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INTRODUCTION 
Although the investigation of micas dates back to the pre-scientific era (see Cipriani, 

this volume), the idea of polytypism (originally not distinguished from “polymorphism”) 
in the micas did not ensue until 1934, when Pauling proposed it in a private conversation 
quoted by Hendricks and Jefferson (1939). The existence of several structural types was 
however known from goniometric measurements and morphological analysis performed 
in the 19th century (e.g., Marignac 1847; Baumhauer 1900) and collected in the 4th 
volume of the Atlas der Krystallformen (Goldschmidt 1918; for a comparative review and 
later measurements see Peacock and Ferguson 1943) and appears also in the different 
axial settings introduced to describe the unit cell of micas (e.g., Brooke and Miller 1852; 
Des Cloizeaux 1862; Koksharov 1875; Tschermak 1878).  

The systematic investigation by X-ray diffraction (XRD) started with Mauguin (1927, 
1928), who pointed out that the c axis of phlogopite was half that of muscovite. Pauling 
(1930) was the first to solve the structure of a mica, a fuchsite (now termed “chromian 
muscovite”, according to Rieder et al. 1998), by visual comparison of a subset of intensities 
from photographs, and introduced the first model of the structure of phyllosilicates on the 
basis of the coordination theory. Jackson and West (1931) were the first to perform a 
complete structure determination, investigating a muscovite-2M1. Hendricks and Jefferson 
(1939) investigated one hundred samples of micas and discovered several “polymorphs”, 
many of which were however twins of simpler structural types (shorter-period polytypes). 
The symmetry of the 2:1 mica layer was not fully recognized until Pabst (1955) showed 
that the correct space-group type of 1M polytype was C2/m instead than Cm, as previously 
assumed by Hendricks and Jefferson (1939) and reported also by Peacock and Ferguson 
(1943). Since the accomplishment of such an apparently easy task as the determination of 
the structure of the single-layer polytype took so long time and so much effort, it is not 
surprising that the whole phenomenon of polytypism in micas occupied several researchers 
from different countries for a long run of time, and still keeps undisclosed some of its most 
interesting and challenging points. 

Although the causes of the complexity of the phenomenon of polytypism in micas 
are multifaceted, they can be simplified to “magic words”, local (partial) symmetry, and a 
“magic number”, 3. As shown hereafter, each atomic plane in mica has an ideal 
symmetry of at least trigonal, which is preserved in each of the two kinds of sheets 
(tetrahedral and octahedral), but it is reduced to monoclinic when considering the layer as 
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a unit. The two T sheets of a layer are staggered along c and the amount of the stagger in 
the (001) projection is ideally |a|/3. For each non-orthogonal polytype an ideally 
orthogonal multiple cell can always be chosen, with 3-times the periodicity of the 
polytype in the stacking direction. In the real structure, some of the atoms move slightly 
from the positions corresponding to the ideal symmetry, but each atomic plane still 
preserves a trigonal pseudo-symmetry. Then, the (001) projection of the layer stagger 
deviates more or less from |a|/3, and the multiple cell is close to, but not exactly 
orthogonal. The magic words and magic number can be traced also in reciprocal space, 
where the reflections with k = 0(mod 3) reveal the symmetry principle on which a 
polytype is built, and the reflections with k ≠ 0(mod 3) permit the identification of the 
stacking sequence. 

The existence of a multiple cell with a metric pseudo-symmetry higher than the 
structural symmetry, together with the trigonal pseudo-symmetry of the planes of the basal 
oxygen atoms, is also the geometrical reason of the extensive occurrence of twinning in 
micas. Although polytypism and twinning can be reduced to relatively simple common 
geometrical bases, the development of general criteria to recognize the presence of 
twinning from the diffraction pattern took a long time, and still many questions remain 
open. 

The purpose of this chapter is to give a general overview of the factors, in terms of 
lattice geometry and of symmetry, which are responsible for polytypism and twinning in 
micas, and to provide general and simple criteria to be applied in the experimental 
practice of polytype and twin identification. For this reason, micas are hereafter regarded 
as built by layer archetypes, i.e. idealized layers where most of the structural distortions 
are not taken into account. The true atomic structure of the mica layer influences mainly 
the intensities but not the geometry of the diffraction pattern, and is discussed in detail in 
Ferraris and Ivaldi (this volume) and in Brigatti and Guggenheim (this volume). 

Rigorous mathematical demonstrations are not given here: readers wishing to 
acquire a deeper knowledge are invited to consult the original publications, quoted 
hereinafter, where those demonstrations are given in detail. The crystallographic 
terminology follows Wondratschek (2002). 

NOTATION AND DEFINITIONS 
The geometrical description of mica polytypes is given in terms of the OD theory 

developed by Dornberger-Schiff (e.g., 1964) and her successors. OD stands for “Order-
Disorder” and indicates that the stacking of layers may produce both periodic (“ordered”) 
and non-periodic (“disordered”) structures. It has no relation with the chemical order-
disorder phenomena. The OD theory emphasizes particularly the role of polytypes which 
involve pairs, triples, quadruples etc. of geometrically equivalent layers, or, when this is 
not possible, the smallest number of kinds of triples, quadruples etc. of layers. These 
polytypes are termed Maximum Degree of Order (MDO) polytypes. The layer-group 
notation adopted here is the one developed by Dornberger-Schiff (1959), in which the 
direction of missing periodicity is indicated by parentheses. For example, C12/m(1) 
indicates a monoclinic holohedral C-centered layer, having (a,b) as the layer plane (for 
details see Merlino 1990). 

The indicative symbols for polytypes were introduced by Ramsdell (1947) and are 
written as NSn, where N is the number of layers, S indicates the symmetry and n is a 
sequence number, often (but not always) indicating the order in which polytypes have 
been discovered. Ramsdell’s symbolism is actually a mixed symbolism, since S 
(nowadays given with a single uppercase letter according to the IUCr Ad-Hoc committee 
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recommendations: Guinier et al. 1984) is used to indicate the six crystal families, the 
trigonal syngony (syngony = crystal system) and the rhombohedral Bravais system: A = 
anorthic (triclinic), M = monoclinic, O = orthorhombic, Q = quadratic (tetragonal), T = 
trigonal, R = rhombohedral, H = hexagonal, C = cubic. This mixed symbolism is 
nowadays preserved for historical reasons and its use is accepted only for indicating 
polytypes. Q, R and C cannot appear in micas (Takeda 1971). 

To classify, but also to identify experimentally, mica polytypes, the relations 
between a lattice and its derivative lattices (superlattices, sublattices) are of fundamental 
importance. Different authors have given contrasting definitions. Here, we adopt the 
definition in terms of the group-subgroup relations, in agreement with the International 
Tables for Crystallography, Vol. A, 5th ed., in press (Th. Hahn, pers. comm..). Sublattice 
is termed a derivative lattice obtained from an original lattice by taking a subgroup of 
translations: its unit cell is larger than that of the original lattice. In contrast, superlattice 
is termed a lattice obtained from an original lattice by taking a supergroup of translations: 
its unit cell is smaller than that of the original lattice. Because the derivative lattice 
obtained from the original one by taking a subgroup (supergroup) of translations has a 
larger (smaller) unit cell, in some publications the terms superlattice and sublattice are 
defined in the opposite way. The superlattice-sublattice character of a derivative lattice is 
inverted when going from one space to its dual (i.e. from direct to reciprocal, or vice 
versa). 

The notations most often used in the following are summarized here for ease of 
consultation: 

The mica layer and its constituents 

T: tetrahedral sheet = Ob-Z-Oa or Oa-Z-Ob 
O: octahedral sheet = Oa-Y-Oa 
I: plane of the interlayer cations (also: these cations as such). 
Ob: plane of the basal oxygen atoms of the tetrahedra 
Oa: plane of the apical oxygen atoms of the tetrahedra; this plane, contains 

approximately also OH groups and, depending on the kind of mica, F and, less 
frequently, Cl and S. 

T1,T2: the two translationally independent tetrahedral sites within a T sheet 
M1,M2,M3: the three translationally independent octahedral sites within an O sheet 
Ma,Me,Mi: average cations occupying the three translationally independent octahedral 

sites (Ma = Maximal; Me = Medium; Mi = Minimal, with reference to their 
scattering power) 

δ(Ma), δ(Me), δ(Mi): X-ray scattering power of the (average) cations Ma,Me,Mi 
Z: plane of the tetrahedral cations 
Y: plane of the octahedral cations (whose coordination polyhedra are however not 

regular octahedra but rather trigonal antiprisms). 
Tet: tetrahedral OD layer = Oau-Z-Ob-I-Ob-Z-Oal (l = lower, u = upper; see text) 
Oc: octahedral OD layer = Oal-Y-Oau 
p2j: OD packet pointing up = Tet2j/2 + Oc2j+1/2 
q2j+1:  OD packet pointing down = Oc2j+1/2 + Tet2j+2/2 
M: the entire mica layer (T-O-T). There are two types: M1 and M2 depending on the 

location (M1 vs. M2/M3) of the origin of the O sheet. Standard character “M” 
indicates layer, italics “M” indicates cation sites. 
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Axial settings, indices and lattice parameters 

a, b, c:  monoclinic crystallographic axes in the space-fixed reference (in italics) 
a1~6, b1~6, c: monoclinic crystallographic axes in the crystal-fixed reference (in italics) 
A1, A2, A3, c: hexagonal crystallographic axes (in italics) 
AF1, AF2, AF3, CF: hexagonal crystallographic axes of the family structure (in italics) 
a, b, c / a1~6, b1~6, c / A1, A2, A3, c / AF1, AF2, AF3, CF: crystallographic basis vectors 

(in bold) 
C1, C2, C3: the three orthohexagonal cells (Fig. 1; cf. Arnold 2002) 
cn: the (001) projection of the of the c basis vector 
c0: vertical distance between two interlayer cations on the opposite sides of an M 

layer (c0 = c1cosβ*) 
c*1 : parameter along c* of the simplest polytype (1M): it corresponds to about 0.1Å-1 

HK.L:  diffraction indices expressed in hexagonal axes  
hkl: diffraction indices expressed in orthohexagonal axes 
lC1: l index in the C1 setting 
lT: l index in the twin setting 
ω: obliquity of the twin, divided into a component within the (001) plane (ω||) and a 

component normal to the (001) plane (ω⊥) 
ε: angular deviation from orthohexagonality of the (001) plane 
η: linear deviation from orthohexagonality of the (001) plane 
t(hkl): trace of the plane (hkl) onto the (001) plane 
nt(hkl): normal to t(hkl) in the (001) plane 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
Symbols 

N: number of layers in the conventional cell 
N′: number of layers in the unit cell of the (pseudo)-orthohexagonal setting: N′ = N 

for orthogonal polytypes, N′ = 3N for non-orthogonal polytypes 
Ti:  character (“0”~“5”) indicating the mica OD packet orientation 

Figure 1. Relation between the hexagonal
cell P and the three orthohexagonal cells C1, 
C2, C3 (cf. Arnold 2002). 
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v2j,2j+1: character (“0”~“5”) indicating the displacement between two adjacent mica 
OD packets p2j and q2j+1 

〈v〉: the vector assigned to the character v 
Σv: character (“0”~“5”, “*”, “+”, “–“) indicating vector sum of v2j,2j+1 over a 

complete polytype period and corresponding to the projection of the c axis onto 
the (001) plane 

RSi
P: i-th Rotational Sequence of the polytype “P” 

Ri: i-th translationally independent reciprocal lattice row parallel to c* of the 
single individual (1 ≤ i ≤ 9). 

Ci: i-th “composite row”: translationally independent reciprocal lattice row parallel 
to c* of the twin (1 ≤ i ≤ 9). 

Ij: symbol identifying the “node features” of a row of the reciprocal lattice parallel 
to c*. I is the number of reflections in the c*1 repeat, j a sequence number. 

Symmetry and symmetry operations 

λ-symmetry: the symmetry proper of an individual layer (λ-operation: a symmetry 
operation transforming a layer into itself; the set of λ-operations constitute 
a layer-group) 

σ-symmetry: the symmetry of a layer pair (σ-operation: a coincidence operation 
transforming a layer into the adjacent one) 

τ-operations: symmetry or coincidence operations which do not change the sign of the 
coordinate in the layer stacking direction. They are labeled λ-τ or σ-τ if 
they refer to λ- or σ-operations, respectively 

ρ-operations: symmetry or coincidence operations which change the sign of the 
coordinate in the layer stacking direction and thus turn a layer or a stack of 
layers upside down. They are labeled λ-ρ or σ-ρ if they refer to λ- or σ-
operations, respectively. Evidently, τ.τ = τ, τ.ρ = ρ, ρ.τ = ρ and ρ.ρ = τ. 

THE UNIT LAYERS OF MICA 
The conventional layer of mica is described in details in Ferraris and Ivaldi (this 

volume). Here we recall only those definitions that are referred to in the following. 
The conventional layer (also termed TOT layer or 2:1 layer) is constructed of seven 

atomic planes: Obl, Zl, Oal, Y, Oau, Zu, Obu, where “l” and “u” stand for “lower” and 
“upper” respectively. Interlayer cations occurr between two successive layers in the I 
plane. This layer is referred as the “M layer” and is subdivided into two kinds of sheets: T 
(Tl: Obl, Zl, Oal, and Tu: Oau, Zu, Obu) , and O (Oal, Y, Oau). On the basis of the occupation 
of the three octahedral sites, three families of micas exist: homo-octahedral (all three sites 
are occupied by one type of cation), meso-octahedral (one site is occupied differently 
from the other two), and hetero-octahedral (all three sites are occupied differently). In 
these three families the idealized λ-symmetry of the O sheet is H⎯(3)1m, P⎯(3)1m, and 
P312 respectively (Dornberger-Schiff et al. 1982). Two models were introduced to 
describe the λ-symmetry of the T sheet: the Pauling model (Pauling 1930), which 
neglects all the distortions and assumes λ-symmetry P(6)mm; and the Trigonal model, 
which considers only the ditrigonal rotation of tetrahedra and assumes λ-symmetry 
P(3)1m. Both these models neglect the distortions occurring in the O sheet. Although the 
Trigonal model may seem still rather abstract, it is sufficient to describe the diffraction 
features useful for polytype and twin identification, whereas the Pauling model is too 
abstract. In fact, the main influence on the conditions for a reflection comes from the 
ditrigonal rotation of the tetrahedra. The other distortions, not taken into account by the 
Trigonal model, are quantitatively less relevant; they influence mainly the diffraction 
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intensities, and to a much lesser degree the geometry of the diffraction pattern; for this 
reason they can be neglected, in the first approximation. 

The stagger of the two T sheets reduces the λ-symmetry of the M layer to 
monoclinic. Depending on whether the origin of the O sheet (which must be taken at the 
site with the point symmetry corresponding to the λ-symmetry of the sheet) is in M1 
(trans) or in M2/M3 (cis), the layer itself is termed M1 or M2 respectively, and the 
highest λ-symmetry for these two layers is C12/m(1) and C12(1) respectively (for details 
see Ferraris and Ivaldi, this volume). The preliminary stage of the experimental study of a 
mica sample, such as the identification of the polytypic stacking sequence, is normally 
performed by assuming that the structure is homo-octahedral, and thus in the hypothesis 
of all M1 layers. For this assumption Nespolo et al (1999d), following a suggestion by S. 
Ďurovič (pers. comm.), introduced the term homo-octahedral approximation. 

Alternative unit layers 

Besides the M layer, other unit layers were introduced, in most cases to simplify the 
description of some features, such as the diffraction pattern. 

Amelincks-Dekeyser’s unit layer . Amelinckx and Dekeyser (1953) pioneered the 
study of the spiral growth of micas. They also introduced the first vectorial and symbolic 
representation of the stacking sequence of layers in mica polytypes. These authors used a 
unit cell having the apical oxygen atoms and (OH/F) groups at the boundaries (Fig. 2). In 
this way, the unit cell is orthogonal and the monoclinic symmetry is achieved by stacking 
successive cells along three directions making 120º. Although this cell has nowadays no 
practical importance, it represents the first description alternative to Pauling’s (1930) 
model and the precursor of the TS unit layers described below. 

Franzini and Schiaffino’s A and B layers . Franzini and Schiaffino (1963a,b) 
assumed that the ditrigonal rotation of the tetrahedra was mainly not related to the misfit 
of the a and b parameters of the tetrahedral and octahedral sheets, but to an intrinsic 
tendency of the potassium to assume an octahedral (actually antiprismatic) coordination. 
Those authors concluded that, with a single type of layer, rotations of (2n+1)×60º were 
not possible for K-micas. To explain “polymorphs” and twins in which such rotations 
appear, Franzini and Schiaffino (1963a) introduced two kinds of monolayers, called A 
and B, in which the antiprismatic coordination for the interlayer cation is preserved for all 
the six rotations. These two layers differ for the orientation of the octahedral sheet with 
respect to the tetrahedral sheets: in practice, the slant of the octahedra is reversed in the 
two layers1. The ordered repetition of layers of the same kind (both A or both B) 
produces 1M, 2M1 and 3T “polymorphs”, while the alternate repetition of both A and B 
layers produces 2O, 2M2 and 6H “polymorphs”, however preserving the antiprismatic 
coordination for the interlayer cation. The co-existence of A and B layers was however 
regarded as highly improbable (Franzini 1966; 1969). The starting assumption of this 
theory, namely the impossibility of trigonal prismatic coordination for the interlayer 
cation, is not correct (Sartori et al. 1973), and the Franzini and Schiaffino theory lost its 
importance. 

Despite that, the terms Franzini-type A and B have found their way into the 
literature. As Franzini (1969) noted, owing to ditrigonalization, the basal-oxygen atoms 
in the type A approach the cations in the adjacent octahedral sheet, whereas they move 
                                                 

1 Griffen (1992) described the direction of the ditrigonalization of the T sheets with respect to the 
triangular bases of the octahedra in terms of the rotations “O” (opposite, corresponding to Franzini-type A 
of layer) and “S” (same, corresponding to Franzini-type B of layer). This terminology, borrowed from 
pyroxenes, is commonly not adopted for micas. 
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apart in type B layers, if compared with the Pauling model. This holds also for 
phyllosilicates other than micas. Whereas in mica structures refined to date only the type 
A has been found, the type B has been encountered in some 1:1 phyllosilicates and in 
some chlorites, where the energetic handicap of the type B is balanced by a more 
favorable arrangement of hydrogen bonds elsewhere in the structure. 

The U layer. The origin of the entire M layer is in the I plane. By shifting the origin 
into the O sheet, the U-layer (Fig. 2) is obtained and, inside it, a smaller portion, called 
the u-layer, which does not represent a unit layer but consists of two tetrahedral sheets 
and the interlayer cations between. These layers were used as a tentative interpretation of 
the crystallographic transformation of biotites by means either of crystallographic slips 
(CS) of cation or oxygen planes corresponding to cation-to-cation or oxygen-to-coplane-
oxygen distance (CS of the first sort) or of co-operative slip movements of two atomic 
planes (oxygen-oxygen or oxygen-cation) in a single octahedral sheet (CS of the second 

 
Figure 2. Schematic representation of a slab b/4 thick, showing three layers of the 1M 
polytype. Four different unit cells are shown: the M layer (solid lines), the U layer 
(dashed lines), the TS D layer (dotted lines) and the cell used by Amelinckx and 
Dekeyser (1953) (dotted-dashed lines). The OD layers and packets are indicated 
directly in the figure. 
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sort) (Takéuchi 1971; Takéuchi and Haga 1971). A CS of the first sort probably occurs 
during polytype formation when a strengthening of the interlayer bonding is accompanied 
by a destabilization of the O sheet (Nespolo 2001). 

The TS layers. Similarly to the choice of Amelinckx and Dekeyser (1953), Sadanaga 
and Takeda (1969) and Takeda and Sadanaga (1969) described the structure of micas by 
means of orthogonal unit layers. Whereas Amelinckx and Dekeyser (1953) had chosen 
the origin in the Oa / OH / F plane, Sadanaga and Takeda (1969) and Takeda and 
Sadanaga (1969) defined their TS unit layers between two octahedral sheets of successive 
M layers and preserved the origin in the plane of the I cations (Fig. 2). TS unit layers are 
defined within the Trigonal model and consist of four layers, labeled D, D*, T and T*, 
with λ-symmetry ⎯ (3)1P m  (D and D*) and P⎯(6)2m (T and T*). D is related to D* and T 
to T* by an 180º rotation about c* (see Fig. 2,3). Because of their trigonal λ-symmetry, 
which is higher than the monoclinic λ-symmetry of the M layer, four kinds of unit layers 
are necessary to describe all possible polytypes. These layers are related by only 
translations, without rotations, and next layers are staggered ±a/3 along one of the three 
hexagonal axes A1, A2, A3 in the plane of the layer. As shown by Nespolo et al (1999d), 
the TS unit layers represent the most suitable geometrical description for a simple 
computation of the PID function (see below). The letters D and T indicate a “ditrigonal” 
or “trigonal” coordination of the I cation respectively for the two kinds of layer. Actually, 
D/D* layers have the I cation in antiprismatic coordination, whereas in the T/T* layers 
the I cation is in prismatic coordination. In both cases, the coordination polyhedron is 
trigonal where only the nearest-neighbor oxygen atoms are considered, whereas it 
becomes ditrigonal by considering also the next-nearest-neighbor oxygen atoms. A 
symbolism like A/A* (for “antiprismatic”) and P/P* (for “prismatic”) instead of D/D* 
and T/T* respectively would perhaps had been more appropriate. The TS layers are 
constructed by half-pairs of M1 layers in the homo-octahedral approximation and, as 
shown hereafter, their use is in the calculation of the Periodic Intensity Distribution 
function to solve an unknown stacking sequence. 

The OD layers and the OD packets . The OD interpretation presupposes that any 
polytype of a given polytypic substance may be considered as consisting of disjunct parts 
periodic in two dimensions, called OD layers, whose pairs remain geometrically 
equivalent in any polytype of the same family. The OD layers do not necessarily coincide 
with the layers commonly chosen on the basis of the chemical identity and/or cleavage 
properties. In other words, the layers by which a polytypic substance is most commonly 
described from the crystal-chemical point of view are not always the most suitable layers 
to describe the geometrical equivalence of layer pairs. Furthermore, the choice of the OD 
layers in general is not absolute (Grell 1984); their purpose is not to explain but to 
describe and/or predict polytypism of a substance based on symmetry. 

Micas are considered to consist of two kinds of OD layers. The octahedral OD layer 
(Oc) corresponds to the sequence Oal-Y-Oau, and the tetrahedral OD layer (Tet) to the 
sequence Oau-Z-Ob-I-Ob-Z-Oal, with the Oal and the Oau planes (au = apical upper; al = 
apical lower) half belonging to neighboring OD layers (Fig. 2). By denoting an OD layer 
with the general letter L, Tet and Oc OD layers are L2j and L2j+1 respectively, where j is a 
running integer. Another useful unit is the OD packet, which corresponds to half of the M 
layer plus half the plane of the I cations, and constitutes the smallest continuous part, 
periodic in two dimensions, representing fully the chemical composition of a polytype 
(Ďurovič 1974). OD packets are by definition polar and lie within one side or the other 
pointing alternatively along +c and –c: they are indicated with the letters p and q: p2j = 
Tet2j/2 + Oc2j+1/2; q2j+1 = Oc2j+1/2 + Tet2j+2/2 (Fig. 2). All mica packets within the same 
family are geometrically equivalent and their symmetry is P(3)1m (homo-octahedral 
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family), C1m(1) (meso-octahedral family) or C1 (hetero-octahedral family) (Dornberger-
Schiff et al. 1982; Backhaus and Ďurovič 1984; Ďurovič, et al. 1984). This reduces the 
problem of handling two kinds of OD layers to that of one kind of OD packet and this 
facilitates, among others, also the systematic derivation of MDO polytypes (see below).   

 
Figure 3. The four TS unit layers. a, b: orthohexagonal axes. Black and open small circles 
represent M1 and M2 sites respectively. Double circles represent interlayer cations and 
OH/F groups, which are overlapped in the (001) projection. u and l indicate octahedral 
cations with z = +1/2 and z = -1/2 respectively, overlapped in (001) projection for T and T* 
layers (modified after Nespolo et al. 1999d). 
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Furthermore, both M1 and M2 mica layers within the same family consist of the same 
kind of OD packet. 

MICA POLYTYPES AND THEIR CHARACTERIZATION 
The crystal chemical reason for polytypism is that adjacent layers (two-

dimensionally-periodic units) can be linked to each other in many translationally non-
equivalent ways. However, the nearest-neighbor relationships remain preserved. 
Translated into the language of symmetry, this means that the pairs of adjacent layers 
remain geometrically equivalent in all polytypes of the same family. 

The geometrical equivalence must be fulfilled not necessarily by the real layers, but 
by their archetypes, i.e. the (partially) idealized layers to which the real layers can be 
reduced by neglecting some distortions occurring in the true structure. The notion of 
polytypism becomes thus unequivocal only when it is used in an abstract sense to 
indicate a structural type with specific geometrical properties. In micas, these archetypes 
are the layers described by the Trigonal model. Of the several kinds of layers presented in 
the previous section, the OD layers, and the OD packets, are the most suitable ones to 
both show and exploit the geometrical equivalence. 
Micas as OD structures 

If the position of a layer is uniquely defined by the position of the adjacent layers 
and by the so-called vicinity condition (VC)2, which states the geometrical equivalence of 
layer pairs, the resulting structure is fully ordered. If, on the other hand, more than one 
position is possible that obeys the VC, the resulting structure is an OD structure and the 
layers are OD layers. VC structures may thus be either fully ordered structures or OD 
structures (Dornberger-Schiff 1964, 1966, 1979; see also Ďurovič 1999). All OD 
structures are polytypic; the reverse may or may not be true (see the arguments in 
Zvyagin 1993). Equivalency depends on the choice of OD layers and also on the 
definition of polytypism (see below). 

In each of the three mica families, the packet pairs p2jq2j+1 and q2j+1p2j+2 are 
geometrically equivalent through a ρ-operation of the Oc2j+1 OD layer and of the Tet2j+2 
OD layer, respectively. These operations are denoted as 2j,2j+1[ρ(i)] and 
2j+1,2j+2[ρ(j)] respectively .The resulting polytype depends on the kind of these operations 
(they follow from the λ-symmetry of Oc or Tet) and on their sequence in the polytype. 
Since ρ.ρ = τ and, particularly for OD structures, a product like kl[ρ(i)]·mn[ρ(j)]is allowed 
only if l=m, each even number of such products, e.g.,  

01[ρ (1)]·12[ ρ(2)]· 23[ ρ(3) ]· 34[ρ (4) ]· …. ·2n-1,2n [ρ (2n)]  
yields a 0,2n[τ]-operation. This operation can be either a translation, a glide operation or a 
screw rotation, whose translation component is the so-called repeat unit. The τ-operation 
can be continued, i.e. continuously repeated, and then it generates a periodic polytype. 
The operation is thus global (total) for the polytype obtained. Of special importance are 
the 02[τ]-operations which play a decisive role in the derivation of MDO polytypes, as 
shown below. If the distribution of subsequent ρ−operations is completely random so that 
no generating τ-operation can be found, the polytype is disordered. Disordered polytypes 
have been reported as 2n×60º rotations only (e.g., Ross et al. 1966; let us indicate them as 
1Md-A, where “A” stands for “subfamily A”) and with both 2n×60º and (2n+1)×60º 
rotations (Kogure and Nespolo 1999a; let us indicate them as 1Md-M, where “M” stands 
                                                 

2 The vicinity condition (e.g., Dornberger-Schiff 1979) consists of three parts. VC α: VC layers are 
either geometrically equivalent or, if not, they are relatively few in kind; VC β: translation groups of all VC 
layers are either identical or they have a common subgroup; VC γ: equivalent sides of equivalent layers are 
faced by equivalent sides of adjacent layers so that the resulting pairs are equivalent. 
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for “mixed-rotation”), whereas no examples with (2n+1)×60º rotations only (let us 
indicate them as 1Md-B, where “B” stands for “subfamily B”) have been reported to date. 
Note that in periodic polytypes some ρ-operations also become global, whereas the 
remaining ones are valid only in a subspace of the crystal space. Note also that, alone, a 
ρ-operation could not be used to construct a polytype, because its repeated application 
leads back to the area of the starting layer or packet. For more details concerning the OD 
interpretation of mica structures, see Dornberger-Schiff et al (1982); for the derivation of 
MDO mica polytypes see Backhaus and Ďurovič (1984); for the classification and 
abundance of MDO mica polytypes see Ďurovič et al (1984). 

The set of all the operations valid in the whole crystal space and in a subspace of the 
crystal space constitutes a space groupoid (Dornberger-Schiff 1964; Fichtner 1965, 1977, 
1980). The theory of groupoids was introduced in mathematics by Brandt (1927) and 
applied in crystallography in Germany by the OD school (Dornberger-Schiff 1964, 1966), 
and in Japan by the school of Ito and Sadanaga, with special emphasis on those groupoids, 
termed twinned space groups, which are necessary to explain the existence of polysynthetic 
structures (e.g., Ito 1935, 1938, 1950; Ito and Sadanaga 1976; Sadanaga 1978; Sadanaga et 
al. 1980). The OD school used the terms total for a space-group operation, local or partial 
(as synonyms) for a symmetry operation valid in a subspace of the crystal space, and 
coincidence operation, represented by a single transformation matrix, for a non-symmetry 
operation that corresponds – approximately – to a one-way movement in the structure, i.e. 
an operation without the corresponding inverse operation. Sadanaga and Ohsumi (1979) 
and Sadanaga et al (1980) used instead global, local and partial in the same way the OD 
school used total, local/partial and coincidence respectively. To avoid any possible 
confusion, hereafter the word “partial” is not adopted, and the term “local” is used to 
indicate a symmetry operation valid in a subspace of the crystal space. 

Within the Pauling model, an isolated Tet layer has λ-symmetry P(6/m)mm, with 12 
τ-operations and 12 ρ-operations. Within a group, the three axial and the three inter-axial 
directions are symmetry-related and thus one entry for each of these two sets in the 
conventional Hermann-Mauguin symbol suffices to characterize the corresponding 
symmetry operations. However, in the OD structures, any of these operations can play a 
specific role and this is why Dornberger-Schiff (1964 p. 44 ff; 1966 p. 54) introduced 
extended Hermann-Mauguin symbols consisting of seven entries: . . . (.) . . . where the 
unique direction is in parentheses, the three entries to the left refer to the three axial 
directions A1, A2, A3 (Fig. 1; cf. Fig. 4) and the three entries to the right refer to the three 
inter-axial directions B1,B2,B3 where Bi┴Ai. Such an extended Hermann-Mauguin symbol 
for the layer-group P(6/m)mm reads: P 2/m 2/m 2/m (6/m) 2/m 2/m 2/m 

Within the Trigonal model, this λ-symmetry reduces to trigonal. The extended 
Hermann-Mauguin symbols, depending on which of the two maximal non-isomorphic 
subgroups is preserved (either (3)1P m  or (6)2P m , become: P 1 1 1 (3)  2/m 2/m 2/m 
and P 2 2 2 (6)  m m m. 

The individual operations in each of these two groups can be characterized either by 
the extended Hermann-Mauguin (H-M) symbols (as usual in the OD literature), or with 
reference to the orthogonal (ORT) axes. Although indexing in the orthohexagonal setting 
in unequivocal, the correspondence between H-M symbols and ORT symbols depends on 
which cell is adopted (C1 vs. C2: see Fig. 1). In Table 1, all correspondences are shown. 

The two λ-symmetries of the Tet layer correspond to 2n×60º and (2n+1)×60º 
rotations, respectively, of successive M layers about c*. Each family of polytypes is 
defined in terms of the λ-symmetry of the Oc layer, which is the same as that of the O  
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sheet (see Table 2 in Ferraris and Ivaldi, this volume), and is then divided into two 
subfamilies on the basis of the Tet λ-symmetry: subfamily A for P⎯(3)1m, and subfamily B 
for (6)2P m . We suggest for the polytypes where Tet layers with both P⎯(3)1m and 
P⎯(6)2m λ-symmetries co-exist, the term mixed-rotation polytypes (see also Nespolo 
1999). Both subfamily A and subfamily B polytypes are OD structures, because the layer 
stacking obeys the VC. However, the layer stacking in the mixed-rotation polytypes with 
the geometry of the Trigonal model violates the VC: these polytypes are OD structures 
only within the Pauling model, i.e. for a null ditrigonal rotation of the tetrahedra 
(Backhaus and Ďurovič 1984).  

Table 1. Extended Hermann-Mauguin (H-M) symbols and corresponding 
operations indexed in orthogonal (ORT) axes for the two λ-symmetries of the 
Tet layer within the Trigonal model. The extended H-M symbols consist of 
seven entries: . . . (.) . . . where the unique direction is in parentheses, the three 
entries to the left refer to the three axial directions A1, A2, A3 and the three 
entries to the right refer to the three inter-axial directions B1,B2,B3 (Bi┴Ai). 
The corresponding orthogonal indices are given with reference to both the C1 
and the C2 cells. 

 

P⎯(3)1m 

τ-operations ρ-operations 

H-M ORT (C1) ORT (C2) H-M ORT (C1) ORT (C2) 

1 1 1 ⎯1 ⎯1 ⎯1 

(3)-1 3-1
[001] 3-1

[001] ⎯(3) –1 ⎯3-1
[001] ⎯3-1

[001] 

(3)1 31
[001] 31

[001] ⎯(3)1 ⎯31
[001] ⎯31

[001] 

[. . . (.) m . .] m (010) m (110) [. . . (.) 2 . .] 2[010] 2[310] 

[. . . (.) . m .] m (110) m (⎯110) [. . . (.) . 2 .] 2[310] 2[⎯310] 

[. . . (.) . . m] m (⎯110) m (010) [. . . (.) . . 2] 2[⎯310] 2[010] 

P⎯(6)2m 

τ-operations ρ-operations 

H-M ORT (C1) ORT (C2) H-M ORT (C1) ORT (C2) 

1 1 1 ⎯(2)1 m(001) m(001) 

(3)-1 3-1
[001] 3-1

[001] ⎯(6)–1 ⎯6-1
[001] ⎯6-1

[001] 

(3)1 31
[001] 31

[001] ⎯(6)1 ⎯61
[001] ⎯61

[001] 

[m . . (.). . .] m (100) m (⎯130) [2 . . (.) . . .] 2[100] 2[⎯110] 

[.m . (.) . . .] m (⎯130) m (130) [. 2 . (.) . . .] 2[⎯110] 2[110] 

[. . m (.) . . .] m (130) m (100) [. . 2 (.) . . .] 2[110] 2[100] 
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Figure 4. The nine possible displacements in the structure of polytypes of phyllosilicates. Left: the 
OD symbols and corresponding vectors, within the primitive hexagonal unit cell (modified after 
Durovic 1999). The sum of any two vectors is indicated, and the result of the summation of any 
number of vectors should be taken modulo primitive hexagonal cell. The individual vectors are 
designated by their conventional numerical characters and signs “+” and “–”, whereas the zero 
displacement “*” is not indicated. The “+” and “–” vectors do not explicitly occur in micas. 
However, in Class b polytypes the total displacement, obtained as vector sum of the packet-to-
packet displacements (v2j,2j+1, second line of the full OD symbol) corresponds to “–”, namely cn = 
(0,⎯1/3). Right: the corresponding Z vectors (modified after Zvyagin et al.1979) (cf. Table 4). In 
the publications by Zvyagin and his school, the coordinate system is oriented so that the 
orthogonal a axis points up and the b axis to the left. Here we follow instead the conventions of 
the International Tables for Crystallography: the space-fixed references, and consequently the Z 
vectors, are rotated by 180º with respect to their orientation in the original publications. 

 

Figure 5. An isolated hetero-octahedral Oc layer, with the three two-fold axes in the 
plane of the layer (ρ-operations). 

