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INTRODUCTION

In comparison with the usual determination of crystal struc-
tures, where the problems include determination of the space
group and determination of the positions and nature of the at-
oms in the unit cell, the structural determination of lamellar
materials is rather different because the nature and structure of
the layers involved are roughly known, and the problem is
mainly the determination of the stacking parameters of these
layers. For example, phyllosilicates consist of stacked layers
that are either 1:1 layers (layers composed of a tetrahedral sheet
where Si is the cation, associated with an octahedral sheet con-
taining Al or Mg cations), or 2:1 layers (where the octahedral
sheet is sandwiched between two tetrahedral sheets). In the lat-
ter, octahedral or tetrahedral substitutions in the sheets result
in positive charge deficits compensated either by interlayer
cations or by octahedral hydroxide sheets with a positive charge.
An important feature of these two families of layers is that their
unit-cell parameters are very close, allowing phyllosilicate crys-
tals to form with layers of these two families. Phyllosilicates
are then commonly mixed-layer minerals. Another character-
istic is that the different types of layers of these crystals be-
have differently when they are submitted to heating or
intercalation treatments. By combining the information deduced
from the evolution of the X-ray diffraction (XRD) patterns af-
ter a 450–550∞C heating treatment (water molecules are, if
present, removed from the interlayer spaces), with that obtained
from the corresponding evolution after a glycerol or an ethyl-
ene glycol treatment (these molecules replace water in the
interlayer spaces where water is present, and lead to a specific
d-spacing), it is possible to predict the nature of the layers that
build the crystals and the problem is mainly the determination

of the way these layers are stacked (Brown and Brindley 1980;
Moore and Reynolds 1989).

 The primary method for the determination of the stacking
parameters of lamellar structures is the modeling of their pow-
der XRD patterns (powder diffraction because lamellar par-
ticles are usually fine grained). If the goal is to determine the
succession of the layers along the normal to the layers, the XRD
patterns must be obtained from samples in which particles are
as parallel as possible in order to remove, in a reflection geom-
etry, the hkl reflections (with h and/or k π 0). If the goal is
additionally to determine the stacking defects in the plane of
the layers, the XRD patterns must also be recorded for samples
in which particles are as unoriented as possible. A transmis-
sion geometry then allows a better control of the experimental
parameters (Drits and Tchoubar 1990).

Several mathematical formalisms have been proposed for
modeling the powder XRD patterns of oriented samples of
minerals containing one or more kinds of layers (Kakinoki and
Komura 1952, 1965; Reynolds 1967; Drits and Sakharov 1976).
Different types of software have been designed, based on these
formalisms. Among them, the most widespread is NEWMOD
(Reynolds 1985). The software of Drits and Sakharov (1976)
has been widely used by those authors but is not generally avail-
able. More recently, Plançon and Drits (2000) have built a pack-
age for the calculation of 00l reflections of two- (MLM2C)
and three-component systems (MLM3C). Plançon (1976, 1981)
also developed a mathematical formalism for the modeling of
the XRD patterns of unoriented samples. The corresponding
software, CALCIPOW (Plançon 1976), has been used for dif-
ferent structural characterizations, e.g., of kaolinites (Plançon
and Tchoubar 1977), heat-treated 2:1 phyllosilicates (Muller et
al. 2000), nacrites (Ben Haj Amara et al. 2000), and birnessites
(Lanson et al. 2002).
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ABSTRACT

The “classical” modeling of powder X-ray diffraction (XRD) patterns of lamellar structures,
such as phyllosilicates, assumes that the samples are composed of “crystals” having various thick-
ness and well-defined translations between layers. This model is able to describe the high-angle
domain of XRD patterns but sometimes fails in the low-angle region. The new model proposed here
considers the samples to be composed of “particles” that have larger sizes than crystals and contain
defects such as cracks, inner-porosity, bent layers, edge dislocations, etc. These defects induce varia-
tions in the d-spacings, introduced in the calculation by distributions of the d-spacings. For
phyllosilicates, this model is consistent not only with XRD, but also with small-angle X-ray scatter-
ing (SAXS) data, transmission electron microscopy (TEM) results, and high-resolution transmission
electron microscopy (HRTEM) observations.
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samples are composed of “crystals” in which the layers are
perfectly parallel, and the translations between layers are well
defined. All of these crystals do not have the same number of
layers and the calculation must take into account a distribution
of crystal thicknesses, for example a log-normal one (Drits et
al. 1997a).

