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Abstract: Future models for predicting the viscosity of geologically relevant silicate melts must find a means of partitioning the
effects of composition across a system that shows varying degrees of non-Arrhenian temperature dependence. In the short term, the
decisions governing how to expand the non-Arrhenianparameters in terms of composition will probably derive from empirical study.
The non-linear character of the non-Arrhenian models ensures strong numerical correlations between model parameters which may
mask the effects of composition. We present a numerical analysis of the nature and magnitudes of correlations inherent in fitting a
non-Arrhenian model (e.g., Tamman-Vogel-Fulcher function) to published measurements of melt viscosity. Furthermore, we
demonstrate the extent to which the quality and distribution of experimental data can affect covariances between model parameters.
The extent of non-Arrhenian behaviour of the melt also affects parameter estimation. We explore this effect using albite and diopside
melts as representative of strong, nearly Arrhenian melts and fragile, non-Arrhenian melts, respectively. The magnitudes and nature
of these numerical correlations tend to obscure the effects of composition and, therefore, are essential to understand prior to assigning
compositional dependencies to fit parameters in non-Arrhenian models.
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Introduction

Viscosity is probably the single most important physical
property governing the formation, transport and eruption of
naturally occurring silicate melts or magmas. It is, therefore,
surprising that Earth science does not have an accurate
means of forecasting the viscosity of silicate melts over the
full range of compositions and temperatures found in na-
ture. More than twenty-five years ago Shaw (1972) and Bot-
tinga & Weill (1972) published empirical methods for com-
puting silicate melt viscosities as a function of temperature
(T) and composition. Their models were built on an experi-
mental database that was limited in three main ways. Firstly,
the database was small, constituting less than 2600 mea-
surements. Secondly, their experimental data did not
completely overlap or span the range of natural melt compo-
sitions. Thirdly, the majority of data derived from liquidus
or super-liquidus experiments. On this basis, both Shaw
(1972) and Bottinga & Weill (1972) adopted an Arrhenian
temperature dependence for melt viscosities ( ):

log [Pa s] = A +
B
T

(1)

where A and B are parameters that vary as a function of melt
composition and T is temperature in kelvins. The seminal
contribution made by these two papers was to provide a ba-
sis for predicting the values of A and B as a function of melt
composition.

The total number of published viscosity measurements
on silicate melts has increased greatly in recent years. Ex-
periments cover a wider range of composition and tempera-
ture, but more importantly, the experiments sample a greater
range of melt viscosities (see Dingwell, 1998; Richet & Bot-
tinga, 1995). These data serve two purposes. Firstly, they
demonstrate the inadequacies of the earlier models, in par-
ticular, the fact that models for natural systems must accom-
modate non-Arrhenian temperature dependence. Secondly,
the volume and quality of the experimental data provide a
basis for forming more robust models for predicting viscosi-
ty as a function of temperature, composition and pressure
(e.g., Richet, 1984; Persikov, 1991; Richet & Bottinga,
1995; Baker, 1996; Hess & Dingwell, 1996; Toplis et al.,
1997; Toplis, 1998; Giordano et al., 2000).

The main challenge to modelling viscosity in natural sys-
tems is devising a rational means for distributing the effects
of melt composition across the non-Arrhenian model pa-
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rameters (e.g., Richet, 1984; Richet & Bottinga, 1995; Hess et
al., 1996; Toplis et al., 1997; Toplis, 1998; Rossler et al.,
1998; Persikov, 1991; Prusevich, 1988). For example, the
purely empirical Tamman-Vogel-Fulcher (TVF) expression:

log = A +
B

T–C
(2)

introduces three fit parameters (A, B, C); the values of these
parameters vary with melt composition. At present, there is
no theoretical means of establishing a priori the forms of
compositional dependence for these model parameters.

In this paper we explore the numerical consequences of
fitting viscosity-temperature datasets to non-Arrhenian rhe-
ological models. Our analysis shows that strong correlations
and even non-unique estimates of model parameters (e.g.,
A, B, C) are inherent to non-Arrhenian models. Further-
more, uncertainties on model parameters and covariances
between parameters are strongly affected by the quality and
distribution of the experimental data, as well as the degree
of non-Arrhenian behaviour. These correlations serve to
mask the independent relationships between melt composi-
tion and the values of A, B, and C. This work constitutes a
starting point in the ultimate goal of predicting viscosity as
a function of melt composition and temperature in natural
systems. We strongly suggest that it is critical to evaluate the
nature of these model- or data-induced covariances before
we develop models for how A, B, and C (or other non-Arr-
henian parameters) vary with composition.

