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INTRODUCTION

Because Fe is the most abundant heterovalent component

of terrestrial magmas, the Fe3+/Fe2+ ratio of melts or glasses is

commonly used as a measure of redox conditions or oxygen

fugacity (fO2). To constrain fO2 precisely from glass Fe3+/Fe2+,

numerous experimental studies have characterized the depen-

dence of silicate melt Fe3+/Fe2+ on fO2, melt composition, T, and

P (Sack et al. 1980; Kilinc et al. 1983; Mysen and Virgo 1989;

Kress and Carmichael 1991; Moore et al. 1995; Nikolaev et al.

1996; Baker and Rutherford 1996; Gaillard et al. 2001). The

Fe-redox ratio of erupted lavas is commonly regarded as a win-

dow on the redox state of the magma source region (Carmichael

1991). However, the oxidation state of Fe in natural silicate

melts may also reflect the interplay of numerous complex pro-

cesses such as interaction with C-O-H-S fluids (Brandon and

Draper 1996), change of melt composition, crystallization, and

chemical exchange with host rocks. The ability of these differ-

ent processes to affect the melt Fe3+/Fe2+ ratio depends on,

among other factors, their kinetics. So, to understand and model

the redox behavior of natural magmas, kinetic constraints on

Fe2+-Fe3+ reaction in silicate melts are required. These kinetic

constraints must involve redox couples and cover conditions

that reflect those of the Earth’s interior.

Currently, experimental studies aimed at characterizing the

kinetics of the Fe-redox equilibrium have been conducted at 1

atm, on H-free melts (Naney and Swanson 1984; Wendlandt

1991; Cooper et al. 1996; Cook and Cooper 2000). Under these

conditions, the redox half-couples involved are O2/O
2– or CO2/

CO, and Fe3+/Fe2+. Cooper et al. (1996) have demonstrated that

Fe2+ oxidation is rate-limited by the mobilities of divalent cat-

ions and electron holes. The mobile cations, which include Ca,

Mg, and Fe, migrate from the oxidizing front toward the glass-

air interface, decreasing locally the cation/oxygen ratio, whereas

a second wave composed of univalent cations (mainly Na)

migrates from the reduced inner part of the sample toward the

oxidizing front. As stressed by Cook and Cooper (2000), be-

cause O2– ions are relatively immobile in silicate melts, the fast-

est reaction path acting to level out redox gradients in dry silicate

melts involves cation diffusion toward the glass-air interface.

The mechanisms described above may apply to the oxida-

tion of Fe-bearing melts at the Earth’s surface where O2 is a

major component. However, in the Earth’s interior, free O2 is

present in negligible amounts. Furthermore, most terrestrial

magmas contain C-O-H-S volatiles phases (Stolper 1982b;

Blank and Brooker 1994), which introduce additional redox

half-couples (H2/H2O, S2–/S6+, CO/CO2; Candela 1986; Baker

and Rutherford 1996; Moore et al. 1995; Gaillard et al. 2001).

Water is by far the most abundant volatile species in magmas

(Johnson et al. 1994), so that the two main redox half-couples

in hydrous silicate melts are H2 /H2O and FeO/Fe2O3. In such

systems, the mobilities of H2 and H2O (or other H-bearing spe-

cies) and of electron holes are most likely to dominate the ki-

netics and mechanisms of Fe oxidation-reduction. H2O mobility

has been investigated mostly in low-Fe rhyolitic melts. How-

ever, the relationship between H2O diffusion and Fe3+/Fe2+ has

not yet been elucidated (Zhang et al. 1991).

First-order constraints on H2 diffusivity in silicate melts were
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provided by Chekhmir et al. (1985). They concluded that H2 is,

by far, the fastest H-bearing diffusing species in melts (DH2 ~

2.5 log units faster than DH2O). The work of Chekhmir et al.

(1985) involved H2 diffusion in either graphite- or Mn-doped

nominally anhydrous albite melts. No equivalent information

is presently available for Fe-bearing melts. In this paper, we

present the results of an experimental study aimed at determin-

ing the kinetics of Fe oxidation-reduction in hydrous rhyolitic

melts. We demonstrate in particular that the mechanism of Fe

oxidation-reduction in water-bearing melts does not result from

the progression of a redox front, in strong contrast to what is

observed at 1 atm in air.

EXPERIMENTAL AND ANALYTICAL METHODS

Starting products

The experiments were performed on two rhyolitic compo-

sitions. The first one is a synthetic glass having the composi-

tion of the matrix glass of the June 15, 1991, Mt. Pinatubo

dacite (Scaillet and Evans 1999; Gaillard et al. 2001). This glass

was synthesized using a standard gel method (see Pichavant

1987). The gel was melted at 1400 ∞C, 1 bar in air (fO2 = 0.2 atm)

