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The Upper-Truncated Power Law Applied to Earthquake Cumulative

Frequency–Magnitude Distributions: Evidence for a Time-Independent

Scaling Parameter

by S. M. Burroughs and S. F. Tebbens

Abstract Earthquake cumulative frequency–magnitude (CFM) distributions are
described by the Gutenberg–Richter power law where the exponent is the b-value.
Although it has been reported that the b-value changes before large earthquakes, we
find that an upper-truncated power law applied to earthquake CFM distributions yields
a time-independent scaling parameter, herein called the �-value. We analyze earth-
quakes associated with subduction of the Nazca plate beneath South America and
find a region of isolated seismic activity at depths greater than 500 km between 20�
S and 30� S. For the entire record, 1973–2000, the earthquake CFM distribution in
this isolated region is well described by a Gutenberg–Richter power law with b �
0.58. The data set includes several large seismic events with mb �6.8. A power law
applied to the CFM distributions for short time intervals between the large events
yields b-values greater than the b-value for the entire record. CFM distributions for
the short time intervals are better described by an upper-truncated power law than
by a power law. The �-value determined by applying an upper-truncated power law
to the short time intervals is equal to the b-value obtained by applying the Gutenberg–
Richter power law to the entire record. Temporal changes in b-value are due to
temporal fluctuations in maximum magnitude. Analysis of four Flinn–Engdahl re-
gions, two in subduction zones and two along spreading ridges, demonstrates wider
applicability of the results. The �-value is an unchanging characteristic of the system
that may be determined from a short-term record.

Introduction

Variations in b-value have been reported before major
earthquakes. In the years preceding large earthquakes, an
increase in b-value has been reported in Venezuela (Fiedler,
1974), New Zealand (Smith, 1981, 1986), and the eastern
India–Myanmar border region (Sahu and Saikia, 1994). In
some studies, a decrease in b-value has been reported prior
to large earthquakes (Guha, 1979; Molchan and Dmitrieva,
1990; Imoto, 1991; Molchan et al., 1999). Smith (1981)
noted that the b-value determined from small samples is a
statistical parameter related to the mean magnitude of the
sample and is not appropriate for long-term prediction. We
identify a time-independent scaling parameter that may be
determined from a small sample and yet is appropriate for
long-term prediction.

Scaling Relationships

Cumulative frequency–magnitude (CFM) distributions
of earthquakes are generally described by the Gutenberg–
Richter relationship,

log N � a � b m, (1)10

where N is the number of earthquakes of magnitude greater
than or equal to m, b is the scaling exponent, and a is the
activity level, which is equal to the log of the number of
earthquakes of magnitude m �0 (Gutenberg and Richter,
1949). The b-value is one of the most important statistical
parameters of seismology and is used for probabilistic fore-
casting.

Aki (1965) developed a maximum likelihood method
for determining the b-value where

log e10b � (2)
¢m � mo

and the 95% confidence limit is

1.96b
db � . (3)

n�
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The term m¢ is mean earthquake magnitude above the thresh-
old magnitude mo, and n is the number of earthquakes. A
similar relationship for b was derived by Utsu (1965). This
method has been widely applied (e.g., Oncel et al., 2001)
and will be demonstrated using several data sets within this
work.

Other functions have been used to describe earthquake
distributions. Page (1968) considered a power law distribu-
tion over a limited range, setting minimum and maximum
values to the noncumulative frequency–magnitude distri-
bution. A power law with an exponential rolloff has been
used to describe earthquake CFM distributions that fall away
from a power law at large magnitudes (Kagan, 1993; Main,
2000). Bender (1983) demonstrated that the entire CFM dis-
tribution is affected by the addition of a large earthquake
and that a CFM distribution may fall off from a power law
at large event sizes. Similar fall-off patterns have been pro-
duced by a nonconservative cellular automaton model for
earthquakes (Main et al., 1994; Olami et al., 1992). Cos-
entino et al. (1977) described the fall-off of a CFM distri-
bution when there is a physical limit to the maximum pos-
sible magnitude. Field et al. (1999) and the Working Group
on California Earthquake Probabilities (WGCEP) (1995)
used a truncated CFM distribution of moment magnitudes to
determine regional b-values in southern California, but tem-
poral changes in b-value were not considered. We develop
an equation that describes an earthquake CFM distribution
when the power law is abruptly truncated at large magnitude.