Computational strategy

Future models for predicting the viscosity of natural melts
face the challenge of accommodating 10-12 components in
order to span the full compositional range found in nature.
The task is further complicated because naturally occurring
silicate melts show varying degrees of non-Arrhenian be-
haviour. Strong liquids that are highly polymerized (e.g.,
rhyolite melts), as well as high-temperature melts, can show
near-Arrhenian temperature dependence. Conversely, more
“fragile” liquids (e.g., basalt, basanite, hydrous melts) can
behave strongly non-Arrhenian over geological ranges of
temperature. Predictive models must span the full spectrum
of rheological behaviour shown by natural melts, and must
be able to model in a continuous manner extreme changes in
behaviour resulting from changes in melt composition (e.g.,
fractionation or vesiculation).

There is substantial recent literature concerning viscosi-
ty-T relationships of non-Arrhenian silicate melts (e.g., Ri-
chet, 1984; Hess et al., 1996; Rossler et al., 98; Toplis et al.,
1997). Richet & Bottinga (1995), for example, provide an
excellent review of the rationales behind the basic equa-
tions. For the purposes of this analysis, we have adopted the
Tamann-Vogel-Fulcher equation (TVF: Fulcher, 1925), but
our results are equally relevant to other non-Arrhenian func-
tions (e.g., Adam-Gibbs (AG), Adam & Gibbs, 1965; mode-
coupling theory (MCT), Angell, 1988). Regardless of which
of the three main functions are employed (TVF, AG or
MCT), the non-Arrhenian model increases the complexity
of how we address the compositional controls on viscosity.

In the short term, at least, strategies for partitioning the
effects of composition across any non-Arrhenian model are
likely to be empirical. Estimates of the parameters A, B and
C in the TVF model, for example, can be derived for a single
melt composition by fitting Eq. 2 to datasets of T(K)-log [ ]
(Fig. 1). Parameter values from a variety of melt composi-
tions can then be mapped against compositional properties
to produce functional relationships between the model pa-
rameters (e.g., A, B and C; Eq. 2) and composition (e.g.,
Cranmer & Uhlmann, 1981; Richet & Bottinga, 1995; Hess
et al., 1996; Toplis et al., 1997; Toplis, 1998).

It is unlikely that all three model parameters will prove to
be linearly dependent on composition. For example, de-
tailed studies of several simple chemical systems show the
parameter values to have a non-linear dependence on com-
position (Cranmer & Uhlmann, 1981; Richet, 1984; Hess et
al., 1996; Toplis et al., 1997; Toplis, 1998). Additionally,
there are empirical data and a theoretical basis indicating
that the parameters A, B and C are not equally dependent on
composition (Richet & Bottinga, 1995; Hess et al., 1996;
Rossler et al., 1998; Toplis et al., 1997; Giordano et al.,
2000). Values of A in the TVF model, for example, repre-
sent the high-temperature limiting behaviour of viscosity
and tend to have a narrow range of values over a wide range
of melt compositions (e.g., Shaw, 1972; Cranmer & Uhl-
mann, 1981; Hess et al., 1996; Richet & Bottinga, 1995; To-
plis et al., 1997; Giordano et al., 2000). The parameter C has
units of temperature in kelvins and is constrained to be posi-
tive in value. As values of C approach zero, the melt tends to
become increasingly Arrhenian in behaviour. Values of B
are also required to be greater than zero if viscosity is to de-
crease with increasing temperature. It may be that the pa-
rameter A is less dependent on composition than B or C; it
may even be a constant for silicate melts.

Below we use three experimental datasets to explore the
nature of covariances that arise from fitting the TVF equa-
tion (Eq. 2) to viscosity data collected over a range of tem-
peratures. The three parameters (A, B, C) to the TVF equa-
tion are solved for by minimization of the 2 function:

(3)

The objective function is weighted to uncertainties ( i) on
viscosity arising from experimental measurement. The form
of the TVF function is non-linear with respect to the un-
known parameters and, therefore, Eq. 3 is solved by conven-
tional iterative methods (e.g., Press et al., 1986).

The solution surface to the 2 function (Eq. 3) is 3-dimen-
sional (e.g., 3 parameters) and there are other minima to the
function that lie outside the range of realistic values of A, B
and C (e.g., B and C > 0). We have taken the usual caution-
ary steps to ensure that the global minimum was obtained
within the appropriate solution space. In general, conver-
gence to a stable minimum was achieved in less than 20 iter-
ations. Upon achieving the minimum, the solution was per-
turbed (2-5 %) in each parameter to test that the same solu-
tion was recovered. We also checked that the first derivative
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Fig. 1. Experimental measurements of viscosity for alkali trachyte
melts (Table 1; AMS_E) are shown as log [ (Pa s)] vs. 10,000/T (K)
and fitted to the TVF function (solid line; Table 2). An equivalent
melt showing idealized Arrhenian behaviour is represented by the
dashed line.

of the 2 function with respect to each parameter was numer-
ically zero at the solution. Lastly, we computed and con-
toured the 2 surface over a range of values A, B and C to en-
sure coincidence between the numerical and graphical mini-
ma (e.g., Fig. 2).

