© Д. чл. УАГН В.К.Дейнека

ОБ ИСТОЧНИКАХ МАРГАНЦА В ПОВЕРХНОСТНОМ СТОКЕ БАССЕЙНА РЕКИ ТОБОЛ

Кустанайская инспекция охраны недр, г.Кустанай, Казахстан

Марганец — химический элемент, относящийся к тяжелым металлам, входит в состав различных минеральных образований в виде карбонатов, силикатов, окислов, относится к гидрогеническим циклическим и биогенно-активным[1]. Лимитирующий показатель вредности для питьевой воды (органолептический) — 0,1мг/дм³, для рыбохозяйственных водоемов (токсикологический) — 0,01мг/дм³

В поверхностные воды Мп поступает в виде подвижных ионных форм и коллоидов, выщелачиваясь из марганецсодержащих минеральных соединений и продуктов анабиоза животных и растительных организмов (особенно водорослей), иловых отложений и почв. Наиболее часты растворимые комплексы с бикарбонатами и сульфатами. В речных водах концентрация Мп подвержена большим изменениям, связанным с содержанием кислорода, рН и температурой, а также биопоглощением (водорослями) и его утилизацией в донных осадках. Мп интенсифицирует поглощение CO₂ растениями, вызывая активный фотосинтез, участвует в ассимиляции ими азота, ускоряет рост организмов. Часто мигрирует и образует совместные соединения с Fe.

В речных водах содержание Мп колеблется от 0,001 до 0,16мг/дм³, среднее его содержание в морской воде 0,002мг/дм³, в подземных водах 0,0 п — n мг/дм³[2]

Высокие концентрации марганца в воде р.Тобол вызывают постоянную озабоченность населения и природоохранных служб Северного Казахстана и Курганской области, использующих речной сток для питьевых и рыбохозяйственных нужд. По результатам специальных гидрогеохимических и снегогеохимических исследований 1995г (табл.1) установлены фоновые содержания Мп в атмосферных осадках, поверхностных водах крупных водохранилищ, речных и подземных водах водосборного бассейна, варьирующие в пределах 0,05-0,08мг/дм³. Вместе с тем выявлены повышенные и высокие концентрации этого металла в атмосферных осадках и газопылевых выбросах городских и промышленных зон, поверхностных и подземных уме-

Таблица Характеристика гидрохимии марганца природных и техногенных ландшафтов водосборных территорий рек и водоемов бассейна трансграничной р. Тобол (Костанайская область), 1995г.

	Прим.		11		Природный	Среднее из	28 проб	Природный фон			Среднее из	Среднее из	Среднее из										
Соотношение Мп:М	ень	летняя	10		0,005	0,00077		0,00019			0,00119	0,00133	0,01127		0,0003	0,0005		0,0003		0,0002	0,00002	0,0002	0 0001
	Межень	зимняя	6												0,0002		0,0001		0,0003	0,00002	0,0001	0 0003	
	Паво-	док	8												0,0001			0,0001		0,0001	0,00004	0,0002	20000
Общая минерализация (М), мг/дм ³	Межень	летняя	7		10,4	06		41			61,7	128	41,7	a	4573			12081		2398	1027	575	2150
		зимняя	3имняя	 Атмосферные осадки зимнего периода 						Тромышленные и селитебные зоны городов				III. Водонакопители и озера	4687	4687		10788		2714	696	625	2017
	Паво-	Док	5	 Атмосферные 						Промышленные				III. Водон	3595	K		5881		2182	886	479	2124
Содержание Мп, мг/дм ³	Межень	зимняя	4		9,05	0,07		80,0			0,074	0,17	0,47		1,38			0,41		0,45	0,016	0,14	010
		летняя	3												6,0	6,0		1,46		86'0	0,02	80,0	090
	Паво-	ДОК	2													0,4			0,85		0,34	0,04	60'0
Водный	источник,	объект	1		Санаторий	Междуречье Тобол-	Тогузак (п.Качар)	Водосбор р.Шортанды	CTOK)		г.Житикара	г.Рудный	г.Костанай		Сарбайский	водонакопитель	дренажных вод	оз.Кушмурун		Соколовский карьер	Скв. у п.Перцевка	Скв. у п.Садчиковка	Norman Vision

