л. и. бочек, н. и. еремин, в. м. округин

рнокри-1965. бен-

Ка-

H H

ред-

. Н., ьноэхиеро-

ные

lay-

ких

тал-

TA W

'Ma-

3po-

ген-

ния

Ka».

IUU

IHX

сипы, сти

И

opa

ПИ-

166.

т и уд-

qa-

168.

ай-

B.

ac-

30-

1H

ая

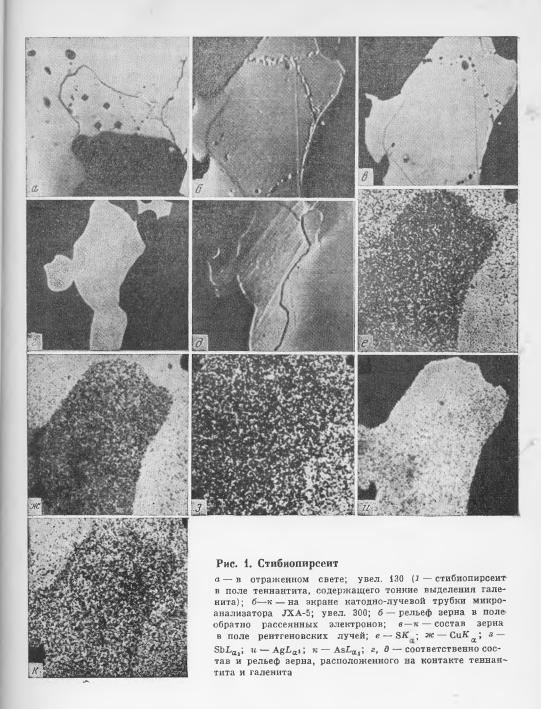
7.

R

СТИБИОПИРСЕИТ В РУДАХ СТРЕЖАНСКОГО КОЛЧЕДАННО-ПОЛИМЕТАЛЛИЧЕСКОГО МЕСТОРОЖДЕНИЯ (Рудный Алтай)

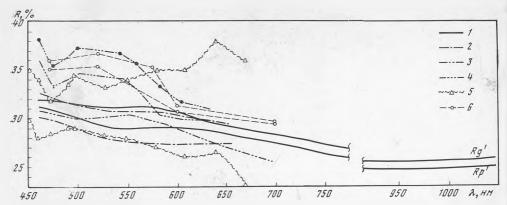
При изучении руд Стрежанского колчеданно-полиметаллического месторождения, расположенного на северо-востоке Лениногорского рудного района (Рудный Алтай), нами в 1971 г. был установлен минерал, изучение которого на микрозонде ЈХА-5 не привело к его однозначной идентификации (Еремин и др., 1971). Он был предварительно отнесен по полученному химическому составу к минералам пирсеит-стибиопирсеитовой или полибазит-арсенополибазитовой серии (табл. 1). Это связано с тем, что знание одного только состава минералов этих серий, как показали последние работы ряда исследователей, не позволяет проводить их точную идентификацию (Реасоск, Ветгу, 1947; Frondel, 1963; Генкин, Добровольская, 1965; Еремин и др., 1971). Рамдор (1962) допускает существование неограниченного ряда твердых растворов, конечными членами которого являются пирсеит ($Ag_{16}As_2S_{11}$) и полибазит ($Ag_{16}Sb_2S_{11}$), при постоянном замещении серебра медью до 30%. В этом ряду, указывает он, наименее изучены члены, содержащие от 40 до 4% полибазитовой молекулы (описываемый минерал содержит 26% полибазитовой молекулы).