and then quenched to a glass, which was analyzed with the elec-

tron microprobe. The glass is slightly peralkaline (Table 1). It con-

tains 1 wt% FeOT (total iron expressed as FeO) and has a FeO

concentration (analyzed by titration) of 0.34 wt%, yielding a molar

Fe2O3/FeO ratio of 0.97. The second sample studied is a nearly

aphyric natural peralkaline obsidian from Ascension Island

(Harris 1983) that contains ~3 wt% FeOT (Table 1). To test the

influence of the Fe3+/Fe2+ ratio of the starting glass, both re-

duced and oxidized glasses were prepared from the Ascension

obsidian. The reduced glass was obtained by reacting the pow-

dered Ascension glass under pure H2 at 800 ∞C during 6 hours

(Fe2O3/FeO = 0.09, Table 2). For the oxidized glass, the obsid-

ian was held at 1300 ∞C in air during 3 hours (Fe2O3/FeO =

1.54, Table 2). Glasses ground in an agate mortar to a mesh

size of 20 mm were loaded in either Au or Ag60Pd40 capsules

(i.d. = 2.5 mm; o.d. = 2.9 mm) together with distilled and deion-

ized water. Most experimental charges consisted of ~80 mg of

glass plus 6.5 mL of H2O, which corresponds to water-satu-

rated conditions at 800 ∞C and 2 kbar. For three charges, the

amount of H2O added was 4.5 mL, corresponding to water-

undersaturated conditions. Each capsule was subsequently

welded shut with a graphite arc-welder and placed inside the

pressure vessel.

Experimental apparatus

All experiments were performed in three René 41 cold-seal

pressure vessels (CSPV) equipped with a modified semi-per-

meable H2 Shaw-type membrane made of an Ag23Pd77 alloy

(Scaillet et al. 1992; Schmidt et al. 1995). Temperature was

monitored using unsheathed external type-K thermocouples.

Each vessel-furnace pair was calibrated under pressure (see

the method of Pichavant 1987) using internal sheathed dual

type-K thermocouples calibrated against the melting points of

NaCl and LiCl (Schmidt et al. 1995). Overall, the temperature

is known to within ±7 ∞C. Total pressure (~2 kbar in all experi-

ments) was measured by a high-pressure transducer (Asco In-

strument PR 851), calibrated against a 7 kbar Heise tube gauge,

and is known within ±20 bar. The H2 membrane and line are

connected to a H2 tank allowing H2 pressures up to 70 bar to be

applied. Conversely, low fH2 in the membrane and H2 line are

obtained by evacuating the line with a vacuum pump that main-

tains fH2 at <0.1 bar. H2 pressures were measured with a Bourdon

XM801 transducer calibrated against a Protais tube gauge and

are known to within ±0.1 bar.

In practice, the vessel is first loaded with a given pressure

of Ar. A known H2 fugacity is then applied to the H2 membrane

and line, and temperature is increased up to 800 ∞C. The dura-

tion of the heating period is about 20 mn. During that period,

H2 starts to transfer across the H2 semi-permeable membrane

toward the vessel. At equilibrium, usually attained a few min-

utes after thermal equilibration (see below for more informa-

tion on the kinetics of H2 transfer from membrane to capsule),
TABLE 2. Time series experiments on the Ascension composition

Starting Reduced Oxidized Reduced Oxidized Reduced Oxidized Reduced Oxidized Reduced Oxidized Reduced Oxidized
products

Duration (h) 0 0 3 3 7 7 24 24 48 48 96 96
Magnetite no no yes yes yes yes yes yes yes yes no no
H2O* ~0 0 4.68 5.00 5.62 6.05 6.85 6.81 6.67 6.85 6.37 6.41
FeOT† 3.21 3.21 2.45 2.25 2.47 2.33 2.60 2.40 2.71 2.55 3.07 3.11
FeO‡ 2.80 0.82 1.90 1.45 1.77 1.64 1.85 1.73 1.90 1.81 2.00 2.05
FeOliq § 2.73 0.79 1.69 1.17 1.57 1.39 1.69 1.51 1.78 1.64 2.00 2.05
X Fe2O3

/ XFeO|| 0.09 1.54 0.22 0.46 0.29 0.34 0.27 0.30 0.26 0.28 0.27 0.26

Note: All experiments were performed at P = 2 kb, T = 800 ∞C, fH2
 =12 bar, and water saturation.

* Water in the glass determined by difference on 100% of electron microprobe analysis (EMPA).
† Total iron in the glass expressed as wt% FeO determined by EMPA.
‡ Bulk FeO (wt%) analyzed by wet chemistry.
§ FeO content of the glass (wt%) obtained from the bulk FeO content by calculating out the contribution from magnetite. Magnetite proportions are
obtained by mass-balance calculations.
|| Molar Fe3+/Fe2+ ratio of the glass. Fe2O3 calculated as (FeOT-FeOliq). 1.1113

TABLE 1. Electron microprobe analysis of the starting glasses*

                           Pinatubo matrix glass      Ascension rhyolite

SiO2 78.44 73.57
Al2O3 12.59 12.32
FeOT 1.00 3.21
MnO 0.03 0.09
MgO 0.21 0
CaO 1.33 0.32
Na2O 3.31 5.54
K2O 2.89 4.68
TiO2 0.17 0.24
P2O5 0.02 0.03

Total† 99.91 99.5
A/CNK‡ 0.95 0.80

* Compositions recalculated on an anhydrous basis.
† Original total is reported.
‡ A/CNK: Al2O3/(Na2O + K2O + CaO) in moles.
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fH2 in the membrane is equal to fH2 in the vessel and capsule.