One attribute of using the 2 merit function is that, rather
than consider a single solution that coincides with the mini-
mum residuals, we can map a solution region at a specific
confidence level (e.g., 1 ; Press et al., 1986). This allows
delineation of the full range of parameter values (e.g., A, B,
and C) that can be considered equally valid descriptors of
the experimental data at the specified confidence level (e.g.,
Russell & Hauksdóttir, 2001; Russell et al., 2001).

Model-induced covariances

The first data set comprises 14 measurements of viscosity
(Fig. 1) for an alkali-trachyte composition over a tempera-
ture range of 973-1773 K (Table 1; Romano pers. comm.
2001). The experimental data span a wide enough range of
temperature to show non-Arrhenian behaviour (Table 1,
Fig. 1). The gap in the data between 1100 and 1420 K is a re-
gion of temperature where the rates of vesiculation or crys-
tallization in the sample exceed the timescales of viscous
deformation. The corresponding TVF parameters computed
from these data are: A = -3.74, B = 8906, and C = 359 (Table
2; Fig. 1, solid line).

Analysis of covariance

Fig. 2 is a series of 2-dimensional (2-D) maps showing the
characteristic shape of the 2 function (Eq. 3). The three maps

Table 1. Measured values of viscosity (N=14) as a function of tem-
perature for alkali-trachytemelts (AMS_E; C. Romano pers. comm.
2000) containing < 0.2 wt. % dissolved H2O. Viscosity was mea-
sured on samples of hydrous glass by micropenetrationmethods de-
scribed in Hess et al. (1995) and Dingwell (1993).High temperature
viscosity data (100-105 Pa s) were measured using concentric cylin-
der apparatus.

Oxide Wt. % T (K) log (Pa s)1 10,000/(T (K))

SiO2 59.98 973.2 10.75 10.27
TiO2 0.39 956.8 11.29 10.45
Al2O3 18.01 1087.1 8.45 9.20
FeO 3.82 985.0 10.56 10.15
MnO 0.11 1009.6 9.77 9.91
MgO 0.88 1038.3 9.32 9.63
CaO 2.91 1773 2.49 5.64
Na2O 4.06 1723 2.74 5.80
K2O 8.37 1673 3.01 5.98
P2O5 0.21 1623 3.30 6.16
H2O

1 0.02 1573 3.62 6.36
1523 3.96 6.57
1473 4.33 6.79
1423 4.73 7.03

1 Mean experimental uncertainty (1 ) of viscosity measurements is
0.15 in units of log (Pa s).

are mutually perpendicular planes that intersect at the opti-
mal solution and lie within the full 3-dimensional solution
space. These particular maps explore the 2 function over a
range of parameter values equal to ± 75 % of the optimal so-
lution values. Specifically, we have calculated the values of
the 2 function away from the optimal solution by holding
one parameter constant (e.g., C = 359 in Fig. 2a) and by sub-
stituting new values for the other two parameters. The con-
toured versions of these maps simply show the 2-dimen-
sional geometry of the solution surface.

These maps illustrate several interesting features. Firstly,
the shapes of the 2-D solution surfaces vary depending upon
which parameter is fixed. At a fixed value of C, coinciding
with the optimal solution (Fig. 2a), the solution surface
forms a steep-walled, flat-floored and symmetric trough
with a well-defined minimum. Conversely, where A is fixed
(Fig. 2b), the contoured surface shows a symmetric but fan-
ning pattern; the 2 surface dips slightly to lower values of B
and higher values of C. Lastly, where B is held constant
(Fig. 2c), the solution surface is clearly asymmetric but con-
tains a well-defined minimum. Qualitatively, these maps al-
so indicate the strength of correlations between pairs of
model parameters at the solution (see below).

The nature of correlations between model parameters
arising from the form of the TVF equation is explored more
quantitatively in Fig. 3. Specifically, we have calculated and
mapped the linear approximations to the 1 confidence lim-
its on the solution (Press et al., 1986; see Appendix 1). The
same data as contoured in Fig. 2 are represented by the solid,
smaller ellipses in each of the 2-D projections (Fig. 3a, b, c).
These smaller ellipses correspond exactly to a specific con-
tour level ( 2 = 16.4; Table 2) and approximate the 1 con-
fidence limits for two parameters, if the 3rd parameter is
fixed at the optimal solution (see Appendix 1). For example,
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Table 2. Results of fitting viscosity data on alkali trachyte (ASM_
E; Table 1) to TVF equation.

