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INTRODUCTION

Smectite minerals are constituents of soils and are the main
component of bentonite rocks. The structural formula of
dioctahedral aluminous smectites in the series montmorillo-
nite-beidellite is (Al2–yMgy)(Si4–xAlx)O10(OH)2Ex+y·nH2O when
y > x, smectite is called montmorillonite (Güven 1988). The
basic silicate building block is composed of a 2:1 structure with
an octahedral layer sandwiched between two tetrahedral lay-
ers. If we describe the structure in its ideal monoclinic symme-
try, there are, in principle, three octahedral cavities per unit
cell. The cavity on the mirror plane designated M1 is usually
vacant in the dioctahedral species, and the other two cavities to
the left and right of the mirror plane are designated M2. M1
sites have a trans configuration (i.e., hydroxyls are across the
site), whereas M2 sites display a cis configuration (i.e., hy-
droxyls are adjacent on one side of the coordination polyhe-
dron). A configuration with vacant trans sites M1 produces an
elementary layer with C2/m symmetry when the cis sites are
occupied by the same element (Zvyagin and Pinsker 1949).
Another arrangement where the trans M1 site and one of the
cis sites are occupied gives C2 symmetry (Méring and Oberlin
1971; Tsipursky and Drits 1984).

Several substitutions may take place in either octahedral

and/or tetrahedral sites, whose net charge compensation requires
the presence of cations and water molecules in the interlayer
region. Univalent and divalent cations are the most common
substitutes in the interlayer space. The known interlayer sites
favorable for a cation without a hydration shell are located at
the center of the O atom triad corresponding in projection with
the tetrahedral cation and within the hexagonal cavities closer
to two basal and one apical O atom of the tetrahedra with R3+

substitutions. The most favorable position for the divalent com-
pensating cations is at the center of two adjacent basal O atom
triads belonging to adjacent layers, thus forming sixfold coor-
dination in various geometries. Divalent cations can also occur
in the hexagonal cavities coordinating two charged O atoms
from each adjacent layer. The hexagonal cavity is the most fa-
vorable position for monovalent cations (12-fold coordination).

A basic feature of montmorillonite (and smectites in gen-
eral) is the stacking of elementary layers with the diffraction
patterns showing only two types of reflections: the basal (00l)
and the unmodulated (hk0) bands corresponding to a two-di-
mensional diffraction (Drits et al. 1984). Méring (1975) de-
scribed three stacking modes: (1) regular, with zero degree
rotations between successive layers in a pseudohexagonal ar-
rangement with a perfect 3D periodicity. This mode is rarely
observed for dioctahedral smectites, (2) semi-random, with n
¥ 60∞ rotations. Hexagonal cavities are retained and only the
(hkl) reflections with k = 3n are observed, (3) turbostratic, with
completely random rotations and translations between adjacent* E-mail: alex@unimo.it
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ABSTRACT

The planar disorder of Ca-montmorillonite (Fuller’s earth) has been investigated using structural
simulations of X-ray powder patterns. A standard sample was fully characterized using chemical,
microscopic, and diffraction methods. Earlier models of disorder taken from the literature and newly
formulated combined models were used to generate simulated powder patterns to be compared with
the experimental spectrum.

A new model of disorder with random shifts of –a/3 and ±b/3, with a total density of defects of
75%, gives the best fit to the observed data. Thus, the sample cannot be classified as a turbostratic
structure (fully disordered) and consequently turbostratic disorder does not invariably apply to all
smectite samples. These findings open a debate on the nature and application of turbostratic disor-
der: is it possible for smectite samples to have intermediate degrees of disorder between a fully
disordered stacking (turbostratic) and a highly faulted but well-defined stacking or is the result
obtained for the Ca-montmorillonite just an exception?

This model of disorder is useful for the quantitative phase analysis by X-ray powder diffraction
based on the Rietveld method, which can now benefit from a more reliable initial structure model for
Ca-montmorillonite and which will improve the accuracy of the weight-fraction estimates.
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layers with no hexagonal coordination cavities (extensive pla-
nar disorder), that is, the layers are displaced from each other
in the a-b plane by random amounts and are rotated about the
normal by random amounts (Moore and Reynolds 1989). Only
the (00l) (optically coherent) and broad (hk0) bands are vis-
ible. This is the common mode for dioctahedral smectites and
almost all smectite minerals where the weakly bonded ex-
changeable cations force no ordering.

Layer stacking is generally influenced by the nature of the
interlayer cation, the nature and number of solvation molecules,
the di- or trioctahedral character of the mineral, the mean crys-
tallite size, and the ordering of interlayer cations over the avail-
able hexagonal cavities.