A power law applied to a cumulative distribution has
the form

��N(r) � Cr , (4)

where N(r) is the number of objects with size greater than
or equal to r, � is the scaling exponent (the slope on a log–
log plot), and C is a constant equal to the number of objects
with size r � 1. In this work, the term frequency refers to
the cumulative number of earthquakes, denoted N, as op-
posed to the number of earthquakes per year, denoted Ṅ.
Taking the log of both sides of equation (4), we obtain

log N � log C � �logr. (5)

Equation (5) has the same form of the Gutenberg–Richter
power law, equation (1), where a � log C, m � log r, and
b � �.

An upper-truncated power law describes cumulative
frequency–size distributions associated with several natural
systems (Burroughs and Tebbens, 2001b). An upper-
truncated power law has the form

� �� �N (r) � C(r � r ), (6)T T

where NT(r) is the number of objects with size greater than
or equal to r, C is the activity level equal to the number of
objects of size r � 1, there are no objects of size rT or larger,

and � is the scaling exponent (Burroughs and Tebbens,
2001a). Since each number of objects in a cumulative dis-
tribution includes all larger objects, upper truncation of the
distribution decreases the cumulative number associated
with each object size. In equation (6), the subtracted term,

, represents this decrease from the power law, .� �� �Cr CrT

Applying the upper-truncated power law to earthquake
magnitudes, C � 10a, r � 10m, and rT � . SubstitutingmT10
into equation (6), the resulting equation for an upper-
truncated power law applied to earthquake magnitudes is

� �a m � m �TN (m) � 10 ((10 ) � (10 ) ). (7)T

Equation (7) provides a quantitative description of the fall-
off in the earthquake CFM distribution observed by Bender
(1983) and is equivalent to the equation used by Field et al.
(1999) to study earthquake moment magnitudes. We use
equation (7) to analyze several earthquake CFM distribu-
tions.

When applying equation (7) to a data set, the Aki (1965)
maximum likelihood method for determining the parameters
is not appropriate. The Aki method depends on the CFM
distribution following a power law with a constant slope on
a log–log plot. The slope of an upper-truncated power law
is not constant. We find the parameters for equation (7) by
minimizing chi-square. The 95% confidence limit is deter-
mined by using the residuals to calculate the standard de-
viation of the parameter and then applying the Student’s
t-test to determine the confidence limit. This method of de-
termining confidence limits assumes that the errors in fitting
the function to the data points are normally distributed with
zero mean.

Analysis

To analyze temporal change in b-value, we seek seismic
regions that satisfy three criteria. First, we seek regions of
isolated seismicity. We thereby avoid the difficulties and
errors that may be introduced when arbitrarily selecting
boundaries within active seismic regions. Second, we seek
regions where several large earthquakes occurred so that we
may analyze how large earthquakes affect CFM distributions.
Third, the seismic record for the region must contain a suf-
ficient number of reliably recorded earthquakes to analyze
CFM distributions between the large events. The only tec-
tonically driven seismic region we found that satisfies all
three criteria is along the west coast of South America.
Earthquakes in this region are associated with subduction of
the Nazca plate beneath the South American plate. A region
of isolated seismic activity is found between 20� S and 30� S
at depths greater than 500 km (Fig. 1). We use the U.S.
Geological Survey/National Earthquake Information Center
Preliminary Determination of Epicenters (USGS/NEIC PDE)
catalog to analyze earthquakes in this region.

In this study region, we find four large seismic events,
labeled E1–E4 (Fig. 2), which are earthquakes of magnitude
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Figure 1. Earthquakes associated with subduction
of the Nazca plate beneath South America between
20�S and 30�S from 1973 to 2000. An aseismic region
separates shallow and intermediate earthquakes from
the deepest earthquakes. We analyze the deep earth-
quakes (�500 km) outlined by the box.