Para-
meter
values

3-Dproj 2-D error enve-
lopes (1 ) at
solution

Covariance

1 1 A B C [A:i] [B:i] [C:i]
A -3.74 2.96 - 0.27 0.45 0.70 -1290 60.5
B 8906 5509 498 - 381 -1290 2407926-113476
C 359 260 39.8 18.0 - 60.5 -113476 5373
min 2 3.812

1 Approximate 1 standard error estimates of uncertainty on model
parameters (see text).
2 Calculated 2 values for 1 , 2 and 3 confidence limits are
16.4, 23.5 and 28.5, respectively.

the small ellipse in Fig. 3a represents the intersection of the
plane C = 359 with a 3-D ellipsoid representing the 1 con-
fidence limits to the entire solution. It establishes the range
of values of A and B permitted if this value of C is main-
tained. Practically, it shows that the experimental data great-
ly restrict the values of A ( ± 0.45) and B ( ± 380), if C is
fixed (Table 2).

The larger ellipses shown in Fig. 3a, 3b and 3c are of
greater significance. They are, in essence, the shadow cast
by the entire 3-D confidence envelope onto the 2-D planes
containing pairs of the three model parameters. They ap-
proximate the full confidence envelopes on the optimum so-
lution. Axis-parallel tangents to these “shadow” ellipses
(dashed lines) establish the maximum range of parameter
values (e.g., A, B, C) that are consistent with the experimen-
tal data at the specified confidence limits. For example, in
Fig. 3a, the larger ellipse shows the entire range of model
values of A and B that are consistent with this dataset at the
1 confidence level (Table 2).

The covariances between model parameters indicated by
the small vs. large ellipses are strikingly different. For ex-
ample, in Fig. 3c the small ellipse shows a negative correla-
tion between A and C compared to the strong positive corre-
lation indicated by the larger ellipse. This is because the
smaller ellipses show the correlations that result when one
parameter (e.g., B) is held constant at the value of the opti-
mal solution. Where one parameter is fixed, the range of ac-
ceptable values and correlations between the other model
parameters are greatly restricted. Conversely, the larger el-
lipse shows the overall correlation between two parameters,
whilst the third parameter is also allowed to vary. It is criti-
cal to realize that each pair of A-C coordinates on the larger
ellipse demands a unique and different value of B (e.g., Fig.
3a, c). Consequently, although the range of acceptable val-
ues of A:B:C is large, the parameter values cannot be com-
bined arbitrarily.

Model TVF functions

The range of values of A, B, and C shown to be consistent
with the experimental dataset (Fig. 1) may seem larger than
reasonable at first glance (Fig. 3). The consequences of
these results are shown in Fig. 4 as a family of model TVF
curves (Eq. 2) calculated by using combinations of A, B,

Fig. 2. A contourmap showing the shape of the 2 minimizationsur-
face (Press et al., 1986) associated with fitting the TVF function to
the viscosity data for alkali trachyte melt (Fig. 1 and Table 1). The
contour maps are created by projecting the 2 solution surface onto
2-D surfaces that contain the actual solution (solid symbol). The
maps show the distributionsof residuals around the solution caused
by variations in pairs of model parameters: a) A-B, b) B-C, and c)
A-C. Values of the contours shown were chosen to highlight the
overall shape of the solution surface.

and C that lie on the 1 confidence ellipsoid (Fig. 3, larger el-
lipses). The dashed lines show the limits of the distribution of
TVF curves (Fig. 4) generated by using combinations of
model parameters A, B and C from the 1 confidence limits
(Fig. 3). Compared to the original data array and to the
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Fig. 3. The solution shown in Fig. 2 is illustrated as 2-D ellipses that
approximate the 1 confidence envelopes on the optimal solution.
The large ellipses approximate the 1 limits of the entire solution
space projected onto 2-D planes and indicate the full range (dashed
lines) of parameter values (e.g., A, B, C) that are consistentwith the
experimental data. Smaller ellipses denote the 1 confidence limits
for two parameters where the third parameter is kept constant (see
text and Appendix).

“best-fit” TVF equation (Fig. 4, solid line), the family of
TVF functions describe the original viscosity data well.
Each one of these TVF functions must be considered an
equally valid fit to the experimental data. In other words, the
experimental data are permissive of a wide range of values
of A (-0.8 to -6.8), B (3500 to 14,400) and C (100 to 625).
However, the strong correlations between parameters (Ta-
ble 2, Fig. 3) control how these values are combined. The

Fig. 4. The optimal TVF function (solid line) and the distribution of
TVF functions (dashed lines) permitted by the 1 confidence limits
on A, B and C (Fig. 3) are comparedto the originalexperimentaldata
of Fig. 1.

consequence is that, even though a wide range of parameter
values are considered, they generate a narrow band of TVF
functions that are entirely consistent with the experimental
data.

Data-induced covariances

The values, uncertainties and covariances of the TVF model
parameters are also affected by the quality and distribution
of the experimental data. We demonstrate this concept using
published data comprising 20 measurements of viscosity on
a Na2O-enriched haplogranitic melt (Table 3; after Hess et
al., 1995; Dorfman et al., 1996). The main attributes of this
dataset are that the measurements span a wide range of vis-
cosity ( 10-1011 Pa s) and the data are evenly spaced across
this range (Fig. 5). The data were produced by three differ-
ent experimental methods, including: concentric cylinder,
micropenetration, and centrifuge-assisted falling-sphere
viscometry (Table 3, Fig. 5). The latter experiments repre-
sent a relatively new experimental technique (Dorfman et
al., 1996) that has made the measurement of melt viscosity
at intermediate temperatures experimentally accessible.