Unfortunately, although planar disorder is a distinctive char-
acter of montmorillonite that strongly influences the physical
properties, there are no conclusive models in the literature so
far. The attempts of Tsipursky and Drits (1984) to model disor-
der of montmorillonite in terms of octahedral site vacancies
and Drits et al. (1984) to model disorder of K-saturated mont-
morillonite are only partial and several different models may
be optionally considered.

Obviously, a quantitative or even a semi-quantitative model
of the nature of disorder in montmorillonite would help with
understanding phenomena such as dehydration/dehydroxylation
reactions (Bray and Redfern 1999), as well as physical proper-
ties and use. Besides, the quantitative phase analysis (QPA) by
X-ray powder diffraction based on full profile fitting or the
Rietveld method, would take advantage of a reliable structure
model of disorder for montmorillonite, because the estimate of
the weight fraction is strongly dependent on the assumed struc-
ture models (Gualtieri 1999b).

The reasons above prompted this study on the nature of dis-
order in Ca-montmorillonite through analysis of a representa-
tive sample from Texas. Earlier models taken from the literature
and a new one of disorder of Ca-montmorillonite were used to
calculate powder patterns to be compared to the observed spec-
trum. This strategy was successfully used in the past for the
description of disorder in kaolinite (Artioli et al. 1995) and
talc (Gualtieri 1999a). To do this, we made use of the program
DIFFaX (Treacy et al. 1991), which was specifically devel-
oped to study extensively faulted crystals. Extensive planar
disorder that causes broadening of the Bragg peaks in the dif-
fraction pattern can be described using a mathematical model
(Hendricks and Teller 1942; Wilson 1943; Allegra 1964; War-
ren 1959; Cowley 1976; Brindley 1980). Treacy et al. (1991)
used a recursion algorithm (Michalski 1988; Michalski et al.
1988) to simulate diffraction effects in one-dimensional disor-
der. The program DIFFaX was written to take full advantage
of the flexibility of such a general algorithm. Recursion gives
a set of simple relations between average interference terms
from a statistical crystal that can be solved as a set of simulta-
neous equations. The details of the algorithm and the theoreti-
cal aspects are fully described in Treacy et al. (1991). The
program produces simulated powder patterns to be compared
with observed ones, thus providing some verification of the
reliability of a structure model. Besides simulation of powder
patterns, the investigation of the structure disorder of kaolinite
was performed with the aid of ab initio lattice energy calcula-

tions. In the literature, different methods are described for the
calculation of lattice energy: quantum-mechanics using the ab
initio Hartree-Fock method (Hess and Saunders 1992);
semiempirical methods (Collins and Catlow 1991; Bleam 1993;
Artioli et al. 1995), molecular dynamics simulations (Chang et
al. 1997), quantum chemical calculations using both
semiempirical and first principle potentials (Chatterjee et al.
1997); molecular simulations using empirical force field po-
tentials (Čapková et al. 1998), and Monte Carlo simulations
(Sposito et al. 1998). Such calculations are precluded here for
several reasons. The positions of the protons of the water mol-
ecules are unknown and thus cannot be included in the ab ini-
tio model. The population of the interlayer cation and water
molecules is partial, that is, in order to correctly account for
the site population, an enormous n ¥ n supercell should be con-
sidered, making the ab initio calculation too time consuming
to be performed. Even with the approximation of full site oc-
cupancy, some models of disorder imply the use of supercells
with more than 200 atoms again preventing the ab initio ap-
proach.

EXPERIMENTAL METHODS

Sample selection

A survey of the literature data that reports X-ray powder
patterns of montmorillonite samples revealed that they are
mainly classified into Ca-rich, Na-rich, and Ni-rich varieties.
Table 1 reports the peak positions and relative intensity of the
five most representative samples described in the literature.
Differences in the nature of the interlayer compensating cation
(Ca2+, Na+, or Ni2+) strongly influences the position of the first
peak and the relative intensity and position of the other minor
peaks/bands. All the samples show a weak-medium peak at 5.0–
5.2 Å, a medium-strong asymmetric band at 4.5 Å, and weak
broad bands in the regions around 2.5–2.6 Å and 1.5–1.7 Å.
Several minor peaks are shown by the Ca-rich samples.

In this study, we selected the Ca-rich sample from Texas to
study the nature of disorder in montmorillonite. The Ca-rich
sample was selected instead of the Na-rich material primarily
because Ca is a stronger X-ray scatterer, and its contribution to
the modification of the structure factors (peak intensities) in
the powder patterns can be better evidenced and evaluated. In
fact, the scattering power of Na is comparable to that of the
water molecules and thus is hard to discriminate. On the other
hand, the Ni-sample was not considered as representative of
the natural samples as it was the result of cation exchange of a
Fe-rich sample in nickel chloride solution (Muller et al. 1997).