In Figure 5 an isolated Oc layer is shown. Depending on whether Ma, Mi and Me are 
all equal, two different or all different the Oc layer is homo-, meso- or hetero-octahedral 
respectively, and the λ-symmetry is H⎯(3)1m, P⎯(3)1m and P(3)12 respectively. In the 
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meso-octahedral family Oc includes six τ-operations (1, 3+
[001], 3-

[001], m(010), m(110), m(⎯110)) 
and six ρ-operations (2[010], 2[310], 2[⎯310],⎯1, ⎯3+

[001],⎯3-
[001]); these numbers in the homo-

octahedral family have, in fact, to be multiplied by three, owing to the H centering, 
whereas for the hetero-octahedral family Oc includes three τ and three ρ-operations (the 
first three of each set). In Figure 6 the same projection is given, but with the positions of 
the OH/F groups remaining after the substitution with Oa are indicated. This substitution 
destroys two-thirds of the λ-operations, leaving one (hetero-octahedral) or two (homo- 
and meso-octahedral) τ-operations (the identity and one m reflection) and one or two ρ-
operations (one of the two-fold rotations in the plane of the layer, and the inversion). For 
meso- and hetero-octahedral Oc layer, for the sake of simplicity and without loss of 
generality, let us assume that δ(Mi) < [δ(Ma), δ(Me)]. The origin of the Oc layer is then, 
according to the convention described in Ferraris and Ivaldi (this volume), at the Mi 
average cation. In Figure 6a, one of the ρ-operations (the only one for hetero-octahedral 
Oc layer) is the two-fold rotation along [010], and the M1 (trans) site contains the Mi 
average cation. The M layer is thus of the type M1. Instead, in Figure 6b and 6c the ρ-
operation is the two-fold rotation along [310] and [⎯310] respectively: the M1 site contains 
the Me or the Mi cation respectively, and in both cases the M layer is of type M2. 

MDO polytypes . Polytypes in which not only the pairs of layers, but also the triples, 

Figure 6. The hetero-octahedral Oc layer shown in Figure 5 after substitution of 2/3 of the OH/F 
groups with Oa from the upper and lower tetrahedra. Only one of the three ρ-operations remains, 
defining the relation between the type of site (M1, M2, M3) and its occupation (Ma, Me, Mi). (a) 
ρ-operation 2[010], Mi cation in the M1 site, layer type M1. (b) ρ-operation 2[310], Me cation in the 
M1 site, layer type M2. (c) ρ-operation 2[⎯310], Ma cation in the M1 site, layer type M2. 
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quadruples etc. are geometrically equivalent, or, when this is not possible, contain the 
smallest number of kinds of triples, quadruples etc., are termed Maximum Degree of 
Order (MDO) polytypes. This definition originates in a simple philosophy: if a certain 
configuration (say a triple of layers) is energetically favorable, it will be repeated again 
and again and will not be intermixed with other, less favorable configurations. 

 

Figure 7. The (001) projections of a Tet layer (the I cation, not shown, takes place in the hole 
between the two rings of tetrahedra). The two-fold axes in the plane of the layer (half of the ρ-
operations of the Tet layer) are indicated. (a) The configuration corresponding to the Pauling 
model, with zero ditrigonal rotation. The symmetry of the Tet layer is P(6/m)mm. (b) The 
configuration corresponding to subfamily A in the Trigonal model. The symmetry of the Tet layer 
is P⎯(3)1m. (c) The configuration corresponding to subfamily B in the Trigonal model. The 
symmetry of the Tet layer is P⎯(6)2m. 

 

MDO polytypes of the subfamily A [P⎯(3)1m λ-symmetry of the Tet layer] are more 
favorable then MDO polytypes of the subfamily B [P⎯(6)2m λ-symmetry of the Tet layer], 
probably because of the different (staggered vs. eclipsed) configuration of the facing Ob 
atoms (Fig. 7). The most common polytypes are indeed MDO subfamily A. Of the MDO 
subfamily B, only 2M2 is relatively common in Li-rich trioctahedral micas, where an 
important structural role of the fluorine atoms has been proposed (Takeda et al. 1971). 2O 
has been found in its ideal space group in a fluor-phlogopite (Ferraris et al. 2001) and in 
the brittle mica anandite (Giuseppetti and Tadini 1972; Filut et al. 1985): the structure 
refinement of anandite indicates that it cannot be described in terms of an orthohexagonal 
C-centered cell, its space-group type being Pnmn. 2O was also obtained synthetically in 
fluor-phlogopite (Sunagawa et al. 1968; Endo 1968), and identified from direct 
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observation of the growth spirals on the surface, but no diffraction study has been 
performed. Several non-MDO subfamily A polytypes have been reported, as well as 
some mixed-rotation polytypes, but their number is far smaller than MDO polytypes. The 
abundance of MDO subfamily A polytypes shows that the geometrical equivalence of 
OD layers is an important factor even when considering the real structures. The 
occurrence of non-MDO polytypes is easily understood when considering that the MDO 
concept specifically refers to a layer-by-layer growth. In all the environments where 
crystals grow in a fluid phase, the spiral-growth mechanism, to which the MDO criteria 
apply less strictly, becomes dominant as soon as the supersaturation decreases below a 
certain critical value (Sunagawa 1984). As a matter of fact, the appearance of long-period 
polytypes in micas has precise structural reasons. In polytypes based on the close-packed 
arrangement of atoms, such as SiC, CdI2 etc., the layer thickness is only a few Å and the 
long-range interactions are not negligible. In micas the layer is about 10Å thick and the 
long-range interactions are thus less relevant. The probability of the occurrence of non-
MDO polytypes, as well as of non-periodic (disordered) polytypes, depends in general on 
how close are the layers to their archetypes (i.e. how close is the real symmetry to the 
ideal OD symmetry). The more a layer deviates from its archetype, the less valid are the 
equivalencies between adjacent layers. The consequence is that when the pairs of 
adjacent layers are not geometrically equivalent, they are also not energetically 
equivalent and the ambiguity in the stacking of layers is lost. 

The first derivation of the predecessors of the MDO polytypes dates back to Smith 
and Yoder (1956), who theoretically described the six non-equivalent polytypes (termed 
“simple polymorphs” by them) that can be obtained by stacking the M1 layer with the 
same rotation (in the two possible directions) between adjacent layers. All other 
polytypes were collectively termed complex polymorphs. The term polymorphism was 
also used by Zvyagin (1962) and by Franzini and Schiaffino (1963a,b), whereas the word 
polytypism when referring to micas was used for the first time probably by Amelinckx 
and Dekeyser (1953). The adjectives simple and complex used by Smith and Yoder 
(1956) represent a qualitative description, as well as the word standard used by Bailey 
(1980a). Zvyagin et al (1979) (see also Zvyagin 1988) introduced the notion of 
“condition of homogeneity3”, which identifies polytypes in which the position of any 
layer relative to the others and the transition from it to the adjacent ones, are the same or 
equivalent for all layers. These polytypes are called homogeneous polytypes; the 
remaining ones are called inhomogeneous polytypes. The condition of homogeneity is 
similar to the condition of the Maximum Degree of Order, but with less emphasis on 
chemical variations, and thus also on the symmetry distinguishing the three families. The 
main difference is that Zvyagin applies his condition to the entire crystal-chemical layer, 
whereas the algorithms for the derivation of MDO polytypes (Dornberger-Schiff et al. 
1982, Dornberger-Schiff and Grell 1982) apply to OD layers or OD packets: the latter in 
micas roughly correspond to half-layers. Within the homo-octahedral approximation in 
micas, the procedures for the derivation of “simple”, “standard”, “homogeneous”, 
“MDO”, yield identical results (Table 2): this is however, in general, not true for other 
compounds, because the algorithms for the derivation of MDO polytypes are 
considerably different from those employed to derive “homogeneous” or “simple” 
polytypes. The difference becomes evident when considering that there are only 6 
“simple” or “standard” polytypes (that become 8 when considering the non-congruent 
polytypes, i.e. counting separately each member of an enantiomorphous pair), but they 
simply correspond to homo-octahedral MDO polytypes. There are then 14 non-equivalent  

                                                 
3 In some texts, the Russian term “однородность” is translated as “uniformity” instead of 

“homogeneity”. Here we adopt the latter translation, closer to the original meaning. 
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(22 non-congruent) polytypes in the meso-octahedral family, and 36 non-equivalent (60 
non-congruent) polytypes in the hetero-octahedral family, which obey the condition of 
Maximum Degree of Order. Zvyagin’s “condition of homogeneity” applies to homo- and 
meso-octahedral polytypes, but not to the hetero-octahedral family.  

The reason for the derivation of the polytypes mentioned above is to single out, from 
the theoretically infinite number of periodic polytypes within a given family, those with 
relatively short periods in the stacking direction, which are most likely to be encountered 
in investigated specimens. To calculate theoretical single-crystal diffraction patterns is 
easy, provided that the structure of the single layer is known, and the distribution of 
intensities can then be used for their identification by simple visual comparison with 
patterns obtained experimentally (Weiss and Wiewióra 1986). Thus, it is irrelevant which 
set of polytypes as derived by different authors/schools is used, provided it fulfils its 
purpose, namely it allows the identification of the polytype. Identification of long-period 
(non-MDO) polytypes requires special algorithms exploiting the periodicity of the 
intensity distribution, and this is treated at the end of this chapter. 

SYMBOLIC DESCRIPTION OF MICA POLYTYPES 
The indicative symbolism developed by Ramsdell (1947) is not sufficiently 

informative for polytypes with more than 2-3 layers in the repeat unit. Because of the 
rapid increase of the number of possible polytypes with the number of layers in the repeat 
unit (Mogami et al. 1978; McLarnan 1981) the Ramsdell notation needs augmentation 
with another, descriptive symbolism, from which the structure, including its symmetry, 
can be reconstructed when the structure of the individual layer is known. Note that a 
symbol, which describes the stacking mode in an individual polytype, consists of a string 
of characters. Symbolism is a set of rules governing the construction of symbols. The 
symbols introduced to describe the stacking mode in mica polytypes can be broadly 
divided into two types, orientational (giving the absolute orientation of layers with 
respect to a space-fixed reference) and rotational (giving the relative rotations between 
pairs of layers). 

1) Orientational symbols 

1A) DA symbols. The first symbolic description is from Dekeyser and Amelinckx 
(1953), who used a set of vectors and numerical symbols to indicate the complete 
stagger of the layer, defined as the (001) projection of the vector connecting two 
(OH/F) sites on the two sides of the octahedral sheet. Six characters n = 1,2,3⎯,1⎯,2⎯,3 
represent the stagger of the layer with respect to a space-fixed reference (Fig. 8). 
These symbols apply to the homo-octahedral approximation only and therefore 
cannot correctly describe polytypes containing M2 layers. 

 
 
 
 
 
 
1B) Z symbols. Zvyagin (1962) introduced a numerical/vectorial description giving the 

stacking of half-layers, as defined by the interlayer cations and the origin of the O 
sheet. This choice made Zvyagin’s symbols more general than the symbols 
introduced previously and also suitable for some other phyllosilicates. However, 

Figure 8. Symbols used by Dekeyser and Amelinckx 
(1953) to indicate the orientation of a whole M layer. 
These symbols can be considered the predecessors of 
OD and Z symbols (cf. Fig. 4). With respect to the 
original figure in Dekeyser and Amelinckx (1953), the 
b and c axes have been taken in the opposite direction 
(b left instead of right, and c coming out from the plane 
instead of into) in accordance with the conventions of 
the International Tables for Crystallography. 
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Zvyagin changed the notation three times. At first (Zvyagin 1962) he adopted the 
letters A, B, C, A,⎯B,⎯C to indicate the absolute orientation of the entire layer. He 
then adopted the characters σi and τi to indicate the intra- and inter-layers 
displacement of half-layers (Zvyagin 1967). Later (Zvyagin et al. 1979) the Greek 
letters were abandoned in favor of the corresponding Roman (si and ti) and with a 
sign inversion between τi and ti, to make homogeneous the definitions of si and ti. 
Finally, the “s” and “t” letters were dropped, leaving only their numerical subscripts 
as orientation characters (Zhukhlistov et al. 1990). These most recent symbols, and 
the vectors they represent, are here termed Z symbols and Z vectors. As for DA 
symbols, Z symbols are oriented symbols linked to a space-fixed, orthohexagonal 
reference with (a, b) axes in (001) plane (see also Zvyagin 1985). For non-
orthogonal N-layer polytypes, the period along the c axis of this reference 
corresponds to 3N layers (Fig. 9). The vector connecting the origin of the octahedral 
sheet with the nearest interlayer site and vice versa, always looking at the sequence 
of layers in the same direction, is called intralayer displacement: its projection on the 
(001) plane has length |a|/3 and corresponds to the vector T2j-2 (or T2j-1, depending on 
which of the two half-layers is considered) in Figure 2. There are six possible 
orientations for each half layer, indicated by the six layer-fixed ai axes (i = 1~6). The 
projection of the intralayer displacement is indicated by the character i = 1,2,…6 
when the ai axis is parallel to the space-fixed axis a (Fig. 4). The interlayer 
displacement is the vector giving the relative displacement between two adjacent 
layers: it can take any of the six orientations 1~6 described for the intralayer vector, 
and in some other phyllosilicates, also two independent orientations corresponding to 
±b/3 (indicated as “+” and “–” respectively), but it can also be a zero vector 
(indicated as “0”). In micas, owing to the presence of interlayer cations, only the 0 
interlayer displacement occurs. The (a, b) components (sx, sy) of Z vectors are given  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. The conventional monoclinic cell (dashed lines), the (pseudo)-orthohexagonal cell (solid 
lines), and the (pseudo)hexagonal cell [(001) base shaded] built overlapping three conventional 
cells. The scale along c is compressed (modified after Nespolo et al. 2000a). 
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OD symbol Z symbol (sx, sy) 
3 3 (1/3, 0)
2 4 (1/6, 1/6)
1 5 (-1/6, 1/6)
0 6 (-1/3, 0)
5 1 (-1/6, -1/6)
4 2 (1/6, -1/6)
+ + (0, 1/3)
– – (0, -1/3)
0 * (0, 0)

 
in Table 3. The complete symbolism, giving the stacking sequence of half layers, is 
ij0kl0mn0…. For micas containing only M1 layers, i=j, k=l, m=n etc.; the character 
0 can be omitted and a shortened symbol IKM… is obtained (Zhukhlistov et al. 
1990). M2 layers always correspond to intralayer displacement of the same parity; 
opposite parity would in fact produce a trigonal prismatic coordination for the Y 
cations. The Z vector for each layer corresponds to the (001) projection of a pair of 
intralayer displacement vectors and it is obtained by summing their (sx, sy) 
components. For micas built by M1 layers only, this is equivalent to twice the 
components, namely (2sx, 2sy) (Table 3). Z vectors are thus twice as long as DA 
stacking vectors (and also SY vectors, described below), and directed in the opposite 
way. Since ±2/3 is translationally equivalent to ∓1/3, in practice the (a, b) 
components of the Z vectors are the same as those of the intralayer displacements, 
but with the signs interchanged. The DA and SY stacking vectors are the (001) 
projections of vectors not passing through a cationic site in the O sheet. On the other 
hand, Z vectors are the (001) projections of vectors passing through that cationic site. 
As a consequence, Z vectors can distinguish between M1 and M2 layers, whereas the 
other two cannot. The latter simply correspond to the vector sum of Z vectors. 

The fundamental merit of Z symbols is that they can describe also meso-
octahedral polytypes. Their shortcoming is that the symbols describing homo-
octahedral mica polytypes are identical with those describing meso-octahedral 
polytypes consisting of M1 layers, and additional information must be given also. 
Moreover, in their present form, they cannot handle hetero-octahedral polytypes. 

1C) OD symbols. The OD school, inspired by Z symbols, derived the most general 
symbols to describe mica polytypes (Ďurovič and Dornberger-Schiff 1979; 
Dornberger-Schiff et al. 1982; Backhaus and Ďurovič 1984; Ďurovič et al. 1984; 
Weiss and Wiewióra 1986). These symbols consist of a sequence of characters 
referring to one period, placed between vertical bars; two lines of characters are 
used; the first line indicates the packet orientations, and the second line the packet-
to-packet displacements. A dot “.” separating the orientational characters for packets 
p2j and q2j+1 indicates the position of Oc layer. The OD symbols are thus expressed: 

   

0 1 2 3

0,1 2,3

T T T T
v * v *

⋅ ⋅ "
"

 

Table 3. OD symbols and Z symbols and the (a, b) 
components of the corresponding orientation vectors. 
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 where Tj = 0~5, v2j,2j+1 = T2j+T2j+1 (v, T are the vectors corresponding to v and T 
characters, and the vector sum is taken modulo primitive hexagonal cell), and * 
indicates null vector (no displacement) (Fig. 4). Note that the parity of the 
orientational characters is necessarily opposite to that of the displacement characters. 
The vector sum of v2j,2j+1 over a complete polytype period (hereafter indicated as Σv, 
for shortness) corresponds to the cn projection of the c axis onto the (001) plane and 
gives the total displacement, which can correspond to the characters “0”~”5”, “*”, 
“+” and “–“ (see Tables 3 and 4). In the meso-octahedral family, the v2j,2j+1 
characters in the second line are redundant because they follow unequivocally from 
the T2j·T2j+1··· characters in the first line: simplified symbols |T0 · T1 T2 · T3 …| can 
also be used. In the hetero-octahedral family the chirality of the packets is taken into 
account: right- and left-handed packets are indicated by a prime (′) or double prime 
(“), respectively, substituting the dot, where the chirality is conventionally 
determined by the direction connecting Ma to Mi (Fig. 10) (Ďurovič et al. 1984). 
Also in this case the v2j,2j+1 characters in the second line are redundant, and 
simplified symbols T2j ′ T2j+1 or T2j ″ T2j+1 for the individual packet pairs can be used. 
Although the v2j,2j+1 displacement characters are redundant in both these families, 
their vector sum Σv, as shown in the next section, allows the classification of mica 
polytypes in terms of their reticular features: the complete two-line symbols yield 
thus additional information. Finally, in the homo-octahedral family, there are only 
two distinguishable orientations of the packets. This follows from the fact that the Oc 
layer here is H centered and it can be attached to the Tet layer so that its three 
equivalent origins can be reached simultaneously by the three T vectors with even- 
or odd (uneven)- numbered characters, respectively. These two orientations of a 
packet, differing by a 1800 rotation, are indicated by orientational characters e and u, 
respectively. In this case, the first line of characters is redundant and simplified 
symbols consisting just of the line of displacement v2j,2j+1 characters may be 
sufficient (Dornberger-Schiff et al. 1982).  

The OD symbols for the packet orientations were defined with respect to 
hexagonal axes A1, A2, A3 as indicated in Figure 4. In Table 3 they are described in 
terms of the (a, b) orthohexagonal identity periods. The orthohexagonal cell used in 
the OD literature corresponds to the C2 setting (Fig. 1). In practice, for the meso-
octahedral family, the OD symbols correspond to (6-Z)(mod 6), where Z are 
Zvyagin’s characters. For the hetero-octahedral family the same numerical relation 
holds, but the chirality of the packets is considered. For the homo-octahedral family, 
Zvyagin uses one of the three e- or u-vectors as representative: 6 or 3, respectively. 
Going from 0 to 5 instead than from 1 to 6, the OD symbols obey the closure 
property of the mod function. The corresponding OD vectors are disposed in a 
clockwise sequence, whereas Z vectors are defined counter-clockwise (Fig. 4), but 
their crystal chemical basis is the same. 

1D) TS symbols (Sadanaga and Takeda 1969; Takeda and Sadanaga 1969) give the 
relative positions of the TS unit layers and are written as a sequence of N symbols 
Lj(ΔXj, ΔYj), j = 1-N, where Lj is the type of layer and N is the number of layers in 
the polytype period. Considering two successive repeats of N layers, (ΔXj, ΔYj) are 
the (a, b) components of the vector connecting the origin of the last (N-th) layer of a 
repeat and the origin of the j-th layer of the next repeat (Fig. 2). These symbols 
respect only the homo-octahedral approximation. 

2) Rotational symbols 
2A) SY vectors. Smith and Yoder (1956) described the stacking sequence in a way 

similar to Dekeyser and Amelinck (1953). The stacking vectors are defined as the 
(001) projection of the vector connecting two  nearest interlayer cations on the two  
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sides of a layer. Becuase interlayer cations and (OH, F) groups overlap in the (001) 
projection, in practice the methods of Dekeyser and Amelinckx (1953) and of Smith 
and Yoder (1956) are equivalent; however, Smith and Yoder (1956) did not adopt a 
symbolic notation. Also these vectors are correct only in the homo-octahedral 
approximation and cannot thus describe correctly polytypes containing M2 layers. 

2B) RTW symbols. Ross et al (1966) introduced a numerical description (RTW 
symbols) giving the relative rotations between successive stacking vectors 
representing a sequence of M1 layers. This description is the most immediate, 
although not the most general (it applies to the homo-octahedral approximation 
only), to describe the mica-polytype stacking mode and to derive all possible mica 
polytypes with a given number of M1 layers (Takeda 1971; Mogami et al. 1978; 
McLarnan 1981). However, the method cannot distinguish between M1 and M2 
layers. RTW symbols are orientation-free, rotational symbols written as a sequence 
on N characters Aj = 0,±1,±2,3, the j-th character giving the rotation angle between j-
th and (j+1)-th layers as integer multiple of 60º. A RTW symbol corresponds to the 
difference, with sign inverted, between pairs of displacement OD characters [Aj = –
(v2j,2j+1- v2j-2,2j-1)] or to the difference between pairs of Z characters corresponding to 
successive M1 layers [Aj = +(Z2j+1-Z2j-1)]. The opposite sign between OD and Z 
symbols originates from the fact that Z and RTW symbols are defined counter-
clockwise, whereas OD symbols are defined clockwise. The closure of the 
periodicity after N layers is expressed by the condition (Takeda 1971): 

( )1
0 mod 6N

jj
A

=
=∑  (1) 

2C) Thompson’s symbols. Thompson (1981) introduced an operatorial description of 
mica stacking, in which operators N1 and N-1 (N = 1,6) produce 2π/N 
counterclockwise (N1) or clockwise (N-1) rotation of the M layer. These operators are 
divided into dot [N = 1(mod 2)] and cross operators [N = 0(mod 2)]. 
Bailey (1980a,b) gave an alternative description of the polytypism of the micas, by 

classifying the six possible directions of the stagger of the tetrahedral sheets within a 
layer (positive and negative directions of the three hexagonal axes in the plane of the 
layer). The six possible positions of octahedral cations with respect to a space-fixed 
reference were divided into two groups, labeled I (negative stagger) and II (positive 
stagger). The first layer of each polytype was kept with tetrahedral stagger along –a1 
(octahedral cation positions I): as a consequence, the axial setting used to derive the 
polytypes was not the most suitable to identify polytypes from their diffraction pattern, 
and a final axial transformation is necessary. Subfamily A, subfamily B and mixed-
rotation polytypes correspond to sequences of octahedral cations belonging to group I 
only, to groups I and II alternating, and to groups I and II mixed non-alternating. Bailey’s 
notation cannot distinguish between M1 and M2 layers and is not adopted here. We 
instead make reference to OD and Z (collectively termed “orientational symbols” when 
referring to both, for shortness) and to RTW symbols. 

RETICULAR CLASSIFICATION OF POLYTYPES: 
SPACE ORIENTATION AND SYMBOL DEFINITION 

Mica polytypes can belong to five symmetries: H, T, O, M and A (Takeda 1971). In 
both the Pauling and the Trigonal models, the lattice of triclinic polytypes is metrically 
monoclinic, and the (001) projection of the c axis, labeled cn, can take three values: 0, |a|/3, 
|b|/3, on the basis of which mica polytypes are classified into orthogonal, Class a and Class 
b respectively. The number N of layers building a polytype can be expressed as: 
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N = 3n(3K+L) (K and n non-negative integers; L=1 or 2)  (2) 
where n defines the Series and L the Subclass; K is a constant entering in the 
transformation matrices relating axial settings (Nespolo et al. 1998). 

The structural model of each polytype, as described by the stacking vectors, has six 
possible orientations with respect to the space-fixed (a, b) axes, each 60º apart. These 
orientations correspond to one sequence of characters in the RTW symbols, but to six 
different sequences of orientational symbols, and are in general non-equivalent. The cn 
projection may correspond to Σv = 〈*〉 (orthogonal polytypes), Σv = 〈0〉~〈5〉 (Class a 
polytypes), or to Σv = 〈+〉 or 〈–〉 (Class b polytypes), i.e. to cn = (0, 0), (±1/3, [0, ±1/3]) 
and (0, ±1/3) respectively. For non-orthogonal polytypes, cn can be reduced to ⎯(1/3, 0) 
(Class a) or (0,⎯1/3) (Class b) by means of the C-centering vectors and by rotating the 
structural model around c*. These six orientations can be grouped in the following way 
(Nespolo et al. 1999d). 
1. Class a polytypes. Each orientation corresponds to a different cn projection, i.e. to a 

different character of Σv, from 〈0〉 to 〈5〉. Among these, there is only one that 
corresponds to the b-unique setting with an obtuse β angle: that with Σv = 〈0〉, i.e. cn  
=  (1/3, 0). 

2. Class b polytypes. Three orientations correspond to Σv = 〈+〉, i.e. cn = (0, 1/3) (acute α 
angle) and three others to Σv = 〈–〉, i.e. cn = (0,⎯1/3) (obtuse α angle). The three 
orientations with the same Σv (cn) are equivalent for triclinic polytypes, but not for 
monoclinic cases. The symmetry elements are oriented according to an a-unique 
setting with α obtuse. Only one of the three orientations leading to Σv = 〈–〉 agrees 
with such a requirement. 

3. Orthogonal polytypes. The six orientations correspond to Σv = 〈*〉, i.e. cn = (0, 0), and 
they are equivalent for hexagonal, trigonal and triclinic polytypes, whereas for 
orthorhombic and monoclinic polytypes only two orientations, related by 180º 
rotation around c = c* axis, lead to the correct orientation of the symmetry elements. 
Because both the reticular features and the OD character are based on the geometry 

of the layer stacking in polytypes, some relations between the OD and the reticular 
classifications can be established (Backhaus and Ďurovič 1984; Nespolo 1999). 
1. Subfamily A. These polytypes are described by orientational symbols with characters 

of the same parity, i.e. by all-even characters in the RTW symbol. They include the 
three most common MDO polytypes (1M, 2M1, 3T) and the great majority of non-
MDO polytypes found so far. Successive layers are related by 2n×60º rotations; the x 
component of the stacking vector of each packet (half-layer) is either always +1/3 
(odd orientational parity of characters in the orientational symbols) or always -1/3 
(even orientational parity of characters in the orientational symbols). As a 
consequence, in Series 0 [n = 0 in Equation (2), i.e. polytypes with the number of 
layers not a multiple of 3] the x component of cn cannot be 0 and these polytypes 
belong to Class a. In Series higher than 0, the number of layers building the polytypes 
is a multiple of 3 and thus Σv is 〈*〉, 〈+〉 or 〈–〉 (the x component of cn is always 0). 
Therefore, these polytypes cannot belong to Class a. 

2. Subfamily B. These polytypes are described by orientational symbols with characters 
of alternating parity, i.e. by all-odd characters in the RTW symbol. Successive layers 
are related by (2n+1)×60º rotations. Only polytypes with an even number of layers 
appear in this subfamily. In addition, because layers with different orientational parity 
have an opposite x component of the stacking vector, Σv is 〈*〉, 〈+〉 or 〈–〉 and it is not 
possible to have a Class a polytype. 

3. Mixed-rotation polytypes. These polytypes correspond to orientational symbols with 
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character of different, non-alternating parity and to mixed parity of the characters in 
the RTW symbol. Because there is no definite rule for the layer orientational parity 
sequence, the three kinds of polytypes (orthogonal, Class a, Class b) are possible. 

LOCAL AND GLOBAL SYMMETRY OF MICA POLYTYPES 
FROM THEIR STACKING SYMBOLS 

The main purposes of descriptive stacking symbols are: 1) to uniquely identify a 
polytype; 2) to enable the reconstruction of the structure of the polytype once the 
structure of the layer is known; 3) to enable a symmetry analysis of the polytype, not only 
for the systematic derivation of MDO polytypes but also to determine the symmetry 
(local and global) of a polytype from its symbol in a purely analytical way – without the 
need to draw auxiliary pictures (although these may be quite useful to visualize the 
stacking sequence); and 4) to calculate the Fourier transform of the polytype. It is thus 
necessary to know how the individual point operations influence the individual characters 
in the symbol. For mica polytypes, there are 24 point operations constituting the point 
group 6/mmm. The effect of each of them on the six vectors corresponding to the 
orientational symbols can be expressed in a general form, e.g., a 60º clockwise rotation 
converts an OD vector 〈j〉 into 〈j+1〉, or a Z vector 〈j〉 into 〈j-1〉, but as a “working tool” it 
is more convenient to compile a table of conversions to give the results explicitly. Note 
that the vectors given in Figure 2 and 4 are actually the (001) projections of the intralayer 
stacking vectors that give the absolute orientations of packets (half-layers in Zvyagin’s 
concept). The transformation of these projections is almost trivial for τ-operations, 
whereas it must be combined with an inversion for ρ-operations because the stacking 
vector must always to point in the same direction, namely along +c. For example, a 180º 

rotation around the b axis (H-M: [. . . (.) . . 2], ORT : 2[010] in Table 5a) converts a vector 
〈0〉 into vector 〈3〉 but such a vector would point along -c. The corresponding vector 
directed along +c is 〈0〉. It follows that the 2[010] rotation applied to a packet p2j = 〈0〉 
yields a packet q2j+1 = 〈0〉. Tables 5a and 5b give the conversion rules for OD symbols 
and Z symbols, respectively. Moreover, a τ-operation leaves unchanged the order of the 
sequence of characters in the orientational symbol, whereas a ρ-operation inverts it. The 
effect of the 24 point operations of the point group 6/mmm on the entire orientational 
symbol is given in Table 6. 

Derivation of MDO polytypes 

The derivation of MDO polytypes for homo-, meso-, and hetero-octahedral micas 
were described in detail by Backhaus and Ďurovič (1984). Therefore, only basic ideas are 
given here. 

The first step is to construct all packet triples compatible with the crystal chemistry. 
The use of meso-octahedral micas demonstrates the procedure. Let us take an M1 layer and 
begin with the packet p0 in the orientation 0 (any other initial orientation could be used). 
The packet q1 must then be also in the orientation 0 to preserve M1 layer. The packet- 

pair is then 0 .0
3 because the sum of the two orientational vectors 〈0〉 + 〈0〉 = 〈3〉, where  

〈3〉 is the displacement vector (cf. Fig. 4). A single meso-octahedral packet has the 
symmetry C1m(1) but in the following we shall not consider the translations of the layer 
group. The point group m has the order 2 and consists of two operations: the identity (an 
operation of the first sort, whose transformation matrix has determinant +1) and the 
reflection (an operation of the second sort, whose transformation matrix has determinant 
−1). Therefore, any transformation of such a packet consists always of two operations with  
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Table 5a. Conversion of characters appearing in the OD symbols of mica polytypes. The individual 
operations are characterized by their extended Hermann-Mauguin (H-M) symbols and by the 
corresponding operations indexed in orthogonal (ORT) C2 –setting axes. Cf. Table 1 and Backhaus and 
Durovic (1984). 

τ-point operations Character conversion by point operation ρ-point operations 
H-M ORT j : 0 1 2 3 4 5    e u * H-M ORT 

1 
(6)-1 

(3)-1 

(2)1 

(3)1 

(6)1 

1 
(6)-1 
(3)-1 
(2)1 
(3)1 

(6)1 

j :  
1+j: 
2+j: 
3+j: 
4+j: 
5+j:

0 1 2 3 4 5    e u * 
1 2 3 4 5 0    u e * 
2 3 4 5 0 1    e u * 
3 4 5 0 1 2    u e * 
4 5 0 1 2 3    e u * 

5 0 1 2 3 4    u e * 

⎯1 
⎯(6)-1 

⎯(3)-1 

⎯(2)1 = m(001) 
⎯(3)1 

⎯(6)1 

⎯1 
⎯(6)-1 
⎯(3)-1 

⎯(2)1 = m(001) 
⎯(3)1 

⎯(6)1 
′—′ 
′′—′′ 

′—′′ 
′′—′ 

τ-point operations Character conversion by point operation ρ-point operations 
H-M ORT j : 0 1 2 3 4 5    e u * H-M ORT 

[m . . (.) . . .] 
[. . . (.) . m .] 
[. . m (.) . . .] 
[. . . (.) m . .] 
[. m . (.) . . .] 
[. . . (.) . . m] 

m(⎯130) 
m(⎯110) 
m(100) 
m(110) 
m(130) 
m(010) 

5-j : 
4-j : 
3-j : 
2-j : 
1-j : 
-j :

5 4 3 2 1 0    u e * 
4 3 2 1 0 5    e u * 
3 2 1 0 5 4    u e * 
2 1 0 5 4 3    e u * 
1 0 5 4 3 2    u e * 
0 5 4 3 2 1    e u * 

[2 . . (.) . . .] 
[. . . (.) . 2 .] 
[. . 2 (.) . . .] 
[. . . (.) 2 . .] 
[. 2 . (.) . . .] 
[. . . (.) . . 2] 

2[⎯110] 
2[⎯310] 
2[100] 
2[310] 
2[110] 
2[010] 

′—′′ 
′′—′ 

′—′ 
′′—′′ 

 
 

Table 5b. Conversion of characters appearing in the Zvyagin symbols of mica polytypes. The individual 
operations are characterized by their extended Hermann-Mauguin (H-M) symbols and by the 
corresponding operations indexed in orthogonal (ORT) C2–setting axes. Cf. Table 1 and Zvyagin (1997). 

τ-point operations Character conversion by point operation ρ-point operations 
H-M ORT j : 6 5 4 3 2 1    0 H-M ORT 

1 
(6)-1 

(3)-1 

(2)1 

(3)1 

(6)1 

1 
(6)-1 
(3)-1 
(2)1 
(3)1 

(6)1 

j : 
5+j : 
4+j : 
3+j : 
2+j : 
1+j :

6 5 4 3 2 1    0 
5 4 3 2 1 6    0 
4 3 2 1 6 5    0 
3 2 1 6 5 4    0 
2 1 6 5 4 3    0 

1 6 5 4 3 2    0 

⎯1 
⎯(6)-1 

⎯(3)-1 

⎯⎯(2)1 = m(001) 
⎯(3)1 

⎯(6)1 

⎯1 
⎯(6)-1 
⎯(3)-1 

⎯⎯(2)1 = m(001) 
⎯(3)1 

⎯(6)1 
[m . . (.) . . .] 
[. . . (.) . m .] 
[. . m (.) . . .] 
[. . . (.) m . .] 
[. m . (.) . . .] 
[. . . (.) . . m] 

m(⎯130) 
m(⎯110) 
m(100) 
m(110) 
m(130) 
m(010) 

1-j : 
2-j : 
3-j : 
4-j : 
5-j : 
-j :

1 2 3 4 5 6    0 
2 3 4 5 6 1    0 
3 4 5 6 1 2    0 
4 5 6 1 2 3    0 
5 6 1 2 3 4    0 
6 1 2 3 4 5    0 

[2 . . (.) . . .] 
[. . . (.) . 2 .] 
[. . 2 (.) . . .] 
[. . . (.) 2 . .] 
[. 2 . (.) . . .] 
[. . . (.) . . 2] 

2[⎯110] 
2[⎯310] 
2[100] 
2[310] 
2[110] 
2[010] 
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Table 6. Transformation rules for OD and Z symbol under the effect of the λ-
symmetry operations of the hexagonal syngony. 〈i′〉,〈j′〉,…., 〈p′〉 (OD symbols) 
and 〈i〉,〈j〉,.…,〈p〉 (Z symbols) are the original symbols. The individual operations 
are characterized by their extended Hermann-Mauguin (H-M) symbols and by 
the corresponding operations indexed in orthogonal (ORT) C2 –setting axes. Cf. 
Table 1 (modified after Nespolo et al. 1999). 