Пикок и Берри (Peacock, Berry, 1947) при рентгеновском изучении кристаллов пирсеита и полибазита пришли к выводу, что эти минералы не являются изоструктурными и полибазит отличается от пирсеита (табл. 2) удвоенным размером элементарной ячейки. Фрондель (Frondel, 1963), анализируя рентгенометрические данные пирсеита и полибазита с известным химическим составом показал, что эти минералы в действительности являются членами двух различных изодиоморфных серий твердых растворов: пирсеит-стибиопирсеитовый (Ag,Cu)₁₆ (As,Sb)₂S₁₁ и полибазитарсенополибазитовой $(Ag,Cu)_{16}(Sb,As)_2S_{11}$. Эти серии аналогичны сериям энаргит-стибиоэнаргитовой Cu₃(As,Sb)S₄ люцонит-фаматинитовой И Cu₃(Sb,As)S₄, для которых, по-видимому, характерны полные взаимозамещения между сурьмой и мышьяком (Frondel, 1963). Следовательно, однозначная идентификация минералов этих серий возможна только после рентгенометрического изучения. Фрондель указывает на (табл. 2) отличия этих минералов: 1) отсутствие у пирсеита интенсивного и четкого отражения $\{31\overline{4}6\}$, $\{32\overline{5}4\}$, характерного для полибазита; 2) близкую интенсивность отражений 2244 и 4044 у полибазита; 3) слабую интенсивность отражения 1122 по сравнению с 2022 у пирсента. Работами Халла (Hall, 1967), синтезировавшего минералы названных серий, подтверждены выводы Фронделя.


Минерал присутствует исключительно в сульфидно-кварцевых жилах (скв. 153, глубина 43,60 м, штольня, отметка 374 м), секущих все известные на месторождении породы и руды, и, возможно, обязанных своим происхождением проявлению этапа регенерации. Минеральная ассоциация представлена цинксодержащим теннантитом, пиритом, практически безжелезистым сфалеритом, халькопиритом, самородным серебром, гесситом, галенитом, кварцем с отдельными гнездами магнезиального хлорита.

Температурные условия образования ассоциации, по данным гомогенизации газово-жидких включений в кварце, декрепитации блеклой руды и пирита, оцениваются величинами порядка 310—240°. Стибиопирсеит

 Таблица 1


 Химический состав минералов пирсеит-стибиопирсеитовой серии из различных месторождений мира

			C	од е ржан и е	элементов	, %					
Месторождение		Cu	Ag	As	Sb	s	Σ	Способ анализа	Формула	Автор	
Сонора		8,90	62,54	1,43	9,65	17,62	100,19	n-o	~	Рамдор, 1962; Fron del, 1963	
Стрежан	нское	18,00	60,70	6,00	1,90	16,00	102,6	Зонд JXA-5	$(\mathrm{Ag_{10,66}, Cu_{5,34}})_{16,0} \cdot \\ \cdot (\mathrm{As_{1,50}, Sb_{0,31}})_{1,81} \mathrm{S}_{11,0}$	-	
Сокольн	100	10,00	10,00	5,00	2,00	-	-	Приближ. полук. спектр.	-	Генкин, Добровольская, 1965	
Миргали	имсай	6,0-7,0	70-80	4-5	-	10-13	-	MAP-1	-	Качаловская; Тро- нева, 1964	
Миргали	имсай	13,50	56,60	10,00	_	13,00	99,5	JXA-3	(Ag, Cu) _{14,02} As ₂ S _{8,4}	Халтаев, Слюсарев 1969	
Руен		7,95	74,25	5,22	_	12,50	100	JXA-3	(Ag _{12,5} , Cu _{3,5}) _{16,0} As _{1,97} S _{11,0}	Мънков, 1971	
Теорети	ческий состав	4,29	72,4	6,92	_	16,30	100	-	(Ag, Cu) 16As ₂ S ₁₁	Рамдор, 1962	

образует ксеноморфные включения в теннантите размером до 0.100-0.150 мм (рис. 1, a-s) или своеобразные выделения в виде прерывистых кайм на контактах теннантита и галенита (рис. $1, z, \partial$).