113

г	_		_			_	-т		т	Т	Т	~_	$\overline{}$					Т	Т		Т	Т	\neg
	=							Плес														10000	
	10		0,00002	0,00003-	0,00004-	0,0002		0,0000,0	900000	0.0001	0,0007	0,0007	0,0002	0,0002	0,0002	0,0004	1000	0,001	0,0003	0,0002	0,0002	0,0002	0,0002
	6		0,0001	0,00005	0,00001-	0,0002		0,0000	0.0002	0 0001	0,000	0,0001	0,0004	0,00001	9000,0	0,0005	0.000	0,0013	0,0001	0,0004	0,0007	0,0001	0,0004
	8		1006 0,0004	0,0014-0,0001	0,0003	0,0003	-	0,0003	0.0004	0 0004	0,000	0,0004	0,0005	0,0004	0,0005	0,0005	20000	0,0003		0,0002	0,001	0,00008	
	7			305-585	408-467	617			11350	1804	1711	11/1	949	509	1011	1190	1177		784	1034	620	699	10467
	9	V. Поверхностные воды а) водохранилища	945	395	501-542	635	б) рек	8707	1970	1624	+01	781	547	806	1215	1063		758	674	726	945	8398	2401
	5	V. Пове а) во	421	50-341	247-341	532		1656	1406	1204	1734	505	403	598	595	465		438		858	544	1883	
	4		0.016	0,01-0,03	0.016-0,06	0,12		0,57	90	1,09	0,170	0,65	0,10	0,2	0,26	0,48		0,83	0,3	0,12	0,12	3,1	1,02
	3		0.09	0,08-0,12	60,0-90,0	0,13		0,71		4,0	0,24	0,13	0,24	0,01	0,78	0,55		0,02	80'0	0.3	0,71	0,87	1,04
	2		0.17	0,02-0,06	0,07	0,18		0,49		0,00	0,55	0,23	0.24	0,29	6,0	0,24		0,13		0.18	0.56	0.16	,
		-	Жепичанское	Верхнетобольское	Каратомарское	Амангельлинское		р.Тобол,	п.Дзержинский	р.Тобол, с.І лебовка	р.Шортанды	р.Аят. с.Варваринка	п Аят с Тапановка	р.Тогузак,	p.Torysak,	с. Карабалык рТогузак,	п.Курский	р.Уй, п.Белояровка	р Тобол п Перпевка	п Тобоп г Костанай	п Тобоп п Ввеленка	и Убаган п.Кушмурун	п Убаган п Аксуат

ренно минерализованных и соленых водах.

Соотношение концентраций марганца к величине общей минерализации воды в бассейне р.Тобол и Уй для пресных паводковых вод составляет 0,0003-0,0005, в летнюю межень около 0,0001, зимнюю от 0,0004 до 0,001.

Минимальные значения этого коэффициента характерны для водохранилищ периода зимней межени до 0,00001, а также для р.Убаган в паводок.

Повышенные значения коэффициента характерны для верховий р.Тобол и его притоков (Шортанды, Аят, Тогузак), а также для меженного стока рек Уй и Убаган в их низовьях.

Такое распределение концентрации марганца указывает на наличие нескольких его источников, мобилизуемых поверхностным стоком рек. Наиболее явная и прямая связь повышенных содержаний марганца в поверхностных водах верховья р.Тобол и его левобережных притоков обусловлена специфическим геохимическим ландшафтом Восточно-Зауральского плато, субстратом которого являются изверженные и метаморфические комплексы пород, содержащие марганец. Последний, наряду с железом, алюминием, титаном, хромом, литием и цинком входит в состав амфибола – породообразующего минерала, участвующего в строении широко развитых здесь интрузий основного и среднего состава, а также их эффузивных аналогов, превращенных в амфиболитовые сланцы. В процессе физико-химического разложения амфибол-содержащих пород образовались огромные массы щебнисто-глинистых кор выветривания, которые являются основным структурным элементом для почвообразования и геохимического ландшафта. Пестроокрашенные коры выветривания - свидетельство их пигментации воднорастворимыми подвижными формами, проявленных в виде гидроокислов железа, марганца, хрома и других сидерофильных элементов. Они постоянно присутствуют в почвенной влаге, грунтовых кислород-содержащих поровых и трещинных подземных водах. Дополнительным техногенным источником выбросов и рассеяния амфибола является добыча хризотил=асбеста вблизи г.Житикара. Огромные отвалы серпентинитов, хвостов обогащения и несортового асбеста, распыляются ветром на значительные расстояния. Специальными снегогеохимическими исследованиями в районе г.Житикары было установлено постоянное присутствие марганца в атмосферных осадках и почвах. Так среднее его содержание в снеготалой воде составило 0,074мг/дм³, а соотношение концентраций марганца к общей минерализации снеговой влаги - 0.00195. Близкие значения этих параметров получены и по анализу микроручейковой воды в бассейне реки Шортанды (0,08 и 0,0012). Не случайно и в воде реки Шортанды содержание Мп в паводок 0,55, в летнюю межень 0,24 и в 116

зимнюю -0.126мг/дм³, а в воде р.Тобол у с.Глебовка оно составило соответственно 0.66; 0.4 и 1.09 — самое высокое из всех опробованных створов этой реки.