τ-point operation effect on OD symbol 

sequence 

effect on Z-symbol 

sequence H-M ORT 

1 1 〈i′〉,〈j′〉,….,〈p′〉 〈i〉,〈j〉,…. 〈p〉 
(6)-1 (6)-1 〈1+i′〉,〈1+j′〉,….,〈1+p′〉 〈5+i〉,〈5+j〉,….,〈5+p〉 
(3)-1 (3)-1 〈2+i′〉,〈2+j′〉,….,〈2+p′〉 〈4+i〉,〈4+j〉,….,〈4+p〉 
(2)1 (2)1 〈3+i′〉,〈3+j′〉,….,〈3+p′〉 〈3+i〉,〈3+j〉,….,〈3+p〉 
(3)1 (3)1 〈4+i′〉,〈4+j′〉,….,〈4+p′〉 〈2+i〉,〈2+j〉,….,〈2+p〉 
(6)1 (6)1 〈5+i′〉,〈5+j′〉,….,〈5+p′〉 〈1+i〉,〈1+j〉,….,〈1+p〉 

[m . . (.) . . .] m(⎯130) 〈5-i′′〉,〈5-j′′〉,….,〈5-p′′〉 〈1-i〉,〈1-j〉,….,〈1-p〉 
[. . . (.) . m .] m(⎯110) 〈4-i′′〉,〈4-j′′〉,….,〈4-p′′〉 〈2-i〉,〈2-j〉,….,〈2-p〉 
[. . m (.) . . .] m(100) 〈3-i′′〉,〈3-j′′〉,….,〈3-p′′〉 〈3-i〉,〈3-j〉,….,〈3-p〉 
[. . . (.) m . .] m(110) 〈2-i′′〉,〈2-j′′〉,….,〈2-p′′〉 〈4-i〉,〈4-j〉,….,〈4-p〉 
[. m . (.) . . .] m(130) 〈1-i′′〉,〈1-j′′〉,….,〈1-p′′〉 〈5-i〉,〈5-j〉,….,〈5-p〉 
[. . . (.) . . m] m(010) 〈-i′′〉,〈-j′′〉,….,〈-p′′〉 〈-i〉,〈-j〉,….,〈-p〉 

 

ρ-point operation effect on OD symbol 
sequence 

Effect on Z-symbol 
sequence H-M ORT 

⎯1 ⎯1 〈p′′〉,…., 〈j′′〉,〈i′′〉 〈p〉….,〈j〉,〈i〉 
⎯(6)-1 ⎯(6)-1 〈1+p′′〉,…,〈1+j′′〉,〈1+i′′〉 〈5+p〉,….,〈5+j〉,〈5+i〉 
⎯(3)-1 ⎯(3)-1 〈2+p′′〉,…,〈2+j′′〉,〈2+i′′〉 〈4+p〉,….,〈4+j〉,〈4+i〉 

⎯⎯(2)1 = m(001) 
⎯⎯(2)1=   
m(001) 

〈3+p′′〉,…,〈3+j′′〉,〈3+i′′〉 〈3+p〉,….,〈3+j〉,〈3+i〉 

⎯(3)1 ⎯(3)1 〈4+p′′〉,…,〈4+j′′〉,〈4+i′′〉 〈2+p〉,….,〈2+j〉,〈2+i〉 
⎯(6)1 ⎯(6)1 〈5+p′′〉,…,〈5+j′′〉,〈5+i′′〉 〈1+p〉,….,〈1+j〉,〈1+i〉 

[2 . . (.) . . .] 2[⎯110] 〈5-p′〉,….,〈5-j′〉,〈5-i′〉 〈1-p〉,….,〈1-j〉,〈1-i〉 
[. . . (.) . 2 .] 2[⎯310] 〈4-p′〉,….,〈4-j′〉,〈4-i′〉 〈2-p〉,….,〈2-j〉,〈2-i〉 
[. . 2 (.) . . .] 2[100] 〈3-p′〉,...,〈3-j′〉,〈3-i′〉 〈3-p〉,….,〈3-j〉,〈3-i〉 
[. . . (.) 2 . .] 2[310] 〈2-p′〉,…,〈2-j′〉,〈2-i′〉 〈4-p〉,….,〈4-j〉,〈4-i〉 
[. 2 . (.) . . .] 2[110] 〈1-p′〉,….,〈1-j′〉,〈1-i′〉 〈5-p〉,….,〈5-j〉,〈5-i〉 
[. . . (.) . . 2] 2[010] 〈-p′〉,….,〈-j′〉,〈-i′〉 〈-p〉,….,〈-j〉,〈-i〉 
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the above properties. Accordingly, in the packet pair . 0 .0
3

.
 the two packets are related 

simultaneously with two ρ–operations, and a look at Table 5a shows that these, 
converting 0. into .0 and 3 into itself are [. . .(.) . . 2] ≡ 2[010] and an inversion. The packet 
pair has thus the point symmetry 2/m. 

The packet triples p0q1p2 compatible with the Trigonal model in the subfamily A are 
0.0 0

3 * , 0 .0 2
3 *  plus its enantiomorphous 0 .0 4

3 * . The two 02τ-operations converting p0 into p2 
are in the first case (Table 5a) a translation (isogonal with the identity) and a glide 
operation (isogonal with […(.)..m(010)]). A continuation of any of these τ-operations leads 
to the same string …. 0 .0 0 . 0 0 . 0

3 * 3 * 3 * … because any of them converts also displacement 
characters 3 in the same way. This string has modulus 0.0

3 , the vector 〈3〉 is the interlayer 
vector of this one-layer monoclinic polytype. However, because 〈3〉 = +a/3 (acute β 
angle), it must be re-oriented by a rotation of 180o around c* to bring it into the standard, 
second setting (obtuse β angle). Evidently, this can be made (Table 5a) by adding 3 to all 
characters, thus 3.3

0  is obtained. The basis vectors of this 1M polytype with symmetry 
C12/m1, are a, b, c0-a/3, where c0 is a vector perpendicular to the layer planes with length 
corresponding to the “layer width” (e.g., a distance between two closest planes of 
interlayer cations). 

The two 02τ-operations for the triple 0 .0 2
3 *  are (Table 5a) a clockwise three-fold screw 

rotation (first sort operation, isogonal with (3)-1 ≡ 3[001]) and a glide operation (second sort 
operation, isogonal with [. . . (.) m . .] ≡ m(110)). A continuation of the (3)-1, through a 
step-by step application onto the characters in the starting triple, converts 0→2, then 
2→4 and 4→0 but also 3→5, 5→1 and 1→3, which closes the period. The resulting 
symbol 0.0 2 . 2 4.4

3 * 5 * 1 *  characterizes a three-layer, trigonal 3T polytype with symmetry P3212 
and basis vectors a1, a2, 3c0. A continuation of [. . . (.) m . .] ≡ m(110) converts 0→2 but 
then 2→0, and 3→5, 5→3 which closes the period. The symbol 0.0 2 . 2

3 * 5 *  describes a two-
layer monoclinic polytype (glide operation is the global operation here) with an interlayer 
vector equal to the sum of the two displacement vectors 〈3〉 + 〈5〉 = 〈4〉 (cf. Fig. 4). Also 
this polytype must be clockwise rotated by 120o, by adding 2 to all characters, to bring it 
into the standard setting. The final form is 2 . 2 4.4

5 * 1 * , the 2M1 polytype with symmetry 
C12/c1 and basis vectors a, b, 2c0-a/3. 

The packet triple 0 . 0 4
3 * , enantiomorphous to the previous example, yields analogous 

results. The continuation of the (3)1 gives string 0.0 4.4 2 . 2
3 * 1 * 5 * , a 3T polytype with symmetry 

P3112, the enantiomorphous counterpart to P3212. The continuation of [. . . (.) . m .] ≡ m 
(⎯110)) gives a preliminary symbol 0 .0 4.4

3 * 1 *  and, after re-orientation by an anti-clockwise 
rotation by 120º, 4.4 2 . 2

1 * 5 * , which is the same 2M1 polytype, just with another choice of 
origin on the glide plane. 

This example is instructive: from a pair of packet triples which are enantiomorphous 
to each other, we obtain, in general, three non-congruent MDO polytypes. Two of them, 
generated by first-sort operations, contain only packet triples of the one or of the other 
kind, and these two polytypes form an enantiomorphous pair. The third polytype, 
generated by second-sort operations, contains both kinds of packet triples, regularly 
alternating, and it is thus obtained twice in the process of the derivation of MDO 
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polytypes. Thus, for the meso-octahedral micas of the subfamily A we have obtained the 
three known MDO polytypes constructed by M1 layers: 1M, 2M1 and 3T. The subfamily 
B is handled in the same way, yielding MDO polytypes 2O, 2M2 and 6H containing M1 
layers. 

The derivation of MDO polytypes containing M2 layers is in principle the same; 
there is just a circumstance that not all the 02τ-operations constructed mechanically are 
suitable as MDO-generating operations. These details, however, are outside the scope of 
this paper and the reader should consult Backhaus and Ďurovič (1984). The list of all 
homo-, meso- and hetero-octahedral MDO polytypes can be found in Table 7, in context 
with relations of homomorphy described below. 

As shown above, whereas monoclinic and orthorhombic polytypes have to be 
oriented according to the crystallographic conventions, this is irrelevant for orthogonal 
polytypes of the triclinic, trigonal and hexagonal syngonies. Thus, e.g., the symbol for the 
3T polytype is “equally good” in any of the six possible orientations. In general: any of 
the mutually congruent strings of characters describe the same polytype. 

The symmetry analysis from a polytype symbol 

The two meso-octahedral MDO polytypes derived in the previous section is now 
used to demonstrate a “reverse” procedure: to read-out the local and global symmetry 
from the descriptive symbol. The permanent use of Table 5a (or Table 5b, if Z symbols 
are to be analyzed) is not emphasized at every step. Before starting such a task, we must 
check the formal correctness of a symbol: the parity of any displacement character must 
be opposite to that of the two orientational characters above it which, in turn, must have 
the same parity. Also the rule T2j + T2j+1 = v2j,2j+1 must be observed. Otherwise, the 
symbol is wrong. 

Let us take an extended (more than one identity period) string of characters 
corresponding to the 3T polytype, which has six packets within the identity period: 

...2 . 2 4.4 0 . 0 2 . 2 4.4 0 .0 2 . 2...
5 * 1 * 3 * 5 * 1 * 3 * 5  

τ-operations. Evidently, 02[3-1] is the only global non-trivial τ-operation because it 
converts any packet p or q into p+2 or q+2. In addition, there is a trivial 06τ-operation: a 
translation by the identity period (and its multiples, of course). The global 04[31] is a 
consequence. Other τ-operations are only local. The three packet pairs 0.0

3 , 2 . 2
5 and 4.4

1  
have [. . . (.) . . m], [. . . (.) . m .] and [. . . (.) m . .] respectively as local operations 
converting each of the packet pair into itself, but these operations do not hold for the 
neighboring packets. There are also other local τ-operations. For example, the 02τ-glide 
reflection isogonal with [. . . (.) m . .], which is the MDO-generating (global) operation 
for the polytype 2M1 (see above), has only local character in the 3T polytype. 

ρ–operations. Within the packet pair 0 .0
3  there are two ρ–operations 01⎯[1] and  

01[. . . (.) . . 2]. The latter converts not only 0→0, 2→4, and 4→2 (i.e. it mutually 
converts the two neighboring packet pairs), but also the entire string of characters into 
itself. Thus, this two-fold rotation is global. Similar statements hold for all two-fold 
rotations converting any p2j into q2j+1. And analogous results are obtained also for all two-
fold rotations converting q2j+1 into p2j+2, i.e. those, operating across the interlayer e.g.,  
12[. . . (.) 2 . .] converts 0→2, 2→0, 4→4, etc., for the entire string. All of the two-fold 
axes are in the inter-axial directions so that the space-group type is P3212. 
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The inversions valid for each packet pair p2j q2j+1 are only local operations. If a string 
of characters corresponds to a centrosymmetric polytype, then this string, starting and 
ending with the same character(s), read forwards and backwards, must remain the same. 
This is not the case in polytype 3T. 

Let us now consider the meso-octahedral MDO polytype 2M1 derived above, already 
in the standard orientation 4.4 2 . 2

1 * 5 * . The only non-trivial τ-operation here is the glide 
operation isogonal with [. . . (.) . . m], the local mirror reflections hold only for individual 
M1 layers as in the previous case, and also other τ-operations are local. On the other 
hand, this polytype is centrosymmetric. This becomes evident if we write down an 
extended string of characters so that it will contain an odd number of packet pairs pq. 

... 4.4 2 . 2 4.4 2 . 2 4.4 2 . 2 4.4 ...
1 * 5 * 1 * 5 * 1 * 5 * 1  

This symbolism remains the same when read forwards and backwards. In a way 
similar to the above, also all the two-fold rotations [. . . (.) . . 2] can convert any q2j+1 into 
p2j+2 and are global: 2→4, 4→2 5→1, 1→5. The other two-fold rotations, converting any 
p2j into q2j+1, remain local. The space-group type of this polytype is thus C12/c1, taking 
into account the C-centering with respect to the orthogonal axes a, b. 

As an example of a polytype containing also M2 layers, we consider the meso-
octahedral polytype identified by the OD symbol |2.4 0.0| (Z symbol 420660). The 
extended string of characters containing an odd number of packet pairs is: 

... 2 . 4 0 . 0 2 . 4 0 . 0 2 . 4 0 . 0 2 . 4 ...
3 * 3 * 3 * 3 * 3 * 3 * 3  

from which it clearly appears that the polytype is non-centrosymmetric. The only global 
τ-operation is the trivial 04τ translation (and its multiples) corresponding to the identity 
period. The packet pair

2 . 4
3  has no local τ-operations, but 01[…(.)..2] ≡ 2[010] as a local ρ-

operation. The λ-symmetry is C12(1) and the pair of packets corresponds to an M2 layer. 
Instead, as seen in the example of 3T, the packet pair 

0 .0
3  has […(.)..m] ≡ m(010) as a local 

τ-operation, and 23⎯[1] and 23[. . . (.) . . 2] ≡ 2[010] as local ρ-operations. The λ-symmetry is 
C12/m(1) and the pair of packets corresponds to a M1 layer. The only global ρ-operation 
for the polytype is [. . .(.) . . 2] ≡ 2[010] located at both the Oc layers. The space-group type 
is C2. 

The complete analysis for the 8 meso-octahedral polytypes of Class a with period up 
to 2 layers is given in Table 8. 
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RELATIONS OF HOMOMORPHY AND 
CLASSIFICATION OF MDO POLYTYPES 

Polytypes are usefully classified not only within the same family, but also between 
different families. On the basis of the number of layers and of the parity of the 
corresponding characters in the orientational symbols, several meso-octahedral polytypes 
can be related to one homo-octahedral polytype; similarly, taking into account the 
chirality of the packets, several hetero-octahedral polytypes can be related to one meso-
octahedral polytype. In mathematics, a n → 1 relation is a homomorphism, of which the 1 
→ 1 relation (isomorphism) is a special case: the n → 1 relation of polytypes of different 
families is hence termed relations of homomorphy. 

The recognition of such relations is also of practical importance. For instance, if 
during the refinement of a mica structure the homo-octahedral model fails, only the 
choice between the related meso- or hetero-octahedral models has to be made. All such 
polytypes have the same framework of all atoms except those octahedrally coordinated. 
Therefore, they have identical or very similar basis vectors, and the space-group type of 
the homo-octahedral polytype is their common supergroup. Also their diffraction patterns 
are closer to one another than to those of other polytypes: the geometry in reciprocal 
space is virtually the same and also the distribution of intensities is very similar owing to 
the fact that the framework of non-octahedral atoms in an “average” mica represents 
about 70 % of the total diffraction power. 

The relations of homomorphy can be easily revealed by analyzing the OD symbols 
(Ďurovič et al. 1984): 
1) by substituting the primes (′) or double primes (“) in the symbols of hetero-

octahedral polytypes with dots (.), the corresponding meso-octahedral polytypes are 
obtained;  

2) by substituting the Tj orientational characters in the symbols of meso-octahedral 
polytypes with “e” (for “even”) or “u” (for “uneven”), the corresponding homo-
octahedral polytypes are obtained; 

3) the relation of homomorphy between hetero- and homo-octahedral polytypes is 
obtained by combining steps 1) and 2); 

4) some of the hetero-octahedral MDO polytypes are in relation of homomorphy with 
non-MDO meso-octahedral polytypes, but the further homomorphy to the homo-
octahedral family yields again MDO polytypes (for details, see Ďurovič et al. 1984). 
Note that the relations of homomorphy can, in some cases, make two or more sub-

periods identical although they are different in the original polytype: as a result, 
polytypes with a different periodicity can be in homomorphy. As an example, let us 
consider the meso-octahedral polytypes of Class a given in Table 8. Of the six 2-layer 
polytypes, the following four are homomorphous with the homo-octahedral 2M1 
polytype.  

4.4 2 . 2
1 * 5 * , 

0.2 4 . 0
1 * 5 * , 

4 . 0 2.0
5 * 1 * , 

2.0 2 . 2
1 * 5 *  

In fact, the relation of homomorphy gives for each: e.e e . e
1 * 5 * , for which the shortened 

symbol is |15|. The other two polytypes ( 2. 4 4 . 2
3 * 3 *  and 2. 4 0.0

3 * 3 * ), however, are  
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homomorphous with e.e e .e
3 * 3 * . In the homo-octahedral family, this polytype has 1-layer 

periodicity, with a shortened symbol |3|, and this corresponds to 1M rotated by 180º about 
c* (Fig. 11). This apparent reduction of periodicity occurs whenever: 1) the sequence of 
v2j,2j+1 displacement vectors of a meso-octahedral polytype contains two or more identical 
sub-periods, which are different for T2j.T2j+1 orientations of the packets; 2) the sequence 
of T2j.T2j+1 orientation vectors of a hetero-octahedral polytype contains two or more sub-
periods which differ only in the chirality of the packets. 

The relations of homomorphy in mica structures are summarized in Table 7. Full 
symbols are given for homo-and meso-octahedral polytypes, shortened symbols (the line 
of orientational characters) – for hetero-octahedral polytypes. The reason for the 
somewhat unusual layout of this table is related to the fact that two out of the six homo-
octahedral MDO polytypes, 1M and 2O, have the same projection normal to [010] (YZ 
projection). Thus, for the framework of the non-octahedral atoms in the homo-octahedral 
MDO polytypes (and also for the corresponding homo-octahedral approximations), there 
exist five different YZ projections labeled by Roman numbers I to V in the first column 
of Table 7. The significance of the YZ projections will be explained below in the section 
“Identification of MDO polytypes”. 

As an example for the relations of homomorphy, let us take the hetero-octahedral 
polytype 2 ' 4 0 '2 4 ' 0

3 * 1 * 5 *  (subfamily A). This polytype is homomorphous to the meso-
octahedral polytype 2. 4 0.2 4 .0

3 * 1 * 5 *  and this, in turn, is homomorphous to the homo-octahedral 
polytype 3T . . .

3 * 1 * 5 *
e e e e e e : all belong to the MDO group I. The two polytypes in the hetero- 

and meso-octahedral families are constructed of M2 layers. However, in the homo-
octahedral family, the distinction between M1 and M2 layers becomes meaningless: the 
information about the type of layer is thus lost when applying the relation of 
homomorphy down to the homo-octahedral family.  

From the examples above it is evident that: 1) the homo-octahedral approximation 
corresponds to applying to a polytype the relation of homomorphy; 2) in micas, the 
classical Ramsdell notation rigorously applies to homo-octahedral polytypes only. 

BASIC STRUCTURES AND POLYTYPOIDS. SIZE LIMIT FOR THE 
DEFINITION OF “POLYTYPE” 

The term polytype implies that there is a family of structures to which the polytype 
belongs. The original idea of Baumhauer (1912, 1915), who introduced the term 
polytypism, was that the individual members of a family consist of identical layers and 
differ only in their stacking mode. 

Since that time, different views concerning the notion of polytypism were expressed, 
but the present official definition recommended by the Ad-hoc Committee on the 
Nomenclature of Disordered, Modulated and Polytype Structures (Guinier et al. 1984) is 
very close to the original concept of Baumhauer. According to this definition, “… an 
element or compound is polytypic if it occurs in several structural modifications, each of 
which can be regarded as built up by stacking layers of (nearly) identical structure and 
composition, and if the modifications differ only in their stacking sequence. Polytypism 
is a special case of polymorphism: the two-dimensional translations within the layers are 
essentially preserved”. The Ad-hoc Committee, however, admitted that this definition is  
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Figure 11. Relation of homomorphy between the two-layer meso-octahedral  

2 . 4 4 . 2
3 * 3 *  polytype (left) and the one-layer homo-octahedral e . e

3  polytype (right), 

illustrated by showing separately the two Oc layers. Solid vectors: packet orientation; dotted 
vectors: packet-to-packet displacements. Solid circles and open squares represent two different 
average cations. In the meso-octahedral polytype (left), the two Oc layers have the origin in either 
of the two cis-sites, where the different average cation is located: they correspond to M2 layers. 
The packet orientations, given by the vectors connecting the interlayer/OH sites (overlapped in 
projection) to the origin of the Oc layer, are 2 (packets p0 and q3) and 4 (packets q1 and p2). For 
both packet pairs, the vector sum (packet-to-packet displacement) is in orientation 3. By applying 
the relation of homomorphy, i.e., by making identical the content of the three octahedral cation 
sites, and obtaining the corresponding homo-octahedral polytype (right), both layers are 
transformed into the type M1, and the packet orientations change into e for both packets. The 
packet-to-packet displacements do not change. As a consequence, the two layers in the homo-
octahedral polytype have the same orientational vectors, but the periodicity is halved. The Σv, now 
coinciding with v0,1, corresponds to “3” (acute β angle), but can be transformed into “0” (obtuse β 
angle) by rotating the polytype by 180º about the normal to the layer. 
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too wide because – except for the two-dimensional periodicity of layers – it imposes no 
restrictions on the sequence and stacking mode of layers. 

The fact that the definition is not sufficiently geometric prompted Ďurovič (1999) to 
suggest that the layers and their stacking must be limited by the vicinity condition (VC, 
see the section “Micas as OD structures”), and that a family can encompass only those 
polytypes which are built on the same structural and symmetry principle, i.e. only those 
which belong to the same OD groupoid family. This idea was in principle supported also 
by Makovicky (1997) who, at the same time, proposed to distinguish between proper 
polytypes, belonging to the same OD groupoid family, and improper polytypes, which 
cannot be interpreted as such. Recently, Christiansen et al. (1999) suggested a more 
detailed classification concept related to this subject. Makovicky also accepted the term 
polytypoids for polytypic substances in which more than 0.25 atoms per formula unit 
differ in at least one component as proposed by the IMA-IUCr Joint Committee on 
Nomenclature (Bailey et al. 1977). This term was applied also by Bailey (1980b) for the 
specific case of micas, and recommended also by the Ad-hoc Committee, as discussed 
above. 

Abstract polytypes 

The experience gathered over years with refined periodic structures of polytypic 
substances indicate that, sensu stricto, each such polytype is an individual polymorph 
with its own stability field, although the energy differences between polytypes of the 
same compounds are very small. This is caused by desymmetrization, i.e. by changes in 
the atomic coordinates of individual layers imposed by the influence of the neighboring 
layers and it is different for different stacking modes. Thus, even layers in different 
polytypes of the same substance are not identical. A prominent example in micas (1M 
and 2M1 polytypes of biotite with the same composition) was given by Takeda and Ross 
(1975), who not only found significant differences in the constituent layers of the 
polytypes but also postulated that these differences are "directly related to the atomic and 
geometric constraints imposed by the adjacent unit layers varying with the relative 
orientation of the adjacent layers". Desymmetrization occurs even in such less pliable 
structures as SiC, as convincingly reported by researchers at the former Leningrad 
Electrotechnical Institute (Sorokin et al. 1982a,b; Tsvetkov 1982; see also Tairov and 
Tsvetkov 1983) who showed that also the chemical composition (the ratio of Si/C) varies 
from polytype to polytype grown under (nearly) the same conditions. If these facts were 
taken absolutely at the face value, the notion of polytypism would loose its unifying 
significance. In order to overcome these difficulties, the concept of a polytype is often 
considered an abstract notion referring to a structural type with relevant geometric 
properties, belonging to an abstract family whose members consist of layers with 
identical structure and with identical bulk compositions. Such an abstract notion lies at 
the root of all systematization and classification schemes of polytypes. 

In micas (as well as in many other phyllosilicates) the Pauling model and also the 
homo-octahedral approximation are abstractions which are very useful, among others, for 
didactic purposes to gain first knowledge, but also for the calculation of identification 
diagrams of MDO polytypes, and for the calculation of PID functions, described in 
sections about experimental identification of mica polytypes below. A better 
approximation, but still an abstraction, is the Trigonal model, which is important for the 
explanation of subfamilies and for some features in the diffraction patterns. Also, when 
speaking of a specific polytype, a characteristic sequence of abstract mica layers is 
intended rather than deviations from stoichiometry, distribution of cations within 
octahedral sheets, distortion of coordination polyhedra, etc. 
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Basic structures 

Owing to the fact that the energy difference between polytypes of the same 
substance is very small, the occurrence of different polytypes should be influenced 
mostly by the kinetics of crystal growth, and the frequency of occurrence of different 
polytypes is, in principle, directly related to the number of layers in the period. However, 
this statement is contradicted by the existence of a certain degree of structural control 
(Smith and Yoder 1956; Güven 1971) that governs the frequency of occurrence of 
polytypes as a function of the crystallization environment and of the crystal chemistry. As 
firstly noted by Ross et al (1966), a portion of the stacking sequence of the non-MDO 
mica polytypes coincides with the stacking sequence of one of the MDO subfamily A 
polytypes, similarly to what happens in SiC polytypes. The remaining portion represents 
a deviation from the sequence. For this reason, Baronnet and Kang (1989) introduced the 
term basic structures to indicate these three MDO polytypes, as well as 2M2 and 1Md-A. 
The non-MDO polytypes are thus said to belong to one structural series: the three 
structural series 1M, 2M1 and 3T were defined (Ross et al. 1966; Baronnet 1978; Takeda 
and Ross 1995). A structural series based on 2M2 has not been found, but its existence 
cannot be excluded in principle. The causes of the existence of a stacking memory in the 
basic structures are not well understood. Energy differences between two polytypes of the 
same family are small. However, the real structures are constructed not by layer 
archetypes, but by, more or less, desymmetrized layers: the corresponding energy 
differences may be sufficient to control the original stacking sequence. 

However, also when the crystal chemistry is practically identical, a certain degree of 
structural control exists, as shown by the fact that a few polytypes are clearly dominant, 
with the others appearing with much lower frequency. A general trend towards a relation 
between the formation environment, the crystal chemistry and the polytype frequency 
exists also (Nespolo 2001). The three basic structures may thus be not truly polytypic, 
even when the crystal chemistry is identical. 

HTREM observations and some implications 

The application of the High Resolution Transmission Electron Microscopy 
(HRTEM) (Iijima and Buseck 1978) has made possible the observation of several 
stacking sequences that would not be revealed by other techniques. At the same time, 
HRTEM has raised the question of the limits within which an observed stacking sequence 
should be considered a polytype. Kogure and Nespolo (1999b) stated that the stacking 
sequences revealed by HRTEM observation can be defined as a polytype only when they 
are repeated sufficiently to reveal the presence of a memory mechanism reproducing with 
regularity the stacking sequence; otherwise, they should rather be considered defects. It is 
questionable whether a sequence repeated only three times, like the 22-layer biotite 
reported by Konishi and Akai (1990), may be rigorously termed a “polytype”. In such 
cases it is recommended to speak of “a sequence corresponding to a certain polytype”. In 
such cases, we described the form as “a sequence corresponding to the polytype XY”. 
The problem is similar to that of nanocrystals where it is also questionable how many 
unit cells are necessary to determine a phase. 

IDEAL SPACE-GROUP TYPES OF MICA POLYTYPES AND 
DESYMMETRIZATION OF LAYERS IN POLYTYPES 

The ideal space-group type of a given polytype can be derived from the stacking 
sequence, as described above. However, three kinds of symmetries are required: 
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1) the stacking symmetry, deduced from the sequence of packet orientations and 
displacements, which gives the space-group type in the Trigonal model; 

2) the structural symmetry, which may be lower than the stacking symmetry because of 
structural distortions not taken into account by the Trigonal model; 

3) the diffractional symmetry, which may be higher than the structural symmetry. This 
phenomenon is termed diffraction enhancement of symmetry (Ito 1950) and occurs 
when a crystal is constructed by substructures whose symmetry is higher than that of 
the crystal itself (e.g., Iwasaki 1972; Matsumoto et al. 1974). In micas, diffraction 
enhancement of symmetry was observed in the oxybiotite-10A1 from Ruiz Peak, 
which gave a monoclinic diffraction pattern, despite both the stacking symmetry and 
the structural symmetry were triclinic (Sadanaga and Takeda 1968). 
The validity of the local symmetry operations is often only approximate, and the 

atomic coordinates can deviate more or less from the values demanded by the 
corresponding space groupoid, depending on the stacking of the packets in the 
investigated crystal, and this is phenomenon known as desymmetrization (Ďurovič 1979). 
The λ-symmetry of the M layers can thus be lower than the λ-symmetry of the layer 
archetypes described by the Trigonal model (see Table 2 in Ferraris and Ivaldi, this 
volume). The space-group type corresponding to the stacking symmetry in general does 
not require the highest λ-symmetry compatible with the family (homo-, meso- or hetero-
octahedral) and the type of layer (M1 vs. M2). The layer is thus allowed, although not 
required, to attain a layer-subgroup. The general trend that results from the structure 
refinements performed on mica polytypes can be summarized as follows (see Table 9, 
and Tables 1-3 in Brigatti and Guggenheim, this volume): 
1) 1M polytype has been refined only in the highest space-group types and layer-groups 

compatible with the type of layer: C2/m and C12/m(1) for the M1 layer; C2 and 
C12(1) for the M2 layer. 

2) The highest space-group type for the 2M1 polytype is C2/c. All but one example of 
2M1 polytypes refined so far belong to the meso-octahedral family and are 
constructed by M1 layers. Most of these polytypes have been refined in C2/c. This 
space-group type allows a desymmetrization of the layer-group to ⎯C1, which 
corresponds to the λ-symmetry normally obtained in 2M1 polytypes (Güven 1971; 
Zussman 1979; Takeda and Ross 1975). An important exception is oxybiotite-2M1 
refined by Ohta et al (1982), where the highest λ-symmetry C12/m(1) was observed 
within experimental erro; this was also the λ-symmetry of coexisting oxybiotite-1M 
(Ohta et al. 1982). Three studies of meso-octahedral margarite-2M1 refined in the 
space-group type Cc have been reported (Guggenheim and Bailey 1975, 1978; 
Joswig et al 1983; Kassner et al. 1993), where the reduction of symmetry was related 
to the Si-Al ordering, that made the two T sheets no longer equivalent. The layer 
group is only C1, because of the destruction of the center of symmetry. A further 
reduction of symmetry was observed in the ephesite-2M1 reported by Slade et al.  

 
Table 9 (next nine pages ). Relevant properties of the MDO polytypes. Only polytypes for which 
the ccupancies of the octahedral sites were given in the original papers are reported. Following 
Durovic et al (1984), the effective scattering amplitude is taken directly from the original papers, 
when reported; otherwise it has been calculated assuming half-ionized atoms, even where the 
structure was refined using electron or neutron diffraction data. Polytypes built by M2 layers are in 
bold characters. References are given according to the sequence numbers in the tables of the Brigatti 
and Guggenheim chapter. For polytypes not reported there, the complete reference is given. (e) = 
electron diffraction data; (n) = neutron diffraction data; otherwise X-ray diffraction data. 
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Reference Type of mica R factor Space-
group 
type 

(M1) (M2) (M3) Full
polytype 
symbol 

Subfamily A – 1M polytype 

Homo-trioctahedral

1-95 Phlogopite 13.1 C2/m 11.0 11.0 11.0 .
0 *

u u

1-61 Synthetic iron mica 9.3 C2/m 25.0 25.0 25.0 .
0 *

u u

1-97 Synthetic lithian 
flourphlogopite 7.3 C2/m 10.4 10.4 10.4 .

0 *
u u

3-15 Barium mica 7.1 C2/m 8.8 8.8 8.8 .
0 *

u u

1-70 Phlogopite (n) 2.0 C2/m 11.7 11.7 11.7 .
0 *

u u

1-97 Phlogopite 4.1 C2/m 11.0 11.0 11.0 .
0 *

u u

1-72 Fluorophlogopite 6.1 C2/m 11.0 11.0 11.0 .
0 *

u u

1-86 Phlogopite (n) 6.6 C2/m 11.9 11.9 11.9 .
0 *

u u

1-98 Fluro phlogopite 4.3 C2/m 11.0 11.0 11.0 .
0 *

u u

1-104 Synthethic fluormica 3.8 C2/m 9.4 9.4 9.4 .
0 *

u u

1-94 Tetraferriphlogopite 4.2 C2/m 10.5 10.5 10.5 .
0 *

u u

1-108 Fluoro phlogopite 2.9 C2/m 10.2 10.2 10.2 .
0 *

u u

1.108 Tetra germanatian 
fluoro phlogopite 3.7 C2/m 11.0 11.0 11.0 .

0 *
u u

1-69 
Silica- and 
alkali-rich 
trioctahedral mica 

3.0 C2/m 10.6 10.6 10.6 .
0 *

u u

1-103 Germanate mica 3.9 C2/m 14.0 14.0 14.0 .
0 *

u u

1-102 Germanate mica 5.0 C2/m 19.5 19.5 19.5 .
0 *

u u

1-110 Fluoro phlogopite 4.3 C2/m 10.8 10.8 10.8 .
0 *

u u

Knurr and Bailey 
(1986) Phlogopite 3.1 C2/m 12.1 12.1 12.1 .

0 *
u u

3-7 Potassium 
Kinoshitalite (27) 2.5 C2/m 13.4 13.4 13.4 .

0 *
u u

1-82 Cs-ferriannite 5.5 C2/m 25.0 25.0 25.0 .
0 *

u u

1-45 Magnesian annite 
(WA8E) 3.9 C2/m 19.9 19.9 19.9 .