COMPARISON OF STRUCTURAL CHARACTERIZATIONS
BY XRD MODELING AND BY OTHER TECHNIQUES

The modeling of the XRD patterns of clay minerals gener-
ally suggests the presence of crystalites averaging 10 layers
(Moore and Reynolds 1989; Drits et al 1997a) with in-plane
dimensions of a few tens of nanometers (Plançon and Tchoubar
1977; Ben Haj Amara et al. 2000). Other techniques have also
been used to obtain information on the way the layers are
stacked, including small-angle X-ray scattering (SAXS), trans-
mission electron microscopy (TEM), and high-resolution trans-
mission electron microscopy (HRTEM). These three techniques
clarify what is determined by XRD.

When kaolinite samples are studied by XRD and TEM, it
appears that the in-plane “mean” size of the particles seen by
TEM is much greater than the few tens of nanometers deter-
mined by modeling of the XRD patterns. The difference can
reach one order of magnitude. When the same samples are ad-
ditionally studied by HRTEM, it appears (Plançon and Tchoubar
1977) that even for “well-crystallized” kaolinites, a particle is
not a perfect stack of parallel layers but contains edge disloca-
tions or cracks, and particles can be slightly bent (even when
they are thick). Comparison of the XRD data with TEM and
HRTEM results leads to the conclusion that the “crystals” seen
by XRD are in fact “coherent scattering domains” (CSD), which
are only parts of larger entities, the “particles” seen by TEM
and HRTEM.

A sample of Rupsroth beideillite (A) was studied simulta-
neously by XRD (Besson 1980) and SAXS (Pons 1980). Us-
ing XRD methods Besson (1980) determined a mean thickness
of 15 layers but Pons (1980) found a mean thickness of 400
layers by SAXS. The CSDs seen by these two techniques are
thus very different.

In a study of kaolinites (Plançon and Tchoubar 1977), the
size of the in-plane CSD determined by modeling the hkl re-
flections was always noticeably smaller for the 20,13 reflec-
tions than for the 02,11 ones. For example, for a “well-
crystallized” Georgia kaolin (like KGa-1), the diameter of the CSD
is 150 nm for the 02,11 band but only 50 nm for the 20,13 one.

These three observations can have the same explanation,
namely that the samples are composed of particles that are not
stackings of perfectly parallel layers but contain, as observed
by HRTEM, cracks, bubbles, bent layers, edge dislocations,
and perhaps other defects. From a diffraction point of view, the
amplitude diffracted by a particle is the summation of the indi-
vidual contributions of unit cells, through phase terms exp(2 p
i s.r), where s is the diffraction vector and r determines the
position of the unit-cell origin. For perfect stacking there is a
perfect periodicity of r, and there are directions in space for
which all the phase terms are the same. If we consider that
some disorder exists in the periodicity, r becomes r + Dr and
the phase term becomes exp(2 p i s.r) * exp(2 p i s. Dr), where

the second element of the product introduces a smearing. If s is
small, exp(2 p i s. Dr) differs only slightly from 1, even for a
non-negligible Dr. Thus SAXS, using a small s, sees the par-
ticles almost as if they did not contain any defects. For one Dr
value, exp(2 p i s. Dr) departs increasingly from 1 as the dif-
fraction vector s increases. The smearing effect then increases
with s, and consequently the apparent CSDs decrease. XRD
sees these CSDs, which are only parts of the particles.

An interesting approach was proposed recently by Ben
Rhaiem (1999). Theoretical SAXS intensities were calculated
for smectite particles containing only one type of layer but three
d-spacings (13.5, 17, and 20.5 Å), corresponding to three
glycolation states of the interlayer spaces, with a dominant pro-
portion of the mean distance (respective proportions: 0.1, 0.8,
and 0.1 for the above d-spacings). It was assumed that the non-
mean d-spacings break the coherence of the diffracted beams
in XRD. In this case, large particles (80 layers) would produce
XRD patterns like a set of crystals in which all the layers would
have the same 17 Å d-spacing. Such a set was determined ran-
domly, keeping the above proportion of the three interlayer
spaces. Then, a calculation of the corresponding XRD pattern
was made with a simplified distribution of crystal thickness.
This pattern fits rather well with the SAXS pattern in the low-
angle region.