Our intent is to show the effects of data distribution on
parameter estimation. Thus, we have subdivided the data
(Table 3) into three subsets; each dataset contains data pro-
duced by two of the three experimental methods. A fourth
dataset comprises all of the data. The TVF equation has
been fit to each dataset and the results are listed in Table 4.
Overall, there is little variation in the estimated values of
model parameters A (-2.35 to -2.85), B (4060 to 4784) and
C (429 to 484).
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Table 3. Compilation of viscosity data for haplogranitic melt with
addition of 20 wt. % Na2O. Experimental data include results of
high-T concentric cylinder (CC) and low-T micropenetration (MP)
techniquesand centrifuge assisted falling sphere (CFS) viscometry.

T (K) log (Pa s)1 Method Source2

1571 1.40 CC H
1522 1.58 CC H
1473 1.77 CC H
1424 1.98 CC H
1375 2.21 CC H
1325 2.46 CC H
1276 2.74 CC H
1227 3.07 CC H
1178 3.42 CC H
993 5.73 CFS D
993 5.58 CFS D
993 5.60 CFS D
973 5.99 CFS D
903 7.29 CFS D
1043 4.99 CFS D
1123 4.00 CFS D
822.5 9.35 MP H
795.5 10.10 MP H
777.4 10.90 MP H
755.4 11.90 MP H
1 Experimental uncertainty (1 ) is 0.1 units of log .
2 Sources include:(H) Hess et al. (1995)and (D) Dorfmanet al. (1996).

Variance in model parameters

The 2-D projections of the 1 confidence envelopes comput-
ed for each dataset are shown in Fig. 6. Although the parame-
ter values change only slightly between datasets, the nature of
the covariances between model parameters varies substan-
tially. Firstly, the sizes of the ellipses vary between datasets.
Axis-parallel tangents to these “shadow” ellipses approxi-
mate the ranges of A, B and C that are supported by the data
at the specified confidence limits (Table 4 and Fig. 7).
As would be expected, the dataset containing all the available
experimental data (No. 4) generates the smallest projected el-
lipse and, thus, the smallest range of A, B and C values.
Clearly, more data spread evenly over the widest range of
temperatures has the greatest opportunity to restrict parame-
ter values.

The projected confidence limits for the other datasets
show the impact of working with a dataset that lacks high-,
or low-, or intermediate-temperature measurements. In par-
ticular, if either the low-T or high-T data are removed, the
confidence limits on all three parameters expand greatly
(e.g., Fig. 6 and Fig. 7). The loss of high-T data (No. 1; Fig.
6, 7 and Table 4) increases the uncertainties on model values
of A. Less anticipated is the corresponding increase in the
uncertainty on B. The loss of low-T data (No. 2; Fig. 6, 7 and
Table 4) causes increased uncertainty on A and B but less
than for case No. 1. However, the 1 confidence limits on
the C parameter increase nearly 3-fold (350-600). The loss
of the intermediate temperature data (e.g., CFS data in Fig.
6; No. 3 in Table 4) causes only a slight increase in permitted
range of all parameters (Table 4; Fig. 7). In this regard, these

Fig. 5. Viscositydata for a singlecompositionof Na-richhaplograni-
tic melt (Table 3) are plottedagainstreciprocaltemperature.Data de-
rive from a variety of experimental methods including: concentric
cylinder, micropenetration, and centrifuge-assisted falling-sphere
viscometry (Hess et al., 1995; Dorfman et al., 1996).

Table 4. Summary of results for fitting subsets of viscosity data for
HPG8 + 20 wt. % Na2O to the TVF equation (see Table 3; after Hess
et al., 1995 and Dorfman et al., 1996).

Data sub-
sets

N 2 Parameter values Projected 1 limits
[max – min]

A B C A B C

1 MP & CFS 11 4.0 -2.85 4784 429 4.54 4204 193
2 CC & CFS 16 3.4 -2.35 4060 484 3.70 3661 283
3 MP & CC 13 2.2 -2.38 4179 463 1.82 2195 123
4 All data 20 7.1 -2.76 4672 436 1.57 1809 98

data are less critical to constraining the values of the individ-
ual parameters.

Covariance in model parameters

The orientations of the 2-D projected ellipses shown in Fig.
6 are indicative of the covariance between model parame-
ters over the entire solution space. The ellipse orientations
for the four datasets vary, indicating that the covariances be
tween model parameters can be affected by the quality or the
distribution of the experimental data.

