO-CO,
(Holloway et al., 1992). The absence of a metal phase (Fe—Ni alloy) constrains
oxygen fugacity to be not much lower than the iron-wiistite buffer.

Although the experiments were nominally anhydrous, it is possible that a
small amount of H,O (0.5-1.0wt.%) was present in the melts (cf. Fallon and
Danyushevsky, 2000). This is suggested by systematically higher temperatures
calculated for olivine-liquid equilibrium using empirical relationships (e.g. Ford
et al., 1983) compared with the experimental temperatures. The discrepancy is
about 20-30°C and increases slightly with decreasing melt fraction.

The experiments were carried out in the Laboratory of Experimental Min-
eralogy of the Institute of Lithosphere, Russian Academy of Sciences (Moscow), in
a half-inch piston-cylinder apparatus, using hot “piston-in”’ technique. No friction
correction was applied in the experiments at 10, 15, and 20 kbar. Pressures of 3.5
and 7.5kbar corresponded to nominal pressures of 5 and 8kbar, respectively,
according to Bulatov (1990). Temperature was measured by a Pt;oRh3zo-PtosRhg
thermocouple (0.3 mm in diameter) without any emf pressure correction. Tem-
peratures are estimated to be accurate within & 15° including uncertainties resulting
from the temperature gradient and heater deformation, which differed from run to
run (Bulatov, 1990).

After quenching the charges were sectioned lengthwise with a diamond saw.
Thin sections were prepared for optical microprobe studies. Microprobe analyses
were carried out in the Geological Department of Gutenberg University (Mainz)
with a “Camebax’ electron probe equipped with a “Kevex” energy-dispersive
system. Analytical procedures followed those of Reed and Ware (1975). Accel-
erating voltage was 20kV, sample current 20 nA and counting time 100 sec. The
glasses were scanned with a focused beam over a square usually of 50 pm x 50 pm
or 25 um x 25 pm and rarely 12 pm X 12 um to prevent loss of sodium. Minerals
were analysed with a focused beam.

Microprobe analyses (5—6 points) of the glass were usually done more than
30 um from crystalline phases to avoid quench effects (Nielsen et al., 1992). The
variation of the measurements was within 1% rel. for SiO,, 2—-3% rel. for Al,O3,
MgO, FeO, and CaO and 0.1 wt.% for Na,O, Cr,03, and TiO,, in the range of the
analytical error. The larger uncertainties in Na,O, Cr,O3 and TiO, are due to their
low absolute concentrations. The totals of glass and mineral analyses varied within
98.5-100.5 wt.%.

Complete equilibrium between a central layer and peridotite matrix in
sandwich or diamond trap experiments is not attained as indicated by mineral
zoning (Takahashi and Kushiro, 1983; Falloon and Green, 1987). However, local
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equilibrium, i.e. melt saturation with respect to the outer zones of peridotite
minerals can be attained within 24 hrs (Takahashi and Kushiro, 1983; Fujii and
Scarfe, 1985; Falloon and Green, 1987; Johnson and Kushiro, 1992; Hirose and
Kushiro, 1993; Baker and Stolper, 1994). Run times were variable depending on
temperature (Table 1) but at maximum possible length allowed by thermocouple
degradation. We also performed time studies at 7.5 kbar and 1290-1340°C with
duration ranging from 11 to 63 hrs (Table 2). Central glass layer and olivine
compositions do not change anymore after 45 hrs (1290, 1300 °C) or 11 hrs (1325
and 1340°C).