Sample characterization

The chemical analysis (wt% oxides) of the sample taken
from the literature (van Olphen and Fripiat 1978) is: SiO2 =
70.1, Al2O3 = 16.0, TiO2 = 0.22, Fe2O3 = 0.65, FeO = 0.15,
MnO = 0.009, MgO = 3.69, CaO = 1.59, Na2O = 0.27, K2O =
0.078, P2O5 = 0.026, CO2 = 0.16. H2O determined by TG analy-
sis is 6.54 wt%. It is not possible to calculate a reliable struc-
ture formula because a small amount of cristobalite (<5 wt%)
was found in the sample. SEM images (available upon request
to the authors) showed that the average grain size of the pow-
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der sample is less than 1 mm. TEM images (available upon
request to the authors) showed that the average particle size of
montmorillonite is nanometric in agreement with the surface
area, which is 83.7(2) m2/g (van Olphen and Fripiat 1978) and
yields a mean crystal thickness of 9.5 nm according to the rela-
tionship T = 800/S (Nadeau 1985) with T, the sample thickness
in nm and S, the surface area in m2/g. Cristobalite crystals
present as impurities display a much larger size.

Prior to the laboratory analyses, the sample was hand ground
in an agate mortar for about 10 min without the use of a liquid
phase. A maximum diameter of the particle aggregates of about
1–2 mm was confirmed by laser diffraction which showed a
Gaussian peak of size distribution centered at about 1.2 mm.
The powder was then side loaded in a flat aluminum holder for
X-ray data collection on a Philips conventional Bragg-Brentano
vertical diffractometer with CuKa radiation and a pyrolitic
graphite crystal monochromator mounted on the diffracted-
beam. Data were recorded in the range 3–70 ∞2q with steps of
0.02 ∞2q and 20 s per step. The observed powder pattern is
shown in Figure 1. Cristobalite present as an impurity (label C
in Fig. 1) was modeled using GSAS (Larson and Von Dreele
1994) and subtracted from the original pattern.

Structure simulations of X-ray powder patterns

The model of Tsipursky and Drits (1984) with space group
C2/m (see Table 3 on p. 512 in Güven 1988: note that M2 ∫
M3, T1 ∫ T2, O2 ∫ O3, and O5 ∫ O6) was used to prepare the
starting calculated model for the structural simulations in
DIFFaX (Treacy et al. 1991). With respect to the 10 Å dehy-
drated model of Tsipursky and Drits (1984), Ca was substi-
tuted for K and the z atomic coordinates rescaled to create a 15
Å unit. This model was then transformed into a more flexible
and versatile triclinic P 1 orthogonalized unit (all the angles =
90∞) with a = 5.18 Å, b = 8.98 Å, and c = 15.00 Å in order to
make it easier to use in DIFFaX. Table 2 reports the list of the

transformed atomic coordinates used as initial DIFFaX input.
The stacking vector in DIFFaX (–0.5628 along a, 0.0 along b,
and 1.0 along c) accounts for the monoclinic distortion to the
orthogonalized system.

Every model of disorder is defined by a probability matrix
of stacking of the layers; explanations and details can be found
in Treacy et al. (1991) and Artioli et al. (1995). The various
models were obtained in different ways, and the translational
disorder was obtained by application of the shift vector (a/3,
–a/3, b/3, –b/3) directly to the stacking vector. For example, a
sequence with an ideal layer (1) and a b/3 layer (2) is obtained
with the following stacking transition vectors: from (1) to (1)
with –0.5628 along a, 0.0 along b and 1.0 along c; from (1) to
(2) with –0.5628 along a, 0.3333 along b and 1.0 along c; from
(2) to (2) is equal to (1) to (1). The rotational disorder was

TABLE 1. The peak positions and relative intensities of the five most representative montmorillonite samples described in the literature

Ca-montmorillonite Ca-montorillonite Na-montmorillonite SWy-1 Wyoming Ca,Na-montorillonite Ni-montmorillonite
STx-1 Texas (this study) (Bayliss 1989) (Van Olphen and Fripiat 1978) (Molloy and Kerr 1961) (Muller et al. 1997)

Peak position (Å) and relative intensity
2q I 2q I 2q I 2q I 2q I
16 100 15.0 100 – – – – 16.7 100
– – – – 13.6 100 13.6 100 – –
– – – – – – – – 8.3 4
5.1 4 5.0 60 5.2 12 – – 5.6 6
4.5 16 4.5 80 4.5 65 4.5 18 4.4 18
4.1* 12 – – – – – – –
– – 3.8 20 – – – – – –
– – 3.5 10 – – – – – –
– – 3.3 10 – – 3.3 10 3.3 10
3.1 4 – – – – 3.2 10 3.1 1
– – 3.0 60 – – 2.9 8 – –
2.6 3 2.6 40 2.6 18 2.6 5 – –
2.5 3 2.5 40 – – 2.5 5 2.5 9
– – 2.3 10 – – – – – –
2.0† 2 2.1 10 – – – – – –
– – 1.9 10 – – – – – –
1.7 1 1.7 30 1.7 8 – – 1.7 4
– – 1.5 50 1.5 12 – – 1.5 9
– – 1.3 20 – – – – – –
– – 1.2 20 – – – – – –
* Cristobalite.
† Al (holder).