Морфологической особенностью минерала является наличие характерных трещин, особенно четко проявленных в каймах (рис. 1, г, д). При изучении полированных шлифов в отраженном свете минерал имеет серовато-белый цвет со слабым коричневато-сиреневым оттенком, рельеф меньший, чем у блеклой руды, но более высокий по сравнению с галенитом. Отражательная способность заметно ниже, чем у галенита, и близка к блеклой руде. Двуотражение заметное, анизотропия ясная, с цветными

Рис. 2. Спектры отражения минералов пирсеит-стибиопирсентовой серии твердых растворов

4 — ФМЭ-1; литературные данные: 2 — Халтаев, Слюсарев (1969); 3 — Качаловская, Тронева (1964); 4 — Генкин, Добровольская (1965); 5 — Gray, Millan (1962); 6 — Мънков (1971)

эффектами в розовато-зеленых тонах, усиливающимися в иммерсии до ко-

ричневато-сиреневых.

Минерал не реагирует на действие $FeCl_3$, KOH, HNO_3 (1:1), HCl (1:1), но чернеет от KCN. По своим оптическим свойствам очень близок к пирсенту, установленному впервые в CCCP на Сокольном месторождении А. Д. Генкиным (1965). Химический состав и формула минерала приведены в табл. 1. Распределение основных химических элементов в зерне в поле рентгеновских лучей на экране катодно-лучевой трубки микроанализатора JXA-5 дано на рис. 1, ε , ε , $e-\kappa$. Исследованиями на лазерном микроанализаторе LMA-1 в минерале установлено присутствие следов следующих элементов: Co, Cd, Bi, Zn, Pb, Mn. Отнесение минерала к стибионир-

Таблица 2 Рентгеновские характеристики для пирсеит-стибиопирсеитовой и полибазит-арсенополибазитовой серий (Рамдор, 1962; Frondel, 1963; Генкин, Добровольская, 1965)

Интервалы меж расстояний (А) і членов серий	плоскостных крайних		гельные ивности	Полибазит- арсенополиба- зит	Пирсеит-сти- бионирсеит	
Полибазит	Пирсеит	Полибазит	Пирсеит	hkil	hkil	
3,18 2,99 2,90 2,87 2,77 2,69 2,56 2,52 2,42 2,33 2,20	3,05 2,95 2,86 2,78 2,73 2,64 2,53 2,47 2,34 2,30 2,16	50 100 85 80 15 60 15 45 20 40 25	90 100 40 80 15 60 15 45 30 20 25	2244 0008 3252 4044 1128 3146 3254 4154 4046 4262 2248 4048	1122 0004 Her 2022 Her » 2023 2131 1124 2024	
Разн	иеры элемент	арной ячейки	ı, A	$\begin{array}{c c} a_0 = 26,12 \\ b_0 = 15,09 \\ c_0 = 23,87 \\ \beta = 90^{\circ} \end{array}$	$a_0 = 13,06$ $b_0 = 7,55$ $c_0 = 11,93$ $\beta = 90^{\circ}$	

Таблица 3

Результаты рентгенометрического анализа минералов пирсеит-стибиопирсеитовой серии (по данным различных авторов)

					Местор	ожден	ие, авто						
Стрежан-		Сокольное ** (Генкин, Доброволь- скан, 1965)		Cunsep-Mor- rana (Berry, Thompson, 1962)		Аспен-Коло- радо (Berry, Thompson, 1962)		Миргалим- сай *** ?(Кечалов- текая, Троне- ва, 1964)		(Muxeeb, 1956)		(Рамдор, 1962)	
I	da/n	I	da/n	I	da/n	I	da/n	I	da/n	1	da/n	I	da/n
								7	3,49				
								9	3,41				
								4	3,33				
3	3,26							5	3,28				
6	3,04	5	3,09	1	3,11	5	3,11	3	3,08	2	3,04	5	3,10
				2	3,05			2	3,02				
10	2,96	10	2,98	10	2,97	10	3,00	10	2,96	10	2,96	10	2,96
7	2,79	10	2,83	9	2,80	9	2,84	9	2,79	9	2,79	9	2,83
4	2,46	4	2,48	6	2,47	4	2,50	3	2,47	6	2,47	4	2,49
5	2,34	3	2,37	5	2,34	3	2,37	2	2,34	5	2,34	5	2,32
5	2,29	3	2,30	6	2,30	5	2,33	6	2,32	6	2,30		
2	2,16	3	2,17	3	2,17	3	2,19	2	2,17	3	2,16		
		1	2,12			1/2	2,15	1/2	2,15			-	
		2	2,10	2	2,11	1	2,08	2	2,10	1	2,07		A
4	1,99	4	2,00	5	1,994	4	2,01	4	1,998	5	1,998		
								4	1,973				
2	1,864	1	1,890	1	1,899	1	1,914	3	1,888	2	1,854		
7	1,813	4	1,836	6	1,828	5	1,852	4	1,830	6	1,823		