So, it may be supposed that the classical description of XRD
by phyllosilicates, which assumes the existence of crystals con-
taining parallel layers with definite d-spacings and a thickness
distribution of these crystals, is an approximation of the real
diffraction phenomenon, which involves particles that are larger
than these crystals and contain only roughly parallel layers with
a distribution of distances between these layers. The discrep-
ancy between the two models is expected to increase with the
decrease of the modulus of the diffraction vector. In the most
accurate works done recently (e.g., by Drits et al. 1997b;
Sakharov et al. 1999), such discrepancies are observed between
some calculated and experimental XRD curves in the low-angle
region, explained until now, by the uncertainty in experimen-
tal conditions that could modify the exact Lorentz-polarization
factor.

The model proposed here for the description of the diffrac-
tion by phyllosilicates considers the particles as a whole, in-
cluding the defects that disturb the regularity of the stacking of
the layers. To be valid, this model must lead to the same inten-
sity distribution in the high-angle region of XRD as the “clas-
sical” model, but it leads to a different intensity distribution in
the smallest angle region, the discrepancies increasing with the
decrease in the diffraction vector.

CALCULATION OF 00l INTENSITIES IN THE NEW
MODEL

It has been proposed, mainly by Kakinoki and Komura
(1952) and Drits and Sakharov (1976), to model the 00l reflec-
tions of XRD patterns by a matrix formalism. This procedure
was extended later by Plançon and Tchoubar (1977) and Plançon
(1981) to the modeling of the hkl intensities with h and/or k π
0. A review of this problem can be found in Drits and Tchoubar
(1990). These calculations make use of matrix products involv-
ing three matrices whose rank, for layer stackings with a
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reichweite R = 0 or 1 (Jagodzinski 1949), is the number of
different types of layers. The first matrix contains only the struc-
ture factors of the layers (which depend on the Z component of
the diffraction vector along the normal to the layer planes), the
second contains only the proportion of each type of layer (it
does not depend on Z), and the third one, called Q (Z) in the
following, contains the probabilities of the adjacent-layer suc-
cessions and the corresponding phase terms which depend only
on the translations between layers. The Qij(Z) term in the Q
matrix describes the following of an i-type layer by an adja-
cent j-type one.

Q p iZdiij ij(Z) = ( )exp 2p ,

where pij is the probability of the ij succession and di is the
thickness of the i-type layer.

p
j

r

ij =
=

Â 1
1

 (r being the rank of the matrices) means that the

probability for an i-type layer to be followed by any type of
layer is 1.

For example, for a two-component system where layers are
named A and B, the Q(Z) matrix is
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In the new model, in contrast to the classical one, the layers
are the same, their proportions are the same, and then only this
Q(Z) matrix must be modified. Between an i-type and a j-type
layer, there are now not only one but nij translations. The Qij(Z)
term becomes:

Q p d p d
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i.e., Qij (Z) = p d
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Â , where pijq is the

probability of the q-ieth translation, dijq , among the nij ones.
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Calling di the smallest of the nij translations (di is the thick-
ness of the i-type layer), the dijq translation can be analyzed as

dijq = di + Dijq with Dijq ≥ 0.

Each Dijq > 0 corresponds to an “abnormal” distance be-
tween an i- and a j-type layer. By introducing pDijq , the prob-
ability of the Dijq translation among all the deviations of the
translations between an i- and a j-type layer, pijq = pij * pDijq,

with pDijq

q=1

nij

Â = 1.

The Qij(Z) term can be rewritten:
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1

p , then

Qij (Z) = pij exp(2piZdi) * Dij (Z)

Then the Qij (Z) terms of the new model are those of the
classical one multiplied by a “corrective” term, Dij(Z), which
characterizes the deviations of the real layer distances from the
ideal ones.

For particles without such deviations, there is only one trans-
lation between layers, nij = 1, dij1 = di, Dijl = 0 and pij1 = 1. Then
Dij (Z) =1 , that is for Qij(Z) the formalism of the classical model.

If there is not a discrete distribution of Dijq but a continuous
distribution, Dij(z), with 0 £ z £ Dzmax, the Dij (Z) term becomes:

D Z p z zij ij ij

z

z

iZ dz( ) ( )exp ( )
max

= ( )
=

Ú D D
D

2
0

p .

The distribution of “abnormal” distances between layers
generally depends on the nature of the i- and j-type layers. For
example, in a mixed-layer kaolinite-smectite (K-S), it can be
assumed that the swelling behavior of smectite layers induces
a set of distances for S-S interlayers, another set for K-S
interlayers, another one for S-K interlayers, and still another
one for K-K interlayers (which have no swelling behavior). On
the contrary, if all interlayer spaces can be considered as iden-
tical, the Dij(Z) disorder term becomes independent of i and j
and can be extracted from the matrix as a multiplicative term.