0 *
u u

1-60 Cs-tetra-ferri-annite 3.9 C2/m 25.0 25.0 25.0 .
0 *

u u
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1-87/92 Ferroan phologopite 3.9 C2/m 17.2 17.2 17.2 .
0 *

u u

3-9 Ferrokinoshitalite 3.2 C2/m 20.0 20.0 20.0 .
0 *

u u

3-8 Kinoshitalite 3.35 C2/m 12.0 12.0 12.0 .
0 *

u u

Meso-trioctahedral 

Takéuchi and 
Sadanaga (1966) Xantophyllite 10.8 C2/m 11.3 11.0 11.0 3 . 3

0 *

1-96 Synthethic 
fluor-polylithionite 5.1 C2/m 3.5 6.6 6.6 3 . 3

0 *

1-66 Annite 4.4 C2/m 22.6 22.7 22.7 3 . 3
0 *

1-100 Synthetic MgIV mica 9.2 C2/m 10.7 10.1 10.1 3 . 3
0 *

1-99 Biotite 4.4 C2/m 16.2 16.0 16.0 3 . 3
0 *

1-93 Lepidolite 6.7 C2/m 3.0 8.2 8.2 3 . 3
0 *

1-105 Taeniolite 2.4 C2/m 8.5 8.1 8.1 3 . 3
0 *

1-107 Germanate mica 3.8 C2/m 7.9 8.3 8.3 3 . 3
0 *

1-106 Germanate mica 5.5 C2/m 6.6 10.5 10.5 3 . 3
0 *

Sokolova et al 
(1979) Ephesite 11.5 C2/m 3.2 11.4 11.4 3 . 3

0 *

1-62 Lepidolite 3.5 C2/m 3.6 8.2 8.2 3 . 3
0 *

1-128 Lepidolite 6.2 C2 4.7 10.1 4.7 5 .1
0 *

1-85 Oxybiotite 4.4 C2/m 12.6 15.2 15.2 3 . 3
0 *

1-63 Manganoan 
phlogopite (1) 5.4 C2/m 15.2 16.1 16.1 3 . 3

0 *

1-64 Barian manganoan 
phlogopite (5) 3.8 C2/m 12.6 14.9 14.9 3 . 3

0 *

3-10 Clintonite (n) 2.0 C2/m 11.8 11.2 11.2 3 . 3
0 *

3-12 Clintonite (1782/5) 2.1 C2/m 12.1 11.2 11.2 3 . 3
0 *

3-13 Clintonite (94594) 3.9 C2/m 11.6+ 11.6- 11.6- 3 . 3
0 *

3-14 Clintonite (105455) 2.1 C2/m 11.5 11.2 11.2 3 . 3
0 *

1-8 Ferroan phologopite 
(M14) 3.3 C2/m 18.6 17.8 17.8 3 . 3

0 *

1-9 Ferroan phologopite 
(M32) 2.4 C2/m 17.9 17.1 17.1 3 . 3

0 *

1-12 Ferroan phologopite 
(M13) 6.2 C2/m 20.4 19.8 19.8 3 . 3

0 *
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1-11 Ferroan phologopite 
(M73) 2.1 C2/m 19.0 18.2 18.2 3 . 3

0 *

1-10 Ferroan phologopite 
(M62) 3.5 C2/m 20.4 19.6 19.6 3 . 3

0 *

1-111 Norrishite 7.8 C2/m 2.5 23.3 23.3 3 . 3
0 *

1-21 Ferroan phlogopite 
(8) 2.5 C2/m 13.9 15.1 15.1 3 . 3

0 *

1-22 Phlogopite (9) 2.2 C2/m 13.7 14.0 14.0 3 . 3
0 *

1-23 Ferroan phlogopite 
(10) 2.2 C2/m 16.3 16.5 16.5 3 . 3

0 *

1-24 Ferroan phlogopite 
(11) 1.9 C2/m 14.7 16.8 16.8 3 . 3

0 *

1-25 Ferroan phlogopite 
(12) 2.1 C2/m 14.5 16.1 16.1 3 . 3

0 *

1-26 Ferroan phlogopite 
(15) 2.3 C2/m 17.5 17.0 17.0 3 . 3

0 *

1-27 Ferroan phlogopite 
(16) 3.0 C2/m 19.0 18.4 18.4 3 . 3

0 *

1-28 Magnesian annite 
(17) 2.6 C2/m 18.6 18.4 18.4 3 . 3

0 *

1-112 Protolithionite 3.8 C2/m 20.2 19.4 19.4 3 . 3
0 *

1-7 Magnesian annite 
(MP9) 3.1 C2/m 18.7 20.2 20.2 3 . 3

0 *

1-13 Titanian phlogopite 
(18) 2.0 C2/m 12.9 15.4 15.4 3 . 3

0 *

1-17 Ferroan phlogopite 
(19) 3.2 C2/m 17.6 18.1 18.1 3 . 3

0 *

1-14 Aluminian 
phlogopite (20) 2.7 C2/m 16.1 16.9 16.9 3 . 3

0 *

1-15 Ferrian phlogopite 
(21) 2.3 C2/m 15.3 16.1 16.1 3 . 3

0 *

1-16 Ferroan phlogopite 
(22) 3.3 C2/m 16.3 17.1 17.1 3 . 3

0 *

1-18 Ferrian phlogopite 
(23) 3.4 C2/m 16.2 16.8 16.8 3 . 3

0 *

1-19 Ferrian phlogopite 
(24) 2.7 C2/m 17.1 17.5 17.5 3 . 3

0 *

1-20 Ferroan phlogopite 
(25) 2.2 C2/m 16.6 17.7 17.7 3 . 3

0 *

Brigatti & Poppi 
(1993) 

Potassium 
kinoshitalite (26) 2.6 C2/m 14.3 13.3 13.3 3 . 3

0 *

1-6 Biotite 3.33 C2/m 19.0 18.1 18.1 3 . 3
0 *

1-1 Phlogopite (1a) 2.9 C2/m 13.2 12.9 12.9 3 . 3
0 *

1-2 Phlogopite (1b) 2.8 C2/m 13.4 12.9 12.9 3 . 3
0 *

1-3 Phlogopite (2a) 2.9 C2/m 13.2 12.9 12.9 3 . 3
0 *
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1-4 Aluminian 
phlogopite (3a) 3.0 C2/m 13.3(1) 13.2(1) 13.2(1) 3 . 3

0 *

1-5 Phlogopite (4a) 2.5 C2/m 13.0 12.7 12.7 3 . 3
0 *

1-36 Phlogopite 
(Tas27-2Ba) 2.8 C2/m 14.0 13.1 13.0 3 . 3

0 *

1-37 Phlogopite 
(Tas27-2Bb) 2.5 C2/m 13.7 13.3 13.3 3 . 3

0 *

1-38 Ferroan phlogopite 
(Tag15-4) 2.8 C2/m 15.7 15.6 15.6 3 . 3

0 *

1-39 Phlogopite 
(Tag15-3) 2.8 C2/m 14.9 14.8 14.8 3 . 3

0 *

1-32 Ferroan phlogopite 
(Tpg63-2B) 2.3 C2/m 16.8 16.5 16.5 3 . 3

0 *

1-29 Phlogopite 
(Tae23-1a) 2.7 C2/m 13.4 13.3 13.3 3 . 3

0 *

1-30 Phlogopite 
(Tae23-1b) 2.7 C2/m 13.5 13.5 13.5 3 . 3

0 *

1-31 Phlogopite 
(Tae23-1c) 3.0 C2/m 14.0 13.7 13.7 3 . 3

0 *

1-40 Phlogopite 
(Tpq16-4A) 2.8 C2/m 13.8 13.6 13.6 3 . 3

0 *

1-35 Phlogopite 
(Tpt17-1) 2.8 C2/m 13.8 13.4 13.4 3 . 3

0 *

1-33 
Tetra-ferri 
phlogopite 
(Tas22-1a) 

3.2 C2/m 12.9 12.8 12.8 3 . 3
0 *

1-34 
Tetra-ferri 
phlogopite 
(Tas22-1b) 

3.3 C2/m 13.9 13.1 13.1 3 . 3
0 *

1-41 
Tetra-ferri 
phlogopite 
(Tpq16-6B) 

3.1 C2/m 14.6 13.8 13.8 3 . 3
0 *

1-42 Tetra-ferri 
phlogopite (S1) 3.1 C2/m 13.5 13.1 13.1 3 . 3

0 *

1-43 Tetra-ferri 
phlogopite (S2) 2.5 C2/m 13.8 13.5 13.5 3 . 3

0 *

Brigatti et al 
(1997) 

Ferroan phlogopite  
(Tag15-4a) 2.8 C2/m 15.7 15.6 15.6 3 . 3

0 *

1-48 Ferroan phlogopite 
(Tag15-4b) 2.8 C2/m 15.2 15.4 15.4 3 . 3

0 *

1-49 Ferroan phlogopite 
(Tpq16-4Aa) 2.8 C2/m 13.8 13.6 13.6 3 . 3

0 *

1-50 Ferroan phlogopite 
(Tpq16-4Ab) 2.4 C2/m 13.7 13.4 13.4 3 . 3

0 *

Brigatti et al 
(1997) 

Ferroan phlogopite 
(Tpq16-4Ac) 3.0 C2/m 15.9 15.3 15.3 3 . 3

0 *

Brigatti et al 
(1997) 

Ferroan phlogopite 
(Tas22-1c) 3.1 C2/m 13.5 13.1 13.1 3 . 3

0 *

3-1 Clintonite (5a) 3.49 C2/m 13.0 12.6 12.6 3 . 3
0 *

3-2 Clintonite (7c) 3.73 C2/m 13.4 13.3 13.3 3 . 3
0 *
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3-3 Clintonite (8a) 3.11 C2/m 13.2 12.9 12.9 3 . 3
0 *

3-4 Clintonite (8d) 3.18 C2/m 12.7 13.0 13.0 3 . 3
0 *

3-5 Clintonite (9a) 3.29 C2/m 13.0 13.1 13.1 3 . 3
0 *

3-6 Clintonite (9b) 2.70 C2/m 12.6 13.0 13.0 3 . 3
0 *

1-65 rubidian cesian 
phlogopite 4.5 C2/m 16.0 15.8 15.8 3 . 3

0 *

1-44 Ferroan phlogopite 
(WA3H) 2.9 C2/m 18.3 18.2 18.2 3 . 3

0 *

1-46 Magnesian annite 
(WA8H) 3.3 C2/m 19.6 19.3 19.3 3 . 3

0 *

1-47 Ferroan phlogopite 
(WA23E) 2.8 C2/m 18.8 18.6 18.6 3 . 3

0 *

1-51 Magnesian annite 3.2 C2/m 19.6 18.9 18.9 3 . 3
0 *

1-55 Magnesian annite 3.6 C2/m 19.1 18.2 18.2 3 . 3
0 *

1-56 Magnesian annite 3.2 C2/m 19.6 18.8 18.8 3 . 3
0 *

1-54 Magnesian annite 3.2 C2/m 19.4 18.5 18.5 3 . 3
0 *

1-53 Magnesian annite 3.1 C2/m 19.9 19.6 19.6 3 . 3
0 *

1-52 Magnesian annite 3.7 C2/m 19.8 19.2 19.2 3 . 3
0 *

1-58 Fe-Li rich mica 26 3.3 C2/m 19.6 22.3 22.3 3 . 3
0 *

1-59 Fe-Li rich mica 33 3.6 C2/m 23.5 239 23.9 3 . 3
0 *

1-57 Fe-Li rich mica 120 2.6 C2/m 24.7 24.4 24.4 3 . 3
0 *

1-118 Fe-Li rich mica 
130(2) 3.86 C2 12.7 13.0 12.7 5 .1

0 *

Hetero-trioctahedral 

1-129 Zinnwaldite 5.7 C2 15.0 11.5 13.5 5 ' 1
0 *

1-113 Lepidolite 7.3 C2 3.7 11.4 11.5 3 ' 3
0 *

Zhukhlistov et al 
(1983) Li-Fe phengite (e) 10.2 C2 8.0 15.1 14.8 3"3

0 *

1-130 Masutomilite 4.6 C2 8.5 11.1 8.1 1 ' 5
0 *

1-117 Fe-Li rich mica 
130(1) 2.96 C2 13.5 12.6 12.8 5 ' 1

0 *

1-123 Fe-Li rich mica 
140(1) 2.89 C2 13.8 13.0 13.6 5 ' 1

0 *

1-124 Fe-Li rich mica 
140(2) 2.73 C2 13.3 12.4 13.7 5"1

0 *
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1-120 Fe-Li rich mica 104 3.34 C2 12.0 12.1 11.8 1 ' 5
0 *

1-119 Fe-Li rich mica 137 3.63 C2 13.0 13.0 11.3 1 ' 5
0 *

1-122 Fe-Li rich mica 177 3.39 C2 13.8 12.7 12.8 5 ' 1
0 *

1-121 Fe-Li rich mica 54b 3.78 C2 11.9 11.6 13.0 5"1
0 *

1-125 Fe-Li rich mica 24 3.72 C2 14.2 12.3 13.0 5 ' 1
0 *

1-115 Fe-Li rich mica 55a 3.74 C2 11.3 12.0 9.4 1 ' 5
0 *

1-116 Fe-Li rich mica 55b 3.21 C2 11.3 13.0 9.9 1 ' 5
0 *

1-126 Fe-Li rich mica 47 3.31 C2 19.2 15.8 19.4 5"1
0 *

1-127 Fe-Li rich mica 103 3.63 C2 16.0 14.3 17.6 5"1
0 *

1-114 Fe-Li rich mica 114 3.35 C2 10.2 8.5 12.2 5"1
0 *

Meso-dioctahedral 

2-3 Ferrous celadonite 
(e) 10.8 C2/m --- 21.4 21.4 3 . 3

0 *

2-2 Paragonite (e) 12.1 C2/m --- 10.8 10.8 3 . 3
0 *

4-1 Boromuscovite 3.8 C2/m --- 12.5 12.5 3 . 3
0 *

Hetero-dioctahedral

2-1 Dioctahedral mica 
(e) 10.9 C2 --- 12.8 11.5 3"3

0 *
Subfamily B – 2O polytype 

Homo-trioctahedral 

Ferraris et al 
(2000) Fluor-phlogopite 4.5 Ccmm 12.8 12.8 12.8 . .

0 * 3 *
u u e e

Meso-trioctahedral 

3-17 Anandite* 6.1 Pnmn    3 . 3 0 .0
0 * 3 *

3-18 Anandite* 6.4 Pnmn    3 . 3 0 .0
0 * 3 *

Subfamily A – 2M1 polytype 
Meso-trioctahedral 

1-139 Biotite 5.6 C2/c 15.8 16.3 16.3 4.4 2 . 2
1 * 5 *

Sartori (1977) Lepidolite 11.3 C2/c 2.3 8.7 8.7 4.4 2 . 2
1 * 5 *

Sokolova et al 
(1979) Bityite (e) 11.5 C2/c 2.3 8.7 8.7 4.4 2 . 2

1 * 5 *

1-135 Magnesian annite 4.2 C2/c 19.4 18.6 18.6 4.4 2 . 2
1 * 5 *

1-138 Lepidolite 9.1 C2/c 3.6 7.5 7.5 4.4 2 . 2
1 * 5 *



201Crystallographic Basis of Polytypism and Twinning in Micas

1-137 Oxybiotite 3.9 C2/c 12.6 15.2 15.2 4.4 2 . 2
1 * 5 *

3-76 Li-Be rich mica 3.0 Cc 1.1 11.5 11.5 4.4 2 . 2
1 * 5 *

1-141 Ephesite 4.7 C1 2.9 11.5 11.5 4.4 2 . 2
1 * 5 *

1-132 Magnesian annite 
(MP16) 3.7 C2/c 20.8 20.1 20.1 4.4 2 . 2

1 * 5 *

1-133 Magnesian annite 
(MP17a) 2.7 C2/c 17.5 16.8 16.8 4.4 2 . 2

1 * 5 *

1-134 Magnesian annite 
(MP17b) 3.4 C2/c 17.2 16.6 16.6 4.4 2 . 2

1 * 5 *

1-131 Biotite 2.72 C2/c 18.8 18.3 18.3 4.4 2 . 2
1 * 5 *

1-136 Magnesian annite 2.8 C2/c 19.4 18.4 18.4 4.4 2 . 2
1 * 5 *

Hetero-trioctahedral 

1-140 Zinnwaldite 5.8 Cc 16.2 14.3 17.4 0"2 0 ' 4
1 * 5 *

Meso-dioctahedral 

Radoslovich 
(1960) Muscovite 17.0 C2/c --- 12.3 12.3 4.4 2 . 2

1 * 5 *

Takéuchi (1965) Margarite 16.8 C2/c --- 11.5 11.5 4.4 2 . 2
1 * 5 *

2-4 Muscovite 12.8 C2/c --- 12.3 12.3 4.4 2 . 2
1 * 5 *

2-36 Muscovite 3.5 C2/c --- 11.8 11.8 4.4 2 . 2
1 * 5 *

2-37 Phengite 4.5 C2/c --- 12.3 12.3 4.4 2 . 2
1 * 5 *

2-46 Muscovite (n) 2.7 C2/c --- 12.3 12.3 4.4 2 . 2
1 * 5 *

Udagawa et al 
(1974) Muscovite 14.2 C2/c --- 12.3 12.3 4.4 2 . 2

1 * 5 *

3-19 Margarite 4.0 Cc --- 11.5 11.5 4.4 2 . 2
1 * 5 *

Sidorenko et al 
(1977a) Paragonite (e) 11.1 C2/c --- 11.6 11.6 4.4 2 . 2

1 * 5 *

2-39 Paragonite 4.5 C2/c --- 11.9 11.9 4.4 2 . 2
1 * 5 *

2-47 Phengite 3.3 C2/c --- 13.2 13.2 4.4 2 . 2
1 * 5 *

2-38 Muscovite 2.7 C2/c --- 12.7 12.7 4.4 2 . 2
1 * 5 *

2-19/20 Muscovite 4.8 (LT) 
6.0 (HT) C2/c --- 12.1 12.1 4.4 2 . 2

1 * 5 *

2-21 Muscovite (n) 4.0 C2/c --- 13.4 13.4 4.4 2 . 2
1 * 5 *

4-2 Boromuscovite 3.8 C2/c --- 12.5 12.5 4.4 2 . 2
1 * 5 *

2-30 Chromphyllite 4.8 C2/c --- 19.9 19.9 4.4 2 . 2
1 * 5 *
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2-5 Mg-, Fe-bearing 
muscovite 2.54 C2/c 0.64 15.5 15.5 4.4 2 . 2

1 * 5 *

2-6 Mg-, Fe-bearing 
muscovite 2.96 C2/c 0.97 13.9 13.9 4.4 2 . 2

1 * 5 *

2-7 Mg-, Fe-bearing 
muscovite 3.58 C2/c 0.46 13.5 13.5 4.4 2 . 2

1 * 5 *

2-8 Mg-, Fe-bearing 
muscovite 2.92 C2/c 0.44 13.7 13.7 4.4 2 . 2

1 * 5 *

2-9 Mg-, Fe-bearing 
muscovite 3.93 C2/c 0.84 15.0 15.0 4.4 2 . 2

1 * 5 *

2-10 Mg-, Fe-bearing 
muscovite 2.89 C2/c 0.32 13.8 13.8 4.4 2 . 2

1 * 5 *

2-11 Mg-, Fe-bearing 
muscovite 2.78 C2/c 0.49 13.7 13.7 4.4 2 . 2

1 * 5 *

2-12 Mg-, Fe-bearing 
muscovite 2.11 C2/c 0.38 13.7 13.7 4.4 2 . 2

1 * 5 *

2-13 Mg-, Fe-bearing 
muscovite 3.87 C2/c 1.73 14.0 14.0 4.4 2 . 2

1 * 5 *

2-14 Mg-, Fe-bearing 
muscovite 3.12 C2/c 0.88 13.6 13.6 4.4 2 . 2

1 * 5 *

2-15 Mg-, Fe-bearing 
muscovite 2.80 C2/c 0.39 13.8 13.8 4.4 2 . 2

1 * 5 *

Smyth et al (2000) Phengite 1.3 C2/c --- 11.6 11.6 4.4 2 . 2
1 * 5 *

2-16 Cr-containing 
muscovite 2.5 C2/c 0.1 13.8 13.8 4.4 2 . 2

1 * 5 *

2-17 Cr-containing 
muscovite 3.1 C2/c --- 13.8 13.8 4.4 2 . 2

1 * 5 *

2-18 Cr-containing 
muscovite 3.3 C2/c 2.1 14.5 14.5 4.4 2 . 2

1 * 5 *

Subfamily B – 2M2 polytype 

Meso-trioctahedral 

1-144 Lepidolite 7.2 C2/c 2.0 8.4 8.4 2 . 2 1 .1
5 * 4 *

1-143 Lepidolite 9.6 C2/c 3.0 8.2 8.2 2 . 2 1 .1
5 * 4 *

1-142 Lepidolite 4.8 C2/c 2.5 8.6 8.6 2 . 2 1 .1
5 * 4 *

Meso-dioctahedral 

2-50 Dioctahedral mica 
(e) 11.7 C2/c --- 11.2 11.2 2 . 2 1 .1

5 * 4 *

2-49 Nanpingite 5.8 C2/c --- 12.9 12.9 2 . 2 1 .1
5 * 4 *

Subfamily A – 3T polytype 

Hetero-trioctahedral 

1-145 Lepidolite 4.7 P3112 5.2 3.4 10.3 4 ' 2 2 '0 0 ' 4
3 * 1 * 5 *

Pavlishin et al 
(1981) Protolithionite 3.8 P3112 18.7 14.3 15.6 2 ' 4 0 '2 4 ' 0

3 * 1 * 5 *

1-146 Protolithionite 3.0 P3112 16.1 14.4 17.6 2"4 0"2 4"0
3 * 1 * 5 *
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Hetero-dioctahedral

2-53 Muscovite 2.4 P3112 --- 11.5 12.5 0 ' 0 4 '4 2 ' 2
3 * 1 * 5 *

2-54 Paragonite (e) 13.0 P3112 3.4 9.2 10.3 0 ' 0 4 '4 2 ' 2
3 * 1 * 5 *

2-51 Phengite (KZ) 3.6 P3112 --- 13.4 13.7 0 ' 0 4 '4 2 ' 2
3 * 1 * 5 *

2-52 Phengite (DM) 4.5 P3112 --- 12.5 13.0 0 ' 0 4 '4 2 ' 2
3 * 1 * 5 *

Pavese et al 
(1997) Phengite (n) 7.0 (LT) 

5.0 (HT) P3112 --- 11.5 

11.1 
(LT) 
11.2 
(HT) 

0"0 4"4 2"2
3 * 1 * 5 *

Smyth et al (2000) Phengite 0.9 P3112 --- 12.7 13.0 0 ' 0 4 '4 2 ' 2
3 * 1 * 5 *

*The structure of anandite-2O cannot be described using an orthohexagonal C-centered cell and contains four 
independent octahedral positions. The symbol of this ‘polytype’ is therefore only an approximation. 

(1987), where a different Si-Al ordering in the four tetrahedral sites reduced the 
space-group type to C1. Only one example of hetero-octahedral 2M1 polytype is 
known so far: the zinnwaldite refined by Rieder et al (1996). In the 
hetero-octahedral family, the highest layer-group for both M1 and M2 layers is 
C12(1): correspondingly, the highest space-group type for 2M1 is Cc, which is 
realized in this zinnwaldite-2M1. This mica is built up by M2 layers, with local -
operations 2[310] and 2[310] for the two layers respectively, as can be easily confirmed 
by analyzing the OD symbols (Table 9) on the basis of the conversion rules given in 
Table 5a. 

3) The highest space-group type for the 3T polytype is P31,212, which is compatible 
with the highest layer groups in all the three families, namely C12/m(1) (homo- and 
meso-octahedral) and C12(1) (hetero-octahedral). We are aware of nine structure 
refinements of 3T polytypes in which the composition of the O sheet was given. All 
belong to the hetero-octahedral family, and three of them wereconstructed up by M2 
layers. Refinement of meso-octahedral 3T polytypes is desirable to investigate  (a) 
the desymmetrization of the layer group in this polytype; (b) the frequency of 
occurrence of M2 layers that, at least in Li-rich micas, seems higher than in other 
polytypes.

4) The highest space-group type for the 2M2 polytype is C2/c, the same as 2M1. 
All the polytypes refined so far have this symmetry. 

5) The polytype 2O has ideal space-group type Ccmm, which was reported only 
recently in a fluor-phlogopite from the Khibiny massif (Kola Peninsula, Russia) 
(Ferraris et al 2000). Previously, two examples were reported in anandite 
(Giuseppetti and Tadini 1972; Filut et al. 1985), where however an unusual crystal 
chemistry, including tetrahedral Fe3+ and octahedral S2- and Cl-, reduced the 
space-group type to Pnmn, with some indications of further reduction to P21. The 
anandite-2O cannot be described with the orthohexagonal C-centered cell and 
contains four independent octahedral positions, two of which are on mirror planes. 
The symbols given in Table 9 for anandite-2O are thus only a rough approximation. 

In C2/c and P31,212 space-group types there are two independent T sites and the two 
independent M2/M3 sites. The possibility of cation ordering exists in these groups, and it 
is often verified in the O sheet, but more rarely in the T sheets (Bailey 1975; 1984; 
Amisano-Canesi et al. 1994; see also the examples of margarite and ephesite given 
above). If the -symmetry C12/m(1) is maintained no ordering occurs, although it is not 
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prevented by the space-group type. Thus, this is an example of local symmetry being 
higher than that required by the global symmetry. As shown by Güven (1971) and by 
Zussman (1979), the symmetry in the interlayer is different also, which is ⎯1 in C12/m(1) 
λ-symmetry and 2[010] in ⎯C1 and C12(1) λ-symmetries (for details see Ferraris and Ivaldi, 
this volume). 

CHOICE OF THE AXIAL SETTING 
A non-orthogonal mica polytype forms, besides the conventional (double) 

monoclinic C-centered cell, both a pseudo-orthorhombic C-centered sextuple cell and a 
pseudo-hexagonal P triple cell. For hexagonal and trigonal polytypes (ω|| = ω⊥ = 0) the 
triple cell is rigorously hexagonal. For all others, the orthohexagonal relation b = a31/2 is 
obeyed only approximately, the deviation being measured either by an angular parameter 
ε (Donnay et al. 1964) or by a linear parameter η (Zvyagin and Drits 1996), which is a 
function of ω|| (Fig. 12). For metrically monoclinic polytypes, β (Class a) or α (Class b) 
of the sextuple and triple cells are in general only close to 90º. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. A small portion of the (001) two-dimensional hp lattice of micas. ε and η 
(exaggerated) are the angular and linear deviations from hexagonality. A1, A2: hexagonal 
axes (ε = 0. η = 0); aH, bH: orthohexagonal axes (ε = 0. η = 0) of the C1 cell (bH = aH⋅31/2); 
a, b: pseudo-orthohexagonal axes (ε ≠ 0. η ≠ 0). The figure is drawn for the case b > bH. 
Black circles: lattice nodes of the crystal lattice; dashed lines: H cell of the twin lattice; 
dotted lines: C1 cell built on the hexagonal and pseudo-hexagonal meshes (modified after 
Nespolo et al. 2000a). 

 
The monoclinic setting in which, within the Trigonal model, cn is constant and the 

value of the monoclinic angle changes with the number of layers is labeled aS [Class a: cn 
= ⎯(1/3, 0); S stands for Standard] and bT [Class b: cn = (0,⎯1/3); T stands for 
Transitional]. The corresponding monoclinic l indices are labeled laS and lbT (Nespolo et 
al. 1997a). The metric equations in both direct and reciprocal space and the relations 
between l and h, k indices are given in Table 10. The bT setting is monoclinic a-unique 
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and does not correspond to any of the settings commonly adopted to describe monoclinic 
crystals. Nevertheless, it facilitates the comparison of the atomic coordinates with other 
polytypes (Backhaus and Ďurovič 1984) and is thus the preferred setting to derive the 
family structure from a single polytype or vice versa. From bT a monoclinic b-unique 
setting is obtained through the exchange of axes by a → -b; b → -a; c → -c, so that a > b 
and β > 90º, as in the Smith and Yoder (1956) definition: this setting is labeled bS (Fig. 
13). The exchange of axes is adopted when indexing the diffraction pattern (Nespolo et 
al. 1998; see also Takeda and Ross 1995).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Definition of the aS, bT and bS axial settings of mica polytypes. 
aS and bS settings have a < b, bT setting has b < a [used by permission of 
the editor of Mineralogical Journal, from Nespolo (1999) Fig. 2, p. 56]. 

For each Series and each Class, K = 0 of the Subclass 1, see Equation (2), determines 
the axial setting of the first polytype of the Series, which is termed the Basic axial setting. 
All the polytypes belonging to the same Series and the same Class can be indexed in a 
setting whose axes are parallel to the axes of the Basic axial setting but whose period 
along c is 3K+L [Eqn. (2)] times the corresponding period of the Basic axial setting. For 
each Series the angle is constant, within the Trigonal model, and the value of cn, non-
translationally reduced, changes with the number of layers: this setting is termed Fixed-
angle setting. For the two Classes this setting is symbolized by 3n,aF and 3n,bF, which for 
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Series 0 are shortened in aF and bF (Nespolo et al. 1997a; 1998) (Fig. 14). This setting is 
obtained from aS and bS by means of the transformation: 

 ( )
( ) ( ) ( )

( ) ( )3 , ;3 , 3 , ;3 ,

1

1

S F

1 0 1 1

0 1 0
0 0 1

n n n na b a b
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−

−

⎡ ⎤− − ⋅ + −
⎢ ⎥
⎢ ⎥− =
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3) 

 
where L (Subclass) and K are defined in Equation (2). The 
choice of a common setting for polytypes belonging to 
different Series is instead geometrically not possible, 
because these polytypes are not based on the same Basic 
axial setting (Fig. 14). 

GEOMETRICAL CLASSIFICATION OF 
RECIPROCAL LATTICE ROWS 

By considering the lC1 (mod 3) index of reciprocal 
lattice nodes (Table 10) on rows related by n×60º rotations 
(0 ≤ n ≤ 5), Nespolo et al (1997b, 2000a) have shown that 
there are only nine translationally independent rows 
parallel to c* (Fig. 15) indicated as Ri, 1 ≤ i ≤ 9. In each Ri 
the same distribution of "present" and "absent" reflections 
is repeated along a* and b* with 3p and 3q translations (p 
and q are integers of the same parity). Ri are defined in 
terms of h and k as: [hi(mod 3), ki(mod 3), l] and are 
distributed along the edges and diagonals of a rhombus-
shaped unit, termed tessellation rhombus (Fig. 15, solid 
lines), which can tessellate the entire reciprocal space by 
(3p, 3q) translations. A smaller unit, termed minimal 
rhombus, can be drawn (Fig. 15, dotted lines), defined by 
the same Ri each taken only once. Opposite edges are 
different and, contrary to the tessellation rhombus, the 
minimal rhombus does not represent a translational unit. 

The two rhombi have six possible orientations, which 
represent equivalent descriptions of the same reciprocal 
lattice: they simply differ in the distribution of the Ri. Six 
equivalent rhombi are obtained by applying the five 
rotations (besides the identity) to the hi, ki indices of each 
of the nine Ri of the original rhombus and bringing the 
resulting Ri within the area spanned by the original 
rhombus through a (3p, 3q) translation between equivalent 
rows. The rows that can be obtained by rotating the original 
rhombus are within a star-polygon constructed by the six 
rhombi with the common origin (Fig. 15). The values of p 
and q to be considered are those connecting rows internal to 
the star-polygon but external to the original rhombus with 
rows internal to the original rhombus, i.e. (0, ±2), (1, ±1) 
and (2, ±2). 
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Figure 14. Schematic view of the axial settings of mica polytypes. Black circles: 
direct lattice nodes. The number below each node indicates the number of layers 
of the polytype to which that node belongs. Horizontal axis is ±a or ±b 
depending on the Class and on the setting used. The c axes of S and F settings 
are shown as solid and dotted lines respectively. In all settings, the reference is 
right-handed. The superscript a or b in the S and F symbols is omitted, since the 
figure is drawn for both Classes (they differ in the label of the horizontal axis). 
The figure shows that in cases of polytypes with a number of layers multiple of 
3, the c axis of the corresponding F setting does not pass on any lattice node: the 
F setting of the next Series has thus to be used. 
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The geometrical characteristics of the reciprocal lattice rows parallel to c*, each 
taken as a whole, are termed "row features". In the Trigonal model all mica polytypes 
have the same row features, described by the regular tessellation {3,6} (Takeda and 
Donnay 1965; see the section “Tessellation of the hp lattice”), and the nine Ri were 
classified into three types (Fig. 16): 
1. S (Single) rows [h = 0(mod 3) and k = 0(mod 3)]. 
2. D (Double) rows [h ≠ 0(mod 3) and k = 0(mod 3)]. There are two translationally 

independent D rows, labeled Di: i = 1,2; h = i(mod 3); k = 0(mod 3). 
3. X (seXtuple) rows [k ≠ 0(mod 3)]. There are six translationally independent X rows, 

labeled Xi: 1 ≤ i ≤ 6; h = i(mod 3); k = 2×(-1)i(mod 3). 
The nine Ri rows are thus classified as: R1 = S; R2-3 = D1-2; R4-9 = X1-6. This 

classification of Ri corresponds exactly to the classification in three types of rows 
introduced by Ďurovič (1982), who did not adopt specific names for each type of rows. 
Each of the three types lies on non-intersecting circular orbits centered on c*, of radius 
3h2 + k2 (cf. Table 4 and Fig. 19 in Ferraris and Ivaldi, this volume). Each of these orbits 
contains only one type of rows (an n×60° rotation overlaps rows belonging to the same 
type only) and becomes an ellipsis when the incident beam is inclined by a general angle 
φ to the sample. This is the principle on which the oblique-texture electron diffraction 
method (OTED, see Zvyagin 1967) is based, and has been recently applied also to XRD 
(Rieder and Weiss 1991; for details, see Ferraris and Ivaldi, this volume). Figure 16 
shows the orbits of S (solid lines), D (dashed lines), and X (dotted lines). For D and X 

Figure 15. Minimal rhombus (dotted lines; in 
the foreground) and tessellation rhombus 
(solid lines) in the six orientations defining 
the star polygon. The nine translationally 
independent rows are distinguished by 
sequence numbers (R1 ∼ R9) (modified after 
Nespolo et al. 2000a). 
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rows, two types of orbits exist: type I (DI and XI orbits, thick lines) connects one set of 
six D or X rows, whereas type II (DII and XII orbits, thin lines) connects two sets of six D 
or X rows. The n×60º rotations about c* lead to an alternate exchange of the two D-type 
Ri located on the long diagonal of the minimal rhombus, and they exchange the six X-
type Ri on the edges of the minimal rhombus in six different ways.  

SUPERPOSITION STRUCTURES, FAMILY  
STRUCTURE AND FAMILY REFLECTIONS 

By superposing two or more identical copies of the same polytype translated by a 
superposition vector (i.e. a vector corresponding to a submultiple of a translation period) 
a fictitious structure is obtained, which is termed a superposition structure. Among the 
infinitely possible superposition structures, that structure having all the possible positions 
of each OD layers is termed a family structure: it exists only if the shifts between 

Figure 16. Rotational relation between reciprocal lattice rows parallel to c*. 
Because of the pseudo-hexagonal symmetry of the 001 r.p., each type of row (S, 
D, X) lies on a circular orbit around c* with radius 3h + k. Solid, dashed and dotted 
orbits contain S, D and X rows respectively. D and X orbits are further subdivided 
into those containing only one set of six rows (DI and XI, thick orbits) and those 
containing two sets of six rows (DII and XII, thin orbits). The n ×  60º rotations, 
which correspond to the relative orientation of twinned mica individuals, relate 
only rows of the same type and same set (S, DI, DII, XI, XII), whereas the non-
crystallographic rotations typical of plesiotwins relate rows of the same type but of 
different sets (DI and DII; XI and XII) (modified after Nespolo et al. 2000a). 
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adjacent layers are rational, i.e. if they correspond to a submultiple of lattice translations. 
The family structure is common to all polytypes of the same family (Dornberger-Schiff 
1964; Ďurovič 1994). From a group-theoretical viewpoint, building the family structure 
corresponds to transforming (“completing”) all the local symmetry operations of a space 
groupoid into the global symmetry operations of a space-group (Fichtner 1977, 1980). 
Additional “virtual” atoms are created by the completed operations, and the resulting 
model may have physically unrealistic interatomic distances: they appear in the 
superposition structure, which is a purely mathematical construction, as a consequence of 
the group-theoretical process of completing the local symmetry operations. The group of 
translations of the polytype reciprocal lattice can be decomposed into a subgroup of 
translations, which corresponds to the Fourier transform of the family structure (family 
sublattice), and one or more cosets. The family sublattice is again common to all 
polytypes of the same family. This means that all polytypes of the same family, 
normalized to the same volume of scattering matter, have a weighted sublattice in 
common. The diffractions that correspond to the family sublattice are termed family 
diffractions (or, more commonly, family reflections). As discussed below, when indexed 
with respect to the basis vectors of any of the polytypes of the same family, the family 
sublattice shows several non-space-group absences, which indicate the existence of local 
symmetry operations. Clearly, the family reflections convey important information, 
because they reveal the symmetry of the family structure. The family reflections are 
always sharp, including the case of non-periodic (disordered) polytypes. In fact, the 
disorder of the stacking concerns the distribution of subsequent ρ-operations. If this 
distribution is periodic, after a finite even number of steps a period is closed and the 
product of those ρ-operations is the generating τ-operation (remember that the product of 
an even number of ρ-operations is a τ-operation). If instead the distribution of subsequent 
ρ-operations is not periodic, no generating τ-operation can be found, and the polytype is 
disordered. In the family structure the ρ-operations are completed to global operations: 
the family structure and its Fourier transform, which consists in the family reciprocal 
sublattice, are thus common to both periodic and non-periodic polytypes of the same 
family4 (Ďurovič and Weiss 1986; Ďurovič 1997, 1999). 