Рентгенограммы сняты на установках: *УРС-55; камера РКД, Fе-излучение, аналитик; Н. Г. Чувикина (ЦНИГРИ); **УРС-55, камера РКД, Fе-излучение, аналитик Г. В. Басова (ИГЕМ).

сеиту основано на данных рентгенометрических исследований. Как видно из табл. 3, минерал имеет общие характеристики с эталонами месторождений Силвер, Аспен, Сокольное и удовлетворяет признакам отличия минералов указанных серий, приведенных Фронделем (1963).

Сравнение результатов измерения спектров отражения (табл. 4, рис. 2) с опубликованными данными показывает достаточно большие различия в форме спектров и абсолютных значениях коэффициентов от-

ражения (R).

ева

30-

ии

: В IИ-IK-IO-P-

Полученные авторами данные хорошо согласуются с приведенными для стибиопирсеита месторождения Руен (Мънков, 1971). Формы спектров отражения для стибиопирсеита Стрежанского месторождения и месторождения Руен совершенно идентичны, и лишь абсолютные значения коэффициентов R отличаются на 1,5%, что может быть объяснено: 1) отсутствием в ограниченном числе измеренных зерен этого оптически двуосного минерала сечения с максимальным двуотражением (сечение Rg-Rp); 2) возможным влиянием вариаций химического состава (различия в содержаниях Си составляют 10%, Ag-14% и др.) на силу двуотражения. Формы спектров отражения, полученные другими авторами, вероятно ошибочны. Различными источниками ошибок могут быть нестандартность эталонов, дефекты оптики, регистрирующей аппаратуры и др.

Вариации химического состава, как показано на ряде минералов переменного состава, не могут так интенсивно влиять на форму спектров отра-

Таблица 4 Данные по дисперсии отражательной способности минералов пирсеит-стибиопирсеитовой серии, %

		Месторождение, автор													
Длина нолны, нм	Стрежан- ское *		Сокольное ** (Генкин, Добровольская, 1965)		Миргалим- сай *** (Ка- чаловская, Тронева, 1964)		Gra Mill 1962	lman,	Мирга- лимсай (Халта- ев, Слю- сарев, 1969)	Руен **** (Мънков, 1971)					
	Rg'	Rp'	Rg'	Rp'	Rg'	Rp'	Rg'	Rp'	R_{max}	Rg'	Rg'				
450 460 470	32,0	31,2	35,0 34,0	30,0 28,0	38,3	36,2	36,0	35,1	31,0	32,75	31,20				
472 484	i.		32,0 33,6	28,5 29,0	35,5	33,5	00,0	55,1		31,70	29,47				
500 520 527	31,4	30,0	33,3	28,3	37,4	34,6	36,7	35,4	30,0 30,0	31,50	28,90				
540 550	31,0	29,0	34,0	28,0	36,8	34,2			30,7		+				
575 579 600	31,2	29,0	35,0	27,0		1	35,4	35,4	30,0		g-				
608 620	30,0	29,0	35,0	26,0	31,7	29,8	31,3	30,7	29,0	30,00	27,40				
640 660 670	29,1	28,2	38,0	26,5	30,9	29,5			•		,				
700 740 780	28,4 27,6 26,6	27,5 26,5 25,8	30,0	23,0		1	29,5	29,4	25,7						
820 860 900	26,1 25,8 25,6	25,4 25,8 24,8				£.					-all				
940 '980 1050	25,4 25,5 25,8	24,6 24,7 25,0													