FIGURE 1. The observed powder pattern of Ca-montmorillonite.
Cristobalite present as an impurity was modeled using GSAS and
subtracted from the original pattern.
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accomplished by application of the general rotation matrix [a11

= cosa; a12 = –sina; a13 = 0; a21 = sina; a22 = cosa; a23 = 0; a31 =
0; a32 = 0; a33 = 1 with a = 60, –60, 120, –120∞] directly to the
coordinates of the layer in order to obtain a rotated layer to be
stacked with the same stacking vectors.

A pseudo-Voigt function was used to de-convolute the in-
strumental broadening h(2q) using the coefficients calculated
from the refinement of standard BaF2 produced by Merck
(suprapure quality) which was collected with the same experi-
mental conditions as the investigated sample. The profile func-
tion of a powder pattern is assumed to be the convolution of
the instrumental and microstructural broadening, according to
the relation f(2q) = g(2q) * h(2q), with g(2q) = microstructural
function, and h(2q) = instrumental function (Young and Wiles
1982; Louër and Langford 1988; Langford et al. 1993; Van
Berkum et al. 1996). Because BaF2 annealed following the pro-
cedure described in Louër and Langford (1988) is considered
to have no microstructural broadening, it can be successfully
used to calculate the instrumental broadening h(2q) of a given
experimental setting. The coefficients of the pseudo-Voigt func-
tion were U = 1.0, V = –0.8, and W = 0.3 (Treacy et al. 1991)
with mixing parameter h = 0.4.

The calculated patterns were compared to the observed data.
The background was manually removed and the scale factor
was varied to obtain the best fit. The final agreement was evalu-

ated using the factor Rp = {S |yi(obs)–yi(calc)|  } /Syi(obs). A
cross-check of the consistency of the calculated powder pat-
tern of the idealized orthogonal structure was performed by
calculating the pattern with GSAS and the results showed that
the two patterns are in perfect agreement (Fig. 2: Rp = 0.011).

RESULTS

The first step was to investigate in a systematic way and
categorize each factor, such as shifts, rotations, random substi-
tutions or others, which may broaden diffraction lines in the
powder pattern of montmorillonite. This strategy was inspired
by the suggestion of Drits et al. (1984) who investigated the
disorder of K-saturated montmorillonites: “it would be instruc-
tive to adopt a more general approach to the problem of the
real structure of smectites based on a systematic analysis of
the relationship between structural characteristics and diffrac-
tion patterns”. The second step was to combine single factors
to reproduce the actual model of disorder in montmorillonite.

The first factor to be considered is the position of Ca in the
interlayer region. Ca can be found in the hexagonal cavities
(simulation S1 in Fig. 3 and probability matrix S1 in Table 3)
coordinating two O atoms from each adjacent layer or at the
center of two adjacent O atom triads (simulation S2 in Fig. 3
and probability matrix S2 in Table 3) in a more or less dis-
torted excess charge sixfold coordination. Ca at the center of
the O atom triads requires Al in M1 (simulation S3 in Fig. 3
and probability matrix S3 in Table 3). Simulation S4 (Fig. 3
and probability matrix S4 in Table 3) is the combination of Ca
at the center of the O atom triads and Al in M1. By comparison
with the experimental pattern in Figure 1, it is clear that none
of the simulations is capable of reproducing the relative peak
intensities of the observed pattern and especially (002) and (003)
in the 10–19 ∞2q region and (113) and (005) in the 29–30 ∞2q
region which are markedly weaker (see also the large reported
Rp values). The amount of Ca in the hexagonal cavity is also
important when modeling the peak intensity. Figure 4 shows

TABLE 2. Atomic coordinates, population and atomic displacement
parameters of the idealized orthogonal P 1 montmorillo-
nite used in DIFFaX