Весьма значительным геологическим источником марганца в бассейне р.Тобол являются бурожелезняковые руды Аятского железорудного бассейна, общие запасы которых оцениваются в 10 млрд.т. Содержание Мп в рудах 0,88%. Это указывает на наличие здесь крупного "месторождения" марганца (88 млн.т), часть которого находится в зоне дренирования водоносной железо-марганцевой толщи р.Аят и р.Тобол. Свидетельством этому является высокое содержание Мп в воде р.Аят у с.Варваринка и у с.Тарановское, достигающее в зимнюю межень (период питания реки в основном подземными водами) 0,65 мг/дм³. Ландшафтно-геохимический фон водосбора этой реки также характеризуется повышенным содержанием марганца, на что указывает довольно высокая концентрация его в паводковых водах (0,23 мг/дм³).

Подземные воды мелового водоносного горизонта (наиболее мощного и высокопродуктивного по запасам) вскрываются речной системой Тобола, Аята, Тогузака, Уя и Убагана на всем среднем и нижнем течении этих рек. Как показывают результаты химических анализов, они также содержат достаточно высокие концентрации марганца, за счет его поступления из тех же бурожелезняковых руд аятской свиты и других водовмещающих пород. Так содержание оксида марганца в дренируемых скальных массивах и рудах составляет (%): известняках — 0,26, магнетитовых рудах — 0,21-0,52, метасоматитах — 0,05-0,69, порфиритах и габбро-диоритах — 0,14-0,19.

В подземных дренажных водах Соколовского карьера его концентрация изменяется от 0,34 до 0,98мг/дм³, увеличиваясь в летнеосеннюю межень. В Сарбайском карьере — от 0,4 до 1,38мг/дм³, что связано с более высокой минерализацией этих вод (5г/дм³). Соотношение Мп : М для подземных вод изменяется от 0,0001 до 0,0004. Учитывая, что подземные воды составляют около 15% приходного водного баланса общего речного стока, роль этого источника марганца, особенно в летне-осеннюю и зимнюю межени, весьма значительна. Об этом в частности свидетельствует резкое повышение концентрации марганца в воде низовья р.Уй у с.Белояровка до 1,02мг/дм³ (летом) и 0,83 (зимой). Высокой марганцовистостью характеризуются и вода р.Убаган (0,2-3,1мг/дм3), доля подземного питания которой около 30-40%.

Дополнительным источником марганца являются выбросы в атмосферу его оксидов при сжигании котельного и печного топлива, обладающих повышенной растворимостью в кислой среде. Снегогеохимическими исследованиями промышленных и селитебных зон горо-

117

дов Рудный и Костанай установлены повышенные концентрации Мп в снежном покрове (до 0,3-5мг/дм³) со средними значениями 0,17 и 0,47 соответственно. Учитывая ограниченную площадь загрязнения роль этого фактора в гидрохимическом балансе Мп речных вод - оценивается в 1,5-2%. Основная часть соединений марганца в поверхностный сток поступает с водосборных территорий речного бассейна, главным образом р.Тобол и ее левых притоков. Роль марганца, поступающего с подземным стоком оценивается в 25-30%. Остальную часть приходного баланса составляют биогенно-техногенные источники.

Сообразуясь с объемом водного стока и его загрязненностью марганцем определена лидирующая роль р.Тобол (75%). За ней следует р.Уй (15%) и р.Убаган (10%). Валовой гидрохимический сток марганца на границе с Курганской областью с территории бассейна р.Тобол ежегодно составляет порядка 350т/год.

Следует отметить "нейтрализирующую" и "смягчающую" роль крупных водохранилищ на р.Тобол, водорегулирующее значение которых в летнюю межень значительно снижает содержание марганца в реке ниже сброса.

Как видно из приведенных данных, благодаря деятельности биоты (водоросли и фитопланктон), значительная часть растворенного марганца поглощается и утилизируется в водоемах, консервируясь затем в донных осадках. Содержание марганца в последних достигает 0,2%. Слабый промывной режим реки летом 1995г., из-за ограниченного сброса воды из водохранилищ, вызванного недостаточной их наполненностью, не позволил реализовать водорегулирующую роль и повысить качество воды в реке. При нормальном режиме сброса такая возможность может быть осуществлена, хотя и не обеспечит требуемое качество воды в реке, особенно по рыбохозяйственному критерию.

Литература

- **1. Вернадский В.И.** Избранные сочинения т.IV к.2 и т.V. Изво АН СССР М., 1960
- **2.** Гидрохимические показатели состояния окружающей среды. Эколайн-2000. М.Социально-экологический союз, 2000.
- 3. Дейнека В.К. Источники загрязнения и качество поверхностных вод бассейна р.Тобол// М-лы науч.конф. "Региональные проблемы интеграционных процессов в условиях рыночных реформ". Костанай, 1998
- **4.** Ресурсы поверхностных вод районов освоения целинных и залежных земель. т.11. Кустанайская область, Гидрометиздат, Ленинград, 1959