The 2-D projected confidence envelopes for the solution
based on the entire experimental dataset (No. 4; Table 4)
show strong correlations between model parameters (heavy
line; Fig. 6). The strongest correlation is between A and B
and the weakest is between A and C. Dropping the interme-
diate-temperature data (No. 3; Table 4) has virtually no ef-
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Fig. 6. Subsets of experimental data from Table 3 and Fig. 5 have
been fitted to the TVF equation and the individual solutions are rep-
resented by 1 confidence envelopes projected onto: a) the A-B
plane, b) the B-C plane, and c) the A-C plane. The 2-D projections
of the confidence ellipses vary in size and orientation depending of
the distribution of experimental data in the individual subsets (see
text).

fect on the covariances between model parameters; essen-
tially the ellipses differ slightly in size but maintain a single
orientation (Fig. 6a, b, c). The exclusion of the low-T (No.
2) or high-T (No. 1) data causes similar but opposite effects
on the covariances between model parameters. Dropping
the high-T data sets mainly increases the range of acceptable
values of A and B (Table 4) but appears to slightly weaken
the correlations between parameters (relative to case No. 4).

Fig. 7. Optimal values and 1 ranges of parameters (a) A, (b) B, and
(c) C derived for each subset of data (Table 3, Fig. 5 and 6). The
range of acceptable values varies substantially depending on distri-
bution of experimental data.

If the low-T data are excluded, the confidence limits on B
and C increase and the covariance between B and C, and A
and C are slightly stronger.

Model TVF functions

The implications of these results (Fig. 6 and 7) are summa-
rized in Fig. 8. As discussed above, we calculated families
of TVF functions that are consistent with the computed con-
fidence limits on A, B and C (Fig. 6) for each dataset. The
limits to the family of TVF curves are shown as two curves
(solid lines) (Fig. 8) denoting the 1 confidence limits on
the model function. The dashed line is the optimal TVF
function obtained for each subset of data. The distribution of
model curves reproduces the data well but the capacity to
extrapolate beyond the limits of the dataset varies substan-
tially.

The 1 confidence limits calculated for the entire dataset
(No. 4; Fig. 8d) are very narrow; over the entire temperature
distribution of the measurements, the width of confidence
limits is less than 1 log unit of viscosity. The complete data-
set severely restricts the range of values for A, B and C and,
therefore, produces a narrow band of model TVF functions
which can be extrapolated beyond the limits of the dataset.
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Fig. 8. The optimal TVF function (dashed
lines) and the family of TVF functions (sol-
id lines) computed from1 confidencelim-
its on A, B and C (Fig. 6 and Table 4) are
compared to subsets of experimental data
(solid symbols), including: a) MP and CFS,
b) CC and CFS, c) MP and CC, and d) all
data. Open circles denote data not used in
fitting.

Excluding either the low-T or high-T subsets of data
causes a marked increase in the width of confidence limits
(Fig. 8a, b). The loss of the high-T data requires substantial
expansion (1-2 log units) in the confidence limits on the
TVF function at high temperatures (Fig. 8a). Conversely,
for datasets lacking low-T measurements, the confidence
limits to the low-T portion of the TVF curve increase to be-
tween 1 and 2 log units (Fig. 8b). In either case, the capacity
for extrapolating the TVF function beyond the limits of the
dataset is substantially reduced. Exclusion of the intermedi-
ate temperature data causes only a slight increase (10-20 %)
in the confidence limits over the middle of the dataset.

Strong vs. fragile melts

Models for predicting silicate melt viscosities in natural sys-
tems must accommodate melts that exhibit varying degrees
of non-Arrhenian temperature dependence. Therefore, our
final analysis involves fitting of two datasets representative
of a strong, near Arrhenian melt and a more fragile, non-
Arrhenian melt: albite and diopside, respectively. The ex-

perimental data derive from the literature (Table 5) and were
selected to provide a similar number of experiments, over a
similar range of viscosities, and with approximately equiva-
lent experimental uncertainties.

We have followed similar fitting procedures as described
above and the results are summarized in Table 5 and Fig. 9.
The optimal TVF parameters for diopside melt based on
these 53 data points are: A = -4.66, B = 4,514, and C = 718
Table 5; Fig. 9a, b, solid line). The limiting values on these

Table 5. Results of fitting viscositydata1 on albite and diopsidemelts
to the TVF equation.