Table 1. Experimental conditions and run products

Run P, kbar T°C Duration, hrs Run products
Sample 79/ 1 (Series A)

A-20 3.5 1200 70 GI*,01,0px,Cpx,P1,Sp

A-32 3.5 1215 70 GI*,01,Sp,0px,Cpx

A-21 3.5 1225 68 G1,01,Sp,Opx

A-33 3.5 1240 68 G1,01,Sp,Opx

A-22 3.5 1250 68 Gl,01,Sp,Opx

A-23 3.5 1275 47 Gl,01,Sp,Opx

A-24 3.5 1300 47 GL,01,Sp,0px

A-43 3.5 1325 48 Gl1,01,Sp

A-47 7.5 1250 69 GI*,01,Cpx,Sp,0px

A-49 7.5 1265 71 Gl1,0L,Sp,Opx

A-27 7.5 1290 68 Gl,01,Sp,Opx

A-28 7.5 1300 45 GL,01,Sp,0px

A-29 7.5 1325 24 G1,01,Sp,Opx

A-45 7.5 1340 46 G1,01,Sp,Opx

A-30 7.5 1350 24 G1,01,Sp,Opx

A-44 7.5 1385 22 Gl1,01,Sp

A-31 7.5 1400 24 GL,0l1

A-6 10 1260 66 GI*,01,0px,Cpx,Sp

A-39 10 1275 67 G1,01,0px,Cpx,Sp

A-7 10 1290 66 G1,01,0px,Cpx,Sp

A-8 10 1315 68 Gl1,01,0px,Sp

A-9 10 1325 22 Gl1,01,0px,Sp

A-10 10 1340 24 GL,01,0px,Sp

A-11 10 1375 22 Gl1,01,0px,Sp

A-48 10 1420 22 G1,01,0px

A-12 15 1325 43 GI1*,01,0px,Cpx,Sp

A-13 15 1350 24 GI1*,01,0px,Cpx,Sp

A-14 15 1375 24 GL,01,0px,Sp

A-15 15 1400 23 G1,01,0px,Sp

A-16 15 1425 22 G1,01,0px

A-51 15 1450 22 G1,01,0px

A-17 20 1415 22 GI*,01,0px,Cpx,Sp

A-18 20 1440 22 Gl1,01,Sp,Opx

A-19 20 1465 22 G1,01,0px

(continued)
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Table 1 (continued)

Run P, kbar T°C Duration, hrs Run products
Sample ShT-1 (Series B)

B-37 7.5 1260 68 GI*,01,Cpx,Sp,0Opx

B-31 7.5 1280 68 G1,01,Sp,Opx

B-8 7.5 1300 48 Gl,01,Sp,Opx

B-9 7.5 1310 46 Gl,01,Sp,Opx

B-32 7.5 1325 46 Gl,01,Sp,Opx

B-11 7.5 1350 22 Gl1,01

B-15 10 1285 48 GI*,01,Cpx,Sp,0px

B-38 10 1300 46 GI*,01,Cpx,Sp,0px

B-34 10 1330 46 Gl,01,Sp,Opx

B-17 10 1350 24 GL,01,Sp,0px

B-36 10 1375 23 Gl1,01,0px

B-21 15 1350 23 GI*,01,Cpx,Sp,0Opx

B-22 15 1375 24 GI*,01,Cpx,Sp,0px

B-23 15 1400 23 G1,01,0px

Phase abbreviation: GI glass, Ol olivine, Sp spinel, P! plagioclase, Opx orthopyroxene, Cpx
clinopyroxene, GI* interstitial glass

Table 2. Comparison of melt and mineral compositions in kinetic experiments with varying
duration at 7.5 kbar

T°C 1290 1300 1325 1340
Duration 46 68 45 67 11 24 11 46
hrs.
Glass composition

SiO, 50.8 50.3 50.5 50.7 50.6 50.7 51.1 50.7
TiO, 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3
Al,O3 15.2 15.4 15 14.7 14 14.2 13.3 13.5
Cr,03 0.3 0.3 0.4 0.3 0.4 0.4 0.5 0.5
FeO 7.3 7.4 7.5 7.7 8 8 8.3 8.3
MgO 12.7 12.9 13.2 13.2 14.8 14.4 15.3 15.3
CaO 11.9 11.8 11.6 11.7 10.6 10.7 10.1 10.2
Na,O 1.4 1.5 1.4 1.3 1.2 1.3 1.1 1.2
mg 0.756 0.757 0.758 0.754 0.767 0.763 0.767 0.767
mgoi 0.907 0.908 0.908 0.905 0.907 0.909 0.91 0.91