Because the family structure can be deduced from the symmetry principle of the 
polytype family, it is possible to illustrate its derivation by means of a very simple, 
hypothetical example, in which the actual atomic arrangement is not taken into account, 
and geometrical figures with the appropriate λ-symmetry are used instead. Let us 
consider the three hypothetical polytypes (Ďurovič 1999) and their geometric diffraction 
patterns in Figure 17. The polytypes are constructed by stacking equivalent layers 
perpendicular to the plane of the drawing, with λ-symmetry P(1)m1. The stacking 
direction is a, and the distance between adjacent layers is |a0|. The λ-symmetry is 
indicated by isosceles triangles with a mirror plane [.m.]. The three polytypes can be 
related to a common orthogonal four-layer cell with a = 4a0, inside which the cell of the 
polytype is shown by bold lines (Fig. 17). The first polytype (1A, MDO) has basis vectors 
a1 = a0 + b/4; b1= b; c1 = c and space-group P111. The only global τ-operation is the 
translation a0 + b/4. The second polytype (2M, MDO) has basis vectors a2 = 2a0; b2= b; 
c2 = c and space-group P1a1. The global τ-operations are the translation a = 2a0 and an a-
glide plane at y = 1/8 and 7/8. The third polytype (4M, non-MDO) has basis vectors a3 = 
4a0; b3= b; c3 = c and space-group P1a1. The global τ-operations are the translation a =  
                                                 

4 The remaining diffractions, which correspond to the cosets of the weighted reciprocal lattice with 
respect to the family sublattice, are termed non-family reflections and are instead typical of each polytype: 
they can be sharp or diffuse, depending on whether the polytype is ordered or not, i.e. on whether the 
distribution of subsequent ρ-operations is ordered or random. 
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Figure 17. Schematic representation of three hypothetical structures belonging to the same 
family. The layers are perpendicular to the plane of the drawing, and their constituent atomic 
configurations are represented by isosceles triangles with λ-symmetry [.m.]. All structures are 
related to a common, orthogonal four-layer cell with a = 4a0. The family structure is obtained by 
superposing two identical copies of the same polytype, translated by b/4, the superposition 
vector. The diffraction indices refer also to the common cell. Family diffractions correspond to ˆ k  
= 2k (open circles), and the non-family diffractions, characteristic for individual polytypes, to ˆ k  
= 2k+1 (close circles) (modified after Durovic and Weiss (1986). 
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4a0 and an a-glide plane at y = 0 and y = 1/2. The geometric diffraction pattern of each of 
these polytypes can be divided into two parts: k̂  = 2k (open circles) and k̂  = 2k+1 (full 
circles). The k̂  = 2k are the family reflections, which define the family reciprocal 
sublattice, common to all the three polytypes. The Fourier transform of this subgroup of 
diffraction gives the family structure, with space-group C1m1, a = 2a0, b = b/2: the 
superposition vector is b/2. The non-family reflections are those for which k̂  = 2k+1: the 
number of reflections along each row in the four-layer reciprocal cell is the same as the 
number of layers in the period of the polytype. 

Family structure and family reflections of mica polytypes 

For micas, the family structure of the Pauling model is nine-fold (the supergroup of 
translation in direct space has the order nine) and the superposition vectors are ±a/3 and 
±b/3; its symmetry is P6/mmm (Dornberger-Schiff et al. 1982). To any of the atoms in the 
layer, eight additional atoms are generated in the family structure, with coordinates (x±1/3, 
y); (x, y±1/3) and (x±1/3, y±1/3). The family reflections are those with h = 0(mod 3) and k 
= 0(mod 3), and correspond to S rows. The subgroup of translations in reciprocal space has 
the order nine. Because the layer stagger is |a|/3, the family vectors of the Pauling model 
complete the local symmetry operations of space groupoids to global symmetry operations 
of space groups after one single layer. Therefore, the period along the c axis of the family 
structure is c0 = 1/c*1 = c1Msinβ1M and thus corresponds to the vertical distance between 
two closest interlayer cations. The basis vectors of the family structure are AF1 = A1/3, AF2 = 
A2/3, CF = c0. (Backhaus and Ďurovič 1984; Ďurovič et al. 1984; Ďurovič 1994). 

In the Trigonal model each of the three families (homo-, meso- and hetero-
octahedral) splits into two subfamilies, A and B. For both subfamilies the family structure 
is three-fold and the superposition vectors are ±b/3. To any of the atoms in the layer, two 
additional atoms are generated in the family structure, with coordinates (x, y±1/3). The 
family reflections are those with k = 0(mod 3) and correspond to S and D rows. The 
subgroup of translation in reciprocal space has the order three. The family vectors 
complete the local symmetry operations of space groupoids to global symmetry 
operations of space groups after three layers for subfamily A, but after two layers for 
subfamily B. The basis vectors for the family structure are thus AF1 = (A1+2A2), AF2 = -
(2A1+A2), CF. For subfamily A, CF = 3c0; for subfamily B, CF = 2c0. The symmetry of the 
family structure is H⎯R31m (where the subscript R indicates that the smaller cell is 
rhombohedral) for subfamily A, and H63/mcm for subfamily B (Ďurovič 1994). The 
adoption of the H-centered cell allows the description of the family structures and the real 
structures in the same axes, but additional absences appear in the diffraction pattern (cf. 
Smrčok et al. 1994, Appendix, for cronstedtite-3T). Mixed-rotation polytypes are OD 
structures only when the ditrigonal rotation of the tetrahedra is zero. Their family 
structure and family reflections are those of the Pauling model (S rows). 

From the practical viewpoint, as noted by Ďurovič (1982), the family reflections of 
the nine-fold family structure (S rows) are common to all members of a family and are 
thus not useful for the purpose of distinguishing individual polytypes. D rows instead are 
characteristic of all members of a subfamily (A or B, in case of micas), permit to 
distinguish the kind of polytype (subfamily A, subfamily B or mixed-rotation). 

The real layers building micas deviate from their archetypes by several distortions, 
and the shifts between successive layers are in general not exactly rational. The 
intensities, but not the geometry, of the family reflections differ from polytype to 
polytype of the same family, and the divergence increases with the deviation of the real 
layers from their archetypes. Notwithstanding, the concepts of family structure and 
family reflections are useful in the identification of twins and polytypes, as shown below. 
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REFLECTION CONDITIONS 
In the diffraction pattern of mica polytypes, systematic non-space-group absences 

extensively appear. The International Tables for Crystallography term this kind of 
absences additional reflection conditions (Hahn and Vos 2002). This definition does not 
provide anything about the kind of information one can get from these absences. As seen 
above, the absences along S and D rows derive from the existence of local symmetry 
operations that relate pairs of packets. These local symmetry operations are not accounted 
for in the space-group type. In the Trigonal model, any mica polytype of a given family is 
constructed from layer archetypes in which the atoms in each plane are distributed 
according to a hexagonal pattern. These atoms are either on special positions, or on 
positions that, without corresponding to any translation-free symmetry operation of the 
space-group type, have higher translational symmetry. These positions, under the symmetry 
operations of a space-group type, define sets of points (crystallographic orbits) the 
eigensymmetry group of which includes additional translations, and are known as 
extraordinary orbits of space-groups (Wondratschek 1976; Matsumoto and Wondratschek; 
1979). The corresponding lattice of translation vectors is a proper superlattice of the 
polytype lattice. In reciprocal space, these vectors correspond to a sublattice, which shows 
systematic non-space-group absences when indexed with respect to the basis vectors of the 
polytype. The OD description is based on the existence of local symmetry operations, 
whereas the description in terms of crystallographic orbits is based on the points on which 
those local symmetry operations act. In spite of the different languages, the concepts are 
basically the same. The approach involving crystallographic orbits is not specifically 
related to VC structures but it is more general. The possible superlattices were however 
derived for all space-group types within the same syngony (Engel et al. 1984). There are no 
derivations yet for the cases in which the superlattice belongs to a Bravais system higher 
than that of the entire lattice. The superlattice common to all polytypes of a family (family 
superlattice, i.e. the lattice of the family structure) corresponds to this latter case (with the 
exception of trigonal-hexagonal polytypes, of which only 3T has been reported so far). A 
general symmetry analysis of mica polytypism in terms of crystallographic orbits is 
nowadays a completely open task, but the non-space-group absences along S and D rows 
are interpretable in terms of extraordinary orbits as well. The deviations of layers from their 
archetypes correspond to the movement of part of the atoms slightly away from the 
positions of higher translational symmetry, towards general positions. As a consequence, 
violations of the non-space-group absences appear as faint reflections between pairs of 
family reflections. These faint reflections can be recorded in dioctahedral micas (Rieder 
1968) and, with longer exposure times, in Li-rich trioctahedral micas (Rieder 1970), but 
they are almost undetectable in Li-poor trioctahedral micas. This sequence is in accordance 
with the extent of the structural distortions, which decreases in the same order. 

The reflection conditions in the two subfamilies were derived by Nespolo (1999). 
The number and positions of reflections along the D rows reveal the symmetry of the 
family structure (H⎯R31m: subfamily A; H63/mcm: subfamily B; P6/mmm: mixed-
rotation). In addition, they are particularly useful in evaluating the possible presence of 
twins. Taking into account that for non-orthogonal polytypes only one out of three of the 
orthogonal l indices corresponds to integer monoclinic indices, and that subfamily B 
polytypes necessarily contain an even number of layers, the reflection conditions are (N 
and N′ are the number of layers in the conventional and orthogonal cell respectively): 
1. S rows (family reflections of the nine-fold family structure): one reflection out of N 

always occurs, with presence criterion lC1= 0(mod N′). 
2. D rows: one reflection (family reflection) out of N occurs for subfamily A polytypes 

[presence criterion lC1 = (±N′h/3)(mod N′), “+” for the obverse setting of the family 
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structure, “–” for the reverse setting], two (family reflections) for subfamily B [equally 
spaced, at lC1 = 0(mod N′/2)], and N′ (non-family reflections) for mixed-rotation 
polytypes.  

3. X rows: N reflections appear in the c*1 repeat (non-family reflections for all 
polytypes). 
One or more of the N reflections along X rows (and for mixed-rotation polytypes 

also along D rows) may be very weak or absent. This non-space-group absence is related 
not to the symmetry of the family structure, as for family reflections, but to the stacking 
mode within the polytype. 

The family structure of subfamily A polytypes admits a primitive rhombohedral cell, 
and its lattice (family sublattice) can be overlapped for all polytypes belonging to 
subfamily A only if it is rotated by 180º around the normal to the layer when comparing 
polytypes built by layers of opposite orientational parity. This is because the 
rhombohedral primitive cell of the family structure for subfamily A polytypes is in the 
obverse setting for one orientational parity of the layers (odd orientational parity of the 
symbols), but in the reverse setting for the other (even orientational parity of the 
symbols). In Series 0, all polytypes belonging to subfamily A are Class a polytypes. 
Polytypes belonging to a different Subclass have opposite orientational parity. The aF 
setting alternates the directions of (a, b) and (a*, b*) axes with the Subclass (Fig. 14) and 
is exactly the axial setting leading to the overlap of the sublattice built on family 
reflections. In higher Series, polytypes belonging to subfamily A can be orthogonal or 
Class b polytypes and there is no longer a 1:1 correspondence.  

Subfamily B polytypes show two reflections along D rows. However, polytypes of 
this subfamily either are orthogonal or belong to Class b, for which the non-right angle is 
α (before the axes interchange) and the lC1 index of the superlattice nodes does not 
depend on h. The reciprocal sublattice in this case matches for all polytypes, which is 
consistent with the fact that the primitive cell of the family structure is hexagonal. 

In mixed-rotation polytypes, the family reflections are only those of the nine-fold 
family structure and appear along S rows. D rows convey important information, because 
the different number of reflections along the rows, or their diffuseness, unambiguously 
reveals the mixed-rotation character of the polytype. 

NON-FAMILY REFLECTIONS AND ORTHOGONAL PLANES 
Reciprocal central planes, which have c* in common, can be usefully classified, on 

the basis of the rows they contain, into SD and SX. Here we consider the six densest 
central planes, which are sufficient for a twin/polytype analysis. The three densest central 
reciprocal planes (r.p., hereafter) are of type SX: 0k*, hhl and⎯hhl. These planes have the 
shortest separation between pairs of reciprocal lattice rows parallel to c* (about 0.22Å-1), 
and are followed by the three densest SD central r.p. h0l, h.3h.l and ⎯h.3h.l (about 0.38Å-
1). These six central planes are shown in Figure 18, projected onto the (a*, b*) plane. The 
three SD central planes are 60º apart each, and the same holds for the three central SX 
planes. The two kinds of planes are each 30º apart. The SD central planes show the 
symmetry of the family structure. Then, from the intensities measured along one or more 
X rows, the stacking sequence can be determined. However, the presence of twinning 
must be excluded before analyzing the intensity distribution, and for this purpose the 
analysis of the geometry of the diffraction pattern, in particular the number and type of 
orthogonal planes, is of primary importance. A plane is orthogonal if the direction r* 
corresponding to the line perpendicular to c* and passing through the origin (a direction 
that belongs to the orthohexagonal cell) contains a node for each row parallel to c*.  
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Figure 18. (001) projection of mica reciprocal lattice. Open circles: S rows; 
open triangles: D rows; close circles: X rows. The six central planes (three SD 
and three SX) that can commonly be recorded by a photographic technique such 
as precession camera are indicated (modified after Nespolo et al.1999d). Cf. 
Figure 4 in Sadanaga and Takeda (1969) and Figure 1 in Durovic (1982)., 

In case of a non-orthogonal plane, no nodes are present on r* along the X rows, and 
the node closest to r* is at a height ±c*1/3N, where N is the number of layers in the 
conventional cell. If the node on r* or closest to it corresponds to an absent reflection, the 
orthogonality of the plane must be judged from the position of the two adjacent 
reflections, whose height is either ±c*1/N (orthogonal plane) or ∓2c*1/3N (non-
orthogonal plane). For D rows the family character of the reflections should be 
considered. In subfamily A polytypes, reflections appear at ±c*1/3 (non-orthogonal SD 
plane); in subfamily B polytypes, reflections appear at 0 and c*1/2 (orthogonal SD plane); 
in mixed-rotation polytypes, the D rows correspond to non-family rows and the same 
criteria given for X rows hold. Finally, S rows always contain a node on r*. 

The number and features of the orthogonal planes (as defined above) depend both on 
the Class (lattice features) and on the subfamily (OD character). These are easily 
obtained by taking into account that polytypes in subfamily B and in subfamily A Series 
> 0 never belong to Class a, whereas polytypes in subfamily A Series 0 always belong to 
Class a. 
1. Orthogonal polytypes. In case of subfamily A polytypes, only the three SX central 

planes are orthogonal, according to the above definition. For subfamily B and 
mixed-rotation polytypes, all the six central planes are orthogonal. 

2. Class a polytypes. One SX central r.p. is orthogonal: 0kl. 
3. Class b polytypes. None of the three SX central planes are orthogonal. In subfamily 

A polytypes (Series > 0) the SD central planes are non-orthogonal and thus none of 
the six densest central planes is orthogonal. In subfamily B, the three densest SD 
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Figure 19. Projection onto the (001) plane of the primitive,
conventional (double, monoclinic), pseudo-hexagonal (triple), C1

(sextuple, pseudo-orthohexagonal) and pseudoto c axis of the
orthogonal cell-rhombohedral (primitive) cells of Class b polytypes.
Black, white and gray circles represent lattice nodes at z = 0, 1/3
and  2/3 (z is referred to c axis of the orthogonal cells). Thick lines:
b d f h C ll d f h d h l ll D h d

and 2/3 (z is referred to c axis of the orthogonal cells). Thick lines: borders of the C1 cell and of the pseudo-hexagonal cell. Dashed
lines: borders of the upper plane of the conventional and primitive cells (the lower plane is in common with C1 cell and pseudo-
hexagonal cell respectively). The pseudo-rhombohedral cell (dotted lines) is best viewed by means of the pseudo-rhombohedral axes
aR. a, b: (pseudo)-orthohexagonal axes. A1, A2: (pseudo)-hexagonal axes (modified after Nespolo 1999). 

central planes are orthogonal. In mixed-rotation polytypes, D rows correspond to 
non-family reflections and on these rows, in general, N reflections occur. On the 
basis of the relation between l indices in bT and in C1 settings (lbT and lC1; Table 10), 
the three SD densest central planes are orthogonal also. 

HIDDEN SYMMETRY OF THE MICAS: THE RHOMBOHEDRAL LATTICE 
Takeda (1971) analyzed the symmetry properties of the RTW symbols and showed 

that the stacking of the mica layers can produce polytypes belonging to five kinds of 
symmetries: A, M, O, T, H; it is thus not possible to obtain a polytype belonging to the 
rhombohedral Bravais system. Notwithstanding, the rhombohedral lattice appears in the 
geometry of the diffraction pattern and plays an important role in the twinning of the 
micas. Here the first aspect is briefly analyzed, whereas the effect on twinning is 
considered below. There are two categories of polytypes in which the rhombohedral 
lattice represents a kind of “hidden symmetry” for micas. 
1) Subfamily A polytypes. As shown in the section dealing with the family structure, the 

family structure of subfamily A polytypes has symmetry HR⎯(3)1m, admitting a 
primitive rhombohedral cell. Within the Trigonal model the family reciprocal 
sublattice is rhombohedral both in its geometry and intensity distribution. In the real 
diffraction pattern the intensity distribution deviates from rhombohedral symmetry 
proportionally to the deviations of the layer from their archetypes described by the 
Trigonal model, but the geometry remains rhombohedral. 

2) Class b polytypes. Successive lattice planes parallel to (001) are shifted by 1/3 of the 
short (Class a) or the long (Class b) diagonal of the two-dimensional pseudo-
hexagonal mesh built on (A1, A2) axes. For Class b polytypes a pseudo-rhombohedral 
primitive cell can be chosen, having (almost) the same volume of the reduced cell 
(Fig. 19). The primitive cell is closer to rhombohedral when the layers are closer to  
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their archetypes as described by the Trigonal model. The general reflection 
conditions for the rhombohedral lattice in hexagonal axes, -h+k+l = 3n, expressed in 
the C1 setting become: -3h+k+2l = 6n. Taking into account the C centering 
condition, the latter equation corresponds to l(mod 3) = k(mod 3), which is simply an 
alternative expression of the condition that monoclinic indices are integers, given in 
Table 10 for the bT setting (Nespolo 1999).  
Because non-orthogonal polytypes of subfamily A Series > 0 belong to Class b, in 

this case the “hidden” rhombohedral symmetry appears both in the family sublattice and 
in the entire polytype lattice. 

TWINNING OF MICAS: THEORY 
The definition and classification of twinning is given in Appendix A. The pseudo-

symmetries typical of micas made the recognition of the twin laws difficult, and Friedel 
initially classified mica twins among the “macles aberrantes” (Friedel 1904, p. 222), i.e. 
oriented crystal associations without either twin plane or twin axis stricto sensu. The 
derivation of the twin laws for mica polytypes must consider the point groups of the twin 
lattice and of the lattice of the individual, and the point group of the syngony of the 
individual. The twin operators are the point symmetry operators of the twin lattice not 
belonging to the point group of the individual and can be obtained by coset 
decomposition. The decomposition of the twin lattice point group (order m) yields one 
subgroup (the point group of the individual, order m′ < m) and n = m/m′-1 cosets 
corresponding to the twin laws. Hereafter the subgroup corresponding to the point group 
of the individual is always given first, and the twin laws follow as cosets No. 1 to n. All 
merohedral polytypes, in any syngony, may undergo twinning by syngonic merohedry: 
the twin laws depend on the point group of the polytype and should thus be derived case 
by case (see the example for 3T below). Instead, twins other than by syngonic merohedry 
can be derived with a general procedure. Hereafter, indexing is given in the 
(pseudo)orthohexagonal setting of the twin lattice. 
1) Polytypes of the orthorhombic syngony with a hP lattice may undergo twinning by 

metric merohedry, the twin lattice coinciding with the lattice of the individual. The 
coset decomposition gives two twin laws: 
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All the operators corresponding to the same twin law are equivalent under the action 
of the symmetry operators of the orthorhombic syngony. If the lattice is only oC, 
twinning is by pseudo-merohedry. The twin lattice (hP) does not coincide exactly 
with the lattice of the individual, because for the latter the orthohexagonal relation b = 
a31/2 is only approximated. However, the two lattices have the three orthohexagonal 
axes parallel. The coset decomposition is the same as given in Equation (4), but the 
non-zero obliquity (ω = ω|| ≠ 0, ω⊥ = 0) makes the operators in each of the two cosets 
not equivalent, as described in detail below. 
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2) Polytypes of the monoclinic and triclinic syngony with an hP lattice may undergo 
twinning by metric merohedry. For the monoclinic syngony the coset decomposition 
gives five twin laws, each with four equivalent twin operators: 
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whereas for the triclinic syngony the coset decomposition gives eleven twin laws, 
each with two equivalent twin operators: 
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If the lattice of the individual is oC, the first two cosets in Equation (5) and the first 
four cosets [Eqn. (6)] correspond to metric merohedry, whereas the others correspond 
to pseudo-merohedry (ω = ω|| ≠ 0, ω⊥ = 0). If the lattice of the individual is mC Class 
a, the twin laws in Equations (5) and (6) correspond to reticular pseudo-merohedry. 
The hP twin lattice is a sublattice for the individual, with subgroup of translation 3: 
the twin index is thus 3.  

3) Monoclinic and triclinic Class b polytypes with a two-dimensional hexagonal mesh in 
the (001) plane and a cn projection of exactly |b|/3 has a hR lattice. Twin elements 
belonging to the hR lattice but not to the monoclinic or triclinic syngony correspond 
to the twinning by metric merohedry, whereas twin elements belonging to the hP 
sublattice but not to the hR lattice correspond to twinning by reticular merohedry. The 
subgroup of translation defining the hP sublattice is 3, and thus the twin index is 3 
also. The coset decomposition gives five (monoclinic syngony) or eleven (triclinic 
syngony) twin laws: 
monoclinic syngony: 
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triclinic syngony: 
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The first two [Eqn. (7)] or four [Eqn. (8)] cosets give the twin laws by metric 
merohedry, the others give the twin laws by reticular merohedry. Twin operators in 
each coset are equivalent by the action of the symmetry elements of the syngony. 

If the two-dimensional mesh in the (001) plane is not rigorously hexagonal (ω|| ≠ 
0), or if the cn projection is not exactly |b|/3 (ω⊥ ≠ 0), the hR lattice does not coincide 
exactly with the lattice of the individual; moreover, the hP sublattice is only an 
approximate sublattice for the individual. The twin laws derived in Equations (7) and 
(8) do not change, but they correspond to pseudo-merohedry and reticular pseudo-
merohedry instead of metric merohedry and reticular merohedry respectively. The 
operators in each coset are no longer equivalent. 

Choice of the twin elements 

The twin element that relates a pair of individuals occurs in the morphology of the 
twin. Micas show two kinds of twin morphologies: rotation twins, with composition 
plane (001), and reflection twins, with composition plane (almost) normal to (001). As 
noted by Friedel (1904), the twin axis for rotation twins is within the composition plane, 
whereas the twin plane for reflection twins coincides with the composition plane. 

Whereas the morphological twin operation is unique, the geometrical operations 
bringing the twin lattice into self-coincidence are in general more numerous, as shown in 
the previous section. For zero obliquity, the operations within each coset corresponding 
to a twin law are equivalent, when considering only the lattice, by the action of the 
symmetry elements of the individual. The morphological twin operation is termed the 
representative operation of the coset (Nespolo and Ferraris 2000). For non-zero 
obliquity, however, they are no longer equivalent and the correct twin operations are 
those obeying the law of Mallard, which requires that the twin operations are 
crystallographic operations. As an example, let us consider the decomposition of the 
point group of the hP twin lattice with respect to the point group of the monoclinic 
syngony in Equation (5). If the monoclinic polytype has a hP lattice (twinning by metric 
merohedry) or sublattice (twinning by reticular merohedry) the six two-fold axes in the 
(001) plane are exactly 30º each apart and each of them is perpendicular to a plane (hk0): 
the four operations in each coset are truly equivalent, when considering only the lattice. 
Instead, if the lattice or sublattice of the individual is not exactly hexagonal (twinning by 
pseudo-merohedry and reticular pseudo-merohedry), either ω|| or ω⊥ (in general both) is 
non-zero. For ω|| ≠ 0 the 2[310], 2[⎯310], 2[110] and 2[⎯110] are (2n+1)×30±εº apart from 2[010] / 
2[100] and they are no longer perpendicular to the (hk0) planes (Fig. 20). Twin axes and 
twin planes deviate thus from mutual perpendicularity: rotation twins and reflection twins 
are no longer equivalent, even for centrosymmetric crystals, and are called reciprocal 
twins (Mügge 1898) or corresponding twins (Friedel 1904, 1926). For ω⊥= 0 the 
equivalence relations become: 
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Figure 20. Component of the obliquity within the (001) plane of the pseudo-hp 
lattice of micas. The six directions [hk0] (including the a and b axes) in the 
(001) plane (solid lines) would be equivalent in a hexagonal lattice. The dashed 
thick line is t(⎯130), i.e., the intersection of the (⎯130) plane with the (001) plane, 
which is almost but not exactly normal to [⎯110] direction (it would be normal to 
it in a truly hp lattice). The trace of the t(010) and t(100) coincide with a and b axes 
respectively (γ = 90º). To improve the clearness of the figure, the t(hkl) of the 
other three planes that would be equivalent in a truly hp lattice are not shown, 
but they can be easily traced (modified after Nespolo and Ferraris 2000). 

Only the two-fold rotation about c of the twin lattice is a correct twin operation, in 
the sense that it restores the lattice, or a sublattice, of the individuals. If however ω⊥≠ 0, 
the c axis of the twin lattice is no longer exactly perpendicular to the (001) plane and the 
above rotations are defined only with respect to c* and not to c: none of them is thus a 
correct twin operation. The rotations about c* give simply the (approximate) relative 
rotations between pairs of twinned mica individuals, but are not true twin operations. 
Similar considerations apply also to the rotoinversion operations. ε depends upon the 
obliquity of the twin but, at least in Li-poor trioctahedral micas, is sufficiently small to be 
neglected for practical purposes (Donnay et al. 1964; Nespolo et al. 1997a,b, 2000a). 

In Table 11 the complete scheme developed above is summarized for ease of 
consultation.  

Effect of twinning by selective merohedry on the diffraction pattern 

The above analysis does not consider the case of selective merohedry, which does 
not appear in the morphology of the twin but influences the diffraction pattern by relating 
lattice nodes corresponding to present reflections from one individual to nodes 
corresponding to non-space-group absences from another individual. Twinning by either 
syngonic or metric merohedry (for the definitions, see Appendix A) does not modify the 
geometry of the diffraction pattern. Instead, twinning by selective merohedry, i.e. when 
the twin operation belongs to the point group of the twin lattice but not to the point group 
of the family structure, produces an unusual diffraction pattern. The typical case is that of 
the 3T polytype orthogonal Series 1 subfamily A, space-group type P31,212, which has an 
hP lattice. As shown above, the family structure is rhombohedral and the family 
reflections (S and D rows) obey the presence criterion l = N′h/3(mod N′). With respect to  
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the period of the family sublattice, 1/3c0, one reflection appears in the 1/c0 repeat, with 
presence criterion l = h(mod 3). The coset decomposition gives three twin laws: 

[ ] [ ] [ ] [ ] [ ]{ } [ ] [ ] [ ] [ ] [ ] [ ]{ }
( ) ( ) ( ) ( ) [ ] [ ]{ } ( ) ( ) ( ) [ ] [ ]{ }+−+−

+−−+

∪∪

∪∪=

001001011110010001001001031130100

001001001110011100013310010001001

3,3,ˆ,,,6,6,,,,

6,6,2,2,2,22,2,2,3,3,16

immmmmmm

mmm

      
(9) 

By expressing the twin laws through the Shubnikov’s two-color group notation (in 
which the twin elements are dashed: Curien and Le Corre 1958), the three twin laws are: 
6′2′2; ⎯6′m′2; ⎯3′12/m′. The complete twin [i.e. twin by merohedry or reticular 
merohedry, in which the number of individuals generated from the original individual is 
equal to the number of possible twin laws (Curien and Donnay 1959)] contains four 
individuals and has symmetry 6′/m′′ 2′/m′′ 2/m′′′. The 6′2′2 and⎯6′m′2 twin laws 
correspond to syngonic selective merohedry class IIA, whereas the⎯3′12/m′ twin law 
corresponds to syngonic complete merohedry class I (Table A1). In the twins by syngonic 
selective merohedry, the twin operations do not belong to the point group of the family 
structure, and the two individuals in the twin are rotated by (2n+1)×60º, whereas layer 
rotations of subfamily A polytypes are 2n×60º. These twin operations produce the 
complete overlap of the reflections along X rows and S rows, but not of those along D 
rows. For example, the⎯h0l family row of one individual is overlapped to the 
symmetrically independent h0l family row of the other individual. Because of the 
presence criterion given above, the two reflections from the two individuals in the 1/c0 
repeat along D rows are not overlapped, but are separated by 1/3c0 (Fig. 21). The 6′2′2′ 
and⎯6′m′2 twin laws, although being twin laws by merohedry according to the classical 
definition, produce the overlap of only one third of the family reflections (those along S 
rows), behaving thus as twin laws by reticular merohedry with respect to the family 
structure. 

 

Figure 21. h0l r.p. (SD family plane) of the 3T polytype twinned by selective merohedry. Black 
circles: family reflections overlapped by the twin operation (common to both individuals). Gray and 
white circles: family reflections from two individuals rotated by (2n+1) ×  60º, not overlapped by the 
twin operation (modified after Nespolo et al.1999a). 
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Diffraction patterns from twins 

The twin reciprocal lattice results from the overlap of the reciprocal lattices of the 
individuals. From each individual, lattice rows of the same type (S, D or X) overlap into a 
single composite row. The reflections along a composite row are perfectly aligned for cn = 
|a|/3 or |b|/3, but slightly deviate from alignment where cn departs from those ideal values. 
Because of the physical (non-zero) dimension of the reflections, which for micas are 
commonly broad and oval-shaped, a zigzag disposition of reflections from different 
individuals can in practice be observed only for significant deviations of cn, typical of 
dioctahedral micas and, to a minor extent, for Li-rich trioctahedral micas (Rieder 1970). 
The zigzag disposition of the reflections along rows parallel to c* is indicative of twinning, 
but it is normally not noticeable in Li-poor trioctahedral micas. The presence of twinning 
has thus to be evaluated, in general, from the geometry of the SD and SX central planes. 

For non-orthogonal polytypes the metric relations lC1 = h (mod 3) (Class a) and lC1 = k 
(mod 3) (Class b) hold (see Table 10). Depending upon the twin law(s) (and thus the 
relative orientation of twinned individuals), non-family reflections from different 
individuals may either overlap or occur at positions separated by c*1/3N, where N is the 
number of layers in the repeat unit (Table 10). Where two of the three positions in a c*1/N 
repeat are occupied, the presence of twinning should be suspected. In contrast, where each 
of the three positions are occupied, the number of reflections in a c*1 repeat of a non-
orthogonal twinned N-layer polytype is the same as that of an untwinned 3N-layer 
polytype. This phenomenon is known as “apparent polytypism” (Takano and Takano 
1958). However, twinning in some cases modifies the appearance of the D rows, which, for 
subfamily A polytypes, may show two reflections at 1/3 and 2/3 of the c*1 repeat, as in case 
of selective merohedry. The number and the position of reflections along D rows, as well as 
the number of orthogonal planes, in most cases allows the presence of twinning to be 
distinguished. 
1. Twinning of subfamily A polytypes in which individuals are rotated by (2n+1)×60º 

corresponds to twinning by reticular pseudo-merohedry. This twinning produces a 
separation of the single reflection on D rows from each individual into two 
reflections, corresponding to l(c*1) = 1(mod 3) and l(c*1) = 2(mod 3); no reflection 
appears corresponding to l(c*1) = 0(mod 3); this pattern is clearly different from that 
of a subfamily B polytypes, where two equally spaced reflections appear. In 
addition, if rotation is by ±60º, for Series 0 polytypes (Class a) the orthogonal plane 
of one individual necessarily overlaps a non-orthogonal plane of another individual. 
The composite diffraction pattern has thus two or three SX orthogonal central planes.  

2. Twinning of subfamily A polytypes in which individuals are rotated by 2n×60º 
corresponds to twinning by reticular pseudo-merohedry for Class a (Series 0), but to 
pseudo-merohedry for Class b (Series > 0). Twinning produces overlap of the single 
reflection on D rows from each individual; no reflection appears corresponding to 
l(c*1) = 0(mod 3). However, for polytypes of Series 0 (Class a) two or three SX 
planes are orthogonal, depending on the number of individuals. When three such 
planes appear (three or more twinned individuals), the geometrical features of the 
diffraction pattern are the same as for orthogonal Series 1 polytypes. This situation 
corresponds to the 3T polytype vs. twinned 1M. For dioctahedral micas it is 
distinguished by careful examination of the appearance of weak reflections violating 
the reflection conditions (e.g., Nespolo and Kogure 1998), whereas for trioctahedral 
micas different techniques, such as microscopic observation of the crystal surface, 
may be necessary (e.g., Nespolo and Kuwahara 2001). If the twin involves only two 
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individuals, successive reflections along X are unequally separated (1/3 and 2/3) and 
two SX planes are orthogonal: the presence of twinning is thus easily recognized.  

3. Subfamily B polytypes either are orthogonal or belong to Class b. In the latter case 
only three of the five pairs of twin laws correspond to twinning by reticular pseudo-
merohedry. However, the corresponding twin operations lead to the overlap of the 
two reflections on D rows from each individual; no SX plane is orthogonal, whereas 
the three SD planes are orthogonal. The presence of twinning is not evident. 

4. For mixed-rotation polytypes D rows are non-family rows. For Class a polytypes, two 
individuals rotated by 180º share one orthogonal r.p. 0kl, but reflections are unequally 
spaced. The presence of twinning is thus evident. In other cases, two or more SX 
planes are orthogonal, as for subfamily A polytypes of the same Class, but no SD 
plane is orthogonal. The presence of twinning is again evident. For Class b polytypes 
the three SD planes are orthogonal and the presence of twinning is not evident. 
In Tables 12a-12c the complete scheme of the identification process is shown. The 

approximated relative rotations between twinned individuals are given: the corresponding 
twin laws are easily obtained from Table 11. For Class a polytypes (which represent most 
of the polytypes reported to date) the presence of twinning can be confirmed or excluded 
by simple inspection of the geometry of the diffraction pattern. Special attention is 
however needed to distinguish a 3N-layer orthogonal polytype from the spiral twinning of 
three non-orthogonal N-layer Class a polytypes in which the individuals are rotated by 
2n×60º. For polytypes of Class b subfamily A Series 1 the presence of reticular pseudo-
merohedry twinning is also evident. In the other cases the presence of twinning cannot be 
confirmed or excluded by analyzing the geometry of the diffraction pattern. 

Allotwinning 

The oriented association of two or more crystals differing only in their polytypic 
character is termed allotwinning, from the Greek αλλος, “different”, with reference to 
the individuals (Nespolo et al. 1999c). Allotwinning differs from twinning in that the 
individuals are not identical but have a different stacking sequence. Allotwinning differs 
also from oriented overgrowth (epitaxy: Royer 1928, 1954) and oriented intergrowth 
(syntaxy: Ungemach 1935) because the chemical composition is (ideally) identical and, 
because the building layer(s) are the same, at least two of the three parameters – those in 
the plane of the layer – are identical also. A cell common to the two individuals can 
always be found, which in general is a multiple cell for both crystals: the parameter not in 
the plane of the layer is the shortest one common to the cells of both individuals. As in 
case of triperiodic epitaxy, a three-dimensional common lattice exists (allotwin lattice): it 
may coincide with the lattice of one or more individuals or be a sublattice of it. Whereas 
a triperiodic epitaxy in general may or may not occur, depending on the degree of misfit 
of the lattice parameters of the individuals, there is no similar condition in allotwinning, 
because the individuals have a common mesh in the plane of the layer(s) even in 
polytypes with a different space-group type. 

The allotwin operation is a symmetry operation for the allotwin lattice, which may 
belong to the point group of one or more individuals also. The allotwin of N individuals 
is characterized by N allotwin indices: the allotwin index of the j-th individual is the 
order of the subgroup of translation in direct space defining the allotwin lattice with 
respect to the lattice of the j-th individual. 

Tessellation of the hp  lattice 

Assuming the mica two-dimensional lattice in the (001) plane is hp [ω|| = 0], the 
lattice can be described through a regular tessellation {3,6}, i.e. an assemblage of equal  
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regular 3-gons (triangles), 6 surrounding each vertex, that covers the two-dimensional 
plane without overlap or interstices (Schläfli 1950). The tessellation {3, 6} defines the 
hexagonal mesh; its dual, {6, 3}, gives the H centering nodes (Coxeter 1973; 1989). If (u, 
v) are the coordinates of a node of {3, 6}, which define a vector: 
 r = uA1 + vA2 (10) 
(A1, A2, c; |A1| =|A2| = a ≅ 5.3Å; γ = 120º), the five other nodes produced by n×60° (0 ≤ n 
≤ 5) rotations about the origin are: (u-v, u), (-v, u-v), (-u, -v) (v-u, -u), (v, v-u). If u = v = 
1, these nodes together with the origin give the {3, 6} regular tessellation. If u ≠ 1 or v ≠ 
1 the compound tessellation {3, 6}[n{3, 6}] is obtained, whose larger mesh has 
multiplicity n:  
 n = u2+v2-uv (11) 
(Takeda and Donnay 1965). The length of the vector connecting the origin with a node of 
coordinates (u, v) is5: 
 r = an1/2 (12) 
and for the regular tessellation (u = v = 1) r/a = 1. A single set of six nodes with the same 
r exists when either u or v = 0, v = u or v = 2u: these nodes lie on the six directions 
corresponding to the reflection lines in the plane. In all other cases, there are two sets of 
six nodes with the same r, which lie outside the six reflection lines. The generating nodes 
of the two sets are defined as follows: 
 set I: uI, v; set II: uII, v;      v > uII = (v – uI) > uI > 0 (13) 
In reciprocal space (γ=60º), the relation corresponding to (11a) is given by: 
 set I: H, K; set II: K, H;    H = u;    K = v – u (14) 

These are the conditions in reciprocal space given by Zvyagin and Gorshkov (1966) 
for the regularity of the secondary reflections in hexagonal nets being derivable from 
only geometrical considerations based on the superposition of the cells of both lattices. 
Reciprocal lattice nodes of set I correspond to the orbits S, DI, XI, and those of set II to 
the orbits DII and XII in Figure 16. 