Albite Diopside

N 47 53
T (K) range 1099-2003 989-1873
A [min – max] -6.46 [-14.6 to -2.8] -4.66 [-6.3 to -3.6]
B [min – max] 14,816 [7240 to 40,712] 4514 [3306 to 6727]
C [min – max] 288 [-469 to 620] 718 [611 to 783]

2 5.57 8.41
1 Sources include: Urbain et al. (1982), Scarfe et al. (1983), N’Da-
la et al. (1984), Tauber & Arndt (1987), Dingwell (1989).
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Fig. 9. Summary of TVF mod-
els used to describe experimen-
tal data on viscosities of albite
(Ab) and diopside (Dp) melts
(see Table 5). (a) Experimental
data plotted as log [ (Pa s)] vs.
10,000/T (K) and compared to
optimal TVF functions. (b) The
family of acceptableTVF mod-
el curves (dashed lines) are
compared to the experimental
data. (c, d) Approximate 1
confidence limits projected on-
to the A-B and A-C planes. Fit-
ting of the TVF function to the
albite data results in a substan-
tially wider range of parameter
values than permitted by the di-
opside dataset. The albite melts
show Arrhenian-like behaviour
which, relative to the TVF
function, implies an extra de-
gree of freedom.

parameters, derived from the confidence ellipsoid (Fig. 9c,
d), are quite restrictive (Table 5) and the resulting distribu-
tion of TVF functions can be extrapolated beyond the limits
of the data (Fig. 9; dashed lines).

Fitting the TVF function to the albite melt data produces
a substantially different outcome. The optimal parameters
(A = -6.46, B = 14,816, and C = 288) describe the data well
(Fig. 9a, b) but the 1 range of model values that are consis-
tent with the dataset is huge (Table 5; Fig. 9c, d). Indeed, the
range of acceptable parameter values for the albite melt is 5-
10 times greater than the range of values estimated for diop-
side. Part of the solution space enclosed by the 1 confi-
dence limits includes values that are unrealistic (e.g., C < 0)
and these can be ignored. Even excluding these solutions the
range of values is substantial (-2.8 < A < -10.5; 7,240 < B <
27,500; and 0 < C < 620). However, the strong covariance
between parameters results in a narrow distribution of
acceptable TVF functions (Fig. 9b, dashed lines). Extrapo-
lation of the TVF model past the data limits for the albite
dataset has an inherently greater uncertainty than seen in the
diopside dataset.

The differences found in fitting the TVF function to the vis-

cosity data for diopside versus albite melts is a direct result of
the properties of these two melts. Diopside melt shows pro-
nounced non-Arrhenian properties and, therefore, requires all
three adjustable parameters (A, B, and C) to describe its rheol-
ogy. The albite melt is nearly Arrhenian in behaviour, defines
a linear trend in log [ ] – 10,000/T (K) space, and is adequate-
ly decribed by only two adjustable parameters. In applying the
TVF function there is an extra degree of freedom which al-
lows for a greater range of parameter values to be considered.
For example, our present solution for the albite dataset (Table
5) includes both the optimal “Arrhenian” solutions (where C
= 0; Fig. 9c, d), as well as solutions where the combinations of
A, B, and C values generate a nearly Arrhenian trend. The
near-Arrhenian behaviour of albite is only reproduced by the
TVF model function over the range of experimental data (Fig.
9b). The non-Arrhenian character of the model and the atten-
dant uncertainties increase when the function is extrapolated
past the limits of the data.

These results have implications for modelling the com-
positional dependence of viscosity. Non-Arrhenian melts
will tend to place tighter constraints on how composition is
partitioned across the model parameters A, B and C. This is
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because melts that show near Arrhenian properties can ac-
commodate a wider range of parameter values. It is also pos-
sible that the high-temperature limiting behaviour of silicate
melts can be treated as a constant, in which case, the param-
eter A need not have a compositional dependence. Compar-
ing the model results for diopside and albite, it is clear that
any value of A used to model the viscosity of diopside can
also be applied to the albite melts if an appropriate value of
B and C are chosen. The Arrhenian-like melt (albite) has lit-
tle leverage on the exact value of A, whereas the non-Arrhe-
nian melt requires a restricted range of values for A.

Conclusion

Developing a predictive model for the viscosity of natural sili-
cate melts requires an understanding of how to partition the
effects of composition across a non-Arrhenian model. At pre-
sent, there is no definitive theory that establishes how parame-
ters in non-Arrhenian equation (e.g., A, B, C) should vary
with composition. Furthermore, these parameters are not ex-
pected to be equally dependent on composition and definitely
should not have the same functional dependence on composi-
tion. In the short-term, the decisions governing how to expand
the non-Arrhenian parameters in terms of compositional ef-
fects will probably derive from empirical study.

During the search for empirical relationships between the
model parameters and composition, it is important to realize
that the optimal parameter values (e.g., least squares solu-
tion) do not necessarily convey the entire story. The non-lin-
ear character of the non-Arrhenian models ensures strong
numerical correlations between model parameters that mask
the effects of composition. One result of the strong covari-
ances between model parameters is that wide ranges of val-
ues (A, B or C) can be used to describe individual datasets.
This is true even where the data are numerous, well-mea-
sured, and span a wide range of temperatures and viscosi-
ties. Stated another way, there is a substantial range of mod-
el values which, when combined in a non-arbitrary way, can
accurately reproduce the experimental data.