To come back to the two-component system described
above, the Q(Z) matrix becomes:

Q
p d D Z p d D Z
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for particles containing abnormal distances.
Figures 1 to 4 represent the diffracted intensities calculated

for illite-smectite (I-S) minerals with a 0.5 proportion of each
type of layer. The atomic coordinates are those proposed by
Moore and Reynolds (1989). Smectite interlayers are
glycolated. The instrumental variables are also those used by
Moore and Reynolds (1989) for their illustrations (i.e., 6.6∞
and 2∞ for Soller slits 1 and 2, 1∞ for divergence slit, goniom-
eter radius = 0.20 m, CuKa radiation) as well as the sample
variables (e.g., s* = 12∞ for the standard deviation of a Gaussian
distribution for the orientation of the particles).

Figure 1 corresponds to the randomly interstratified min-
eral (reichweite R=0). The a curve was calculated with the new
model, with an arbitrary number of 50 layers in each particle,
an arbitrary distribution of additional distances between each
type of layers of 1, 2, 3, and 4Å, with respective probabilities
of 0.05 for each of them. The b curve corresponds to the classi-
cal model with a uniform distribution of the crystal thickness
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between 2 and 13 layers. The two models lead to similar distri-
butions of intensities in the high-angle domain, but differences
exist in the low-angle region that increase when approaching
0∞ 2q.

Figure 2 illustrates the sensitivity of the new model to the
probabilities and values of the additional distances. Calcula-
tions have been done for the randomly interstratified mineral.
The a curve corresponds to the previous set of additional dis-
tances 1, 2, 3, and 4 Å, with the same 0.05 probabilities for
each of them. The b curve corresponds to a set of additional
distances 2, 4, 6, and 8 Å, with 0.05 probabilities for each of
them. The c curve corresponds to a set of additional distances
1, 2, 3, and 4 Å, with the respective probabilities 0.075. With
such a set of parameters, the effect on the intensities of an in-
crease of the values of the additional distances is stronger in
the low-angle region than in the high-angle one. An increase in
the probabilities of the additional distances has an opposite
effect.

Figure 3 illustrates the calculation for the same models and

parameters as Figure 1, but for the regularly ordered I-S min-
eral (R = 1 and pII = 0). The two models lead approximately to
the same distribution of intensities in the high-angle region,
but to significantly different intensities in the low-angle re-
gion.

Additional modification of 00l intensities for particles
containing disorder of the “first type”

Another type of disorder can be considered in the particles,
in addition to the above types, namely those described by
Guinier (1964) as disorder of the first- or the second-type, de-
tailed in Drits and Tchoubar (1990). Even for monomineralic
samples, the origins of the unit cells may not follow a strict
periodicity because of small variations in the unit-cell param-
eters. Whether deviations from strict periodicity accumulate
(second-type disorder) or not (first-type disorder), their effect
on the diffraction patterns will be different. If there is no corre-
lation between changes in unit-cell parameters and changes of
the structure factors, the disorder of the first type plays the

FIGURE 1. Comparison of the calculated XRD intensities for a 50-
50 mixed-layer illite-smectite mineral, R = 0, using (a) the new model
with additional distances between layers of 1, 2, 3, and 4 Å with
respective probabilities 0.05, (b) the classical model with a uniform
distribution of crystal thickness from 2 to 13 layers.

FIGURE 2. Comparison of the calculated XRD intensities for a 50-
50 mixed-layer illite-smectite mineral, R = 0, using the new model
with (a) additional distances between layers of 1, 2, 3, and 4 Å with
respective probabilities 0.05; (b) additional distances between layers
of 2, 4, 6, and 8 Å with respective probabilities 0.05; and (c) additional
distances between layers of 1, 2, 3, and 4 Å with respective probabilities
0.075.

FIGURE 3. Comparison of the calculated XRD intensities for an
ordered 50-50 mixed-layer illite-smectite mineral (R = 1, pII = 0) using
(a) the new model with additional distances between layers of 1, 2, 3,
and 4 Å with respective probabilities 0.05 and (b) the classical model
with a uniform distribution of crystal thickness from 2 to 13 layers.