Figure 2. Magnitudes and dates of the earth-
quakes within the study region shown in Figure 1.
Earthquakes of mb �6.5 are labeled E1, E2, E3, and
E4. Event E3 consists of two earthquakes, 11 days
apart, each of magnitude mb 6.9.

Figure 3. Cumulative frequency–magnitude dis-
tribution for all earthquakes in the study region. A
Gutenberg–Richter power law describes this distri-
bution and yields a b-value of 0.58 � 0.02 and a �
4.5. The smallest earthquakes in the record are not
used in determining the Gutenberg–Richter b-value
and are indicated by open circles.

6.8, 6.9, and 7.0, respectively. E3 consists of two earth-
quakes, 11 days apart, each of magnitude 6.9. The largest
unlabeled earthquake is magnitude 6.5. The CFM distribu-
tion of earthquakes for the entire record, 1973–2000, is
well described by the Gutenberg–Richter power law with a
b-value of 0.58 � 0.02 (Fig. 3). The b-value is determined
by minimizing chi-square and the 95% confidence limit is
reported. Results for this and other CFM distributions are
summarized in Table 1. The determined b-value is lower
than typical b-values but is consistent with low b-values ob-
served for deep seismic regions (e.g., Kagan, 1991). To ex-

amine the temporal change in earthquake CFM distributions,
we examine the seismic record between large events
(method 1) and for various time intervals preceding large
events (method 2).

Method 1

To examine how CFM distributions are affected by a
large earthquake, we choose three time intervals bounded by
the largest events shown in Figure 2. Each interval begins
immediately after a large event and ends at the next large
event. First, we examine the time interval bounded by E1
and E2. The CFM distribution for this interval is shown both
preceding and including the final event E2 (Fig. 4a). The
CFM distribution for events before E2 is fit with an upper-
truncated power law, equation (7), yielding an �-value of
0.57 � 0.22. We set b in equation (1) equal to this �-value
and plot the resulting power law (GR PL with b � 0.57,
Fig. 4a). The CFM distribution for events including E2 is
well described by this power law (Fig. 4a).

Next we examine the time interval bounded by E2 and
E3 (Fig. 4b). The CFM distribution for events before E3 is
fit with an upper-truncated power law yielding � � 0.68 �
0.10. The CFM distribution for events including E3 is well
described by a power law, equation (1), with b set equal to
the determined �-value of 0.68.

Finally, we examine the time interval bounded by E3
and E4 (Fig. 4c). We begin this interval after a possible
aftershock of magnitude mb 6.5 that occurred three months
after E3. This interval is shorter than the two preceding in-
tervals and contains few intermediate size earthquakes, mak-
ing it difficult to obtain a well-constrained �-value when
fitting an upper-truncated power law. We include as guide-
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Table 1
Summary of Results

Region Figure
Time

Interval a � or b mT

Chile Trench (All) 3 1973–2000 4.51 � 0.07 0.58 � 0.02
Chile Trench (E2) 4a 1973–1984 3.99 � 0.99 0.57 � 0.22 6.72 � 0.87
Chile Trench (E3) 4b 1984–1994 4.65 � 0.42 0.68 � 0.10 6.88 � 1.05
F-E 410 7.a2 1973–2001 8.44 � 0.61 1.23 � 0.12 5.94 � 0.09
F-E 49 7.b2 1973–2001 9.80 � 1.30 1.58 � 0.26 5.88 � 0.22
F-E 221 7.c2 1973–1994 8.80 � 0.15 1.22 � 0.03 6.60 � 0.12
F-E 189 7.d2 1973–2001 9.19 � 0.02 1.41 � 0.14
Piton de la Fournaise 8 1988–1992 3.67 � 0.01 0.74 � 0.02 3.29 � 0.02

95% confidence limits are reported.

lines on Figure 4c an upper-truncated power law and a
Gutenberg–Richter power law. The guidelines were ob-
tained by setting � � 0.58, the b-value for the entire data
set, and adjusting a and mT to obtain the best fit of the upper-
truncated power law to the distribution of events preceding
E4 (lower dashed line, Fig. 4c). These values for a and �
were also used to plot the power law guideline (upper dashed
line, Fig. 4c). The CFM distribution for the interval preced-
ing E4 is in agreement with the upper-truncated power law
guideline with � � 0.58.