Under these conditions, the redox state imposed on the hydrous

silicate melt is known from the equilibrium:

H2 + 1/2 O2 ´ H2O                (1)

where

1/2 log fO2 = log fH2O – log fH2 – log K(1)                           (2)

Equation 2 shows that, at constant temperature and pres-

sure, fO2 is directly related to fH2 if fH2O is constant. In our ex-

periments, a steady fH2 can be imposed and maintained during

long durations because the Shaw membrane and H2 line have a

large volume (46 cm3) compared with the free volume of the

vessel (~8 cm3). Therefore, the H2 membrane acts as an H2

buffer. Another important aspect is that our experimental set-

up allows fH2 to be varied in situ, at constant temperature and

under nearly constant Ptotal (changing fH2 in the membrane

slightly changes pressures), which allows either reduction or

oxidation cycles to be performed.

Quenching was performed by removing the vessel from the

furnace and is relatively slow (about 3–5 ∞C/s). Gaillard et al.

(2001) have demonstrated that glasses quenched at 300 ∞C/s

and at 0.5–1 ∞C/s have the same Fe-redox ratios. Therefore, no

modification of the Fe3+/Fe2+ ratio is expected at the quench

rates used in this study, and the Fe-redox ratios measured in

quenched glasses reflect the speciation of Fe in the melts at

800 ∞C and 2 kbar.

Analytical methods

Major element compositions of experimental products

(glasses, magnetite, hematite, and plagioclase crystals) were

obtained with a Cameca-Camebax electron microprobe at the

CNRS-BRGM-UO laboratories at Orléans. For crystals, the

operating analytical conditions were: 15 kV accelerating volt-

age, 6 nA sample current, 10 s counting time on peak, and a

beam diameter of 1–2 mm. For glasses, a beam diameter of 10

to 25 mm was used to minimize the migration of alkalies (e.g.,

Pichavant 1987; Devine et al. 1995). Concentrations of alkalies

were corrected using secondary hydrous glass standards. Water

concentrations of glass were estimated using the by-difference

method (Devine et al. 1995) employing, as secondary standards, a

set of 4 hydrous rhyolitic glasses whose water contents (2.0–6.38

wt% H2O) have been measured by Karl-Fischer titration.

For selected samples (numbers 1–5), the homogeneity of

water concentrations (OH+H2O) was checked using a Nicolet

760 Magna FTIR spectrometer on doubly polished glass wa-

fers. Four to five spectra were collected for each analyzed glass

using a beam diameter of ~100 mm. Analytical procedures are

similar to those described in Gaillard et al. (2001).

A wet-chemical technique was used to determine the FeO

iron content of experimental products. Glass chips totaling 50–

60 mg, ground under acetone to 10–20 mm mesh size, were

used for each analysis. FeO iron was determined by titration

with K2Cr2O7. The uncertainty in FeO titration, calculated

through standard error propagation, ranges from 0.04 to 0.08

wt% depending on the FeO content of the sample [see Gaillard

et al. (2001) for details on the reproducibility and accuracy of

the technique].

EXPERIMENTAL STRATEGY

In this study, both constant and variable fH2 experiments were

performed at 800 ∞C and 2 kbar total pressure.

Constant fH2 experiments

Ten time-series experiments were performed with a fH2 of

12 bar (~NNO-0.2) using both the oxidized and reduced As-

cension glasses (Table 2). These experiments provide a test of

reversibility and serve to establish the kinetics of attainment of

steady-state glass Fe3+/Fe2+ ratios (interpreted as equilibrium

value) for a given fH2. In addition, four experiments were car-

ried out on the Ascension obsidian for fH2 between 50 and 1.8

bar, and five on the Pinatubo glass for fH2 between 50 and 1 bar

(Table 3). These experiments serve to establish the equilibrium

relationship between glass Fe3+/Fe2+ and fH2 at constant T, P and

fH2O. To avoid magnetite crystallization observed in the time-

series experiments, these experiments were systematically

started by annealing at fH2 = 50 bar (~NNO-1.5, see Table 3) for 48

hours. Then, fH2 was brought to the desired value and conditions

were kept constant for another 24 to 48 hours (Table 3).

Variable fH2 experiments (oxidation/reduction cycles)

In variable fH2 experiments, either oxidation or reduction

cycles were performed in situ (i.e., during a given experiment)

and the Fe-redox ratio of the quenched melt was monitored as

a function of time. For oxidation cycles, the experiments were

started by an annealing step at fH2 = 50 bar for 48 hours. Then,

fH2 was dropped in the membrane and H2 line by evacuating H2

with the vacuum pump (fH2 < 0.1 bar) while the temperature

was kept constant. The experiments were then maintained un-

der these new conditions for durations ranging between 0.1

and 27.5 hours, and then quenched (Table 4). Under our ex-

perimental P-T conditions, changing fH2 from 50 to <0.1 bar

corresponds to a change in fO2 from NNO-1.5 to ~ NNO+3. For

reduction cycles (performed on the Pinatubo composition only,

Table 4), after the initial annealing step at fH2 = 50 bar, H2 was

evacuated and a fH2 <0.1 bar was maintained for a duration

known to produce a crystal-free oxidized melt on the basis of

the previous results (Table 4). Then, a fH2 of 50 bar was re-

established within the Shaw membrane and H2 line. Conditions

were kept constant for durations of between 0.66 and 6.25 hours,

and the experiments were quenched (Table 4).