Atom x y z Uiso (Å2) Population (%)
Al 0.8753 0.3330 0.2214 0.02 1.00
Al 0.8753 0.6670 0.2214 0.02 1.00
Al 0.3753 0.8330 0.2214 0.02 1.00
Al 0.3753 0.1670 0.2214 0.02 1.00
Si 0.5588 0.3290 0.0430 0.02 1.00
Si 0.5588 0.6710 0.0430 0.02 1.00
Si 0.6919 0.8290 0.3999 0.02 1.00
Si 0.6919 0.1710 0.3999 0.02 1.00
Si 0.0588 0.8290 0.0430 0.02 1.00
Si 0.0588 0.1710 0.0430 0.02 1.00
Si 0.1919 0.3290 0.3999 0.02 1.00
Si 0.1919 0.6710 0.3999 0.02 1.00
O 0.5134 0.5000 0.0099 0.02 1.00
O 0.8280 0.7280 0.0000 0.02 1.00
O 0.8280 0.2720 0.0000 0.02 1.00
O 0.4954 0.0000 0.1520 0.02 1.00
O 0.5682 0.6910 0.1487 0.02 1.00
O 0.5722 0.3090 0.1487 0.02 1.00
O 0.7373 0.0000 0.4329 0.02 1.00
O 0.4227 0.2280 0.4428 0.02 1.00
O 0.4227 0.7720 0.4428 0.02 1.00
O 0.7553 0.5000 0.2908 0.02 1.00
O 0.6824 0.1910 0.2941 0.02 1.00
O 0.6784 0.8090 0.2941 0.02 1.00
O 0.0134 0.0000 0.0099 0.02 1.00
O 0.3280 0.2280 0.0000 0.02 1.00
O 0.3280 0.7720 0.0000 0.02 1.00
O 0.9954 0.5000 0.1520 0.02 1.00
O 0.0682 0.1910 0.1487 0.02 1.00
O 0.0722 0.8090 0.1487 0.02 1.00
O 0.2373 0.5000 0.4329 0.02 1.00
O 0.9227 0.7280 0.4428 0.02 1.00
O 0.9227 0.2720 0.4428 0.02 1.00
O 0.2553 0.0000 0.2908 0.02 1.00
O 0.1824 0.6910 0.2941 0.02 1.00
O 0.1784 0.3090 0.2941 0.02 1.00
Ca 0.1893 0.0000 0.7215 0.02 0.50
Ca 0.6893 0.5000 0.7215 0.02 0.50

FIGURE 2. The calculated powder pattern in the range 15–40 ∞2q
for the ideal orthogonalized P 1 dehydrated 15 Å montmorillonite model
used as input data for DIFFaX, the corresponding 15 Å dehydrated
pattern calculated in the space group C2/m with GSAS, and relative
Miller indices (see text for details).
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simulations with increasing amounts of Ca in the hexagonal
cavity. For example, the reduction of the (003) reflection, as
observed in the experimental pattern, seems to be related to the
population of the Ca site.

Besides the ideal configurations in which the trans posi-
tions are vacant (the T layers in the description of Drits et al.
1984) and the cis positions are vacant (the C layers in the de-
scription of Drits et al. 1984), we tried to simulate the effect of
a random occupancy of the octahedral sites in which Al statis-
tically occupies both M1 and M2 sites (the M layers in the
description of Drits et al. 1984). The result is shown in Figure
5. Simulation S5 was obtained by random distribution of Al
over the octahedral sites (33% in M1 and 66% in the two equiva-
lent M2 sites). Although simulation S5 refers to the M stacking
model of Drits et al. (1984), it is important to stress that the
simulated powder pattern is not directly comparable to the one
reported on Figure 4, p. 549 of Drits et al. (1984) because, as

stated by the authors, they considered only the models corre-
sponding to dioctahedral smectites saturated by K-cations and
collapsed whereas the models here correspond to dioctahedral
smectites saturated by Ca-cations and uncollapsed (15 Å unit
with water molecules). In addition, further differences in the
peak intensities may arise from differences in the thermal pa-
rameters, site populations, parameters of the peak profile func-
tion, and other factors intrinsic to the calculation method. In
fact, this specific simulation was calculated in a recursive way
on an infinite ensemble of random crystallites in DIFFaX
whereas Drits et al. (1984) have chosen a mean number of lay-
ers 

–
N = 20 and radius for the coherent domain in the a–b plane

equal to 200 Å.
Simulation S6 was obtained by considering that when Al

occupies M1, Ca in the interlayer region can be found just be-
low the M1 octahedron. The simulations show that neither ran-
dom distribution of Al in the octahedral cavities nor the

FIGURE 3. Set of DIFFaX structure simulations with Ca in different
positions within the interlayer space.

TABLE 3. The probability of layer existence* and Rp values of structure simulations S1–S17

Simulation Ideal Ca under Al in M1 Al in M1 and Al in M2 Water Water b/3 shift –b/3 shift a/3 shifts –a/3 shifts Rp values†
layer the O atoms Ca under the in W1 in W2  in W2