In summary, for all three time intervals, the CFM dis-
tribution preceding the large event is well described by an
upper-truncated power law with scaling exponent �. The
occurrence of the terminating large event adds one event to
each value in the CFM distribution, moving each point in the
distribution closer to the power law and decreasing the slope
of the distribution. When the terminating event is included,
for each time interval the distribution is well described by a
power law, equation (1), with scaling exponent b set equal
to �.

Method 2

To examine how earthquake CFM distributions change
through time, we consider all earthquakes that occurred in
progressively shorter time intervals preceding each large
event. For E4, we plot the CFM distributions for all earth-
quakes that occurred in the 25-, 15-, 10-, 5-, and 1-year time
intervals immediately preceding E4 (Fig. 5a). Since shorter
records are available preceding the remaining large events,
the interval durations have been adjusted. We examine the
22-, 15-, 10-, 5-, and 2-year time intervals preceding E3 (Fig.
5b) and the 11-, 5-, and 1-year time intervals preceding E2
(Fig. 5c). A power law is shown as a guideline with b �
0.58, equal to the b-value determined for the entire record.
Also shown is an upper-truncated power law with � � 0.58.
An increase in slope of the CFM distribution, corresponding
to an increase in b-value, is apparent for the progressively
shorter time intervals immediately preceding each large
event. An upper-truncated power law with a single �-value
describes the CFM distributions for the shortest time inter-
vals preceding all three large events (� � 0.58, Fig. 5a–c).

This �-value is equal to the b-value of the Gutenberg–
Richter power law that describes the entire data set.

Discussion

Upper-Truncated Power Laws

The effects of upper truncating a power law CFM dis-
tribution are shown in Figure 6. We start with a Gutenberg–
Richter power law, equation (1), and arbitrarily set a � 8
and b � 1.0 (line PL, Fig. 6). Choosing truncation magni-
tudes, mT, equal to 5, 6, and 7, and setting � equal to b, we
plot each associated upper-truncated power law, equation
(7), as lines A, B, and C, respectively (Fig. 6a). The upper-
truncated power law falls off from a power law near the
truncation magnitude, producing an increase in slope. This
behavior is observed when applying analysis method 1 to
the South American study region.

Next, we hold the truncation magnitude and �-value
constant and change the activity level. We arbitrarily set mT

� 6 and � � 1.0. Choosing activity levels, a, equal to 6,
7, and 8, we plot each associated upper-truncated power law
as lines D, E, and F, respectively (Fig. 6b). As activity level
increases the slope again increases near the truncation mag-
nitude.

Finally, we change both the activity level, a, and the
truncation magnitude, mT, while holding the �-value con-
stant at � � 1. Setting a to values of 5, 6, and 7, while
simultaneously setting mT to values of 4, 5, and 6, we plot
each associated upper-truncated power law as lines G, H,
and I, respectively (Fig. 6c). The upper-truncated power law
again has a steeper slope than the power law near the trun-
cation magnitude. This behavior is observed when applying
analysis method 2 to the South American study region. All
truncated lines plotted in Figure 6 have the same �-value,
equal to the b-value of the Gutenberg–Richter power law.

Evidence for a Time-Independent Scaling Parameter

Method 1 examines earthquake CFM distributions in
time intervals bounded by the largest events. The earth-
quakes in the intervals preceding E2 and E3 are well de-
scribed by an upper-truncated power law (Figs. 4a, 4b). A
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Figure 4. Cumulative frequency–magnitude (CFM)
distributions for earthquakes occurring between the
events labeled in Figure 2. Open circles are not used
in analysis. (a) Beginning immediately after E1 and
ending just before E2, the CFM distribution (dia-
monds) is fit with an upper-truncated power law,
equation (7), yielding � � 0.57 � 0.22 and a � 4.0.
A Gutenberg–Richter power law, equation (1), with
b � 0.57 and a � 4.0, is shown for comparison (la-
beled GR PL). When N � 1, this power law approx-
imates the magnitude of E2. Stars show the CFM dis-
tribution with E2 included. (b) A similar analysis of
earthquakes between E2 and E3. In this case, fitting
an upper-truncated power law to the cumulative dis-
tribution of events preceding E3 yields � � 0.68 �
0.10 and a � 4.6. A power law with these values for
� and a approximates the size of E3. (c) The cumu-
lative distribution of events for the time interval
between E3 and E4. A power law and an upper-
truncated power law (UTPL), each with scaling ex-
ponent 0.58, the b-value for the entire record, are
shown with dashed lines. For all three intervals be-
tween events, the CFM distributions are consistent
with an upper-truncated power law.