Because the b axis of the C1 orthohexagonal cell is given by b = A1 +2A2, the 
generating node of set I is always between bC1 and A2 axes, whereas that generating set II 
is always between A1 and bC1 axes. Nodes belonging to the same set are still related by 
n×60º rotations, whereas those belonging to different sets are related by a non-
crystallographic angle. These sets are symmetrically disposed with respect to the 
reflection lines in the plane, which thus bisect the rotation angle (Fig. 22, drawn for uI = 
1, uII = 3, v = 4). Taking counter clockwise rotations as positive, the angle relating nodes 
belonging to sets I and II are6: 

 

( ) ( ) ( )

( ) ( )

1
1/ 2

2' : I II II I ' 2cos 60
2

: I II II I 60 '

v u mod
n

+ − −

− +

−⎛ ⎞ϕ → = → ϕ = ⎜ ⎟
⎝ ⎠

ϕ → = → ϕ = − ϕ

D

D

 (15) 

                                                 
5 Takéuchi et al (1972) defined the vector r as r = ⎯uA1+vA2, i.e. with respect to a basis with 

interaxial angle 60º: correspondingly in the multiplicity of the mesh (Eq. 8) and in the length of the vector 
(Eq. 9) the term uv has opposite sign. Their definitions of (u, v) and n values correspond to reciprocal 
lattice values in our treatment. 

6 The definition of the angles ϕ and ϕ′ is given according to Takéuchi et al (1972). 
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Figure 22. Overlap of two hp lattices rotated about an axis normal to the plane 
and passing through the origin by the angle ϕ of the compound tessellation {3, 
6}[13{3, 6}]. One node out of 13 is restored. Three hexagonal meshes containing 
each 13 nodes are also shown. 

 
Figure 23. Definition of the tessellation angles ϕ, ϕ', δI, δII. The figure is drawn 
for the compound tessellation {3, 6}[13{3, 6}]. 

The relation between ϕ and ϕ′ is derived taking into account that a node belonging to 
one set is related to the two nearest nodes of the other set by two reflection lines that 
intersect at the origin. For the regular tessellation, only one set of six nodes with the same 
r exists, each node being 60º apart: in this case ϕ = ϕ′ = 0º (mod 60º). 

The space-fixed b orthohexagonal axis bisects the angle ϕ′ as defined in Equation 
(15). The angles between b and the directions (uI,v) (δI) and (uII,v) (δII) are simply given 
by (Fig. 23): 

 δI = ϕ/2 = 30º - ϕ′/2      δII = -δI(mod 60º) = δI + ϕ′ = 30º + ϕ′/2 (16) 
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In reciprocal space, n×60º rotations relate nodes on the same type of row and of the 
same set (S; DI, DII, XI, XII); instead, non-crystallographic rotations relate nodes on the 
same type of row but of different sets (DI and DII; XI and XII) and do not restore nodes of 
the same set (cf. Fig. 16).  

If u and v (and thus also h and k) are not co-prime integers (i.e. they have a common 
factor), or if u+v = 0(mod 3) [i.e. k-h = 0(mod 3)], the lattice constructed on the mesh 
defined by the compound tessellation is multiple. The same lattice is described by a 
primitive mesh with smaller multiplicity and corresponding to u and v co-prime integers 
and u+v ≠ 0(mod 3) 

Table 13 shows the features of compound tessellations {3, 6}[n{3, 6}] to r = 100Å 
[Eqn. (12) assuming a = 5.3Å], each of which describes a coincidence-site lattice (CSL) 
(Ranganathan 1961): the multiplicity n of its mesh is termed coincidence index or Σ 
factor and corresponds to the order of the subgroup of translation defining the two-
dimensional CSL with respect to the hp lattice. As shown in Table 13, the minimal value 
of the Σ factor for the hp lattice is 7 (see also Pleasants et al. 1996). 

Plesiotwinning 

If the obliquity is neglected (ω|| = ω⊥ = 0), micas have a hexagonal lattice 
(orthogonal polytypes) or sublattice (non-orthogonal polytypes). The twin lattice 
coincides with the lattice of the individual (orthogonal polytypes) or with its 
(pseudo)hexagonal sublattice (non-orthogonal polytypes) and can be described through 
the regular tessellation {3,6}. A different kind of oriented crystal association occurs, 
although less frequently, whose lattice is based on one of the compound tessellations {3, 
6}[n{3, 6}], and thus has been termed plesiotwinning, from the Greek πλεσιος, “close 
to” (Nespolo et al. 1999b). Plesiotwins are characterized by the following features: 
1) the lattice common to the individuals (plesiotwin lattice) is always a sublattice for 

any of the individuals; the order of the subgroup of translation (plesiotwin index) is 
usually higher than in twins; 

2) the operation relating the individuals corresponds to a symmetry or pseudo-
symmetry element of the plesiotwin lattice but not of the individuals, and that 
element has high indices in the setting of the individuals; 

3) pairs of individuals are rotated about the normal to the composition plane by a non- 
crystallographic angle, even neglecting the obliquity. 
If Ξ is the hp lattice, two identical such lattices Ξ1 and Ξ2 with an origin in common 

can be brought into complete or partial coincidence by keeping Ξ1 fixed and rotating Ξ2 
about c*, producing a two-dimensional CSL. The CSL corresponding to the {3, 6}[n{3, 
6}] is produced through non-crystallographic rotations of Ξ2 about c*. For orthogonal 
polytypes the c axis is normal to Ξ and in each lattice plane parallel to Ξ the same two-
dimensional CSL is produced. Instead, for non-orthogonal polytypes the c axis is 
inclined, with a cn projection |a|/3 or |b|/3 (assuming ω⊥ = 0). The rotations normal to Ξ 
produce an identical CSL every third plane parallel to (001), namely the planes for which 
the normal to Ξ passes on a lattice point. The multiple cell containing three lattice planes 
is (ideally) orthogonal and defines either the twin lattice - {3, 6} tessellation - or the 
plesiotwin lattice - {3, 6}[n{3, 6}] tessellation. 

In micas, and more generally in layer compounds, plesiotwinning represents a 
generalization of the concept of twinning, at least from the lattice viewpoint. In twins the 
CSL produced in each plane (orthogonal polytypes) or in one plane out of three (non-
orthogonal polytypes) has Σ factor 1, whereas in plesiotwins the CSL has Σ factor of n > 
1 (n ≥ 7 for the hp lattice). The twin/plesiotwin index is thus 1 (twinning by merohedry)  
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Table 13. Values of u, v (γ=120º), H, K (γ=60º) and corresponding angles (mod 60º) for the compound tessellation 
{3, 6}[n{3, 6}] up to r = 100Å (assuming a = 5.3Å). 

n r(Å) Set (u, v) (H, K) ϕ ϕ′ δI δII 
1# 5.3 I, II (1,1) (1,1) 0º 0º 0º 0º 

7 14.0 
I (1,3) (1,2) 

21°47′ 38°13′ 10°54′ 49°06′ 
II (2,3) (2,1) 

13 19.1 
I (1,4) (1,3) 

32°12′ 27°48′ 16°06′ 43°54′ 
II (3,4) (3,1) 

19 23.1 
I (2,5) (2,3) 

13°10′ 46°50′ 6°35′ 53°25′ 
II (3,5) (3,2) 

31 29.5 
I (1,6) (1,5) 

42°06′ 17°54′ 21°03′ 38°57′ 
II (5,6) (5,1) 

37 32.2 
I (3,7) (3,4) 

9°26′ 50°34′ 4°43′ 55°17′ 
II (4,7) (4,3) 

43 34.8 
I (1,7) (1,6) 

44°49′ 15°11′ 22°25′ 37°35′ 
II (6,7) (6,1) 

49 37.1 
I (3,8) (3,5) 

16°26′ 43°34′ 8°13′ 51°47′ 
II (5,8) (5,3) 

61 41.4 
I (4,9) (4,5) 

7°20′ 52°40′ 3°40′ 56°20′ 
II (5,9) (5,4) 

67 43.4 
I (2,9) (2,7) 

35°34′ 24°26′ 17°47′ 42°13′ 
II (7,9) (7,2) 

73 45.3 
I (1,9) (1,8) 

48°22′ 11°38′ 24°11′ 35°49′ 
II (8,9) (8,1) 

79 47.1 
I (3,10) (3,7) 

26°00′ 34°00′ 13°00′ 47°00′ 
II (7,10) (7,3) 

91 50.6 

I (1,10) (1,9) 
49°35′ 10°25′ 24°47′ 35°13′ 

II (9,10) (9,1) 
I 
II 

(5,11) 
(6,11) 

(5,6) 
(6,5) 

6º01′ 53º59′ 27º00′ 3º00′ 

97 52.2 
I 
II 

(3,11) 
(8,11) 

(3,8) 
(8,3) 

29º25′ 30º35′ 45º18′ 14º42′ 

103 53.8 
I 
II 

(2,11) 
(9,11) 

(2,9) 
(9,2) 

40º21′ 19º39′ 39º50′ 20º10′ 

109 55.3 
I 
II 

(5,12) 
(7,12) 

(5,7) 
(7,5) 11º00′ 49º00′ 54º30′ 5º30′ 

127 59.7 
I 
II 

(6,13) 
(7,13) 

(6,7) 
(7,6) 

5º05′ 54º55′ 57º27′ 2º33′ 

133 61.1 

I 
II 

(1,12) 
(11,12) 

(1,11) 
(11,1) 

51º23′ 8º37′ 34º18′ 25º42′ 

I 
II 

(4,13) 
(9,13) 

(4,9) 
(9,4) 

25º02′ 34º58′ 47º29′ 12º31′ 

139 62.5 
I 
II 

(3,13) 
(10,13) 

(3,10) 
(10,3) 

34º32′ 25º28′ 42º44′ 17º16′ 

151 65.1 
I 
II 

(5,14) 
(9,14) 

(5,9) 
(9,5) 

18º44′ 41º16′ 50º38′ 9º22′ 

#Regular tessellation {3,6}. 
 

or n (plesiotwinning) for orthogonal polytypes, and 3 (twinning by reticular merohedry) 
or 3n (plesiotwinning). For ω|| ≠ 0 or ω⊥ ≠ 0 this description is not modified, but the 
lattice overlap is only approximated and corresponds to pseudo-merohedry (n = 1) and 
reticular pseudo-merohedry (n > 1): the rotations normal to Ξ are ϕ±2ε, and do not obey 
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the law of Mallard. These rotations are useful to describe the CSL and the corresponding 
twin/plesiotwin indices but, as shown dealing specifically with twins, they are not correct 
twin/plesiotwin operations: the latter correspond instead to two-fold axes in the (001) 
plane or reflection planes almost normal to (001). The plesiotwin axes and plesiotwin 
planes have higher indices than the twin axes (Table 14). Note that plesiotwin planes 
correspond to crystal faces usually not developed in micas: consequently, reflection 
plesiotwins have a probability of occurrence lower than rotation plesiotwins. 
 

Table 13, continued 

n r(Å) Set (u, v) (H, K) ϕ ϕ′ δI δII 

157 66.4 
I 
II 

(1,13) 
(12,13) 

(1,12) 
(12,1) 

52º04′ 7º56′ 33º58′ 26º02′ 

163 67.7 
I 
II 

(3,14) 
(11,14) 

(3,11) 
(11,3) 

36º31′ 23º29′ 41º44′ 18º16′ 

169 68.9 
I 
II 

(7,15) 
(8,15) 

(7,8) 
(8,7) 

4º25′ 55º35′ 57º48′ 2º12′ 

181 71.3 
I 
II 

(4,15) 
(11,15) 

(4,11) 
(11,4) 

30º09′ 29º51′ 44º55′ 15º05′ 

193 73.6 
I 
II 

(7,16) 
(9,16) 

(7,9) 
(9,7) 

8º15′ 51º45′ 55º52′ 4º08′ 

199 74.8 
I 
II 

(2,15) 
(13,15) 

(2,13) 
(13,2) 

45º54′ 14º06′ 37º03′ 22º57′ 

211 77.0 
I 
II 

(1,15) 
(14,15) 

(1,14) 
(14,1) 

53º10′ 6º50′ 33º25′ 26º35′ 

217 78.1 

I 
II 

(3,16) 
(13,16) 

(3,13) 
(13,3) 

39º41′ 20º19′ 40º09′ 19º51′ 

I 
II 

(8,17) 
(9,17) 

(8,9) 
(9.8) 

3º53′ 56º07′ 58º03′ 1º57′ 

223 79.1 
I 
II 

(6,17) 
(11,17) 

(6,11) 
(11,6) 

19º16′ 40º44′ 50º22′ 9º38′ 

229 80.2 
I 
II 

(5,17) 
(12,17) 

(5,12) 
(12,5) 

26º45′ 33º15′ 46º38′ 13º22′ 

241 82.3 
I 
II 

(1,16) 
(15,16) 

(1,15) 
(15,1) 

53º36′ 6º24′ 33º12′ 26º48′ 

247 83.3 

I 
II 

(3,17) 
(14,17) 

(3,14) 
(14,3) 

40º58′ 19º02′ 39º31′ 20º29′ 

I 
II 

(7,18) 
(11,18) 

(7,11) 
(11,7) 

14º37′ 45º23′ 52º41′ 7º19′ 

259 85.3 

I 
II 

(2,17) 
(15,17) 

(2,15) 
(15,2) 

47º39′ 12º21′ 36º11′ 23º49′ 

I 
II 

(5,18) 
(13,18) 

(5,13) 
(13,5) 

28º47′ 31º13′ 45º37′ 14º23′ 

271 87.2 
I 
II 

(9,19) 
(10,19) 

(9,10) 
(10,9) 

3º29′ 56º31′ 58º16′ 1º44′ 

277 88.2 
I 
II 

(7,19) 
(12,19) 

(7,12) 
(12,7) 

17º17′ 42º43′ 51º22′ 8º38′ 

283 89.2 
I 
II 

(6,19) 
(13,19) 

(6,13) 
(13,6) 

24º01′ 35º59′ 48º00′ 12º00′ 

301 92.0 

I 
II 

(4,19) 
(15,19) 

(4,15) 
(15,4) 

36º58′ 23º02′ 41º31′ 18º29′ 

I 
II 

(9,20) 
(11,20) 

(9,11) 
(11,9) 

6º37′ 53º23′ 56º42′ 3º18′ 
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Table 13, concluded. 

n r(Å) Set (u, v) (H, K) ϕ ϕ′ δI δII 

307 92.9 
I 
II 

(1,18) 
(17,18) 

(1,17) 
(17,1) 

54º20′ 5º40′ 32º50′ 27º10′ 

313 93.8 
I 
II 

(3,19) 
(16,19) 

(3,16) 
(16,3) 

43º07′ 16º53′ 38º27′ 21º33′ 

325 95.5 
I 
II 

(5,20) 
(15,20) 

(5,15) 
(15,5) 

32º12′ 27º48′ 43º54′ 16º06′ 

331 96.4 
I 
II 

(10,21) 
(11,21) 

(10,11) 
(11,10) 

3º09′ 56º51′ 58º26′ 1º34′ 

337 97.3 
I 
II 

(8,21) 
(13,21) 

(8,13) 
(13,8) 

15º39′ 44º21′ 52º10′ 7º50′ 

343 98.2 
I 
II 

(1,19) 
(18,19) 

(1,18) 
(18,1) 

54º38′ 5º22′ 32º41′ 27º19′ 

349 99.0 
I 
II 

(3,20) 
(17,20) 

(3,17) 
(17,3) 

44º01′ 15º59′ 38º22′ 22º00′ 

 
Plesiotwinning is a macroscopic phenomenon that differs from twinning not only in 

a geometrical definition but also from a physical viewpoint. Whereas for twins the twin 
index and the twin obliquity directly influence the probability of twin occurrences, for 
plesiotwins a similar lattice control is not recognized. In fact, the lowest plesiotwin index 
for micas is 7, which becomes 21 for non-orthogonal polytypes. The degree of restoration 
of lattice nodes is too small for a lattice control to be active. The plesiotwin formation is 
thus structurally controlled. Twins are usually believed to form in the early stages of 
crystal growth (Buerger 1945), but the formation of twins from macroscopic crystals is 
also known (e.g., Gaubert 1898; Schaskolsky, and Schubnikow 1933). When two or more 
nanocrystals interact, they can adjust their relative orientation until they reach a minimum 
energy configuration, corresponding either to a parallel growth or to a twin. When two 
macrocrystals interact, the energy barrier to the mutual adjustment is higher, especially at 
low temperature. If two macrocrystals coalesce or exsolve taking at first a relative 
orientation corresponding to an unstable atomic configuration at the interface, they tend 
to rotate until they reach a lower energy configuration. Parallel growth and twinning 
correspond to minimal interface energy, whereas plesiotwinning corresponds to a less-
deep minimum. However, twin orientations are less numerous and are separated by larger 
angles, whereas plesiotwin orientations are more numerous and separated by smaller 
angles. In Figure 24 the plot Σ vs. ϕ for the hp lattice is given for Σ ≤ 100 and 0º ≤ ϕ ≤ 
60º. Between the two extreme values of ϕ corresponding to crystallographic rotations and 
to Σ = 1, several discrete values appear, corresponding to Σ > 1 and to non-
crystallographic rotations. Only limited adjustments may be necessary to reach plesiotwin 
orientations, which may thus represent a kind of compromise between the original 
unstable configuration and the too distant, although more stable, configuration of twins. 
This kind of origin is supported also by experiments of dispersion into a fluid and drying 
of flakes of crystals with layer structure: the result was simply a physical overlap of pairs 
of crystals, which however gave the same orientations of plesiotwins (Sueno et al. 1971; 
Takéuchi et al. 1972). 

TWINNING OF MICAS. ANALYSIS OF THE GEOMETRY OF THE 
DIFFRACTION PATTERN 

A simple and straightforward method to derive the orientations of the individuals in 
a mica twin or allotwin is introduced. The following analysis is entirely based on the  
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Figure 24. The coincidence index (Σ  factor) vs. ϕ plot, in case of two-dimensional hp 
lattice. ϕ = 0 (parallel growth) and ϕ = 60º (twinning) correspond to Σ = 1. Between these 
two orientations, a large number of plesiotwin orientations exist, which are shown up to Σ 
= 100. The plot has been calculated by applying the compound tessellation theory and 
drawn for counter-clockwise rotations only. Clockwise rotations produce the same Σ in 
correspondence of 60º – ϕ rotations (modified after Nespolo et al.1999d). 

geometry of the diffraction pattern, which is determined by the symmetry of the lattice of 
the individual, of the twin lattice and of the lattice of the family structure. The diffraction 
pattern is described within the Trigonal model and in terms of the weighted reciprocal 
lattice (w.r.l.), i.e. the reciprocal lattice (r.l.) in which each node has a weight 
corresponding to the resulting intensity. In particular, a node corresponding to a reflection 
with zero intensity in the Trigonal model is omitted from the w.r.l. The intensities that are 
actually obtained in a diffraction experiment are clearly influenced by structural 
deviations from the Trigonal model: two diffraction patterns with the same geometry, and 
thus considered equivalent hereafter, can thus be different when the actual structure (i.e., 
with distortions) is taken into account. 

Symbolic description of orientation of twinned mica individuals. Limiting symmetry 

As seen in the previous section, rotations between pairs of individuals in a mica twin 
or allotwin are very close to n×60º about c*. The possible orientations of the individuals 
are thus almost identical to the possible orientations of the layers in a polytype. The 
absolute orientation of the individuals can be indicated by symbols similar to those used 
for polytypes. Nespolo et al (2000a) introduced the ZT symbols, where "T" indicates 
"twin", which are derived from the shortened Z symbols for polytypes. There are four 
main differences between Z and ZT symbols: 
1. Because there cannot be two individuals in a twin oriented in the same way, the 

sequence of characters in a ZT symbol never contains the same character twice. 
2. The Z symbol of polytypes must take into account the space-group type, whereas ZT 

considers only the symmetry of the point group. The orthohexagonal setting of the 
first individual is taken to coincide with that of the twin lattice: the first individual is 
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always fixed in orientation ZT = 3 (Fig. 4), and the orientations of the other 
individuals are determined by the twin laws. 

3. Rotation by 180º of the entire twinned edifice around the a axis of the space-fixed 
reference changes the ZT symbol 3IJ…P into (6-P)…(6-J)(6-I)3; because the order of 
the individuals in the twin does not influence the diffraction pattern, this sequence of 
characters is equivalent to 3(6-I)(6-J)…(6-P), which corresponds to inverting the 
direction of rotation of the individuals in the twin about the cC1 axis. Considering the 
effect on the lattice, the 3IJ…P → 3(6-I)(6-J)…(6-P) transformation corresponds to 
reflecting the twin lattice across the (010) plane. 

4. For polytypes in which layers are related only by proper motions7, like 3T, two twins 
operations with the same rotational part and differing only for the proper/improper 
character of the motion produce the same twin lattice. The corresponding two twin 
laws are however different, and thus an orientation produced by an improper motion 
is hereafter distinguished by a small black circle (•) after the ZT symbol. 
The number of independent orientations of the w.r.l. of an individual is determined 

by its limiting symmetry, i.e. the lower symmetry between the ideal crystal lattice (as 
described by the Trigonal model) and the family structure. The limiting symmetry is 
given in Table 15, which is easily understood remembering that: 1) for mixed-rotation 
polytypes the family structure is defined only within the Pauling model and the limiting 
symmetry always coincides with the symmetry of the polytype lattice; 2) for orthogonal 
polytypes, the lattice is (pseudo) hexagonal: for both subfamilies the limiting symmetry 
coincides with that of the family structure; 3) subfamily B polytypes cannot belong to 
Class a; 4) non-orthogonal subfamily A polytypes belong to Class a for Series 0 but to 
Class b for Series > 0. 

Table 15. Limiting symmetry defining the number of independent lattice orientations. The 
(idealized) symmetries of the lattice and of the family structure are given. The limiting 
symmetry corresponds to the lower of the two. For mixed-rotation polytypes the family 
structure is defined only within the Pauling model and the limiting symmetry by definition 
coincides with the symmetry of the lattice. 

 Orthogonal  
polytypes (hP) 

Class a  
polytypes (mC) 

Class b  
polytypes (hR) 

subfamily A (hR)† hR mC (Series 0) hR (Series > 0) 

subfamily B (hP)† hP ----- hR 

mixed-rotation (hP)‡ hP mC hR 

†Trigonal model. ‡Pauling model. 

Class a polytypes . Each subfamily A Series 0 polytypes belong to Class a; mixed-
rotation polytypes may also belong to Class a. In both cases, the limiting symmetry is mC 
and the unique axis does not coincide with that of the family structure (b in the polytypes, 
c in the family structure). Each of the six possible orientations of the individuals 
correspond thus to independent orientations of the w.r.l. The possible composite twins are 
obtained by calculating the sequences of ZT symbols for sets of individuals from two to 
six. The orientation of the first individual is fixed (ZT = 3), and five possible orientations 

                                                 
7 A “motion” is an instruction assigning uniquely to each point of the point space an 'image' 

whereby all distances are left invariant. A motion is called proper (also: “first sort”) or improper (also: 
“second sort”) depending on whether the determinant of the matrix representing it is +1 or -1. 
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remain where m individuals (1 ≤ m ≤ 5) must be distributed. The number of twins is then: 

 
( )

( )
5 5 5

T1 1 1

5 5! 31
! 5 !m m m

N m m m m= = =

⎛ ⎞
= = =⎜ ⎟ −⎝ ⎠

∑ ∑ ∑  (17) 

Table 16 gives the 12 sequences of independent ZT symbols; the other 19 simply 
correspond to a rotation of the entire twinned edifice followed by a shift of the origin 
along c, eventually coupled with the inversion of the direction of the rotation of the 
individuals in the twin [reflection of the lattice across (010)], as in ZT = 341. 

Class b polytypes . Non-orthogonal polytypes belong to Class b in subfamily A Series 
> 0 and in subfamily B. The unique axis is a in the polytypes but c in the pseudo-
rhombohedral lattice; the latter coincides with that of the family structure. The limiting 
symmetry is hR, which for subfamily A coincides both with the symmetry of the family 
structure and with the (pseudo) symmetry of the lattice. Only two orientations of the w.r.l. 
of the individual are independent, corresponding to the two parities of ZT symbols. A 
common symbol is thus used for the three equivalent orientations with the same parity, 
namely “U” (uneven) and “E“ (even). Twinning by pseudo-merohedry involves individuals 
with the same orientation parity of ZT symbols and produces complete overlap of the w.r.l. 
of the individual (neglecting the obliquity). The reciprocal lattice of the twin is thus 
geometrically indistinguishable from the reciprocal lattice of the individual. The three twins 
ZT = 35, ZT = 31 and ZT = 351 are equivalent to the single crystal, when considering the 
geometry of their lattice, and are thus represented as ZT = U. Instead, twinning by reticular 
pseudo-merohedry involves individuals with an opposite orientation parity of the ZT 
symbols and, considering the lattice only, they are represented as ZT = UE. 

Orthogonal polytypes . In the Trigonal model, the lattice is hP (ω = 0); in the true 
structure for orthorhombic polytypes the lattice is normally oC but pseudo-hP (ω ≠ 0). 
For subfamily B and mixed-rotation polytypes the limiting symmetry is hP and there is 
only one independent orientation of the w.r.l. Twinning is either by complete merohedry 
or by pseudo-merohedry and does not modify the geometry of the diffraction pattern.  

Subfamily A polytypes have an orthogonal lattice only if they belong to Series > 0 
and have a 1:1:1 ratio of layers with the three orientations of the same parity (odd or 
even). The only example reported to date is 3T, which is also the only possible 
orthogonal polytype in Series 1. Other subfamily A orthogonal polytypes may appear in 
Series > 1 but are at present unknown. The limiting symmetry is hR and the w.r.l. has two 
independent orientations, as for Class b polytypes, which correspond to the two settings 
(obverse/reverse) of the family structure. Twinning is by merohedry (ω = 0, either 
complete or selective, depending on the twin law) or pseudo-merohedry (ω ≠ 0). 

The 3T polytype has three twin laws, two of which correspond to selective 
merohedry and invert the parity of the ZT symbol, namely ZT = U → ZT = E (6′2′2) or ZT 
= E• ⎯(6′m′2); the third twin law ⎯(3′12/m′) corresponds instead to complete merohedry and 
preserves the parity of the ZT symbol (ZT = U → ZT = U•). 

Derivation of twin diffraction patterns 

The number and disposition of nodes on the reciprocal lattice rows parallel to c* are 
termed node features and are identified by a symbol Ij, where I is the number of nodes 
within the c*1 repeat and j is a sequence number. Nespolo et al (2000a) introduced an 
orthogonal setting for the analysis of twins in terms of Ij, which is termed the twin setting. 
When dealing with a single polytype, the twin setting coincides with the C1 setting, which  
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Table 16. Orientation of the individuals building a twin in 
Class a mica polytype. Angles in parenthesis express the 
counter clockwise rotations of the whole twinned edifice. 
“Shift” stands for the shift of the origin along c. (010) means 
reflection of the twin lattice across the (010).plane, which is 
equivalent to inverting the direction of rotation of the 
individuals in the twin, i.e. to the symbol transformation 3IJ…P 
→ 3(6-I)(6-J)…(6-P). 

[After Nespolo et al. 2000a] 

ZT  Equivalent to Equivalent to Equivalent to 
34 Unique -------- -------- 
35 Unique -------- -------- 
36 Unique -------- -------- 
31 53(120º) 35(shift) -------- 
32 43(60º) 34(shift) -------- 

345 Unique -------- -------- 
346 Unique -------- -------- 
341 325(010) 436(60º) 346(shift) 
342 453(60º) 345(shift) -------- 
356 134(240º) 341(shift) 346 
351 Unique -------- -------- 
352 463(60º) 346(shift) -------- 
361 634(180º) 346 -------- 
362 413(60º) 341(shift) 346 
312 534(120º) 345(shift) -------- 

ZT  Equivalent to Equivalent to  

3456 Unique --------  
3451 Unique --------  
3452 4563(60º) 3456(shift)  
3461 Unique --------  
3462 Unique --------  
3412 5634(120º)  3456(shift)  
3561 1345(240º) 3451(shift)  
3562 4613(60º) 3461(shift)  
3512 5134(120º) 3451(shift)  
3612 6345(180º) 3456(shift)  

34561 Unique --------  
34562 45613(60º) 34561(shift)  
34512 56134(120º) 34561(shift)  
34612 61345(180º) 34561(shift)  
35612 13456(240º) 34561(shift)  

345612 Unique --------  
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is based on the cell of the twin lattice. To compare the geometry of the reciprocal lattice 
of polytypes with different periods, the twin setting is instead defined to have the shortest 
period along c* in the C1 setting among all the polytypes considered. The twin setting of 
the twin lattice is space-fixed and parallel to C1, whereas that of the crystal lattice is 
crystal-fixed for each of the individuals building a twin. Since the first individual of the 
twin is space-fixed (ZT = 3 for Class a, or ZT = U for Class b and orthogonal polytypes), 
its twin setting is parallel to C1. The l index in the twin setting is labeled lT. 

Rotations between pairs of individuals are taken counter-clockwise in direct space, 
and thus clockwise in reciprocal space. The n×60º rotations about c*, which give the 
approximate rotations between pairs of individuals, overlap only Ri belonging to the same 
type (S, D or X). Each of the Ri is rotationally related to five other Ri and along each of 
them a peculiar sequence of lT indices is obtained, which is termed a “Rotational 
Sequence”. Each Ri generates one rotational sequence, which is shortened to RSi

P(n), 
where: the superscript P indicates the polytype; i is the same index defining Ri; n points 
to each of the six characters of the RS. RS1

P corresponds to S rows and thus it is 
“000000” for all polytypes. The n-th values of RSi

P correspond to the lT indices of the 
nodes on the row which is related to Ri by (n-1)×60º clockwise rotation. The two RSi

P 
corresponding to D-type rows (R2-3) on the one hand, and the six RSi

P corresponding to 
X-type rows (R4-9) on the other, can be transformed into each other by cyclic 
permutations. Since the orientations of the single-crystal lattices and of the twin lattice 
are fixed and determined by ZT, also the starting point of each RSi

P is fixed, and the nine 
RSi

P are independent. The node features of the composite rows are obtained from the 
corresponding RSi

P by considering their relation with the ZT symbols. A twin of N 
individuals (2 ≤ N ≤ 6) is identified by N ZT symbols. The lT index of the q-th node 
coming on i-th row from the j-th individual is given by: 
 [lT(i, j)]q = [RSi

P(n) ]q , n = [(ZT)j+4](mod 6). (18) 
The node features of composite rows are completely defined by the nine RSi

P and ZT 
symbols; therefore, there are only nine independent composite rows, for which the 
symbol Ci is adopted. Ri and Ci share the same row features and thus the description of 
the reciprocal lattice in terms of the tessellation rhombus and of the minimal rhombus is 
the same for both the single-crystal lattice and the twin lattice. 

Because of the metric relations (Table 10), the lT of both Ci and Ri of the same type 
and belonging to the same central plane are related by: 

 

( ) ( )

( ) ( )( ){ }
3

9 mod6

D 6 D

X 6 X

T i T iq q

T i T iq q

l l

l l

−

−

= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤= −⎡ ⎤⎣ ⎦ ⎣ ⎦
. (19) 

Knowing the lT of one D-type Ci / Ri and three X-type Ci / Ri, the lT of the remaining 
four Ci / Ri can be calculated. There are thus five truly geometrically independent Ci / Ri 
(one S-type, one D-type and three X-type), but nine translationally independent Ci / Ri. 
The distribution of Ij on the Ci of a minimal rhombus is the information necessary to 
derive and identify the diffraction patterns of mica twins. 

A short comparative analysis of the four periodic basic structures (1M, 2M1, 2M2 and 
3T) is given below. For these four polytypes the twin setting has a period of c*1/6 along 
c*: lT (2M1, 2M2) = lC1(2M1, 2M2), but lT (1M, 3T) = 2lC1(1M, 3T). Table 17 gives the Ci 
and RSP

i. The definition of Ij, is given in Table 18. The rules for combining Ij’s of the 
individuals into composite Ij’s of the twin are given in Nespolo et al (2000a). 
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1M polytype . The c*1 repeat coincides with the polytype period and along each Ri 
there is only one node, which obeys the relation lT = 2h(mod 6). D-type Ri are either 12 
(D1) or 13 (D2) and the RS2-3

1M are "242424" and "424242". The n×60° rotations about c* 
produce the overlap of all the reciprocal lattice nodes belonging to D-type Ri when n is 
even, but to their separation when n is odd. X-type RS4-9

1M are the six cyclic permutations 
of "220440". On the basis of the relation between Ci and RSi

1M (Table 17) seven different 
Ci appear in the twin lattice. One or two reflections can appear on D-type Ci (lT is never 
0), whereas one, two or three reflections can appear on X-type Ci. Nine independent 1M 
twin patterns occur (Fig. 25). 

 
Figure 25. The nine independent patterns of 1M twins as expressed through the 
corresponding minimal rhombi. For the ZT = 34 twin, the complete star polygon is given, 
with the minimal rhombus in it shaded. Inset: l (mod 6) indices of the nodes on reciprocal 
lattice composite rows [used by permission of the editor of Acta Crystallographica A, 
from Nespolo et al. (2000a) Fig. 8, p. 143]. 

When three equally spaced reflections in the c*1 repeat occur along non-family rows, 
in principle the diffraction pattern may correspond either to a 1M twin (apparent 
polytypism) or to a 3-layer polytype (real polytypism). The distinction is obtained by 
applying the geometrical criteria given in Tables 12a-12c. However, 1M twins with ZT = 
351 cannot be distinguished geometrically from the 3T polytype (see also Nespolo and 
Kogure 1998). This ambiguity is removed when weak reflections appear along family 
rows, which can be expected for dioctahedral and Li-rich trioctahedral micas (Rieder 
1968, 1970). The effect of these weak reflections on the twin diffraction pattern is 
analyzed in Nespolo et al (2000a). 

2M1 polytype . Because the parity of layers is opposite for the 2M1 polytype (Z = 
220440, T = |4.4 2.2|) with respect to the 1M polytype (Z = 330, T = |3.3|), the threefold 
family structure has an opposite setting (reverse / obverse) and the corresponding family 
rows have different reflection conditions, namely k = 0(mod 3), lT = 2h(mod 6) for 1M, 
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but k = 0(mod 3), lT1 = 4h(mod 6) for 2M1 (Nespolo 1999). One reflection occurs in the 
c*1 repeat along family Ri, but two along non-family Ri. D-type Ri are the same as in 1M 
case, but, because of the opposite parity of the layers in the two polytypes, the two RS2-
3

2M1 are inverted. X-type Ri have the three possible pairs of values of lT (mod 6): 0 and 3, 
1 and 4, 2 and 5. For the X-type Ri the sequence of n×60° rotations corresponds to a 
double sequence of lT values: 011022 / 344355 or cyclic permutations, producing six 
independent double RSi

2M1 (Table 6). As for the 1M polytype, the twelve composite twins 
produce nine different patterns, none of which can be mistaken for that of a 1M twin (Fig. 
26). 

 

Figure 26. The nine independent patterns of 2M1 twins as expressed through the 
corresponding minimal rhombi. Inset: l (mod 6) indices of the nodes on reciprocal lattice 
composite rows [used by permission of the editor of Acta Crystallographica A, from 
Nespolo et al. (2000a) Fig. 9, p. 144]. 