It must be stressed that the charge is not affected instanta-

neously by the fO2 change that results from varying fH2 in the

membrane and H2 line. The rate of change of redox conditions

inside the capsule is controlled by H2 permeability in noble

metals (both capsule and membrane) and also by the free vol-

ume of the vessel. We have calculated (see Scaillet et al. 1992)

the time necessary for H2 to equilibrate in the Au capsule fol-

lowing an isothermal fH2 drop in the membrane such as im-

posed in the oxidation cycles. Results range between 4 and 7

min depending on the method of estimation of the number of

moles of H2 to be transferred. This time-scale is a much shorter

than that required to attain a steady-state melt Fe-redox ratio

under fixed fH2 (see below). However, this time-scale is of the

same order of magnitude as the minimum duration necessary

to observe detectable changes in melt Fe3+/Fe2+ ratios after a

change in fH2 (see below). Therefore, experiments with differ-
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ent capsule materials have been performed to test the effect of

the rate of H2 transfer.

RESULTS

Constant fH2 (equilibrium) experiments

Results for the time-series experiments are detailed in Table

2. Magnetite is present in all experiments with durations of

<48 hours, irrespective of the redox state of the starting glass

(either oxidized or reduced). In the two longest experiments

from this series (96 hours), magnetite is not found. This mag-

netite thus nucleates and grows during heating-up but is not

stable at the final P-T-fH2-fH2O conditions. The FeO content of

the glass is obtained from the bulk FeO content of the charge

(analyzed by titration) by subtracting the contribution of mag-

netite whose composition is known from electron microprobe

analysis and whose proportion in run products is calculated by

mass balance (Table 2). Results show that Fe-redox equilib-

rium is closely approached in the melt after experimental dura-

tions of ~10 hours (Fig. 1). A steady-state glass Fe3+/Fe2+ ratio

is attained after ~20 hours. The equilibrium glass Fe3+/Fe2+ is

approached from both sides (i.e., oxidized and reduced) and at

similar rates.

Results of the equilibrium experiments are presented as a

function of fH2 and fO2 in Table 3. All data concern crystal-free

TABLE 4. Results of the oxidation cycles at 800 ∞C and 2 kb

Run number fH2 membrane (bar) Duration at fH2<0.1 bar (min)* FeOT (wt%)† FeO (wt%)‡ Fe2O3 (wt%)§ H2O total wt% || Phases

Pinatubo, Au-capsule, water saturated
1 54.1 0 0.97 0.92 0.06 5.57 (0.04) gl, fl
2 <0.1 20 0.95 0.90 0.06 5.61 (0.05) gl, fl
3 <0.1 40 0.96 0.78 0.2 5.58 (0.03) gl, fl
4 <0.1 75 0.95 0.74 0.23 5.62 (0.04) gl, fl
5 <0.1 330 0.96 0.62 0.38 5.55 (0.05) gl, fl
6 <0.1 1140 0.76 0.55 0.46 nd gl,fl,pl,mag
7 <0.1 1650 0.73 0.54 0.47 nd gl,fl,pl,mag,hm

Pinatubo, AgPd capsules, water saturated
8 50.5 0 0.97 0.92 0.06 6.42 (0.6) gl,fl
9 <0.1 20 0.96 0.87 0.10 6.81 (0.45) gl,fl
10 <0.1 40 0.94 0.78 0.19 6.55 (0.44) gl,fl
11 <0.1 75 0.95 0.75 0.24 6.79 (0.65) gl,fl

Pinatubo, water-undersaturated
12 51.3 0 0.97 0.92 0.06 4.50 (0.1) gl
13 <0.1 20 0.96 0.88 0.09 4.85 (0.1) gl
14 <0.1 40 0.98 0.80 0.20 4.6 (0.07) gl
15 <0.1 75 0.95 0.76 0.22 4.9 (0.1) gl

Ascension, Au-capsule, water saturated
16 <0.1 0 2.97 2.30 0.74 nd gl, fl
17 <0.1 6 3.00 2.13 0.96 nd gl, fl
18 <0.1 40 3.04 1.98 1.32 nd gl, fl
19 <0.1 75 3.05 1.5 1.72 nd gl, fl
20 <0.1 150 3.04 1.26 1.98 nd gl, fl, mag
21 <0.1 480 3.01 1.20 2.01 nd gl, fl, mag
22 <0.1 1000 3.05 1.22 2.03 nd gl, fl, mag

Note: gl = glass; mag = magnetite; hm = hematite; fl = vapor; pl = plagioclase.
* Before imposing fH2 < 0.1, all samples were first annealed under 50 bar of fH2

 for 48 hours.
† Total Fe in the glass expressed as wt% FeO determined by EMPA.
‡ Bulk FeO (wt%) analyzed by wet chemistry.
§ Bulk Fe2O3: (wt%) Fe2O3 = (FeOtot-FeO). 1.1113.
|| Total water measured by FTIR (H2O + OH). Values in brackets correspond to maximum differences of total H2O. For all samples 1.27<OH<1.3 wt%.