Gutenberg–Richter power law fit to these distributions
would have a steeper slope and therefore a larger b-value
than was determined for the entire record. Thus, the b-value
for this region exhibits temporal variation due to temporal
fluctuations in maximum magnitude. Increases in b-value
can be explained by upper truncation of the distribution. Fig-
ure 6a demonstrates that an upper-truncated power law has
a steeper slope near the truncation magnitude than a power
law with the same scaling exponent. The upper truncation
observed between large events has a simple explanation: the
large terminating event is missing from the interval. The
�-value of the upper-truncated power law applied to a short
record yields the b-value of the Gutenberg–Richter power
law applied to the entire record.

Method 2 examines earthquake CFM distributions in
progressively shorter time intervals preceding each large
event. The earthquakes in time intervals preceding E2, E3,
and E4 are found to have CFM distributions that are steeper
for the shorter time intervals immediately preceding the
large event (Fig. 5). The longest record precedes E4, where
a temporal change in the slope of the CFM distributions is
most apparent. A Gutenberg–Richter power law fit to these
steeper distributions would demonstrate a temporal increase
in b-value as the time intervals become shorter. An upper-
truncated power law describes these distributions with a sin-
gle scaling exponent, the �-value. The observed CFM dis-
tributions are replicated by changing both the truncation
magnitude and the activity level of the upper-truncated
power law, as shown in Figure 6c. Decreases are expected
in both activity level and truncation magnitude of earthquake
distributions for progressively shorter time intervals. The ac-
tivity level decreases because there are fewer earthquakes
within shorter time intervals. The truncation magnitude de-
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Figure 5. CFM distributions for time intervals of
various lengths preceding the major earthquakes la-
beled in Figure 2. (a) Each curve represents the CFM
distribution for all events that occurred in the indi-
cated time interval preceding E4. The longest time
interval includes all events that occurred in the 25
years preceding E4, while the shortest time interval
includes only the events in the final year before E4.
(b) and (c) Similar analyses for earthquakes preceding
E3 and E2, respectively. These events are closer to
the beginning of the data set so the time interval du-
rations have been adjusted accordingly as indicated.
The distributions for the longer time intervals have
slopes consistent with a Gutenberg–Richter power
law, equation (1), with a b-value of 0.58 (upper
dashed line). The distributions for the shorter time
intervals are consistent with an upper-truncated power
law (UTPL), equation (7), with � set equal to 0.58
(lower dashed line).

creases because the occurrence of large earthquakes is less
likely within a short time interval. However, short time in-
tervals may contain large earthquakes, as seen in Figure 5.
For instance, during the 10-year time interval preceding E4
(Fig. 5a), there are two earthquakes of magnitude mb 6.9.

Based on Figure 3, an earthquake of this magnitude is ex-
pected to occur once every 8.5 years. Since these two earth-
quakes are both sampled within the same 10-year interval,
the CFM distribution does not fall off at large magnitude and
fitting an upper-truncated power law would be inappropriate.

Both analysis methods show that the observed increase
in slope of CFM distributions before large events is well
described by an upper-truncated power law. The �-value of
the upper-truncated power law determined from short time
intervals is equal to the Gutenberg–Richter b-value deter-
mined from the entire record. While the b-value changes due
to upper-truncation, the �-value remains constant.