triad oxygens triad
S1 100 – – – – – – – – – – 0.711

0.011‡
S2 – 100 – – – – – – – – – 0.709
S3 – – 100 – – – – – – – – 0.707
S4 – – – 100 – – – – – – – 0.710
S5 – – 50 – 50 – – – – – – 0.700
S6 – – 100 – – – – – – – – 0.702
S7 – – – – – 100 – – – – – 0.711
S8 – – – – – 50 50 – – – – 0.711
S9 20 – – – – – – 40 40 – – 0.495
S10 34 – – – – – – 33 33 – – 0.481
S11 50 – – – – – – 25 25 – – 0.487
S12 20 – – – – – – – – 40 40 0.439
S13 34 – – – – – – – – 33 33 0.444
S14 50 – – – – – – – – 25 25 0.441
S15 25 – – – – – – 25 25 – 25 0.412
S16 20 – – – – – – 20 20 20 20 0.415
S17 4 – – – – – – 24 24 24 24 0.444
* The probability of existence of the layers is calculated from the probability matrix of DIFFaX. For example, in a model with three layers with a 3 ¥ 3
matrix corresponding to a11 = 20, a12 = 40, a13 = 40, a21 = 40, a22 = 20, a23 = 40, a31 = 40, a32 = 40, and a33 = 20, the probability of existence of each layer
is 33%.
† By comparison with the observed file, defined as: Rp = {S |yi(obs)–yi(calc)|  } /Syi(obs).
‡ By comparison with the GSAS ideal structure.

FIGURE 4. Set of DIFFaX structure simulations with increasing
amount of Ca in the hexagonal cavity.
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combined configuration with Al in M1 and Ca below the M1
octahedron yield remarkable modulations of the peaks. The
intermediate 15–25 ∞2q region in particular shows sharp and
well defined diffraction peaks with inconsistently high relative
intensities. Similar results not reported here were found by sub-
stituting Mg for Al in the ratio indicated by the chemical for-
mula. The distortion effects around any vacant or occupied
octahedral sites were not considered. This may be the reason
for the inconsistency with the findings of Drits et al. (1984)
that the distribution of the intensities for the (02l) and (11l)
bands permits differentiation without ambiguity between T, C,
and M stacking even in the presence of stacking faults.

Moreover, because we assumed that charge is concentrated
in the octahedral sheet (a reasonable assumption for this sample)
and given the nearly equal diffusion cross section of Si and Al
for X-rays, random distribution of Al in place of Si in the tetra-
hedral sites was not considered.

The positions of the water molecules in the interlayer re-
gion which are coordinated to the Ca atoms were also investi-
gated. Two positions labeled W1 and W2 (Figs. 6a and 6b)
were taken into account. W1 has the same x and y coordinates
of the Ca atoms and is displaced 0.19 along z. W2 is coplanar
with the Ca atoms. When both are partially occupied, the coor-
dination of Ca is eightfold. Simulation S7 was obtained with
W1 alone whereas simulation S8 was obtained with both W1
and W2. The simulations (Fig. 6c) show that neither W1 alone
nor a combined configuration with W1 and W2 result in sig-
nificant modulation of the peaks. The intermediate 15–25 ∞2q
region shows sharp and well defined diffraction peaks with in-
consistently high relative intensities (see also the large Rp val-
ues).

Shift disorder was investigated in the series of simulations
whose calculated patterns are shown in Figure 7 (see the prob-
ability matrices in Table 3). Shifts may occur along the b axis
with components of ±b/3 which retain the periodicity of the
octahedral columns perpendicular to the a–b plane as these col-
umns have a repetition step of b/3, or along the a axis with
components ±a/3 as already observed for talc (Gualtieri 1999a)

which preserve the superposition of two out of three basal O
atoms of two adjacent layers. The models with the b/3 shifts
alone (simulations S9-S11) reproduce well the intermediate 15–
25 ∞2q region, but poorly reproduce the high angle (35–60 ∞2q)
region. In contrast, the models with ±a/3 shifts alone (simula-

FIGURE 5. Set of DIFFaX structure simulations with different
octahedral layer configurations.

FIGURE 6. The different positions of the water molecules W1 (a)
and W2 (b) in the interlayer region generating the set of DIFFaX
structure simulations shown in (c).

a

b

c
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tions S12-S14) poorly reproduce the intermediate 15–25 ∞2q
region and correctly broaden the high angle (35–60 ∞2q) re-
gion. The mixed models (simulations S15-S17) yield a satis-
factory match with the full observed pattern (especially
simulation S16) although some extra inconsistent peaks are still
observed at 12.5, 24, and 42 ∞2q.

Rotations between adjacent layers which preserve the su-
perposition of basal O atoms of adjacent layers have been con-
sidered in the simulation series in Figure 8 (see the probability
matrices in Table 4). Drits et al. (1984) have shown that mica-
like stacking may lead to azimuthal defects corresponding to
±120∞ and ±60∞ rotations of successive layers and that the usual
coordination of the compensating cation K is kept in the case
of ±120∞ rotations while it becomes prismatic in the case of
±60∞ rotations. The simulations with 60∞ rotations only are S18-
S19, and the simulations with only 120∞ rotations only are S20-
S21. This simulation is in agreement with that reported in Figure
14(b) in Drits et al. (1984) for the same system showing the
appearance of a sharp broad band at 22.3 ∞2q. The simulations

with randomly mixed 60∞ and 120∞ rotations are S22-S24. It is
clear that a model of disorder based only on rotations is unsat-
isfactory because either the low-intermediate or the high angle
regions are poorly modeled. In addition, the peaks at 3.8 and
2.5 Å are always largely overestimated.