TABLE 3. Results of equilibrium experiments under different fH2 at 800 ∞C, 2 kb, water saturation

fH2
log fO2

DNNO* Duration (h) FeOT wt%† FeO (wt%)‡ Fe2O3 wt%§ XFe2O3
/XFeO||

Pinatubo glass
50 –15.36 –1.43 48 0.96 0.89 0.08 0.04
20 –14.57 –0.65 70 0.96 0.87 0.10 0.05
10.1 –13.97 –0.05 72 0.96 0.85 0.12 0.06
5.1 –13.38 0.54 78 0.94 0.80 0.16 0.07
1 –11.97 1.95 73 0.95 0.64 0.34 0.16

Ascension glass
50 –15.36 –1.43 45 2.97 2.30 0.74 0.11
15 –14.32 –0.39 73 2.94 2.15 0.97 0.13
8 –13.77 –0.15 75 3.04 1.86 1.31 0.19
1.8 –12.47 1.45 78 3.02 1.20 2.02 0.31

* DNNO = logfO2
 – log fO2

 of the nickel-nickel oxide buffer (NNO) at P and T.
† Total iron in the glass expressed as wt% FeO determined by EMPA.
‡ Bulk FeO (wt%) analyzed by wet chemistry.
§ Bulk Fe2O3: (wt%) Fe2O3= (FeOtot-FeO). 1.1113.
|| Molar Fe3+/Fe2+ ratio of the glass.
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glasses. No Fe loss from sample to capsule was detected (see

total FeO contents in Table 3). Glasses have homogeneous major

element compositions and water contents. Observation of the

samples under an optical microscope shows that the color of

the glasses is systematically related to its Fe-redox ratio. For

the Ascension composition, glasses synthesized at fO2 < NNO

are green-blue and progressively change their color to brown-

black for fO2 > NNO. For the Pinatubo composition, glasses

synthesized at fO2 < NNO are transparent and progressively

change their color to black for fO2 > NNO. Analyses of differ-

ent chips of the same homogeneously colored glasses (synthe-

sized from both the Ascension and Pinatubo compositions) were

performed by Gaillard et al. (2001). They yielded identical FeO

contents, demonstrating that color homogeneity implies con-

stant glass Fe3+/Fe2+ ratio. For all samples of this study, the

homogeneity of the Fe-redox state is therefore inferred from

the lack of color variation across the sample. Note that experi-

mental durations at the equilibrium fH2 (i.e., following the an-

nealing step at fH2 = 50 bar) range between 22 and 30 hours

(Table 3), and are therefore longer than durations necessary

for attainment of steady-state Fe3+/Fe2+ ratios (Fig. 1).

Glass Fe2O3/FeO values are plotted vs. fO2 and fH2 in Figure

2. For both starting samples, glass Fe2O3/FeO progressively

decreases with increasing fH2 (or decreasing fO2). For a given

fH2, glass Fe2O3/FeO differ between the two compositions stud-

ied. The experimental data from this study are compared with

the empirical equation of Kress and Carmichael (1991) in Fig-

ure 2a. As observed in previous studies (Baker and Rutherford

1996; Gaillard et al. 2001), there are significant differences

between the measured and calculated glass Fe2O3/FeO, particu-

larly for the Ascension composition in the present case.

Variable fH2 experiments (oxidation-reduction cycles)

Results of these experiments are detailed in Tables 4–5.

Charges are generally crystal-free, except for the long-dura-

tion oxidation experiments (Table 4). As in the previous series,

glasses are chemically homogeneous (major-element compo-

sitions and water contents, Table 4). One critical point to be

stressed is the absence of any color gradient in the glasses.

This feature was checked carefully through observation of dou-

bly polished glass wafers across the entire sample section. This

homogeneity is true even for glasses that have Fe2O3/FeO dif-

ferent from equilibrium values (the case for most glasses from

FIGURE 1. Change in glass XFe2O3/XFeO with experimental duration

for time-series experiments performed on the Ascension starting

composition. Data are listed in Table 2.

TABLE 5. Results of a reduction cycle at 800 ∞C and 2 kb per-
formed on the Pinatubo composition

Run fH2
Duration at FeOT FeO  Fe2O3 Phases

number membrane fH2
 ~ 55 bar (wt%)† (wt%)‡ (wt%)§

(in bar) (min) *

23 <0.1 0 0.96 0.62 0.38 gl, fl
24 53.1 40 0.96 0.72 0.27 gl, fl
25 51.9 75 0.97 0.79 0.20 gl, fl
26 51.3 375 0.97 0.89 0.09 gl, fl

Note: gl = glass; fl = vapor.
* All samples, after being annealed under 50 bar fH2

, were initially kept
under fH2

<0.1 for 330 min.
† Total iron in the glass expressed as wt% FeO determined by EMPA.
‡ Bulk FeO (wt%) analyzed by wet chemistry.
§ Bulk Fe2O3: (wt%) Fe2O3 = (FeOtot-FeO). 1.1113.

FIGURE 2. Equilibrium relationships between log XFe2O3/XFeO and

log fO2
 (A) and XFe2O3

/XFeO and fH2
 (B) for the two compositions studied.