Possible Causes for Temporal Variations
in Maximum Magnitude

The increase in b-value observed for short time intervals
before large events can be explained by temporal changes in
the maximum magnitude. A fracture mechanics model for
fluctuations in maximum magnitude has been proposed by
Main et al. (1989). In their model, temporal changes in
b-value can be explained by the processes of time-varying
applied stress and crack growth under conditions of constant
strain rate. These results were validated in the laboratory by
Sammonds et al. (1992). Similarly, critical point systems
could produce fluctuations in maximum magnitude (Main,
2000). Stress corrosion constitutive laws have also been pro-
posed as an explanation for temporal changes in b-value and
maximum magnitude (Main et al., 1992). We suggest an
alternate explanation for temporal changes in maximum
magnitude. The long-term Gutenberg–Richter power law
predicts the frequency of occurrence of earthquakes of a
given magnitude. A sampling interval may or may not in-
clude the largest earthquake predicted for that interval. For
example, an earthquake with a probability of occurring every
50 years may or may not be sampled in a given 50-year time
interval. Various sampling intervals of the same duration
will contain different maximum event sizes, thus resulting
in temporal fluctuations in maximum magnitude.
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Figure 6. Upper truncation of a power law function
for a cumulative distribution. The Gutenberg–Richter
relation, equation (1), is shown for a � 8, b � 1
(PL). (a) The power law is upper-truncated at mT 5,
6, and 7 (A, B, C) with a � 8 and � �; 1. (b) The
value of a is set equal to 6, 7, and 8 (D, E, F), while
� and mT are held constant at � � 1 and mT 6.
(c) The value of a is set equal to 5, 6, and 7 while
simultaneously setting mT to 4, 5, and 6 (G, H, I) with
� � 1. Upper truncation of the cumulative distribu-
tion produces the observed increase in slope near the
truncation magnitude. All truncated lines are plots of
equation (7) with the same value of the scaling ex-
ponent, � � 1, equal to the scaling exponent of the
Gutenberg–Richter power law, b � 1.

Evidence from Other Regions

Tectonic Seismicity. We investigate whether or not a time-
independent �-value characterizes the CFM seismicity dis-
tributions in other regions. The South American study site

is the only tectonically driven seismic region that satisfies
the three criteria of isolated seismicity, several large earth-
quakes, and a sufficient record to examine CFM distributions
between the large earthquakes. Other regions of isolated
seismicity are found in subduction zones, but the available
record does not satisfy the second and third criteria (e.g.,
Indonesia and the Kuril–Kamchatka trench). For regions that
satisfy the second two criteria, the seismicity is not isolated,
so it is necessary to choose arbitrary geographic boundaries.
Examples include regions analyzed in previous studies
where temporal changes in b-value were observed (Smith,
1981, 1986; Imoto, 1991; Sahu and Saikia, 1994).

Geographic boundaries may be placed on seismic activ-
ity by the Flinn–Engdahl zoning scheme (Flinn and Engdahl,
1974; Young et al., 1996). Although the criteria used to
select Flinn–Engdahl (F-E) regions differ from our criteria,
we can determine if a time-independent scaling parameter
describes CFM distributions for F-E regions. In the USGS/
NEIC PDE catalog we identify F-E regions that include a
large event with a sufficient record preceding the event to
examine the temporal behavior of the CFM distribution. We
select four F-E regions that represent different tectonic en-
vironments: two ridge axes, the southern mid-Atlantic ridge
(F-E region 410) and the Gulf of California (F-E region 49);
and two subduction zones, the Kuril Islands (F-E region 221)
and the New Hebrides trench southeast of the Loyalty Is-
lands (F-E region 189).