Spinel compositions
SiO, 0.25 0.15 0.13 0 0 0 0 0
TiO, 0.3 0.21 0.14 0.19 0.15 0.16 0.23 0
Al,O3 32.74 32.43 31.54 30.35 29.53 29.75 24.37 25.81
Cr,03 37.56 38.65 40 41.23 42.05 41.75 47.73 46.61
FeO 10.19 10.16 10.11 10.32 10.2 10.23 10.44 10.51
MgO 17.92 17.85 17.8 17.43 17.69 17.93 16.72 16.74
CaO 0.27 0.17 0 0.15 0.13 0 0.2 0
mg 0.758 0.758 0.758 0.751 0.755 0.757 0.74 0.74

mg Mg/(Mg + Fe). All analyses are recalculated to a total of 100 wt.%
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Starting materials

Minerals were separated from two spinel lherzolite xenoliths, Samples 79/1
(Series A experiments) and ShT-1 (Series B experiments) (Table 3), which were
collected by D. I. Ionov and V. I. Kovalenko from the eruptive centre of Shavaryn-
Tsaram Volcano (Tariat Depression, Mongolia). The compositions of the spinel
lherzolites correspond to slightly depleted upper mantle material (Press et al.,
1986; Igneous Rocks, 1988). Minerals were hand-picked under a binocular
microscope and washed in 2N HCI.

Table 3. Compositions of peridotites and their minerals (wt.%) used as starting materials in
the experiments

0] Opx Cpx Sp Lherz*  Pyrox™  Bulk***
Series A, spinel lherzolite Sample 79/ 1

SiO, 40.45 54.82 52.79 - 44.53 43.29 44.45
TiO, - - 0.47 0.15 0.04 0.41 0.07
Al,O3 - 4.88 7.13 57.88 3.08 16.26 4.08
Cr,03 - 0.1 0.63 9.33 0.27 2.2 0.41
FeO 10.5 6.58 3.15 11.12 8.82 4.58 8.5

MnO 0.14 0.19 - - 0.14 - 0.13
NiO 0.27 - - 0.37 0.18 0.07 0.17
MgO 48.64 32.48 14.75 21.15 40.81 15.9 38.9

CaO - 0.7 19.28 - 1.9 15.81 2.97
Na,O - 0.25 1.8 - 0.23 1.48 0.32

Series B, spinel lherzolite Sample ShT-1

SiO, 40.27 55.37 52.97 - 44.9 45.77 44.96
TiO, - - 0.44 - 0.06 0.38 0.08
Al,O5 - 4.09 6.9 60.1 3.21 14.13 4.05
Cr,05 - 0.18 0.51 7.7 0.27 1.49 0.37
FeO 10.72 6.86 2.74 10.65 8.69 3.82 8.31
MnO 0.21 0.24 - - 0.18 - 0.17
NiO 0.34 - - 0.43 0.21 0.06 0.2

MgO 48.46 32.6 14.13 21.12 39.33 15.08 37.47
CaO - 0.45 20.28 - 2.83 17.52 3.96
Na,O - 0.21 2.03 - 0.32 1.75 0.43

Minerals were analyzed on an electron microprobe in Gutenberg University (Mainz).
Compositions are recalculated to totals of 100 wt.%

*Composition of Ol + Opx 4 Cpx + Sp matrix calculated from mineral compositions and
proportions:

Series A: 0.62701 4 0.2640px + 0.089Cpx + 0.02Sp;

Series B: 0.59601 + 0.2490px + 0.134Cpx + 0.02Sp

**Composition of Cpx + Sp aggregate in central disks calculated from mineral composi-
tions and proportions:

Series A: 0.82Cpx + 0.18Sp;

Series B: 0.864Cpx + 0.136Sp

**Bulk compositions of samples calculated from compositions and weight proportions of
lherzolite and pyroxenite parts
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Lherzolite 79/1 is slightly more depleted than ShT-1 corresponding to lower
modal Cpx and lower CaO, Na,O, SiO, and higher MgO and FeO in the bulk.
Chemical compositions of the matrix, the Cpx-Sp layer, and the bulk of the ex-
perimental samples are calculated from the proportions of minerals used (Table 3).
The bulk sample (lherzolite matrix + pyroxenite) is similar to the lherzolite
compositions used in experiments by Hirose and Kushiro (1993), Baker and Stolper
(1994) and Baker et al. (1995), which will be discussed later.