In A, the two lines “KCAsc” and “KCPin” represent the XFe2O3
/XFeO

values calculated from Kress and Carmichael (1991) for the Ascension

and Pinatubo compositions, respectively. The curves fitting the

experimental data are empirical formulations.
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the oxidation-reduction cycles). The lack of color variation in

these glasses suggests that they have uniform, though non-

equilibrated, Fe2O3/FeO ratios.

Because Fe loss to the capsule was not detected, the evolu-

tion of the Fe-redox state upon either oxidation or reduction

cycles can be represented by the change of the glass FeO con-

centration with time (Figs. 3–5). For an oxidation cycle (Fig.

3), glasses from both starting compositions have FeO concen-

trations that decrease progressively with experimental dura-

tion at fH2 <0.1bar (Table 4). For the Pinatubo composition, no

significant modification of the FeO concentration was detected

in a glass quenched 20 min after imposing the new fH2 (< 0.1

bar) in the membrane. In contrast, for the Ascension composi-

tion, a drop in FeO concentration was detected in the glass only

6 min after the imposition of the new fH2 value. For both com-

positions, steady-state bulk FeO concentrations (0.54 wt% for

Pinatubo and 1.20–1.26 wt% for Ascension) were attained af-

ter ~10 and ~3 hours respectively at <0.1 bar fH2. The results

consistently show that the Ascension composition reacts more

rapidly to fH2 changes and suggest a dependence of the kinetics

of Fe oxidation on melt composition. Partial crystallization due

to high Fe2O3/FeO ratio of the charge is observed for the two

longest experiments in both series (Table 4). For the Pinatubo

composition, magnetite appears together with plagioclase, be-

ing joined by hematite in the longest experiment (Table 4).

Coexisting Fe-Ti oxide compositions yield a fO2 slightly higher

than the MNO buffer (NNO+2.8, corresponding to fH2 ~ 10–3/

bar), as calculated using the empirical calibration of Scaillet

and Evans (1999). For the Ascension composition, only mag-

netite was observed to crystallize.

The effect of excess H2O on the kinetics of Fe oxidation

was tested by comparing the kinetic response of water-satu-

FIGURE 3. Changes in glass FeO concentrations with experimental

duration in oxidation cycles performed on the Ascension and Pinatubo

compositions. The inset details results for the shortest durations. Data

are in Table 4.

FIGURE 5. Change in glass FeO concentration with experimental

duration in oxidation and reduction cycles performed on the Pinatubo

composition. Data are in Tables 4 and 5.

FIGURE 4. Influence of the H2O concentration and the capsule material

on the kinetics of decrease of glass FeO concentration in oxidation cycles

performed on the Pinatubo composition. Data are in Tables 4.

rated (H2O = 6.3 ± 0.8 wt%) and slightly water-undersaturated

(H2O ~ 4.7 ± 0.6 wt%) charges (Table 4). The rates of change

of glass FeO concentrations following a fH2 drop <0.1 bar, as

seen on Figure 4, are identical within analytical uncertainty for

water-saturated and water-undersaturated melts (both for the

Pinatubo composition), suggesting that they have identical ki-

netics of Fe oxidation. Similarly, using Ag40Pd60 capsules in-

stead of Au results in no difference in the rate of change of
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glass FeO concentrations (Table 4; Fig. 4), despite H2 perme-

ability being two orders of magnitude faster in Ag40Pd60 than in

Au under our experimental conditions (Chou 1986). Therefore,

the kinetics of Fe oxidation is not influenced by the kinetics of

H2 transfer through the capsules.

Results of a reduction cycle performed on the Pinatubo com-

position are shown in Figure 5. Samples (after being annealed

under 50 bar fH2) were kept under <0.1 bar fH2 for 330 min. At

this point, the FeO concentration of the glass was 0.62 wt%

(Tables 4 and 6). Following the re-establishment of an fH2 of

~50 bar in the membrane, glass FeO concentrations progres-

sively increased with time. The highest FeO concentration (0.89

wt%), attained after 375 min at ~50 bar fH2 (Table 6), is within

the measured range of equilibrium FeO concentrations for 50

bar fH2 (0.89–0.92 wt% FeO, Tables 3 and 5). As for the oxida-

tion cycles, the kinetic response is characterized by an initially

rapid variation of the FeO concentration of the glass, followed

by a slower variation as equilibrium is approached progres-

sively. Patterns shown by oxidation and reduction cycles are

symmetrical. No difference exists between the kinetics of oxi-

dation and reduction of Fe and the process is fully reversible

(Figs. 5 and 6, see also Fig. 1).

DISCUSSION

Among the results presented above, the strong compositional

dependence of the rate of change of the Fe3+/Fe2+ ratio, together

with the lack of influence of the capsule material, suggest that

the main factor controlling the Fe-redox kinetics is the nature

of the silicate liquids (and not the kinetics of the experimental

set-up used to vary the fH2 at P and T). Our results thus demon-

strate that at constant fH2O, varying fH2 at equilibrium with a

H2O-, Fe-bearing silicate melt leads to changes in the redox

state of iron. At 800 ∞C, the time needed to establish a new

equilibrium melt Fe3+/Fe2+ ratio after imposition of a new fH2 is

on the order of several to ten hours, which is evidence for the

relatively slow kinetics of the Fe-redox reaction in rhyolitic

melts. This result is consistent with previous experimental find-

ings by Gaillard et al. (2001), who demonstrated that the Fe-

redox ratio of hydrous silicic melts is unchanged when varying

the quench rate between 300 and 0.5–1 ∞C/s, suggesting that

the Fe2+/Fe3+ ratio of such synthetic and natural melts are readily

quenchable.