2M2 polytype. Being a Class b polytype, 2M2 has a markedly pseudo-rhombohedral 
lattice and two of the five pairs of twin laws, namely those corresponding to ±120º 
rotation about c*, correspond to pseudo-merohedry, whereas the remaining three 
correspond to reticular pseudo-merohedry. Each of the six n×60º rotations belong to the 
point group of the family structure (subfamily B), and thus the family sublattice of the 
individuals is always overlapped. RS2

2M2 and RS3
2M2 both correspond to the double 

sequence 000000/333333, whereas RS4-9
2M2 correspond to the cyclic permutations of the 

double sequence 121212/454545. There are only two kinds of patterns for 2M2 twins. 
Twinning by pseudo-merohedry gives a pattern geometrically indistinguishable from that 
of the single crystal (ZT = U). The other pattern corresponds to twinning by reticular 
pseudo-merohedry (ZT = UE) and differs from the single crystal pattern in the six X-type 
Ci, which show four reflections in the c*1 repeat (Fig. 27). Neither can be mistaken for 
any one of the 1M or 2M1 polytypes or twins. 

3T polytype . The 3T polytype is an orthogonal subfamily A polytype, for which the 
six orientations of the structural model are equivalent. They can be grouped into two sets 
of odd or even parity, corresponding to obverse and reverse setting of the family structure 
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respectively. Taking odd parities, as in Zvyagin (1967), D-type Ri and RSi
3T are the same 

as those of 1M polytype. Taking the even orientation instead, as in Backhaus and Ďurovič 
(1984), D-type Ri and RSi

3T are the same as those of 2M1 polytype. In both cases, there is 
only one triple sequence of X-type RS3T: 000000/222222/444444. The six orientations of 
the minimal rhombus are divided into two types, differing for the D-type Ri. The 2n×60° 
rotations belong to the symmetry of both the individual and the family structure and 
reproduce the same rhombus. On the other hand, (2n+1)×60° rotations do not belong to 
either symmetries and thus they exchange the two independent rhombi.  

Twinning by complete merohedry (ZT = UU•) by definition produces a diffraction 
pattern with the same geometrical appearance as the single crystal, which in its turn may 
be geometrically identical to the pattern of 1M twinned as ZT = 351. In contrast, for 
twinning by selective merohedry (ZT = UE, UE•, UU•E, UU•E•, UU•EE•), the two D-type 
Ci correspond to have two reflections at lT = 2(mod 6) and 4(mod 6). This is the same 
geometrical appearance of 1M twinned as ZT = 3451. The distinction between 1M twins 
and the 3T polytype (twinned or untwinned) requires by very careful examination of the 
violation of the additional reflection conditions (Nespolo et al. 2000a). 

 

Figure 27. The two independent patterns of 2M2 twins as expressed through the 
corresponding minimal rhombi. Inset: l (mod 6) indices of the nodes on reciprocal lattice 
composite rows. 

Derivation of allotwin diffraction patterns 

The allotwin laws include the twin laws for each of the individuals, as well as the 
symmetry operations of the crystal(s) point group(s). The six rotations about c* now must 
be considered. By indicating the first individual with a superscript and the second one 
with a subscript, the allotwin ZT = 3

3 must be considered also, whereas the ZT = 33 twin 
simply corresponds to a parallel growth. Therefore, the number of possible laws increases 
and depends upon the number of different polytypes undergoing allotwinning. 

Because the geometrical appearance of the diffraction pattern of the 3T polytype and 
of its twins is ideally the same as 1M twinned as ZT = 351 or 3451, the contribution from 
3T does not produce an independent pattern: it is not considered in the following 
systematic analysis. 

The three basic monoclinic polytypes can produce 3 binary (two-individual) 
allotwins (1M-2M1; 1M-2M2; 2M1-2M2) and 1 ternary (three-individual) allotwin (1M-
2M1-2M2). Binary (AB) and ternary (ABC) allotwins are indicated by A

B and ABC 
respectively, where A, B and C represent the ZT symbols for each portion of the allotwin. 
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These composite allotwins can be described on the following basis: 
1. The allotwin is constructed by 2 (binary allotwin) or 3 (ternary allotwin) portions (A, 

B, C), each consisting only of individuals of the same polytype, which in turn can be 
twinned; 1M is taken as the first portion (A) of the allotwin; when 1M is not 
involved (binary allotwin 2M1-2M2), the portion A is 2M1. 

2. Because the individuals building the twin or allotwin are related by point group 
operations, the A-B-C sequence has no influence on the composite lattice and the 
two or three portions can be described as juxtaposed and non-mixed; for example, ZT 
= 34

5
6 is equivalent to ZT = 35

46. 
3. Within each single portion (A, B, C), the restrictions on the possible orientations 

derived for the twins are retained, but these restrictions are not applicable when 
comparing individuals belonging to different portions. 

4. The first individual of the first portion (A) is fixed in orientation ZT = 3, but this 
restriction is not applicable for the first individual of the other portions. Therefore 
the number of possible orientations for B and C portions must be multiplied by the 
number of independent orientations of the minimal rhombus, as determined by the 
limiting symmetry, namely six for 2M1, and two for 2M2. 
The minimal rhombi of the allotwins are calculated as combinations of the minimal 

rhombi of each portion, but the number of minimal rhombi to be considered depends 
upon the limiting symmetry. Those minimal rhombi of two twins of 1M that are 
equivalent through an n×60º rotation about c* can produce two independent minimal 
rhombi when combined with a minimal rhombus of 2M1. Therefore, in the derivation of 
the reciprocal lattice of 1M-2M1 allotwins, the minimal rhombi of all the thirty-one twins 
for both polytypes in Table 16 must considered. To these, the minimal rhombus 
corresponding to the single crystal must be added. Moreover, keeping fixed the minimal 
rhombi of 1M (first individual in orientation ZT = 3), the six independent orientations of 
each of the thirty-two minimal rhombi of 2M1 must be considered. For the 2M2 polytype, 
there are only two independent orientations of the individual w.r.l. (ZT = U or ZT = E) and 
only one for the twin reciprocal lattice (ZT = UE). In deriving the reciprocal lattice of 1M-
2M2 or 2M1-2M2 allotwins, for Class a polytypes only the minimal rhombus of the single 
crystal and the minimal rhombi of the twenty-three twins related by (2n+1)×60º rotations 
must be combined with the three (U, E, UE) minimal rhombi of 2M2. The remaining eight 
minimal rhombi of Class a polytypes are related to some of the other twenty-three by 
2n×60º rotations, which are symmetry operations for the minimal rhombi of 2M2 and 
cannot produce any further independent allotwin minimal rhombus. Finally, for the 
ternary allotwins 1M-2M1-2M2, the independent minimal rhombi of the binary allotwin 
1M-2M1, and those related by (2n+1)×60º rotations, must be combined with the three 
minimal rhombi of 2M2. 

For each combination, the composite minimal rhombus obtained in this way, then 
rotated by n×60º (0 ≤ n ≤ 5), and finally – for each of these rotations – reflected across 
(010), is compared with those calculated for the previous combinations and, if equivalent, 
is discarded. The resulting minimal rhombi are given in Nespolo et al (2000a). 

IDENTIFICATION OF MDO POLYTYPES FROM  
THEIR DIFFRACTION PATTERNS 

Theoretical background 

The identification of the stacking mode in an MDO polytype is based on two 
orthogonal projections, which are sufficient to characterize reliably any structure. For 
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mica structures (but also for other phyllosilicates) the most suitable projections are the 
XZ and the YZ projections. A Fourier series calculated with coefficients derived from 
zonal diffractions only, yields a projection of the structure along the zone axis. It follows 
that the h0l and 0kl nets characterize unambiguously the projections XZ and YZ, 
respectively. The h0l net contains only the reciprocal rows with family diffractions (S and 
D rows) and, therefore, this set characterizes the family structure, i.e. the Subfamily. The 
set of diffractions 0kl contains both S and X rows (not D rows). Whereas the former are 
common (almost) for all polytypes in both subfamilies and thus useless for identification 
purposes, the latter are characteristic for any individual polytype and can be used for their 
identification, unless they are so diffuse that no discernible maxima can be obtained. 

Owing to the efficiency of atomic scattering factors as a function of sinϑ/λ, the 
diffractions close to the origin of the reciprocal lattice are best suited for identification 
purposes. Moreover, any family structure in micas is trigonal or hexagonal and from 
Friedel’s law it follows that the reciprocal lattice rows 20l, 13l,⎯13l, ⎯20l, ⎯⎯13l and ⎯13l 
carry the same information. Therefore, two reciprocal lattice rows, namely 20l and 02l, 
suffice to identify the subfamily and the MDO polytype, respectively. The positions of 
diffraction spots and the distribution of their intensities is so characteristic that a mere 
visual inspection of the diffraction patterns obtained experimentally with that calculated 
for a homo-octahedral structure with the expected chemical composition, leads to the 
solution, provided that the presence of twinning has been ruled out. This procedure was 
described first by Weiss and Ďurovič (1980) and explained in more details by Ďurovič 
(1981) (see also Ďurovič 1999, p.761). 

The recognition of the significance of the YZ projections (and thus also the five 
MDO groups given in Table 7), which can be derived also directly from the full polytype 
symbols (Ďurovič et al. 1984), is very important also for the interpretation of HRTEM 
images (Kogure, this volume). 

Identification procedure 

The identification of the stacking mode of an MDO polytype in the homo-octahedral 
approximation is straightforward. It can be performed by visual inspection of the 
intensity distribution along two rows (one D and one X), and from visual inspection of 
the geometry of the diffraction pattern. 
1. Intensity distribution. 
a) Calculate F2 values for each of the six homo-octahedral MDO polytypes given in 

Table 7 by using average atomic occupations in the octahedral sites, which 
correspond approximately to the chemical composition of the investigated polytype. 
Use the space-group type P1 and use a common orthogonal six-layer cell, which can 
"accommodate" each polytypes. Atomic coordinates from the ideal Pauling model 
may be used. The F2(0kl) values for the 1M and 2O polytypes must be the same 
(MDO group I, Table 7) and also the F2 values for the family diffractions must obey 
the trigonal/hexagonal Laue symmetry. Select the 20l and 02l rows, and construct 
identification diagrams for the determination of the subfamily (two rows for A and B 
only) and for the MDO polytype (four rows for the MDO groups I to IV) as 
indicated in Figure 28, where the size of each circle is proportional to the respective 
F2 values. In principle, the MDO V row should be given. However, this group 
contains only the 6H polytype, which has not been reported to date, and can be 
unambiguously identified by the geometry of its diffraction pattern, which has six 
orthogonal planes with two reflections in the c*1 repeat along D rows: this geometry 
cannot be obtained by the twinning of any other polytype. The program DIFK 
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(Smrčok and Weiss 1993) is very convenient for the calculations of the F2 values. 
The program contains a subroutine to produce sequences of the F2 values along 
selected reciprocal rows. This program can be obtained free of charge from Smrčok8. 

b) Make a set of precession photographs, three from the SX planes and one from an SD 
plane. Select the 20l and 02l rows, and compare the intensities with the calculated 
values. Figure 29 and 30 show three examples. 

 
Figure 28. Visual representation of calculated intensities of diffractions 
of MDO polytypes of phlogopite. The indexing refers to the six-layer 
orthogonal cell (C2 cell). Left: intensities along 20l (D row, containing 
family diffractions) reciprocal lattice row and intensity distribution 
within subfamilies A and B. Right: intensities along 02l (X row, 
containing non-family diffractions) reciprocal lattice row and intensity 
distribution within MDO groups I to IV. The strongest intensity of each 
subfamily (left) or MDO group (right) is drawn as the largest circle 
(modified after Weiss and Durovic 1989). 

 
2. Geometry of the diffraction pattern. 
a) Reciprocal lattice rows parallel to c* in the h0l r.p. have 1 (subfamily A) or 2 

(subfamily B) reflections in the c*1 repeat; 
b) Reciprocal lattice rows parallel to c* in the 0kl r.p. have 1 (1M), 2 (2M1, 2M2 or 2O), 

3 (3T) or 6 (6H) reflections in the c*1 repeat; 
c) 2M1 is the only 2-layer subfamily A polytype; 2M2 and 2O are distinguished because 

the 0kl r.p. is orthogonal for the latter but non-orthogonal for the former. 
 

For the determination of the meso- and hetero-octahedral MDO polytypes, a 
complete structure refinement is necessary, because the occupancy factors of the three 

                                                 
8 E-mail: uachsmrk@savba.sk 
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octahedral sites as well as the sizes of the corresponding octahedra must be determined. 
A complete structure refinement (e.g., using anomalous scattering) is necessary also to 
distinguish the two members of an enantiomorphous pair. 

Our experience shows that the ideal Pauling model is sufficient for identification 
purposes because the slight deviations from the actual atomic coordinates owing to 
desymmetrization are not important in these calculations.  

 
Figure 29. Comparison of observed (obs.) and calculated (calc.) 
intensities along 02l (X row, containing non-family diffractions) and 
20l (D row, containing family diffractions) reciprocal lattice rows of 
zinnwaldites 1M (MDO group I) and 2M1 (MDO group II), which are 
essential for the identification of MDO groups I, II and of subfamily A, 
respectively, Observed intensities are taken from 0kl and h0l precession 
photographs. The distribution of intensities of 20l diffractions is very 
similar for both zinnwaldite polytypes, and therefore only the 
distribution corresponding to the one-layer polytypes is given 
(modified after Weiss and Durovic 1989). 

IDENTIFICATION OF NON-MDO POLYTYPES: THE  
PERIODIC INTENSITY DISTRIBUTION FUNCTION 

The number of non-MDO polytypes in each family is infinite, and increases 
dramatically with the number of layers (Mogami et al. 1978; McLarnan 1981). The 
procedure for the identification of MDO polytypes described in the previous section 
becomes virtually impossible for non-MDO polytypes with longer periods, which require 
instead a simplified procedure. This simplified procedure was introduced by Takeda 
(1967) under of the name of Periodic Intensity Distribution (PID). The PID is an 
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approximation of the Fourier transform of the stacking sequence that can be obtained in a 
simple way from the diffraction intensities: it is defined within the Trigonal model and 
the homo-octahedral approximation, and gives thus the correct stacking mode for the case 
of all-M1 layers. If the polytype contains one or more M2 layers, the stacking mode 
obtained from PID analysis of the diffraction pattern is simply an approximation: for each  
M2 layer, the characters 

T . T2 2 1v2 2 1
+

+
j j

i, j  are replaced by the characters 
.

v2 2 1+
e e

j, j  or 
.

v2 2 1+
u u

i, j ,  
depending on the parity of T2j and T2 j +1, and the displacement character obtained by the 
PID is simply v2j,2j+1. No indication can be obtained from the PID that the polytype may 
belong to the hetero-octahedral family. For the meso- and hetero-octahedral family, as 
well as for the distinction between the two members of an enantiomorphous pair, a 
complete structure refinement is required, similarly to the case of MDO polytypes. 
However, only the structural models corresponding to polytypes homomorphic to the 
homo-octahedral sequence obtained by PID analysis must be considered. 

The Fourier transform of a polytype (GN, where N is the number of layers) is given 
by the Fourier transform of the stacking sequence, which is a fringe function (Lipson and 

Figure 30. Comparison of observed (obs.) and calculated (calc.) 
intensities along 02l (X row, containing non-family diffractions) and 20l 
(D row, containing family diffractions) reciprocal lattice rows of 
lepidolite 2M2 (MDO group III), which are essential for the 
identification of MDO groups III and subfamily B, respectively. 
Observed intensities are taken from 0kl and h0l precession photographs. 
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Taylor 1958), modulated by the Fourier transform of the layer (Gj): 

 
( ) ( ) ( ), , ,1

exp 2NN
j x j y j z jj

G hkl G hkl i t h t k t lπ
=

= + +∑   (20) 

where tx,j, ty,j, tz,j are the (x, y, z) components of the stacking vector relating the j-th and 
the (j+1)-th layers (Takeda 1967). When the shifts between the building layers are 
rational and the rotations belong to the symmetry of the layer(s), their Fourier transform 
(Gj), which is a continuous function in the direction lacking periodicity, can be factorized 
from the expression of the structure factor GN. Thus, GN takes the simple form of the 
product of the layer transform and of the stacking sequence transform. The second term 
expresses the periodicity in reciprocal space appearing when a structure is constructed by 
a translation of subunits. This is the case of polytypes of binary compounds like SiC and 
ZnS (Tokonami and Hosoya 1965; Tokonami 1966; Farkas-Jahnke 1966; Dornberger-
Schiff and Farkas-Jahnke 1970; Farkas-Jahnke and Dornberger-Schiff 1970). In micas, 
the M layers are instead related by rotations belonging not to the layer symmetry but to 
the idealized symmetry of the Ob plane (with the obvious exception of the 1M polytype) 
and the same simplification is in principle not possible. However the Fourier transform of 
the M layer in the six possible orientations is almost unmodified in a subspace of the 
reciprocal space (Takeda 1967). By removing the modulating effect of the layer, the 
approximated Fourier transform of the stacking sequence is obtained. This is known as 
the Periodic Intensity Distribution (PID) function (Takeda 1967; Sadanaga and Takeda 
1969; Takeda and Sadanaga 1969). Comparison of calculated and observed PID values 
along non-family reciprocal lattice rows parallel to c* is in principle sufficient to identify 
any mica polytype (Takeda and Ross 1995; Nespolo et al. 1999d). 

PID in terms of TS unit layers 

A single type of non-polar unit layer (the M layer) is sufficient to describe polytypism 
of micas: the M layer is stacked with both translations along c and rotations about c* which 
do not belong to the layer symmetry. A different choice, employing more than one type of 
layers, is more suitable to describe the symmetry of the layer stacking and to simplify the 
process of identification of the stacking mode. As shown above, two kinds of non-polar OD 
layers (Tet and Oc) and one kind of polar OD packet (with two opposite orientations, p2j 
and q2j+1) are necessary to describe the OD character of mica polytypes. To compute the 
PID, Sadanaga and Takeda (1969) and Takeda and Sadanaga (1969) introduced the non-
polar TS unit layers, which are defined within the Trigonal model. The two layers D and T 
would be sufficient to describe any mica polytypes if two orientations, related by 180º 
rotation about c*, were permitted. To avoid the use of this rotation, which does not belong 
to the layer symmetry, four TS layers, including also the D* and T* layers, are employed. 
The relative positions of TS unit layers are given by the TS symbols, written as a sequence 
of N symbols Lj(ΔXj, ΔYj), 1 ≤ j ≤ N, where Lj is the kind of layer (D, D*, T, T*), and (ΔXj, 
ΔYj) are the (A1, A2) components in hexagonal axes of the total shift vector between the j-th 
TS layer and the N-th TS layer of the previous repeat (Fig. 2,3). The j-th TS unit layer is 
defined by the relation between the j-th and the (j+1)-th M layers and corresponds to the 
pair of packets q2j-1p2j. D and D* layers correspond to 2n×60º rotations between q2j-1 and p2j 
[i.e. the RTW symbol is Aj = 0(mod 2); q2j-1 and p2j have the same orientation parity], T 
and T* layers correspond to (2n+1)×60º rotations between q2j-1 and p2j [i.e. Aj = 1(mod 2); 
q2j-1 and p2j have an opposite orientation parity]. 

In the homo-octahedral approximation the two OD packets (p2j and q2j+1) describing 
each layer have the same OD symbol, and the two half-layers of an M layer have the 
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same Z symbol. If “u” (uneven) and “e” (even) are the orientation parities of OD symbols 
of the OD packets, or of Z symbols of half M layers, the following equalities are obtained 
from Figure 3: 

 D = u0u;    D* = e0e;    T = e0u;    T* = u0e (21) 

The Fourier transform of an N-layer mica polytype [Eqn. (20)] in terms of TS unit 
layers in hexagonal axes becomes: 
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The Fourier transform of the j-th TS unit layer, Gj(HK.LR), is two-dimensionally 
periodic and the reciprocal lattice coordinate in the direction lacking periodicity is not 
restricted to integral values but is a real variable, labeled LR. In Equation (22), Gj plays a 
role analogous to that of the atomic scattering factor in the expression of the structure 
factor.  

Because the j-th and the (j+1)-th TS layers must connect two packets p2j and q2j+1 
with the same orientation parity (to preserve the octahedral coordination of the M 
cations), there are only eight possible pairs of TS unit layers (DD; D*D*; TT*; T*T; 
DT*; D*T; TD; T*D*). In addition, to match the cation positions, the layer stacked over 
a D or T layer must be shifted by –a/3, whereas the layer stacked over a D* or T* layer 
must be shifted by +a/3. Within the Pauling model only the octahedral cations have 
different coordinates in the four TS unit layers. However, their contribution to the layer 
Fourier transform becomes identical when the following conditions are satisfied: 
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Consequently, Gj is identical for all j (Gj = G0) and the contribution of the Fourier 
transform of the layer can be extracted from the summation in Equation (22), obtaining 
the PID function SN: 
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Within the Trigonal model also the Ob atoms have different coordinates, but again 
their contribution to Gj in all the four TS unit layers is the same when: 

 

0,all ; 0,all ;
0,all ;

H K K H H K
h k h k

= = = −
= = ±

. (25) 

For these reflections, Gj = G0 and Equation (24) holds again. PID is thus defined in a 
subspace of the reciprocal space, which narrows from subfamily A polytypes to mixed-
rotation polytypes, but always includes at least the three r.p. 0kl, hhl,⎯hhl. 

The procedure for computing PID from the stacking mode is illustrated in Appendix 
B. A concrete example is hereafter analyzed in details for the 8A2 polytype. The PID is 
computed from the RTW symbols of the stacking sequence with the program PTST98 
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(Nespolo et al. 1999d). This program can be obtained free of charge from its first author9. 

Derivation of PID from the diffraction pattern 

The PID analysis of the diffraction pattern can be performed both in XRD and SAED 
(Selected Area Electron Diffraction) techniques. The experimental PID is easily obtained 
from the diffraction pattern once the data reduction has been applied. However, a complete 
data reduction is in general not necessary, because the stacking sequence is determined by 
the best match between the PID obtained from the diffraction pattern and the PID 
computed for all the homo-octahedral stacking candidates. For polytypes with a limited 
period, a direct visual comparison of the intensities with the computed PID can reveal the 
correct homo-octahedral stacking sequence (Ross et al. 1966). The experimental PID 
function is obtained from the intensities in a 0.1Å-1 repeat, within which the variation of the 
experimental factors is small, and the PIDs from several repeats are finally weighted, so 
that possible uncertainties are further reduced. For example, in general, the improvement in 
PID obtained by applying the absorption correction is smaller than the approximation of 
describing the mica structure with the TS layers, which are defined within the Trigonal 
model. Complete data reduction may improve the quality of the match of the experimental 
PID with that computed from the correct stacking sequence, but it does not change the 
sequence of stacking candidates. In other words, the homo-octahedral stacking sequence 
that best matches the experimental PID is not replaced by a different candidate when a 
more complete data reduction is applied. Some uncertainties can however be expected for a 
less complete data reduction in the hypothetical case of a long-period polytype (for which 
the number of possible stacking sequences is high) with a poor quality of the reflections, 
and consequently large uncertainties on the experimental PID, if two candidates show 
relatively close matches with the experimental PID. Such a hypothetical case has not 
appeared so far, but this is a possibility. 

A particularly intriguing case may occur when polytypes with different periodicities 
are in relation of homomorphy. As shown above, this may happen if a sub-periodicity 
exists in the sequence of v2j,2j+1 displacement vectors of meso-octahedral polytypes, or in 
the sequence of T2j,T2j+1 orientation vectors of hetero-octahedral polytypes when the 
chirality of the packets is neglected. In general, the number of reflections in the c*1 repeat 
corresponds to the number of layers in the full-period polytype. However, when the 
chemical difference between the family of the full-period polytype and the family of the 
shorter homomorphous polytype becomes smaller, some of the reflections weaken: if 
these weak reflections are overlooked, the homo-octahedral stacking sequence obtained 
from the PID analysis corresponds to an apparent periodicity shorter than the correct one. 
The visual comparison of the intensities, if performed, involves only the meso-octahedral 
polytypes homomorphous with the homo-octahedral polytype indicated by the PID, but 
with the same number of layers and the mistake may be overlooked. Special attention is 
necessary not to miss weak reflections along X rows. 

The general guidelines for the PID derivation from the diffraction pattern is 
summarized as follows: 
1. For X-ray diffraction, the effect of the absorption on the PID is normally negligible for 

the purpose of polytype identification, if a sufficient number (e.g., four or more) of 
periods along the same row are considered and the corresponding PIDs are weighted. 
The LP factors are critical, however, if the diffraction pattern is taken with a precession 
camera, because the Lorentz-polarization effect in the precession motion is severe. 

                                                 
9 E-mail: nespolo@lcm3b.uhp-nancy.fr 
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2. For electron diffraction, the near-flatness of the Ewald sphere reduces greatly the 
effect of the experimental factors on the intensities. The pattern is, however, no 
longer kinematical, and the dynamical effects in general must be taken into account. 
However, the intensity ratio between adjacent reflections in a reciprocal lattice row 
can be treated as kinematical, and the PID analysis applies to electron diffraction as 
well (Kogure and Nespolo 1999b). 

3. Equation (24) is based on the approximation of the trigonal distribution of each kind 
of atom in the layer and G0 is thus an approximation of the Fourier transform of the 
layer. In the regions of reciprocal space where G0 passes through zero and changes 
sign, the relative error becomes large and Equation (24) is no longer applicable. In 
the practice of mica-polytype identification, the periods corresponding to l intervals 
including those regions should not be used to derive PID from the intensities. These 
intervals depend on the chemical composition: in the diffraction pattern they include 
very faint reflections and are easily recognized. 

4. The square root of the intensities, partially reduced when necessary, gives an 
approximant of the structure factors. By dividing these by the Fourier transform of 
the layer, an un-weighted, un-scaled PID is obtained. The mean value of PID along 
several period of the same reciprocal lattice row is computed, and the result is 
brought on the same scale [see Appendix B, Eqn. (B.4)]. 

EXPERIMENTAL INVESTIGATION OF MICA SINGLE CRYSTALS FOR 
TWIN / POLYTYPE IDENTIFICATION 

Here we present the general guidelines for the experimental investigation of an 
unknown mica single crystal. The following represents an ideal outline and note  that, 
depending on the availability and quality of the sample, and on the experimental equipment 
accessible to the investigator, not all the following steps may be possible. The local-scale 
investigation by TEM is described in detail by Kogure (this volume) and is thus not 
discussed here. 

Morphological study 

The first step in the investigation of a mica single crystal consists in a morphological 
observation under the polarizing microscope. The sample should be observed immersed 
in a high refractive-index medium (an index oil if available; a natural fluid such as clove 
oil or glycerin may be used also) and not in air; otherwise the presence of twinning can 
be easily missed. In case of reflection twins [composition plane (quasi) normal to (001)] a 
twin results in different extinction positions under crossed polarizers and no complete 
extinction of light occurs for any orientation of the crystal. Instead, for rotations twins 
[composition plane parallel to (001)] the presence of twinning may be missed if the 
sample is observed only on one of the two surfaces, in case the uppermost crystal of a 
twin is larger than the others. A negative result from the morphological observation 
should thus be prudently taken as not conclusive about the absence of twinning. 

Surface microtopography 

The second step should possibly involve a surface microtopography, which gives 
important information on both twinning and polytypism. The microtopography of a mica 
surface reveals spiral and parallel step patterns on the (001) crystal surfaces. Different 
techniques have been developed for this kind of investigation, such as phase-contrast 
microscopy, multiple-beam interferometry (e.g., Tolansky and Morris 1947a,b), surface 
decoration in TEM (Bassett 1958) and Atomic Force Microscopy. Three kinds of 
information, useful for the study of polytypism, are obtained by surface 
microtopography: 1) shape of the spirals; 2) height of the spiral step(s): 3) 
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presence/absence of interlacing (Sunagawa 1964; Sunagawa and Koshino 1975). 
Micas of metamorphic origin are formed by alteration of the original rock and spiral 

growth is commonly not observed on the surface, which instead presents step systems as 
a consequence of Ostwald ripening typical of environments in which crystals grow or 
dissolve via a thin film of vapor or solution owing to an interstitial solvent (Sunagawa et 
al. 1975; Tomura et al. 1979). In contrast, micas formed in magmatic environments 
invariably show growth spirals on their surfaces, more or less polygonalyzed depending 
upon the strength of the solid-fluid interaction (Sunagawa 1977, 1978). A zigzag stacking 
sequence (i.e. a stacking sequence different from 1M) appears at the surface with an 
interlaced pattern: interlacing unambiguously indicates that the crystal under 
investigation is not 1M. In the case of metamorphic micas, multiple steps split into N unit 
layers with rhombic form, where N is the number of layers in the period of the polytype. 
In the case of magmatic micas, it is the spiral turn that decomposes into N unit layers. In 
both cases, the cause of interlacing is the anisotropy of the advancing rate, which is faster 
along the stagger direction and slower normal to it (Frank 1951; Verma 1953). No 
interlacing appears on the surface of the 1M polytype, because all the layers have the 
same stagger direction. The interlacing pattern of growth spirals is also observed in other 
phyllosilicates, and was exploited to identify kaolinite (single-layer, no interlacing), 
dickite (two-layer kaolinite with 60º or 120º rotations) and nacrite (two-layer kaolinite 
with 180º rotations) of hydrothermal metasomatic origin (Sunagawa and Koshino 1975).  

The shape of the growth spirals is controlled by the whole-layer symmetry, rather 
than by the symmetry of the sheet exposed on the growing surface. Typical growth 
spirals of trioctahedral micas are five-sided and show the monoclinic metric symmetry of 
the mica layer (Sunagawa 1964; Sunagawa and Tomura 1976) (Fig. 31). This shape of 
the growth spirals can be described as deriving from a regular hexagon through 
elongation and truncation. The growth is more rapid along [100] (the direction of the 
stagger) and results in longer sides parallel to the a axis (perpendicular to [010], the 
direction of slower growth), and the other four shorter edges and more largely spaced 
sides [±310, 3±10], corresponding to faster growth. The two sides ⎯[310] and ⎯[⎯310] are 
truncated to form a single line, eventually with a denticulated pattern, parallel to b. 
Truncation is not observed in 1:1 phyllosilicates, where there is no layer stagger. It is also 
not observed in dioctahedral micas: the reasons for this difference between trioctahedral 
and dioctahedral micas are not clear (Sunagawa and Koshino 1975; Sunagawa 1978). 
Because n×60º rotations are not equivalent when applied to a pentagonal spiral, the 
relative rotations of each component clearly appear at a surface observation and reveal 
the direction of stagger of each layer (Fig. 32). For short-period polytypes this 
information alone is sufficient to determine the stacking sequence. The height of the 
spiral step can also be directly measured by multiple-beam interferometry (step height as 
thin as 2.3Å were measured in hematite: Sunagawa 1960) and AFM (Kuwahara et al. 
1998). In this way, Sunagawa et al (1968) identified polytypes 1M, 2M1, 2M2, 2O and 3T 
in synthetic fluor-phlogopite, and confirmed the presence of polytypes with longer 
period, whose stacking sequence was however too complex to be identified only on the 
basis of the surface morphology. 

Also the presence of twinning is clearly shown by surface microtopography. 
Sunagawa and Tomura (1976) reported beautiful examples of five-sided plateau-like 
patterns on the (001) face of phlogopite. These patterns derive from the agglutination of 
thin platy crystals, formed in the vapor phase and moving around as “flying magic 
carpets” while they are growing, onto the surface of a larger crystal, on which they settle 
with equal probability on any of the n×60º rotations, making thus either a parallel or a  
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Figure 31. The five-fold growth spiral on the surface of the Mutsuré-jima 
phlogopite-1M, as revealed by multiple-beam interferometry (courtesy of I. 
Sunagawa) [from Sunagawa (1964) Fig. 1,2 p. 1429]. 

twin orientation (Fig. 33). Multiple platy crystals may come in contact when they 
agglutinate on the surface of the same larger crystal. In this case, a composite twin is 
formed: the platy crystals are twinned on (001) with respect to the substrate, forming a 
rotation twin, but they reciprocally contact on one of the (hk0) [orthohexagonal indexing] 
planes, thereby forming a reflection twin (Nespolo and Kuwahara 2001). 

Two-dimensional XRD study 

The most common two-dimensional technique employs a precession camera, but any 
technique giving two-dimensional undistorted images of the reciprocal lattice is suitable 
as well. From these undistorted images, the geometry of the diffraction pattern can be 
analyzed by simple visual inspection. In the case of a precession camera study, the crystal 
must be mounted so as to have the (001) plane perpendicular to the goniometer rotation 
axis. In fact, the stacking of layers in micas is along c and the periodicity in reciprocal 
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space appears along c*, thus it is necessary to have c* in all the images, i.e. to have c* 
aligned with the dial axis. A different mounting would show only one plane containing 
c*, which is insufficient for a twin/polytype analysis. The latter orientation shows 
diffraction from the (001) plane, with an almost hexagonal geometry. This plane is 
useless for twin/polytype identification, but is the richest in information for plesiotwins, 
because the Coincidence-Site Lattice (CSL) produced by the plesiotwin operations is 
parallel to (001). When the presence of a plesiotwin is suspected in a mica sample, the 
diffraction from (001) is necessary: it can be easily obtained by mounting the mica crystal 
so as to have the direction of elongation parallel to the glass fiber. 

 

 

Figure 33. Tiny platy crystals agglutinated onto the (001) surface of a larger crystal. The 
tiny crystals are twinned on (001) with respect to the larger one, but on (hk0) with respect 
to each other. Notice the five-fold morphology (courtesy I. Sunagawa). 

Figure 32. Schematic drawing of the interlaced 
pattern of the six homogeneous polytypes, resulting 
from the n×60º rotations of the five-fold growth 
spirals (modified after Endo 1968). 
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The radiation to be employed initially can be either a short wavelength (e.g., Mo) or a 
longer wavelength (e.g., Cu of Fe). Mo is preferable for making easier the orientation of the 
crystal, but its wavelength is too short for the study of long-period polytypes, or even for 
twins of polytypes with period longer than three layers, resulting in an insufficient resolution 
between two successive reflections. Cu or Fe radiation is suitable for longer period 
polytypes (≤ 10-12 layers). The separation of the reflections can be improved by increasing 
the crystal-to-film distance, with slightly longer exposure times. This avoids the weakening 
of the reflections occurring when employing a longer wavelength. The choice of the 
radiation to employ initially is thus the result of a compromise between the ease of orienting 
the crystal (Mo) and the need of proper resolution. With some practice the orientation of a 
mica crystal on the precession camera becomes routine even with Cu radiation, which can 
thus be selected as the best compromise. For longer period polytypes, Fe or Cr radiation 
becomes necessary to obtain sufficient resolution, once the crystal is oriented. 

For investigating the possibility of apparent polytypism, one SD plane and three SX 
central planes must be recorded. From these planes, the geometry of the diffraction pattern 
is analyzed on the basis of the criteria given in Tables 12a-12c. If the crystal is twinned or 
allotwinned, the nine translationally independent rows forming a minimal rhombus, 
obtained from these four planes, allow the determination of the relative rotations between 
the individuals (see the example of ZT = 3

4 1M-2M1 allotwin below). If the crystal is not 
twinned, the stacking sequence in the homo-octahedral approximation can be obtained 
from the geometry of the diffraction pattern (MDO polytypes) or from the PID obtained 
along one or more X rows (non-MDO polytypes). This is the final stacking sequence if the 
polytype is composed of only M1 layers, otherwise it represents the homomorphic 
equivalent of the correct stacking sequence. In the meso-octahedral family, if the meso-
octahedral character is pronounced (large difference between the average cations), the real 
stacking sequence can in principle be found by comparing the experimental intensities with 
the intensities computed for all the meso-octahedral polytypes homomorphic to the homo-
octahedral polytype obtained by the PID analysis. When the meso-octahedral character is 
not pronounced, the distinction is much more difficult. Moreover, as discussed in 
“Derivation of PID from the diffraction pattern”, when the sequence of displacement 
vectors contains one or more sub-periods, weak reflections occur along the X rows, and 
care must be taken to observe them. In both the meso- and the hetero-octahedral family, the 
true stacking sequence can be obtained only from a complete structure refinement, because 
the occupancies of the octahedral sites, and the sizes of the corresponding octahedra, must 
be refined. Unfortunately, the quality of the sample is often not sufficient to allow a 
complete data collection, and only the stacking sequence of the homomorphic polytype 
(PID stacking sequence) can be obtained. 