Experimental results

Compositions of experimentally produced glasses and mineral phases are given in
Table 4.

Melting in both series and at all pressures follows a similar pattern explained
here for Series A experiments at 10 kbar (Fig. 2).

1260°C. First evidence of melting is observed in the lherzolite matrix as
uniformly distributed thin films and pockets; the central layer contains clin-
opyroxene, spinel and newly-formed olivine and melt, distributed uniformly.

1290°C. Three zones can be distinguished — a central zone with an upper clear
glass (melt) layer and a lower layer of accumulated olivine and spinel with inter-
stitial glass. No clinopyroxene was found in this central zone. This zone is sur-
rounded by coarse-grained olivine + interstitial melt only with a thickness of
about 0.5mm (lighter part). The outermost part (matrix) consists of lherzolite
(Ol 4 Opx + Cpx) with a small amount of interstitial melt (smaller than in the
reaction zone). The boundary between the lherzolite and the olivine reaction zone
is sharp (Fig. 3).

1315°C. The layer of glass in the central zone has increased and comprises
more than 50vol.%. The lower part again consists of accumulated olivine and
spinel with interstitial melt. The olivine reaction zone is similar as before, but
clinopyroxene was not found in the outer lherzolite zone.

1325°C. The relationships are essentially the same as at 1315 °C. Melt fraction
increases in all zones.

1340°C. Deformation of the central layer is observed first at this temperature
with upper and lower boundaries becoming concave. The cumulate layer in the
central zone is dominated by spinel.

1375°C. Mineral relationships in all zones are the same as in the previous
experiments. The deformation of the central layer continues and the melt is
squeezed out into the reaction zone. Small melt pools remain and spinel traces the
former pyroxenite layer.

1420°C. Spinel is completely dissolved in the central zone. No separate melt
pools are observed and the sample is composed of a central melt 4 olivine and an
outer melt 4 olivine + orthopyroxene zone.

Composition of melts

It was not possible to analyse melts in the lherzolite matrix and in the reaction zone
near the pyroxenite layer; all melt composition data are for the large melt pools in
the central zones. The isobaric temperature dependencies of melt compositions are
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1315°C 1375°C

Fig. 2. Photomicrographs of experimental products obtained at 10 kbar and various tem-
peratures (polished thin sections, transmitted light, the scale bar is 1 mm). Note the light
dunitic halos around the central pyroxenite layer especially distinct at 1325°C

shown in Fig. 4. SiO, decreases with increasing pressure and increases with tem-
perature while contents are similar for 79/1 (Series A; more depleted) and ShT-1
(Series B; less depleted). A temperature increment of 20° corresponds to about
0.7 wt.% increase of MgO in the melt. At the same P-T conditions, the difference
in MgO contents between the melts of Series A and B is only small (less than
0.7 wt.%) and FeO at the same P-T conditions is similar. The behaviour of CaO is
more complex. Close to the solidus, CaO increases with increasing temperature
with a maximum at clinopyroxene disappearance. The maximum abundance of
CaO in both Series A and B experiments are very similar, despite the 1 wt.% CaO
difference of the starting lherzolites. After clinopyroxene disappearance, CaO de-
creases with increasing temperature and melts of Series B are richer in CaO at the
same T—P conditions. Na,O contents are highest in the incipient melts and decrease
with the increasing melt fraction. The Series B melts are richer in Na,O than those
of Series A at the same P-T conditions.
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Fig. 3. Detail of an experimental sample (run A-14, 15kbar, 1375 °C) illustrating zoning
in the peridotite near the former spinel clinopyroxenite layer with the development of a
dunitic halo. Polished thin section, transmitted light, the scale bar is 0.3 mm long

Al,O3 is lower in Series B, although alumina in the starting materials are
almost identical. All the above features may be explained by higher melt fractions
for Sample ShT-1 (Series B) at given T-P conditions. This and further differences
in the lherzolite compositions determine the differences in melt compositions.