Comparison between H-free and hydrous melts

From a kinetic point of view, it is interesting to compare the

oxidation-reduction kinetics observed in this study with previ-

ous results for dry melts. The kinetics of Fe-oxidation in dry

rhyolitic melts (SiO2 = 73.4 wt%, FeO tot = 1 wt%) was stud-

ied by Naney and Swanson (1984) at T = 1343 ∞C in air. They

found that approximately 40 hours were needed to reach Fe3+/

Fe2+ equilibrium for sample volumes similar to ours. In con-

trast, for compositionally equivalent but H2O-bearing melts at

800 ∞C, the present study shows that equilibrium is attained in

only 3–10 hours (Figs. 1 and 3). Yet, the melt viscosities in

both studies are similar despite the large temperature differ-

ence: the rhyolite melt investigated by Naney and Swanson

(1984) has a viscosity of 1.7 ¥ 104 Pa◊s at 1343 ∞C, very close

to that of the Pinatubo rhyolite under our experimental T-H2O

conditions (4.38 ¥ 104 Pa·s, calculated from Hess et al. 1996).

Therefore, the melts in both studies have similar relaxation time-

scales (Dingwell and Webb 1990) even though the kinetics of

attainment of Fe-redox equilibrium differ from each other (40

vs. 3–10 hours).

In terms of reaction mechanisms, there is a major differ-

ence between our results and previous observations made on

oxidation of dry Fe-bearing melts (Cooper et al. 1996; Cook

and Cooper 2000). The hydrous glass samples from this study

bear evidence neither for a redox front that progresses from

the capsule-sample interface toward the core of the sample,

nor for cation migration, as observed in the dry systems. An-

other difference to be noted concerns the delay of several min-

utes between the application of a new fH2 and the response in

terms of the glass Fe3+/Fe2+ ratio, which is most clearly seen

for the Pinatubo composition (Table 4). Therefore, mechanisms

of oxidation-reduction in H-bearing melts appear to differ from

those identified by Cooper and co-workers in H-free melts.

Mechanisms of Fe oxidation-reduction in hydrous silicic
melts

The absence of a redox front and redox heterogeneity in the

glasses, despite gradual changes of Fe2O3/FeO, is the major

observation of this study. This finding suggests that the redox

potentials within each part of the melt are equal but out of equi-

librium. Consquently the redox process appears to be reaction-

limited rather than diffusion-limited. Molecular H2 can be

transported across the sample either as a dissolved melt spe-

cies (see Schmidt et al. 1998) or as a fluid species (quenched

melts contain bubbles of trapped aqueous fluids). Given the

high diffusion rates of H2 in melts (Chekhmir et al. 1985), com-

munication of fH2 is nearly instantaneous at the sample scale.

Partial equilibrium of the chemical potential of H2 (mH2) should

thus be attained virtually instantaneously within the whole

sample. In contrast, the delay and rate of Fe2O3/FeO changes

after application of a new fH2 indicates that Fe3+ ´ Fe2+ trans-

formations are much slower and thus rate-limit the overall re-

dox processes.

The microscopic phenomena driving the Fe3+ ´ Fe2+ trans-

FIGURE 6. Determination of the kinetic constants for Ascension

and Pinatubo compositions for T = 800 ∞C, 2 kb and water-saturated

conditions. The fitting procedure was achieved by minimizing the

differences between each calculated (from Eq. 3, see text) and measured

value weighted by each experimental erro
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formations are not accessible through our results. However,

we note that structural (compositional) controls apply because,

for the two compositions studied, two different rates of Fe3+ ́

Fe2+ transformations due to fH2 changes have been measured.

This difference can be attributed either to the peralkaline na-

ture (i.e., lower viscosity) of, or to a higher Fe concentration

in, the Ascension glass compared to the Pinatubo composition.

Mechanisms of interactions between H2 and Fe-bearing sili-

cate minerals such as pyroxene, olivine, and garnet show that

hydrogenation-dehydrogenation and Fe3+-Fe2+reactions are

coupled (Hercule and Ingrin 1999; see Ingrin and Skogby 2000,

for a review). The kinetics of these reactions have been pro-

posed to be rate-limited either by the mobility of the hydrogen

atoms (at high Fe concentrations) or by the mobility of elec-

tron holes (i.e., jumps between Fe2+ and Fe3+, at low Fe con-

centrations).

In this study, we have observed that the most Fe-rich melt

(Ascension) has the fastest kinetics of Fe-redox equilibration,

which could be consistent with the kinetic model proposed for

silicate minerals. However, the analogy with minerals cannot

be pursued any further because, in contrast to what was ob-

served in NAM, there is evidence neither for mass transfer by

diffusion of hydrogen-bearing species as illustrated by the ho-

mogeneous H2O concentrations (Table 4), nor for apparent re-

dox heterogeneity in experimental products as would be

expected in the case of migration of electron holes.