Diffractometer study 

Once the stacking sequence in the homo-octahedral approximation is determined, if 
the quality of the crystal permits, the final stage consists of intensity measurements 
(usually by diffractometric measurement) and a structure refinement. The radiation to be 
employed is the same used in the preliminary (two-dimensional) study. The strongly 
anisotropic shape of mica crystals indicates applying an absorption correction through a 
ψ-scan procedure, rather than an analytical correction. Knowing the structure of the 
single layer and the homo-octahedral stacking sequence, the starting model is already 
very close to the final result, but the presence of one or more M2 layers must be 
determined. In other words, the meso- and hetero-octahedral stacking sequences, and not 
only the homomorphic sequence revealed by the PID, should be employed also as starting 
models, otherwise the presence of M2 layers may be overlooked. For instance, consider a 
hypothetical N-layer meso-octahedral polytype with biotitic composition, and suppose, 
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for simplicity, that there are two Mg and one Fe2+ ions in the O sheet. Suppose also that n 
layers are of M2 type, and the remaining N - n layers are of M1 type. The occupation of 
the cation sites in the O sheet is described as: M1 layers: M1 = (1 - x)Fe + xMg; M2, M3: 
0.5xFe + (1 - 0.5x)Mg; M2 layers: M2 = (1 - x)Fe + xMg; M1, M3: 0.5xFe + (1 - 0.5x)Mg. 
If the value of x is far from 2/3, the presence of the M2 layers should, in principle, be 
revealed even by a structure refinement employing only the homomorphic sequence as 
starting model. However, with the approach of x to 2/3 (where the difference between M1 
and M2 disappears), the distinction between N layers of type M1 and (N-n) layers of type 
M1 plus n layers of type M2 becomes difficult. The presence of an M2 layer may be 
erroneously interpreted for disorder in the cation distribution. The site occupancies in the 
O sheet should be carefully checked; otherwise important information about the nature of 
the polytype under investigation can be easily overlooked (see also Nespolo 2001). 

APPLICATIONS AND EXAMPLES 

24 layer Subfamily A Series 1 Class b biotite from Ambulawa, Ceylon 

This polytype was found by Hendricks and Jefferson (1939) and is a typical example 
of how easily an incorrect stacking sequence may be accepted if the presence or absence 
of twinning is not properly evaluated. In most cases, the possibility of apparent 
polytypism may lead one to assume a longer stacking sequence, simulated by the 
twinning of a shorter polytype. In the present case, instead, a case real polytypism was 
incorrectly interpreted as apparent polytypism.  

Hendricks and Jefferson (1939) were the first to accomplish a systematic X-ray 
study of a large number (more than 100) of mica crystals, and the first to report the 
existence of non-MDO polytypes. At those times, the effect of twinning on the diffraction 
pattern was not understood yet and the authors implicitly assumed that the number of 
reflections in the c*1 repeat invariably corresponds to the number of layers in the 
polytype. They reported 1,2,3,6 and 24-layer polytypes, but later Smith and Yoder (1956) 
showed that the 3 and 6–layer polytypes were twins of 1 and 2-layer polytypes 
respectively. Smith and Yoder also re-analyzed the Weissenberg photographs of the 24-
layer polytype, concluding that it could be indexed on an 8-layer unit cell; the 3n-th, 
(3n+1)-th and (3n+2)-th reflections should thus come each from a different individual. 
Takeda (1969), adopting Smith and Yoder’s twin interpretation, performed a PID 
analysis based on the intensities of each third reflection. He derived a semi-quantitative 
intensity distribution from the sequence of w (weak), m (medium), or s (strong) given by 
Hendricks and Jefferson (1939). The best match with the PID values computed from the 
stacking sequences of all possible 8-layer polytypes corresponded to 8A2 polytype (for 
details about this polytype see below). Nespolo and Takeda (1999) re-analyzed the 
geometry of the diffraction pattern, as described in Hendricks and Jefferson’s paper, on 
the basis of the twin identification criteria given in Nespolo (1999) (see Table 12b) and 
showed that the pattern cannot correspond to a twin of an 8-layer polytype. They found: 
1) the cell dimension given by Hendricks and Jefferson are: a = 5.3Å, b = 9.2Å, c = 

n×10Å, γ = 90º, β = 90º; it was thus a Class b polytype; 
2) reflections hkl with k = 0(mod 3) were the same as the single-layer structure: it was 

thus a subfamily A polytype; 
3) the heavy trace of continuous scattering from 060 on an over-exposed photograph 

did not pass through any 02l reflection but, rather it occurred at a distance of about 
one-third the periodicity from the closest reflection; the 0kl r.p. was thus not 
orthogonal and the diffraction pattern is typical of a Class b polytype. 
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An 8-layer subfamily A polytype cannot belong to Class b; a twin of an orthogonal or 
Class a polytype cannot produce a diffraction pattern typical of Class b polytype. 
Therefore, the diffraction pattern reported by Hendricks and Jefferson was actually from a 
24-layer polytype (Series 1), whose stacking sequence has not been resolved, and not a 
twin of the 8A2 polytype. On the basis of Takeda’s (1969) analysis of a subset of 
reflections, it can be inferred that Hendricks and Jefferson’s 24-layer polytype probably 
possesses a stacking sequence related to that of 8A2, belonging thus to the 2M1 structural 
series also. 

This example shows the danger of blindly applying a powerful method such as the 
PID. The direct determination of the polytype stacking sequence is easily obtained 
through comparison of the PID from the diffraction pattern with the PID computed for all 
the theoretical candidates, i.e. the polytypes with the same number of layers and the same 
OD character (subfamily A, subfamily B, or mixed-rotation). The correct stacking 
sequence corresponds to the best match between the experimental and the theoretical 
PID. If the presence of twinning is overlooked the experimental PID corresponds to the 
weighted mean of the PID from each individual, where the weight is the volume of the 
individuals. In contrast, as in the case of the 24-layer polytype shown here, if twinning is 
incorrectly assumed, the experimental PID is only a portion of the “true” PID. For a 
short-period polytype, with a limited number of candidates, the match with the computed 
PID is probably insufficient, and this should alert the investigator. However, for a longer 
period polytype a reasonable match may occur by chance, because the difference between 
the two closest PID decreases with the increase of the number of layers. Because the PID 
match is evaluated on a relative basis, taking the best match as the correct one, the 
possibility of a wrong interpretation exists. The presence/absence of twinning must 
therefore be correctly analyzed before PID analysis is applied to the diffraction pattern. 
8A2 (subfamily A Series 0 Class a) oxybiotite from Ruiz Peak, New Mexico 

This polytype was identified by Nespolo and Takeda (1999) in the oxybiotite from 
Ruiz Peak (New Mexico). Figure 34 is the diffraction pattern corresponding to the h0l 
(SD) r.p., with the geometry typical of a subfamily A polytype. Figure 35 shows the 
diffraction pattern corresponding to the⎯hhl (SX) r.p., which is non-orthogonal and with 
eight reflections in the c*1 repeat along X rows. The diffraction pattern is that of the 
subfamily A Series 0 Class a polytype and thus excludes the possibility of twinning: the 
crystal is an 8-layer polytype. Out of 9212 possible 8-layer homo-octahedral polytypes, 
only 94 belong to subfamily A (Ross et al 1966). Comparison of theoretically computed 
and experimentally recorded PID values was performed only for the 94 subfamily A 
homo-octahedral polytypes.  

In Table 19, the l indices in the three axial settings (C1, aS and aF) and the l̂ = l (mod 
8) index are given, together with the corresponding observed structure factors corrected 
for the Lorentz and polarization effects, the Fourier transform of the single layer, the ratio 
of the latter two terms, and the scaled PID [Eqn. (B.4)]. The PID was not computed in the 
two periods in which the single-layer Fourier transform undergoes a sign change. The 
PID along the remaining five periods has been assigned weights (Table 20). The stacking 
sequences of all possible 8-layer homo-octahedral subfamily A polytypes were generated 
by the PTGR program (Takeda 1971). The PID of each polytype was computed by the 
PTST98 program (Nespolo et al. 1999d) and the closeness to the observed pattern was 
evaluated by means of an RPID index defined by analogy with the reliability index used 
structure refinements, namely: 
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Figure 34. Precession diffraction pattern corresponding to the h0l SD r.p. of 8A2 polytype (Cu 
Kα). The a* axes of the three settings, C1, aS and aF, are shown [used by permission of the editor 
of Mineralogical Journal, from Nespolo and Takeda (1999) Fig. 2, p. 108]. 

 
Figure 35. Precession diffraction corresponding to the⎯hhl SX r.p. of 8A2 polytype (CuKα). The 
[⎯110]* directions of the three settings C1, aS and aF are shown. In aF setting the origin of PID is by 
definition in correspondence of l = 0(mod N). PID has been obtained from the intensities measured 
along the five periods indicated in the figure [used by permission of the editor of Mineralogical 
Journal, from Nespolo and Takeda (1999) Fig. 3, p. 109]. 
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Table 19. Derivation of PID from measured intensities of 8A2 polytype. Observed 
structure factors (Fo) have been obtained from the intensities measured in five 
periods along the⎯11l reciprocal lattice row of aF setting (⎯11l of aS setting.). SLFT 
stands for Single Layer Fourier Transform (after Nespolo and Takeda 1999). 

Period l(C1) l(aS) l(aF) l̂  Fo SLFT Fo/SLFT PID 

1 

85 28 31 7 .25 12.99 .02 .02
82 27 30 6 .25 16.77 .01 .02
79 26 29 5 83.33 20.65 4.04 4.44
76 25 28 4 38.63 24.53 1.574 1.73
73 24 27 3 47.01 28.28 1.66 1.83
70 23 26 2 83.00 31.77 2.61 2.87
67 22 25 1 168.75 34.86 4.84 5.32
64 21 24 0 40.70 37.43 1.09 1.20

2 

61 20 23 7 .22 39.34 .00 .00
58 19 22 6 30.06 40.51 .74 .57
55 18 21 5 183.05 40.85 4.48 3.47
52 17 20 4 76.75 40.31 1.90 1.47
49 16 19 3 91.39 38.88 2.35 1.82
46 15 18 2 169.81 36.57 4.64 3.59
43 14 17 1 246.62 33.46 7.37 5.70
40 13 16 0 32.92 29.65 1.11 .86

3 

13 4 7 7 24.77 12.46 1.99 1.46
10 3 6 6 33.28 15.41 2.16 1.58
7 2 5 5 111.86 17.64 6.33 4.65
4 1 4 4 23.28 19.11 1.21 .89
1 0 3 3 41.45 19.78 2.10 1.54

-2 -1 2 2 60.84 19.64 3.10 2.27
-5 -2 1 1 134.28 18.71 7.18 5.26
-8 -3 0 0 30.39 16.98 1.79 1.31

4 

-35 -12 -9 7 18.80 22.08 .85 .62
-38 -13 -10 6 20.98 26.78 .78 .57
-41 -14 -11 5 172.90 30.99 5.58 4.07
-44 -15 -12 4 89.73 34.58 2.59 1.89
-47 -16 -13 3 99.68 37.43 2.66 1.94
-50 -17 -14 2 188.67 39.46 4.78 3.49
-53 -18 -15 1 288.53 40.59 7.10 5.19
-56 -19 -16 0 28.74 40.83 .70 .51

5 

-59 -20 -17 7 .22 40.21 .00 .01
-62 -21 -18 6 52.30 38.78 1.34 1.26
-65 -22 -19 5 172.66 36.64 4.71 4.42
-68 -23 -20 4 57.59 33.88 1.70 1.59
-71 -24 -21 3 51.37 30.65 1.68 1.57
-74 -25 -22 2 86.01 27.06 3.18 2.98
-77 -26 -23 1 129.75 23.25 5.58 5.23
-80 -27 -24 0 26.51 19.35 1.37 1.28
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Table 20. Comparison of measured and computed PID of 8A2 polytype (after Nespolo 
and Takeda 1999). 

l̂  Period 1 Period 2 Period 3 Period 4 Period 5 Mean Calculated 

7 .02 .00 1.46 .62 .01 .30 .23 
6 .02 .57 1.58 .57 1.26 .89 .90 
5 4.44 3.47 4.65 4.07 4.42 3.98 4.07 
4 1.73 1.47 .89 1.89 1.59 1.52 1.73 
3 1.83 1.82 1.54 1.94 1.57 1.74 1.78 
2 2.87 3.59 2.27 3.49 2.98 2.98 3.35 
1 5.32 5.70 5.26 5.19 5.23 5.13 5.31 
0 1.20 .86 1.31 .51 1.28 1.04 1.00 

 
Table 21. OD symbols (v2j-2,2j-1) and Z symbols (Z2j = Z2j-1) in the 
homo-octahedral approximation, RTW symbols (Aj) and TS 
symbols [Lj(Xj, Yj)] describing the stacking sequence of 8A2 
polytype (after Nespolo and Takeda 1999). 

j v2j-2,2j-1 Z2j-1 Aj Lj(Xj, Yj) 

1 5 4 2 D(0,-1) 

2 3 6 -2 D(0,-1) 

3 5 4 2 D(0,1) 

4 3 6 -2 D(0,1) 

5 5 4 2 D(0,0) 

6 3 6 -2 D(0,0) 

7 5 4 -2 D(0,-1) 

8 1 2 2 D(0,0) 
 

 
Figure 36. The v2j,2j+1 displacement vectors of the 8A2 polytype in the homo-octahedral 
approximation, as revealed by PID analysis of the diffraction pattern in Figure 35 
(modified after Nespolo and Takeda 1999). 
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The best match corresponded to RPID = 0.04 (computed PID values for this sequence 
are in Table 20); the second best match to RPID = 0.33. This clearly shows that the homo-
octahedral stacking sequence has been uniquely identified. By employing the cell 
dimensions of the refined 1M polytype from the same sample (Ohta et al. 1982), the 
approximate cell parameters of this polytype was calculated through the axial 
transformations given in Equation (3) and the results are: a = 5.3Å, b = 9.2Å, c = 79.6Å, 
α = 90º. β = 91.3º, γ = 90º. The symbols for the homo-octahedral stacking sequence are 
given in Table 21, and the corresponding vector sequence is in Figure 36. The space-
group type is ⎯C1, derived by applying the transformation rules given in Table 6. 

1M-2M1 oxybiotite allotwin ZT = 34 from Ruiz Peak, New Mexico 

This allotwin was also identified in the Ruiz-Peak oxybiotite and represents an 
example of apparent polytypism. 

Figures 37-40 present the diffraction patterns from three SX planes. The shortest 
separation between successive reflections along c* of X rows is c*1/6: the apparent 
period is six layers and thus the l index of all the reflections are expressed as (mod 6). 
Figure 40 shows the diffraction pattern from an SD plane of the same sample which, with 
one reflection for c*1 repeat, has the typical appearance of a subfamily A polytype. The 
presence of twinning is not evident from this plane. 

In principle, the investigated sample may be either a six-layer polytype, or a twin or 
allotwin involving the 2M1 polytype. However, two of the SX planes (Fig. 37 and 38) are 
orthogonal (i.e. reflections are present at l = 0 of the orthogonal six-layer cell, along each 
row parallel to c*). This geometry of the reciprocal lattice is impossible for a 6-layer 
subfamily A polytype, which would belong to Class b and should therefore have all the 
SX planes non-orthogonal (Table 12b). It follows that the sample is a twin or allotwin of 
the 2M1 polytype.  

Figure 41 shows the star polygon, comprised by the six possible orientations of the 
tessellation rhombus and the minimal rhombus, drawn by reporting the l (mod 6) indices 
of the reflections occurring in the four planes above, and applying the (3p, 3q) 
translations between translationally equivalent reciprocal lattice rows. None of the six 
orientations of the minimal rhombus matches any of the nine independent minimal 
rhombi which are possible for the 2M1 twins (Fig. 26). The sample is thus an allotwin. 
The pattern cannot involve a 3T crystal, otherwise three reflections corresponding to l = 
0(mod 6), l = 2(mod 6) and l = 4(mod 6) would be present along all X rows. The sample 
is thus a 1M-2M1 allotwin. The shaded minimal rhombus matches the computed minimal 
rhombus of the 1M-2M1 allotwin with relative rotation of 60º between the two individuals 
and it corresponds to ZT = 34 in Nespolo et al (2000a). 

The cell of the allotwin lattice has a period of 6c0 along c and contains six lattice 
planes of the 1M polytype and three lattice planes of the 2M1 polytype. Of these, only the 
plane with z = 0(mod 6) has all the nodes from both polytypes overlapped by the allotwin 
operation, whereas in all the other lattice planes the nodes from the two polytypes are 
separated. Consequently, the allotwin index of 1M is 6, and that of 2M1 is 3. 

{3,6}[7{3,6}] biotite plesiotwin from Sambagawa, Japan 

Sadanaga and Takéuchi (1961) performed a systematic study of micas of volcanic 
origin, and reported several examples of 1M twinning, and also one example of 2M1 
twinning. Takéuchi et al (1972) foresaw that micas from a different environment, namely 
metamorphic, could reveal different kinds of “twinning” and investigated by electron 
diffraction a large number of small biotite crystals from the Sambagawa metamorphic 
belt in the Besshi area, Japan. They found several twins of the same type reported by  
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Figure 37. Precession diffraction pattern from the first SX plane (SX1) of the allotwin ZT 
= 3

4. The l index of the reflections is expressed (mod 6) [used by permission of the editor 
of Acta Crystallographica B, from Nespolo et al. (2000b) Fig. 7, p. 644]. 

 
Figure 38. Precession diffraction pattern from the second SX plane (SX2) of the allotwin 
ZT = 3

4 (60º from SX1). l index as in Figure 37 [used by permission of the editor of Acta 
Crystallographica B, from Nespolo et al. (2000b) Fig. 8, p. 644]. 
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Figure 39. Precession diffraction pattern from the third SX plane (SX3) of the allotwin 
ZT = 34 (120º from SX1). l index as in Figure 37 [used by permission of the editor of Acta 
Crystallographica B, from Nespolo et al. (2000b) Fig. 9, p. 645]. 

 

Figure 40. Precession diffraction pattern from an SD plane of the allotwin ZT = 3
4 (30º 

from SX3). l index as in Figure 37 [used by permission of the editor of Acta 
Crystallographica B, from Nespolo et al. (2000b) Fig. 10, p. 645]. 
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Figure 41. Construction of the star polygon corresponding to the diffraction patterns in Figs. 37-
40. The SD plane in Figure 40 is taken coincident with the (a*c*) plane, and the three SX planes 
are reported counter clockwise according to the rotations indicated in Figures 37-40. The star 
polygon is then obtained by (3p, 3q) translations of the nine translationally independent rows in 
those four planes. The minimal rhombus and the tessellation rhombus are indicated in their six 
possible orientations. The shaded minimal rhombus corresponds to the ZT = 3

4 minimal rhombus 
tabulated in Nespolo et al. (2000a). Inset on the top-right: axes (a, b) of the space-fixed reference 
and of the individual-fixed references in the six possible orientations (a1 – a6), and corresponding 
ZT symbols (b1-b6 axes are not shown). Inset in the bottom-right: l (mod 6) indices of the 
reflections which are present on the composite rows of the lattice, and symbol of the rows. Ij is the 
symbol identifying the composite row, where I gives the number of reflections in the c*1 repeat 
and j is a sequence number [used by permission of the editor of Acta Crystallographica B, from 
Nespolo et al. (2000b) Fig. 11, p. 646]. 

Sadanaga and Takéuchi (1961), but they also found some flakes which gave a more 
complex diffraction pattern, and correspond to “plesiotwins” in the later definition 
introduced by Nespolo et al (1999b). One of these diffraction patterns is shown in Figure 
42, where two (001) lattices rotated about the normal and with only one common node 
out of seven recognized. The angle between two corresponding reflections in the two 
rotated lattices is 21.8º, very close to the 21º47′ computed for the n = 7 plesiotwin. The 
slight difference is probably related to the deviation of the (001) plane from hexagonality. 

This kind of diffraction pattern is commonly obtained when flakes of layered 
crystals are suspended in water and dried in air (Sueno et al. 1971; Takéuchi et al. 1972). 
This process allows the flakes to settle over each other without alignment; the need for 
reducing the interface energy is not strong, because the flake-to-flake interaction is purely 
physical and there are no chemical bonds between them. In contrast, plesiotwins are 
formed by chemical interaction of crystals that have already reached a significant size, or 
by exsolution. The metamorphic environment, where crystals are less free of moving, 
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favors the formation of plesiotwins. Plesiotwins, are less probable in a magmatic 
environment. In the presence of a fluid phase, crystals are more free to move and can 
overcome the kinetic barrier towards the more stable configuration of twins. 

 

 
Figure 42. Composite diffraction pattern (right) produced by a single flake (left) of metamorphic biotite-
1M from the Sambagawa belt (courtesy Y. Takéuchi). Several pseudo-hexagonal lattices are overlapped 
with different orientation; two of these are rotated by 21.8º, close to the 21º47′ angle corresponding to the 
{3,6}[7{3,6}] composite tessellation. The two crystals to which these lattice belong form a plesiotwin with 
Σ factor 7 and plesiotwin index 21 [used by permission of the editor of Zeitschrift für Kristallographie, 
from Takéuchi et al (1972) Fig. 6, p. 219]. 
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APPENDIX A.  
TWINNING: DEFINITION AND CLASSIFICATION 

Twinning is the oriented association of two or more individuals10 of the same 
crystalline compound, in which pairs of individuals are related by a geometrical operation 
termed twin operation. The twin operation is a symmetry operation that belongs to a 
crystallographic point group; it cannot belong to the symmetry of the crystal, otherwise it 
would produce a parallel growth instead of a twin. The lattice common to the twinned 
individuals is called twin lattice: it can either coincide (exactly or approximately) with 
the lattice of the individuals, or be a sublattice (exact or approximated) of them. A Twin 
element is a symmetry or pseudo-symmetry element for the twin lattice with respect to 
which the twin operation is defined. Twin index (n) is the order of the subgroup of 
translation in direct space defining the twin lattice, and coincides with the ratio of the 
number of lattice nodes of the individual to the number of nodes restored, exactly or 
approximately, by the twin operation. Twin obliquity (ω) is the angle, in the crystal 
setting of the individual, 1) between a twin axis and the normal to the lattice plane which 
is quasi-normal to the twin axis (rotation twins), or 2) between the normal to a twin plane 
and the rational direction closest to it (rotation twins).. The point group of the twin has 
the common symmetry of the individuals, as modified by the twin operation and may be 
lower, the same or higher than the point group of the single crystal (Friedel 1904, 1926; 
Buerger 1954). 

The French school (Bravais 1851; Mallard 1879; Friedel 1904, 1926) gave a 
classification of twinning based on the twin index and obliquity, introducing the four 
categories of merohedry (n = 1, ω = 0), reticular merohedry (n > 1, ω = 0), pseudo-
merohedry (n = 1, ω > 0), reticular pseudo-merohedry (n > 1, ω > 0). Twinning by 
merohedry has been further subdivided on the basis of the point groups of the Bravais 
class of the lattice, of the Bravais class of the space group, of the individual and, for OD 
structures, of the family structure (Table A1). The kind of merohedry the French school 
considered is that in which the Bravais class of lattice and the Bravais class of the space 
group coincide, and it has now been renamed syngonic merohedry. The case in which the 
Bravais class of the lattice is accidentally higher than the Bravais class of the space group 
includes two kinds of twinning: one is again a syngonic merohedry (the twin operations 
belong to the point group of the Bravais class of the space group), and the other is termed 
metric merohedry (the twin operations belong to the point group of the Bravais class of 
the lattice but not to the point group of the Bravais class of the space group) (Nespolo and 
Ferraris 2000). 

For each crystal family except the hexagonal, the “point group of the Bravais class of 
the space group” is tantamount to say “point group of the syngony”, because there is a 
1:1 correspondence between crystal family, syngony and Bravais system, and for this 
reason the term “syngonic merohedry” was introduced. However, two syngonies (trigonal 
and hexagonal) and two lattices (hR and hP) correspond to the hexagonal crystal family. 
A trigonal crystal with lattice hR twinned within the same crystal family (h) may have 
two kinds of twinning: syngonic merohedry, with twin elements belonging to the hR 
lattice (only merohedral crystals) and reticular merohedry, with twin elements belonging 
to the hP sublattice of the hR lattice (twin index 3). Instead, a trigonal crystal with lattice 
hP twinned within the same crystal family (h) has only one kind of twinning and the twin 
elements belong to the hP lattice. This twinning corresponds to a syngonic merohedry. 
                                                 

10 The term “individual” is used to indicate one crystal of a twin, and the term “single crystal” to 
mean an untwinned crystal. Other authors (e.g., Hahn et al. 1999) use “component” instead of “individual”. 
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Syngonic merohedry is subdivided, on the basis of the ratio between the order of the 
lattice point group and the order of the individual point group, into hemihedry (order 2), 
tetartohedry (order 4) and ogdohedry (order 8, possible only for the point group 3). 

Where the Laue symmetry of the individual is the same as the twin symmetry, the 
corresponding twins belong to class I. The diffraction pattern does not differ from that of 
a single crystal, unless anomalous scattering is substantial. The inversion center can 
always be chosen as a twin operation and the set of intensities collected from a twin is 
indistinguishable from that collected from a single crystal. Instead, when the Laue 
symmetry of the crystal is lower than the twin symmetry, the twins belong to class II and 
are then subdivided into class IIA (syngonic merohedry) and class IIB (metric 
merohedry). The twin operations relate non-equivalent reflections, and the presence of 
twinning may hinder a correct derivation of the symmetry from the diffraction pattern. In 
particular, when the number of individuals coincides with the order of the twin operation 
and the volumes of the individuals are identical, the symmetry of the diffraction pattern is 
higher than the Laue symmetry of the individual. An incorrectly chosen space-group type 
may thus be assumed in the initial stage of the structure refinement (Catti and Ferraris 
1976; Nespolo and Ferraris 2000). 

In the case of OD structures, class II twins are further subdivided. The family 
structure may correspond to a Bravais system different from both the crystal lattice and 
the twin lattice. When the point group of the family structure is a subgroup of the point 
group of the twin lattice and twinning is by class II merohedry (both IIA and IIB), one or 
more of the twin laws do not belong to the point group of the family structure. This kind 
of twin law corresponds to merohedry for the polytype but to reticular merohedry for the 
family structure. These twin operations produce incomplete overlap of the family 
reciprocal sublattice; in particular, in terms of the polytype lattice, they overlap some of 
the nodes with zero weight of an individual to nodes with non-zero weight of another 
individual, and vice versa. Therefore, peculiar violations of the non-space-group absences 
along family rows appear in the diffraction pattern, where indexed in terms of the actual 
structure. This modifies the diffraction pattern, whose geometry no longer corresponds to 
that of the single crystal. This kind of merohedry, which restores only a part of the family 
sublattice of OD structures, is termed selective merohedry, whereas twinning by 
merohedry of OD structures in which the twin operation belongs to the point group of the 
family structure and restores the whole family reciprocal sublattice is termed complete 
merohedry (Nespolo et al. 1999a). 

In the case of layer compounds, it is useful to decompose the obliquity into two 
components, within and outside the plane of the layer, which for micas is (001). Labeling 
t(hkl) the “trace” of a plane (hkl) on the (001) plane, the component of the obliquity within 
the (001) plane (ω||) corresponds to the angle between the normal nt(hkl) to t(hkl) and the 
direction [hk0] quasi normal to t(hkl), i.e. ω||([hk0]^ nt(hkl)) (Fig. 20). The component normal 
to the (001) plane (ω⊥) corresponds to the angle between the normal to the (001) plane 
and the lattice row quasi-normal to (001). ω⊥ measures the deviation of the c axis of the 
triple and sextuple cells of non-orthogonal polytypes from the normal to (001); for Class 
b polytypes it measures also the deviation of the rhombohedral [111] direction, i.e. 
ω⊥([111]R^[001]*) (Fig. B1). ω|| measures the deviation from hexagonality of the (001) 
plane and is thus related to ε. In both the Pauling and the Trigonal models, non-
orthogonal polytypes are metrically monoclinic, because γ = 90º, ω||([100]^nt(100)) = 0 and 
ω||([010]^nt(010)) = 0, but ω|| is non-zero for the other four directions that would be 
equivalent in a hexagonal lattice. Imposing ω|| = 0 for each of these four directions, the 
two-dimensional lattice in the (001) plane becomes hp, but the three-dimensional lattice 
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is only pseudo-hP, because the c axis of the triple cell is not exactly perpendicular to 
(001). Imposing instead ω⊥ = 0, an oC lattice is obtained. Finally, imposing both ω|| = 0 
and ω⊥ = 0, the lattice becomes hP, and for Class b polytypes the lattice is centered. 

 

APPENDIX B.  
COMPUTATION OF THE PID FROM A STACKING SEQUENCE CANDIDATE. 

The calculation of the PID function requires the following steps. 
Step 1. Conversion from RTW symbols into “provisional” OD or Z symbols in the 

homo-octahedral approximation, by simply looking for Σv = “*”, “0” or “–” [i.e. cn = (0, 
0), ⎯(1/3, 0) or (0,⎯1/3). This is straightforwardly obtained by means of a simple addition 
cycle: 

 

2 ,2 1 2 2,2 1

2 1 2 1 2 2 1

v v A

Z Z A ;Z Z
j j j j j

j j j j j

+ − −

+ − −

= −

= + =  (B.1) 

where j = 1~N. The initial value is fixed as v0,1 = 3 or Z1 = 3; if the resulting cn projection 
does not take one of the three expected values, v0,1 or Z1 is incremented and Equation 
(B.1) is recalculated. 

Step 2. Derivation of the correct homo-octahedral OD or Z symbol, by analyzing the 
symmetry properties. For orthogonal and Class b polytypes the symbols obtained from 
Equation (B.1) may correspond to an orientation of the symmetry elements not 
compatible with the space-group type. In such a case, the sequence of characters must be 
changed, by making v0,1 or Z1 taking one of the other values with the same parity. This is 
equivalent to rotating the structural model around c* by 2n×60º. The correct sequence is 
found when the characters in the OD or Z symbols are related by symmetry operators 
located along the lattice directions compatible with the space-group type requirements 
(Table 5a,b). 

Step 3. Expression of the stacking operators rj, which give the displacement between 
the (j-1)-th and the j-th TS layers, as a function of OD or Z symbols and calculation of TS 
symbols. The relation of the stacking operators rj with OD or Z symbols is 
straightforward for orthogonal polytypes, whereas for non-orthogonal polytypes the 

Figure A1. Perspective view of the lattice of Class b
mica polytypes. The monoclinic conventional cell 
(doubly primitive, thick dotted lines), the pseudo-
rhombohedral cell (primitive, solid thin lines) and the 
pseudo-orthohexagonal cell C1 (sextuply primitive, 
thick solid lines) are shown. Thick dotted-dashed line: 
[111] row of the pseudo-rhombohedral cell. Thick 
dotted line: direction normal to (001). Thin dotted lines: 
directions normal to (001) passing through the C-
centering nodes on two successive lattice planes of the 
monoclinic conventional cell. ω⊥ is the component of 
the obliquity normal to the (01) plane. Black, gray and 
white circles represent lattice nodes at z = 0, 1/3 and 2/3 
respectively (z is referred to c axis of the C1 cell). The 
stagger of the layer at z = 1/3 is -(b+δ)/3. For the ideal 
case δ = 0, ω⊥ = 0 (modified after Nespolo and Ferraris 
2000). 
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Subclass must be taken into account. OD and Z symbols for non-orthogonal polytypes 
always correspond to ⎯(1/3, 0) (Class a) or (0,⎯1/3) (Class b). The PID is most 
conveniently expressed in the (3

na, 3nb)F axial setting, which corresponds to cn = ⎯(1/3, 0) or 
(0,⎯1/3) for Subclass 1 and cn = (1/3, 0) or (0, 1/3) for Subclass 2. It follows that for 
orthogonal polytypes and Subclass 1 polytypes the stacking operators simply coincide 
with OD or Z symbols (rj = v2j-2,2j-1 or rj = Z2j-1), wherease for Subclass 2 polytypes they 
are related by a 180º rotation around c* (rj = v2j-2,2j-1 + 3 or rj = Z2j-1 + 3). 

Step 4. Computation of PID (SN) as a function of the (a, b) components of TS 
symbols. The components of the j-th TS layer referred to the (a, b) axes are indicated as 
(Xj, Yj), to distinguish from the components in (A1, A2) axes, which were labeled (ΔXj, 
ΔYj) (Eqn. (22) and (24)). (Xj, Yj) are equal to the sum of the (xrj, yrj) components of the 
stacking operators from the first to j-th stacking operators. However, because the c axis of 
the (3na,3nb)F axial setting is displaced -1/3(n+1) (where n is the Series) along a or b 
(depending upon the Class), the additional displacement (–j/3(n+1), 0) (Class a) or (0, –
j/3(n+1)) (Class b) must be added to the (Xj, Yj) component of the j-th TS symbol to 
express the layer stacking of non-orthogonal polytypes with respect to (3na,3nb)F axial 
setting. In this way, TS symbols for Series 0 subfamily A polytypes always have Xj = 0 (c 
axis passing through the origin of each layer). 
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Finally, in Class b the axes exchange a ↔ b expresses PID in the 3nbF axial setting. 
The complete TS symbols Lj(Xj, Yj) are obtained from Table 5 and Equation (B.2), and 
the PID function SN is: 

 
( ) ( ) ( )1 1

1ˆ ˆ ˆexp 2 X Y modN NN N
j j jj j

jS hkl S hkl i h k l l l N
N

π
= =

−⎛ ⎞ ⎡ ⎤= = + + =⎜ ⎟ ⎣ ⎦⎝ ⎠
∑ ∑

�
  (B.3) 

with the normalizing condition: 

 ( ) 2
2

1
ˆN N

jj
S hkl N

=
⎡ ⎤ =⎣ ⎦∑ . (B.4) 

Symmetry of the PID 

Nespolo et al (1999d) have analyzed the symmetry of the PID in relation to the kind 
of polytype present. The results are briefly summarized here: for details, refer to the 
original paper. 

For Series 0 polytypes there is a well-determined relation between the PID 
sequences along rows related by 2n×60º: 

 ( ) ( )lNkhSlkhS NN ˆ,,ˆ,2,2 −=  (B.5) 

which, for the reciprocal lattice rows commonly used in the PID analysis, become: 

 ( ) ( ) ( ) ( ) ( ) ( )lNSlSlNSlSlNSlS NNNNNN ˆ,11ˆ22;ˆ,11ˆ22;ˆ,02ˆ04 −=−=−=   (B.6) 
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For all OD polytypes (both subfamilies A and B) of Series 0, the PID has also a 
translational symmetry reminiscent of that relation between pairs of translationally 
equivalent rows defining a minimal rhombus: 

 ( ) ( )lhkSlNkNhS NN ˆˆ,3,3 =++ . (B.7) 

For subfamily A of Series 0 PID values have a trigonal symmetry: 

 
( ) ⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛=

±±

lNkkSlkkSlkS NNN ˆ,ˆˆ,2,0 . (B.8) 

which, for the reciprocal lattice rows commonly used in PID analysis, is expressed as: 

 ( ) ( ) ( ) ( ) ( ) ( )lNSlNSlNSlSlSlS NNNNNN ˆ,11ˆ,11ˆ,20ˆ11ˆ11ˆ02 −=−=−===   (B.9) 

For Series > 0, subfamily A polytypes either are orthogonal or belong to Class b; in 
the latter case the symmetry of the PID must take into account a shift of the origin. Class 
b polytypes have a pseudo-rhombohedral primitive lattice, which thus allows three 
equivalent orientations, related by 2n×60º rotations about c*. For monoclinic polytypes, 
only one of the three orientations leading to cn = (0,⎯1/3) corresponds to a correct 
disposition of the symmetry elements (a-unique setting for a < b). Instead, for triclinic 
polytypes these three orientations are truly equivalent. Z, OD and TS symbols are 
different for the three orientations, but they describe three equivalent orientations of the 
structural model. PID values expressed for a given reciprocal lattice row in a certain 
orientation of the structural model correspond to a different row in another orientation. 
For Series > 0 the c axis of the (3

na, 3nb)F setting is displaced by 1/3n for each layer and the 
length of the axis displacement is a submultiple of the layer stagger: therefore, the origin 
of the PID is not the same in the three orientations of the structural model. An example is 
given for the 3A1 polytype in Table 14 of Nespolo et al (1999d). The existence of a 
similar ambiguity in chlorite was reported by Brindley et al (1950). 
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