Compositions of crystalline phases

Olivine

Significant differences in olivine compositions from various zones were only
detected in the experiment at 3.5 kbar and 1200 °C (mg# = 0.87 in the central zone
and 0.89 in the lherzolite matrix). At all other conditions olivines were chemically
uniform (mg# variations not more than 0.002). Forsterite increases with tem-
perature and decreases with increasing pressure; Series A and B are similar at the
similar P-T conditions.

Composition of olivine varies regularly with melt composition. The Kp=
(Fe/Mg)®": (Fe/Mg)"™ ranges from 0.294 to 0.348 and correlates positively with
pressure and temperature. Sobolev and Danyushevsky (1994) argued that Kp
depends primarily on temperature. Our data are approximated equally well by
linear relationships with respect to pressure Kp =0.30 4 0.0025 P(kbar) (> =0.72,
0 =0.006), which is similar to the expression given by Takahashi and Kushiro
(1983) and Ulmer (1989), and temperature Kp =0.098 4 0.00017 T(°C) (> =0.74,
0=0.006). A somewhat better fit was obtained for the combined model: Ky =
0.177 +0.0001 T(°C) + 0.0014 P(kbar) (r>=0.84, o=0.005). However, in the
latter case, there is a strong correlation between coefficients at T and P (r=—0.7)
owing to the correlation between the experimental P and T values.
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Temperature, °C

Fig. 4. Compositions of melts (wt.%) in the central melt pool as a function of temperature
for Series A and B experiments. Numerals are experimental pressures in kilobars

Orthopyroxene

Orthopyroxenes are usually zoned. The cores sometimes contain relicts similar to
the starting orthopyroxenes (Table 5, Run A-9). The difference in CaO and Al,0O;
between core and rim may be up to 1.5-2.0 wt.%, and FeO and MgO only 0.5 and
1.0 wt.%, respectively. CaO contents in the newly-formed orthopyroxene is always
higher than in the starting materials. Mg/(Mg + Fe) of orthopyroxene is similar to
that of olivine, consistent with the experiments on Mg—Fe distribution between the
minerals (e.g. von Seckendorf and O’Neill, 1993; Brey and Koehler, 1991). Kp
(Mg—Fe Opx-melt) varies from 0.24 to 0.33 and shows weak temperature
dependence.
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AlLL,O3 increases with increasing pressure and decreases with increasing
temperature in the studied T-P range. With increasing temperature, CaO increases
while clinopyroxene is present, and decreases after its disappearance. This
behaviour is expected from subsolidus experiments of Lindsley and Dixon (1976)
and Nickel and Brey (1984). Cr,0O3 increases with temperature in accord with the
results of Jaques and Green (1980), then decreases with increasing pressure.

Clinopyroxene

Clinopyroxenes are zoned to a similar extent as orthopyroxene. Differences
between clinopyroxene compositions in the pyroxenite and lherzolite layers are
random. Clinopyroxene from the central zone may be enriched or depleted in Na,O
compared to the lherzolite matrix. CaO and Al,O5; decrease with increasing tem-
perature similar to results by Jaques and Green (1980), Falloon and Green (1987)
and Baker and Stolper (1994).

The distribution coefficient of Fe and Mg between clinopyroxene and melt
increases with temperature from 0.3-0.31 at 1250 °C to about 0.35 at 1400 °C. The
alumina partition coefficient between clinopyroxene and liquid shows no sys-
tematic difference between experiments with different starting mixtures. Our re-
sults at 10kbar are similar to other experimental values. Dy, in our experiments
ranges from 0.17 to 0.23, which is slightly higher than the values from the majority
of other experimental studies (e.g. Putirka, 1999). However, the scatter in meas-
ured NayO in glass is rather high and does not allow any definite inference on
incomplete equilibration or sodium loss during microprobe analysis. Cr increases
with temperature consistent with the data of Jaques and Green (1980) and Falloon
and Green (1987).