^{*} эталон — кремний, установка ФМЭ-1, усовершенствованная в ЦНИГРИ; ** эталон — пирит, установка СФЭУ; *** эталон — платина, напыленная на стекле, нестандартная установки МИМ-7 (ФЭУ-27); **** эталон — кремний установка ПООС-1.

Таблица 5 Микротвердость минералов пирсеит-стибиопирсеитовой серии

	Микротвердост	гь, кг/мм²	KI/MM ²				
Месторождение	крайняя	средняя	Нагруз- ка, г	Число замеров	Автор		
Стрежанское *	151-179,2	165,1	20	30	Наши данные		
Сокольное	_	127	20	10	Генкин, Добровольская,		
Миргалимсай *	153-165	159	20	20	Качаловская, Тронева, 1964		
	153-167	160	100	_	Berry, Thompson, 1962		
	146 - 155		25	_	Frondel, 1963		
Руен*	152,8-164,8	158,2	20	_	Мънков, 1971		

жения. Это же подтверждается и сопоставлением спектров отражения полибазита (Безсмертная и др., 1973) и стибиопирсеита, обнаруживающим их сходство по общему виду и абсолютным значениям R. Различие наблюдается только в области 580-620 нм, где у стибиопирсеита

появляется незначительный максимум.

Сопоставление данных по микротвердости стибиопирсеита Стрежанского месторождения с другими минералами — членами этой серии (табл. 5) обнаруживает сравнительную близость величин, особенно средних (160—165 кг/мм²). Некоторым исключением является лишь пирсеит Сокольного месторождения, имеющий несколько меньшие значения микротвердости (127 кг/мм²).

Таким образом, в результате проведенных исследований в рудах Стрежанского месторождения сделана первая в СССР находка стибиопирсеи-

та — члена пирсеит-стибиопирсеитовой серии твердых растворов.

ЛИТЕРАТУРА

Безсмертная М. С., Чвилева Т. Н. и др. Определение рудных минералов в полированных шлифах по спектрам отражения и микротвердости, 1973.

Генкин А. Д., Добровольская М. Г. О находке пирсеита в свинцово-цинковом месторождении Сокольное (Рудный Алтай). В кн.: Новые данные о минера-

лах СССР, вып. 16, 1965.

Еремин Н. И., Округин В. М., Демин Ю. И. О серебряной и висмутовой минерализации в рудах Стрежанского месторождения (Рудный Алтай). месторождения (Рудный Алтай).-Вестн. МГУ, серия геол., 1971, № 3.

Berry L. G., Thompson R. M .- Geol. Amer., 1962.

47

90

FrondelCl.—Amer. Miner., 1963, 48, N 5-6.

Gray I. M., Millman A. P.— Econ. Geol., 1962, 57, N 3.

Hall H. T.— Amer. Miner., 1967, 52, N 9—10. Мънков Сл. Списание Бълг. геол. дружество, 1971, 32, N 1.

Peacock M. A., Berry L. G .- Miner. Mag.,

1947, 28, N 198.

Качаловская В. М., Тронева Н. В. Пирсеит из месторождения Миргалимсай.-Зап. ВМО, ч. 98, № 2, 1964.

Михеев В. П. Справочник, 1956.

Округин В. М. Электронно-зондовое изучение сульфосолей серебра и висмута в рудах Стрежанского месторождения на Рудном Алтае. — Вестн. НСО, № 5, 1972.

Рамдор П. Рудные минералы и их сра-

стания, 1962

Халтаев Ж. Т., Слюсарев А. П. Ялпаит и пирсеит в рудах месторождения Миргалимсай. — Вестн. АН КазССР, № 10, 1969.