This concept should be exploited to simplify develop-
ment of a composition-dependent, non-Arrhenian model for
multicomponent silicate melts. For example, it may be pos-
sible to impose a single value on the high-T limiting value of
log [ ] (e.g., A) for some systems. The corollary to this
would be the assignment of all compositional effects to the
parameters B and C. Furthermore, it appears that non-Arr-
henian datasets have the greatest leverage on compositional
dependencies. Strong liquids that exhibit near-Arrhenian
behaviour place only minor restrictions on the absolute
ranges of values of A, B and C. Therefore, strategies for
modelling the effects of composition should be built around
high-quality datasets collected on non-Arrhenian melts.
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Appendix: Computation of confidence limits

We have used minimization of the 2 function (Eq. 3) to ob-
tain estimates of the TVF parameters aj (j=1, m) based on a
dataset of n measurements (yi ; i=1,n). Essentially this is a
weighted least-squares problem where the weighting
scheme depends on estimates of uncertainties in the mea-
surements (e.g., i; Tables 1 and 3). The 2 minimization
strategy provides a means of establishing confidence limits
on the values of the model parameters. This is done by map-
ping boundaries of constant 2 (values of 2 ) around the
optimal solution in the manner described fully by Press et al.
(1986). These confidence limits provide objective estimates
of the uncertainties on the model parameters based on the
quality and distribution of the data (e.g., Russell & Hauks-
dóttir, 2001; Russell et al., 2001). Specifically, we use this
strategy to portray the full range of TVF parameters that
must be considered as consistent with the experimental data.
The projected confidence limits on the model parameters
(e.g., Fig. 3, 6 and 9) represent linear approximations to the

2 solution surface; near the solution the linear model is in-
distinguishable from the actual 2 surface.

Operationally, we employ the following calculations (e.g.,
Press et al., 1986). Establish the optimal fit by solving for the
minimum 2 (e.g., 2,min). Compute the value 2 ( 2,*- 2,min)
where the value of 2,* depends on the degrees of freedom (n-
m) and the confidence level of interest (e.g., 95 %). The matrix

(m x m) is then calculated for the 2,min fit from:

(A-1)

where k,l are the individual entries on the matrix and yi* de-
notes the values of the functions predicted by the model.
The covariance matrix (C) to the problem is then calculated
from -1.

The constant 2 boundaries (confidence limits) are com-
puted from the matrix equation:

2 = p · [ ] · p’ (A-2)

where p is an m-component vector that describes the posi-
tion of the confidence limits relative to the optimal solution.
For a 3-parameter problem, Eq. A-2 describes a 3-D ellip-
soid. We have portrayed the confidence limits as 2-D ellip-
ses resulting from the projection of the entire 3-D ellipsoid
onto a single plane (e.g., Fig. 3, 6 and 9). These ellipses are
calculated from:

2 = r · [Cp]-1 · r’ (A-3)

where Cp is the 2 x 2 submatrix of C containing rows and
columns of the parameters of interest (e.g., A and B or B and
C). The unknowns to this matrix equation are the two com-
ponents of the relative displacement vector r (e.g., rx and ry).
In its quadratic form, Eq. A-3 becomes:

r2
x · Cp1,1 + rxry · Cp1,2 + r2

y · Cp2,2 = 2. (A-4)
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The coordinates to the ellipse are computed by fixing one
unknown (e.g., ry) and solving for the roots to the resulting
equation. Given arbitrary values of ry, the values of rx are
computed from:

rx =
 ry · Cp1,2 Ö(ry · Cp1,2)2  Cp1,1 · (r2

y · Cp2,2  2)
Cp1,1

(A-5)

Operationally we search for coordinate pairs across the min-
imum and maximum range of values for ry established by
the relationship:

ry =
 Cp1,1 · 2Ö Cp
2
1,2  Cp1,1 · Cp2,2

(A-6)

These 2-D projections of the ellipsoids are linear approxi-
mations to the shadow cast by the entire 3-D confidence en-
velope onto this 2-dimensional plane. Axis-parallel tan-
gents to these ellipses establish the maximum range of pa-
rameter values that are supported by the data at the specified
confidence limits.

We have also computed and shown a second set of confi-
dence limits (e.g., smaller ellipses in Fig. 3). These represent
the confidence limits for two parameters,where the 3rd param-
eter is fixed at the optimal solution. These ellipses are com-
puted in exactly the same way as described above, except that
the projection matrix Cp in Eq. A-3 is calculated from:

Cp = [ p]-1 (A-7)

where the matrix p is a 2 x 2 submatrix of comprising the
rows and columns of the parameters that are not fixed (pa-
rameters that constitute the plane of projection). For exam-
ple, in Fig. 3a, the small ellipse represents the intersection of
the plane C = 359 with the 3-D ellipsoid. It shows the range
of values of A and B permitted (and the apparent correla-
tion) at this fixed value of C.
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