DISCUSSION AND FINAL MODEL OF DISORDER

The model of disorder of this Ca-montmorillonite sample
may not be directly applied to all montmorillonite samples be-
cause, as reported by Weizong et al. (2000), the structure of the
clay mineral quasi-crystals depends strongly on the exchange-
able cation and H2O content. Notwithstanding, the working
strategy presented here can be successfully utilized for mont-
morillonite and complex 2:1 clay samples of different nature
and this approach can be combined with the method proposed
by Reynolds (1993), McCarty and Reynolds (1995), and Drits
and McCarty (1996) for a quantitative determination of the
content of single units in randomly interstratified mixed-layer
structures such as illite-smectite (I/S) to reveal diversity of il-
lite and I/S samples with different conditions of formation and
transformation. In addition, it can be employed in the study of
mixed-layer phases with integrated TEM and XRD (Guthrie
and Reynolds 1998) in an attempt to better account for dis-
crepancies in structure descriptions based only on one tech-
nique.

The preliminary structure simulations that consider the varia-
tion of all factors which may contribute to the broadening of
the diffraction peaks of montmorillonite indicate that a com-
plex model should be used in order to reproduce the observed
powder pattern. To this end, we performed simulations with a
combination of shifts and rotations, shifts and disordered Al
vacancies, and rotations and disordered Al vacancies. In addi-
tion, disordering of the Ca atoms and water molecules was also
taken into account. Table 5 reports the probability matrices of
some selected simulations. In addition to the instrumental con-
tribution, the microstructural broadening was also considered
to perfectly reproduce the peak broadening in the observed
pattern. Consequently, a finite number of six to seven 15 Å
thick layers corresponding to about 10 nm thickness (size of
the coherent diffracting domains) was stacked along c in agree-
ment with the TEM images and surface area.

Unfortunately, as previously mentioned, our simulations
cannot be directly compared with those reported in Drits et al.
(1984) because they selected a dehydrated K-saturated mont-
morillonite system to study the effects of combined disordered
models.

Figure 9 shows some selected simulated powder patterns
with combinations of shifts and rotations (see the relative prob-
ability matrix in Table 5). The Ca atoms are located in the hex-
agonal cavities. Pattern S25 clearly shows large differences in
peak intensities in the 16–25 ∞2q region and the presence of
the (002) reflection which is not observed in the experimental
pattern. The same applies to patterns S26, S27, and S28 al-
though in these cases a better fit of the 16–25 ∞2q  region was
accomplished.

The model which gives the best fit of the observed data (Rp

= 0.267) was obtained introducing random shifts along ±b/3
and –a/3 (see the probability matrix in Table 5) with a total

FIGURE 7. Set of DIFFaX structure simulations of models with
translational disorder along ± b/3, ± a/3, and combined ± b/3 and ± a/3.

FIGURE 8. Set of DIFFaX structure simulations of models with
rotations between adjacent layers of ±60∞, ±120∞, and combined
±60∞ and ± 120∞.
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density of defects Pd of 75%.
The idea of a –a/3 only plus ±b/3 random shifts comes from

the observation that the same layer stack is observed in pyro-
phyllite (Drits et al. 1984). The modulation of the (002) reflec-
tion was obtained by disordering the Ca atoms over all possible
sites (i.e., both in the hexagonal cavities and under the basal O
atom triads) and consequently the distribution of the cations in
the octahedral sites is random (either cis and trans sites are
occupied). This corresponds with Méring and Glaeser (1954),
who suggested that the trans octahedra of the 2:1 layers are
occupied by cations to achieve a better local charge balance in
the presence of divalent interlayer cations. The chemistry of
the Texas montmorillonite is similar to that of sample 1 (Ascan
montmorillonite) in Tsipursky and Drits (1984) for which trans
octahedral are occupied. These authors also remark that trans

octahedra tend to be occupied in montmorillonites with the
charge localized only in octahedra. Figure 10   shows the ob-
served and calculated powder pattern (remember there is no
fitting minimization procedure because DIFFaX simply pro-
duces a simulated pattern).