FIGURE 4. Comparison of the calculated XRD intensities for a 50-
50 mixed-layer illite-smectite mineral, R = 0, using the new model,
without disorder of the first type (curve a) and with such disorder (di =
5, curve b).
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same role as the temperature factor, and its effect increases
with the modulus of s. Such an effect can provide an explana-
tion for the decrease of the in-plane CSD size of kaolinites
with the increase in s, mentioned above. This effect can be in-
troduced in the Q(Z) matrix in the same way as the tempera-
ture factor is introduced, i.e., by an exponential term exp(- di

Z2/4). The di factor is expected to have the same order of mag-
nitude as the temperature factor of the ions of the layers and
depends on the type of the layers.

Figure 4 represents the calculations for the same randomly
interstratified I-S sample, without (curve a, which is the same
as curve a of Fig. 1) and with a di factor of five for the devia-
tion of the unit-cell origins (the temperature factors used in the
calculation are respectively 1.5 for cations, 2 for anions, and
11 for interlayer molecules: Moore and Reynolds 1989). The
effect of di is as expected, i.e., a decrease in reflection intensi-
ties increasing with the diffraction vector. For example, the
intensity of reflection at 26.5∞ (2q) is reduced by a factor of 1/3.

Generalization of the formalism

The formalism developed above for the 00l reflections of a
two-component system with R = 0 or 1 can be generalized to
systems containing more than two components, and/or R > 1,
and/or to hkl reflections (h and/or k π 0). Generalization to
greater values of R is obvious, according to Drits and Sakharov
(1976) and Plançon (1981). For R = 2, a two-component sys-
tem requires square matrices of dimension 4 (it is then neces-
sary to specify the type of the preceding layer for each i-j
succession of layers). And so on, for R > 2.

Generalization to crystals containing more than two com-
ponents is also obvious, according to Drits and Sakharov (1976)
and Plançon and Drits (2000). For example, for R = 0 or 1, a
two-component system requires rank-2 matrices, whereas a
three-component system requires rank-3 matrices. As usual,
the word “component” must be understood as a layer having
its own unit-cell content.

Generalization to the calculation of hkl reflections (with h
and/or k π 0) rather than 00l reflections can also be made, as
indicated by Plançon (1981). The phase terms that require in
the case of the 00l intensity calculation only the component of
the diffraction vector along the normal to the layers plane and
the d-spacing between layers, must be replaced by phase terms
containing appropriate translations between layers with their
in-plane components. The distribution of the thickness of the
particles is introduced in the new model exactly in the same
way as the distribution of the thickness of the crystals in the
classical model.

DISCUSSION

Classical modeling of powder XRD patterns of lamellar
materials considers that the samples are composed of rather
small “crystals” (usually a few tens of nanometers in the three
dimensions, with a distribution of the crystal thickness), where
the layers are perfectly parallel with well-defined translations
between them (Reynolds 1967; Drits and Sakharov 1976;
Plançon 1976, 1981). The model proposed here considers that
lamellar materials are composed of “particles” that contain
defects: cracks, inner-porosity, bent layers, edge dislocations,

etc. These defects induce variations in the d-spacings that must
be introduced by distributions of the d-spacings in the calcula-
tion of the XRD patterns.

To be credible, this model must at least reproduce the same
diffraction features as the classical model in the high-angle
domain of the XRD patterns. Figure 1 shows that this is the
case: the “crystals” seen by XRD are only coherent scattering
domains of the “particles.” In addition, this new model must
produce a different distribution of intensity for the low-angle
domain of the XRD patterns, usually imperfectly modeled by
classical models. Figure 1 shows that this is the case.

This model must also agree with data provided by other
techniques for swelling materials as well as for non-swelling
ones. This model is consistent with TEM and HRTEM meth-
ods that, in kaolinites, see particles larger than the crystals
(Plançon and Tchoubar 1977). It is also consistent with SAXS,
which also sees such particles in smectites (Besson 1980; Pons
1980). Additionally, the model accounts for a type of disorder
that has not been taken into account so far, disorder of the first
type (Guinier 1964), which corresponds to deviations of the
unit-cell origins from the ideal positions and can explain the
decrease in reflection intensities with an increase in s (Plançon
and Tchoubar 1977). Figure 4 illustrates this effect. This new
model suggests a systematic recording of a SAXS pattern to
get the information of the particles size used in the interpreta-
tion of the XRD pattern.

The software, MODXRSD, which corresponds to this new
model and allowed the calculations of Figures 1 to 4, will be
available from the author upon request.
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