In all four regions, we select a large event with enough
earthquakes preceding the event to examine the temporal
behavior of the b-value and �-value (Fig. 7, top). We apply
method 2, as described above for the South American region,
to examine earthquake CFM distributions in progressively
shorter time intervals preceding the labeled event. We limit
our analysis to earthquakes of magnitude 5 and greater be-
cause below magnitude 5 the noncumulative distributions
indicate that the data set may not be complete. To determine
the long-term character of the CFM distribution, we analyze
the entire record for regions 410, 49, and 189 (Fig. 7a,b,d,
middle). For region 221, we analyze all earthquakes preced-
ing the event, as the number of recorded small earthquakes
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Figure 7. Analysis of regions defined by the Flinn–Engdahl (F-E) zoning scheme: (a) South-
Atlantic ridge, F-E 410; (b) Gulf of California, F-E 49; (c) Kuril Islands, F-E 221; (d) New Hebrides
trench, F-E 189. The top graphs, labeled 1, show earthquake magnitudes and dates. The middle
graphs, labeled 2, show CFM distributions for the record shown in (1) and for various time intervals
preceding the specific event. The bottom graphs, labeled 3, show CFM distributions for five years
both preceding and including the event labeled in the top graphs. The b-values are calculated using
the Aki method, equation (2). The Aki method always yields a decrease in b-value with the inclu-
sion of the labeled event. All reported errors are 95% confidence limits. (continued)
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Figure 7. (Continued)
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Figure 8. Cumulative frequency–magnitude dis-
tribution for earthquakes recorded between 1988 and
1992 for Piton de la Fournaise volcano (after Grasso
and Sornette, 1998). Open circle is not used in anal-
ysis. An upper-truncated power law (solid line), equa-
tion (7), describes this distribution with � � 0.74 �
0.02.

increases after the event (Fig. 7c, top). The long-term CFM
distribution is well-described by an upper-truncated power
law for regions 410, 49, and 221 (Fig. 7a–c, middle). For
region 189, the long-term CFM distribution is well described
by a Gutenberg–Richter power law (Fig. 7d, middle), as was
seen for the Peru–Chile trench (Fig. 3). The �-values are
determined by minimizing chi-square (Fig. 7a–c, middle),
and the b-value is determined using the Aki method (Fig.
7d, middle). In all cases, 95% confidence levels are reported.
In each region, for all time intervals analyzed, an upper-
truncated power law describes the CFM distributions with
the same �-value found for the long-term record (Fig. 7,
middle graphs).

For the five-year time intervals, we examine the CFM
distributions both preceding and including the labeled events
(Fig. 7, bottom graphs). The straight lines shown in Figure
7 (bottom) are Gutenberg–Richter power laws where the Aki
method is used to determine the b-values. In all four regions
the occurrence of the event causes the b-value to decrease.
The Aki b-value must decrease with the inclusion of any
event larger than the mean magnitude (equation 2). Although
the b-value varies with time, the �-value obtained from the
upper-truncated power law remains constant.

Nontectonic Seismicity. Isolated seismic regions exist that
are not tectonically driven. Examples include locations near
volcanoes, dams, and mining operations. We illustrate how
the upper-truncated power law applies to the earthquake
CFM distribution from one such isolated region, Piton de la
Fournaise volcano on Reunion Island in the Indian Ocean.
This volcano is seismically isolated and located more than
1000 km from a plate boundary (Grasso and Bachèlery,
1995). The earthquake record consists of earthquakes re-
corded between 1988 and 1992 (Grasso and Sornette, 1998).
Exotic events such as volcanic tremors and rock falls are not
included. We find that the CFM distribution for this record
is well described by an upper-truncated power law with a
single scaling exponent, �, equal to 0.74 � 0.02 (Fig. 8).
Grasso and Bachèlery (1995) analyzed the CFM distribution
for events that occurred between 1990 and 1992 in this re-
gion and noted that a single power law is inadequate to
define the largest events. An upper-truncated power law de-
scribes the distribution with a single scaling exponent with-
out excluding the largest events.

Upper truncation of earthquake size at the Piton de la
Fournaise volcano may have several causes. Grasso and
Bachèlery (1995) suggested that the fall-off at large event
size is due to the limited temporal extent of the data, similar
to what we observed for short time intervals of the Chile
study region. Alternatively, the upper truncation may be due
to physical limitations restricting the size of earthquakes in
this region.

Summary

While it has often been observed that the b-value
changes during time intervals between large earthquakes, we

identify a scaling parameter that remains constant, the
�-value. The b-value for short time intervals changes due to
temporal changes in the maximum magnitude. An upper-
truncated power law fit to an earthquake CFM distribution
yields the �-value. The �-value determined for short time
intervals is equal to the Gutenberg–Richter b-value deter-
mined from longer records. While the b-value changes due
to upper-truncation, the �-value remains constant and may
be used for long-term probabilistic forecasting.
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