It is important at this point to consider turbostratic disorder,
the type of disorder that according to Moore and Reynolds
(1989) is present in almost all smectite minerals. The series of
simulations T1-T3 (Fig. 11) were calculated to reproduce a
turbostratic sequence with random shifts in the a-b plane and a
finite number of 6–7 15 Å thick layers corresponding to about
10 nm thickness (see above). Besides that, T1 was obtained
with the Ca atoms and the water molecules in ordered posi-
tions in the interlayer region, T2 with the Ca atoms and the
water molecules randomly disordered in the a-b plane in the
interlayer region, and T3 with the Ca atoms and the water mol-
ecules randomly disordered in the X, Y, Z planes in the interlayer
region (the Z random shifts were restrained so as to have Ca
and water molecules at a reasonable bond distance (>2.5 Å) to
the basal O atoms. It is clear that especially the simulated pow-
der pattern T3 is very similar to the final model and the ob-
served data. In the light of our results, although a turbostratic
model can be applied here, several considerations and issues
remain open to debate: (1) In general, it is not possible to state
that turbostratic disorder invariably applies to all smectite
samples because at least here a better fit to the observed data is
obtained using another model which is not fully disordered (ran-
dom stacking sequence). This model, which is based upon a
limited and well defined number of translations, gives the best
fit (see the Rp values) because the turbostratic model is not ca-
pable of broadening the (002) reflection as well as our model
does. (2) It is hard to say where the border between the exten-
sively faulted models such as the one proposed here and the

TABLE 4. The probability of layer existence* and Rp values of structure simulations S18–S24

Simulation Ideal layer b/3 shift –b/3 shift a/3 shifts –a/3 shifts +60∞ rotation –60∞ rotation +120∞ rotation –120∞ rotation Rpvalues†
S18 34 – – – – 33 33 – – 0.494
S19 20 – – – – 40 40 – – 0.527
S20 34 – – – – – – 33 33 0.484
S21 20 – – – – – – 40 40 0.481
S22 20 – – – – 20 20 20 20 0.461
S23 10 – – – – 30 30 15 15 0.471
S24 4 24 24 24 24 0.475
* The probability of existence of the layers is calculated from the probability matrix of DIFFaX. For example, in a model with three layers with a 3 ¥ 3
matrix corresponding to a11 = 20, a12 = 40, a13 = 40, a21 = 40, a22 = 20, a23 = 40, a31 = 40, a32 = 40, and a33 = 20, the probability of existence of each layer
is 33%.
† By comparison with the observed file, defined as: Rp = {S |yi(obs)–yi(calc)|  } /Syi(obs).

TABLE 5. The probability of layer existence* and Rp values of structure simulations S25–S28 and the final obtained model of disorder

Simulation Ideal layer Layer  b/3 Layer  –b/3 Layer  a/3 Layer  –a/3 Layer  60∞ rotated Layer 120∞ rotated Rpvalues†
S25 30 30 30 5 5 – – 0.368
S26 15 25 25 – 15 20 – 0.365
S27 40 10 10 20 20 – – 0.351
S28 25 25 25 – – – 25 0.357
final 49 23 14 – 23 – – 0.267
T1‡ – – – – – – – 0.284
T2‡ – – – – – – – 0.286
T3‡ – – – – – – – 0.278
* The probability of existence of the layers is calculated from the probability matrix of DIFFaX. For example, in a model with three layers with a 3 ¥ 3
matrix corresponding to a11 = 20, a12 = 40, a13 = 40, a21 = 40, a22 = 20, a23 = 40, a31 = 40, a32 = 40, and a33 = 20, the probability of existence of each layer
is 33%.
† By comparison with the observed file, defined as: Rp = { S |yi(obs)–yi(calc)|  } /Syi(obs).
‡ Turbostratic models obtained with totally random shifts in the X and Y plane (see text for details).

FIGURE 9. Some selected examples of simulated powder patterns
with combinations of shifts and rotations (see text and Table 4 for
details).
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fully disordered (turbostratic) models lies. In fact, our model
of disorder has a defect density of 75% (highly faulted) but
cannot be considered turbostratic (with predicted defect densi-
ties as high as 100%). (3) Is the sample investigated here an
exception or is it representative of the real situation? Are other
natural samples filling the gap between the random sequences
(turbostratic) and the extensively faulted sequences (such as
the one proposed here) or can smectite samples be described
with both models? (4) Are there other models of disorder? In
fact, it turns out that only a model based upon translated se-
quences (and not rotations) works that excludes the possibility
of an equivalence of the rotated and the translated sequences
when the interlayer cation is shifted with respect to the center
of the “hexagonal” cavity. (5) This result should not be consid-

ered a conclusion but a starting point of discussion and cer-
tainly a larger number of samples of different compositions
and origins have to be investigated in the future to better assess
whether our model is universally applicable.

This disordered model in place of the ideal monoclinic or-
dered one in the Rietveld QPA analysis is a more reliable input
structure model for Ca-montmorillonite yielding more accu-
rate estimates of the weight fractions. As an example, Gualtieri
et al. (2000) utilized this model with GSAS (Larson and Von
Dreele 1994) by transforming the four-layer recursive model
in an approximate deterministic supercell with c' = 4c to fit
data of natural clays containing Ca-montmorillonite, which
yielded a substantial improvement of the fit and much more
accurate weight fractions.
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