Spinel

There is a range in spinel compositions in each charge, and spinel is zoned from
core to rim. Spinel from the lherzolite matrix is systematically higher in Cr than in
the central layer. Overall, Al,05 decreases with temperature and Cr,O3 increases
accordingly (see also Jaques and Green, 1980; Falloon and Green, 1987; Baker and
Stolper, 1994) accompanied by an increase in FeO (Engi, 1983; Dick and Bullen,
1984). At the same P, T conditions, spinel from Series A is more magnesian and
less chromian than the spinel from Series B. Near the solidus both spinels are
similar. Chromium decreases with increasing pressure.

Discussion and conclusion

The experimental results demonstrate that the character of melting in a het-
erogeneous material differs substantially from that of homogenous peridotite of the
same bulk composition. Most remarkable are the concentration of melt in the
former pyroxenite at low temperature and low average melt fraction, the formation
of a cumulate OI-Sp layer and dunite around the central layer. Effects on mantle
rheology and processes of melt extraction can be significant. For example, Maaloe
(1998) demonstrated theoretically that source regions consisting of alternating melt
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and residuum layers have permeabilities several orders of magnitude higher than
percolative regions. The present experiments provide some constraints on such
models.

Compositions of matrix peridotites and pyroxenite layers differ substantially
from compositions studied by earlier authors but bulk sample compositions are
similar to those of other studies concerned with melting of peridotite, e.g. MM-3
studied by Baker and Stolper (1994) and Baker et al. (1995) and KLLB-1 studied by
Hirose and Kushiro (1993). Figure 5 shows our melt compositions produced at
10 kbar compared with those of these authors. The results of heterogeneous and
homogeneous source melting are quite similar. This implies that the combined
result of a complex process including spinel clinopyroxenite melting and reac-
tion of liquid with lherzolite is similar to that of simple lherzolite melting.
Small differences may be readily explained by differences in starting composition.

54.0 | o Series A ® Series B

50.0 -

46.0 -

20.0 [

16.0 |

12.0

8.0 |

6.0

12.0

10.0

80 | .7
Fig. 5. Comparison of melt compositions

4.0 from our experiments at 10 kbar with re-
sults of other workers on similar bulk peri-

2.0 dotite compositions (Baker and Stolper,
1994; Baker et al., 1995; Hirose and
Kushiro, 1993; Falloon et al., 1999, shad-

0.0 : ed areas) and with calculated composi-

7.0 12.0 17.0 tions from MELTS (Ghiorso and Sack,
MgO in melt, wt % 1995, dashed lines)
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In particular, the lower FeO contents of Baker and Stolper (1994) and Baker
et al. (1995) melts corresponds to the lower FeO content of peridotite sample
MM-3 (7.18 wt.% FeO compared to 8 wt.% in our samples). The lower SiO, of our
melts are almost within the analytical uncertainty, but it may be indicative of melt
undersaturation with respect to orthopyroxene.

The compositions of melts formed from the clinopyroxene-spinel mixture are
poorly known. They are constrained by the general reaction Cpx + Sp =Liq + OL
We cannot characterise the reaction quantitatively, because our analyses represent
melt compositions modified by interaction with the enclosing lherzolite. From this
reaction, the melt formed by clinopyroxenite melting should be rich in CaO (no
less than 15 wt.%) at the moment of complete Cpx dissolution. The melts derived
from clinopyroxene-spinel mixture are undersaturated in orthopyroxene, which is
suggested by the observed rapid orthopyroxene dissolution in the lherzolite matrix
and the formation of the olivine + liquid reaction zone. The interstitial liquids are
connected with the melt pool in the central zone and its composition changes via
diffusion and approaches equilibrium with the bulk lherzolite. At high temperature,
clinopyroxene disappears from the central layer and the reaction zone. Subsequent
melting involves olivine and spinel dissolution in the central zone. The high initial
Cr,0O5 content in the spinel clinopyroxenite (Table 3) resulted in the concentration
of spinel in the central zone (Fig. 2).