Kinetics of Fe oxidation-reduction in hydrous silicic melts

Kinetic constants were extracted from the data obtained on

each studied composition. For the Ascension composition, re-

sults from the oxidation cycles were used whereas for the

Pinatubo composition, data from both the oxidation and reduc-

tion cycles were used. The best and simplest fit of the experi-

mental data was obtained by considering a first-order

(logarithmic) rate law (Lasaga 1998):

ln(Ceq-Ct)-ln(Ceq-Cin) = k.t                (3)

where Ceq is the equilibrium Fe3+/Fe2+ concentration, Cin the

initial Fe3+/Fe2+ concentration, Ct the Fe3+/Fe2+ concentration at

time t, and k the first-order rate constant. The fitting procedure

is explained in the caption of Figure 6. The extracted values

yield k = 0.003/min for the Pinatubo and k = 0.0152/min for

the Ascension composition (Fig. 6). The fact that the data obey

first-order logarithmic kinetics confirms that the overall pro-

cess is rate-limited by the Fe3+ ́  Fe2+ transformations, and not

by the diffusion of H2, which can be considered instantaneous.

Geological application

This study shows that fO2 changes can be driven by fH2

changes. Hereafter, we model changes in melt Fe3+/Fe2+ that

result from H2 exchanges between a silicic magma (assumed

to have the composition of the Pinatubo and Ascension samples)

and its host rocks. The principle of the simulation is to impose

an initial fH2 difference between the two reservoirs (melt and

host rocks), and to calculate, for a given duration, the gradient

in fH2 and the associated change in Fe3+/Fe2+ that results from

diffusive exchange of H2. Only lateral transfer of H2 is consid-

ered (Figs. 7A and 7B). The simulations may best apply to

magma ascent into a conduit during a volcanic eruption. The

starting fH2 of the magma is fixed at 20 bar, and the host rock is

considered as an infinite reservoir with a constant fH2 = 0.05

bar. H2 transfer thus takes place from the magma toward the

host rock. The fH2 variation in the magma is computed using

Equation 18 of Watson (1994), which applies to the diffusion

of a volatile species in a melt in contact with a semi-infinite

medium. Temperature is fixed to 800 ∞C and the magma is as-

sumed to be water-saturated.

To illustrate the importance of the mobility of H2, two val-

ues of H2 diffusion rates were tested. The first, equal to 10–9

m2/s, represents the lower limit of H2 diffusion rate that can be

inferred from our data [using X = (D.t)0.5 with X as the capsule

diameter and t, the minimum duration for observation of Fe3+/

Fe2+ change in the Ascension composition, see Table 4, no. 16].

This value is identical to that determined by Chekhmir et al.

(1985) in viscous (1010Pa·s) molten albite at 800 ∞C. Chekhmir

et al. (1985) have shown that DH2 is inversely correlated with

viscosity (see also Watson 1994). According to their data, in a

melt with a viscosity of 105Pa.s (corresponding to the viscosity

of our experimental melts), DH2 ~ 10–5 m2/s. We therefore adopt

10–5 m2/s as an upper limit value for DH2 in hydrous silicic melts

at 800 ∞C.

Calculations were done for an imposed duration of 10 hours,

which is realistic for Plinian eruptions. The results are sensi-

tively dependent on the value taken for the H2 diffusivity. In

Figure 7A and 7B, variations of fH2 and melt Fe3+/Fe2+ are pre-

sented as a function of distance from the wall rock. Calculated

FIGURE 7. Calculation of the changes in the Fe-redox ratio (XFe2O3

/XFeO) of the Pinatubo and Ascension melts occurring in response to H2

loss toward host rock. The adopted DH2
 is equal to 10–9 m2/s.
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values of melt XFe2O3/XFeO takes into account the kinetic laws

identified from Equation 3 (Fig. 6) for both compositions. For

log DH2 = – 9 m2/s, a zone of ~3 cm is affected by H2 loss and

the portion of melt whose Fe3+/Fe2+ is significantly affected

remains negligible (<2 cm for both compositions, Fig. 7A).

Note that the two curves nearly overlap. For log DH2 = –5 (Fig.

7B), the fH2 modifications propagate up to 2 m within the

magma. For the Pinatubo composition, calculated changes in

melt Fe3+/Fe2+ propagate in the melt within the first 20 cm cor-

responding to a fraction of magma affected of 4% for a conduit

diameter of 10 m. As a consequence, during a Plinian-type erup-

tion of a metaluminous rhyolite with ~1 wt% FeOT, melt XFe2O3/

XFeO is not significantly affected even for the highest DH2 con-

sidered because the kinetics of the Fe3+ ́  Fe2+ reaction are not

fast enough in such melts. Under these conditions, glasses are

therefore good indicators of pre-eruptive fO2. In contrast, simi-

lar simulations for the Ascension composition show that the

melt Fe3+/Fe2+ is significantly modified over the first 100 cm

(Fig. 7B), corresponding to a fraction of magma affected of

20% for a conduit diameter of 10 m. In such a case, special

care should be taken when using Fe2O3/FeO as indicator of pre-

eruptive fO2 conditions. These calculations illustrate the strong

compositional control on the rate of Fe3+ ´ Fe2+ changes dur-

ing ascent, and stress the need for a more precise knowledge of

DH2 for a correct interpretation of the Fe3+/Fe2+ ratios of erupted

lavas.
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