Undersaturation with orthopyroxene in the central layer provided high melt
reactivity and its rapid exchange between the matrix and melt pool. The degree of
undersaturation is probably pressure dependent. For example, Yaxley and Green
(1998) observed orthopyroxene as a reaction product when melting eclogite at
35 kbar. However, we did not observe orthopyroxene formation as a reaction
product at pressures up to 20 kbar. In cases where the melt is closer to equilibrium
with the surrounding peridotite, the reaction may result only in the formation of
thin diffusion zones in peridotite minerals in contact with melt. Pervasive melt
interaction may be hindered if newly-formed pyroxene selvages are formed be-
tween melt and peridotite. Such relationships were documented in xenoliths from
La Palma by Kluegel (1998). These observations suggest that the formation of
infiltration zones in peridotite is not an ubiquitous process and occurs only if the
melt is undersaturated in orthopyroxene.

Hirschmann and Stolper (1996) proposed melting of a mantle containing garnet
pyroxenite veins to account for the “garnet signature’ in MORB. Their model
includes early melting of pyroxenite veins with garnet retention in the solid residue
under conditions, when garnet is not stable in the peridotite material. Our results
suggests that such a scenario is possible only under certain conditions. We did not
observe garnet in our experiments even at 20kbar, although Hirschmann and
Stolper (1996) predicted garnet clinopyroxenite to be stable at pressure down to
14 kbar. The Cr/Al ratio in the initial spinel clinopyroxenite was not very high
(Table 3) and the absence of garnet in the experimental products could result from
its rapid dissolution. Reaction melt infiltration greatly facilitates equilibration of
melt with the enclosing lherzolite. Thus, garnet in partially molten pyroxenite melt
will be dissolved much more rapidly than in the case of garnet pyroxenite melting.
The size of pyroxenite zones is critical for the model of Hirschmann and Stolper
(1996). In our experiments, equilibration of millimetre-sized melt pocket took
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about 10 hours. If diffusion of components in melt is the controlling factor, the time
necessary for equilibration is approximately proportional to the square of the linear
size. Thus, the interaction of a melt pocket about 10 cm in size would require ca.
10 yr. The formation of a ‘““‘garnet signature” by the mechanism of veined mantle
melting is probably plausible for large (tens to hundreds meters) heterogeneities in
the mantle. This conclusion is in agreement with the numeric modelling by Richter
and Daly (1989), who demonstrated that melting of a heterogeneous mantle source
produces a solitary wave, which is capable of transporting large amounts of melt
but does not carry any anomalous geochemical properties related to a heterogeneity
much smaller than the melting region.

It should be noted that the application of the present result to natural para-
geneses has certain limitations. First, our experiments concerns the situation when
both pyroxenite and lherzolite are above solidus. Moreover, melt fraction in
the lherzolite matrix was probably high in the majority of our experiments.
Hirschmann and Stolper (1996) suggested that garnet pyroxenite could melt when
lIherzolite was still below the solidus. Then, equilibration with the lherzolite would
require much longer time intervals. Second, we studied only the behaviour of major
components, and the effect on trace elements and isotope signatures can be
different. Third, the processes occurring at the melting of heterogeneous mantle
material may be diverse. For example, Yaxley and Green (1998) performed exper-
iments on the melting of eclogite (Cpx + Grt + coesite) in a lherzolite matrix at
35 kbar. The early melt derived in the eclogite layer was dacitic and its reaction
with the lherzolite resulted in orthopyroxene crystallisation and produced garnet-
clinopyroxene residue.

The present results suggest a possible mechanism for the formation of dunite
bodies in the mantle. Dunites frequently occur as xenoliths in alkali basalts and
as larger bodies in ophiolites (Quick, 1981; Kelemen, 1990). Kelemen (1990)
suggested that such dunites are products of the interaction of fractionating basalt
magma with the wall harzburgite. Our experiments show that similar rocks may
form by the melting of a heterogeneous material including pyroxenite layers. Suhr
(1999) described along-strike clinopyroxenite to dunite transition in ophiolitic
massifs. Such relationships could result from a process similar to that modelled in
our experiments.
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