ТРУДЫ МИНЕРАЛОГИЧЕСКОГО МУЗЕЯ им. А. Е. ФЕРСМАНА

Вып. 19

1969

Ответственный редактор д-р. геол.-мин. наук Γ . Π . Eapcanos

д. п. сердюченко

О НЕКОТОРЫХ СЛЮДАХ НЕОБЫЧНОГО СОСТАВА

Слюды давно известны большим разнообразием своего состава, обусловленным (количественно и качественно) различными изоморфными замещениями в исходных кристаллических решетках флогопита и мусковита.

В природных и искусственных слюдах, относящихся к разным полиморфным модификациям, изовалентные и гетеровалентные замещения сопряженно или изолированно охватывают тетраэдрические, октаэдрические и соединительные структурные слои. При этом помимо обычных компонентов (калия, натрия) существенную роль в составе К-слоев могут играть Rb, Cs, Ca и Ba. Кроме этого, выяснилось, что Ca и Na входят не только в соединительные слои, но и в октаэдрические слои флогопитовых и мусковитовых решеток, замещая в них соответственно Mg (Li) или Al (с компенсацией нарушенного равновесия сопряженными замещениями в других частях структуры).

Подобно формированию всех минералов переменного состава, химизм среды минералообразования и термодинамические условия оказывают решающее влияние и на состав образующихся (природных и искусственных) слюд, обусловливая появление необычных по своим компонентам рассматриваемых ниже минералов. Это — флогопиты и биотиты с высоким содержанием Na, Ca, Ba и Zn, а также мусковиты, сильно обогащенные Ba, Ca, V (таблица).

Светлый розовато-коричневый мелкочешуйчатый флогопит (обр. 95/58) в серпентинизированных и содержащих диопсидовые прослои архейских кальцифирах Алдана, проникнутых прерывисто-жилковатыми и гнездовидными выделениями калиевых полевых шпатов (иногда с кварцем), образует согласные прожил и гнездышки длиной до $5\,c_M$, а также каемки вокруг выделений диопсида. При микроскопическом исследовании он обнаруживает очень малый 2V (—) и $Ng=1,586\pm0,002$, а местами — точечную бурожелезистую пигментацию, что, очевидно, следует объяснить близостью железорудной зоны и влиянием приповерхностного выветривания. Как показал анализ, минерал не содержит, кроме железа, других хромофорных элементов (Li, Mn). Анализ, выполненный И. С. Разиной, пересчитан нами после предварительного исключения примесей: части $\mathrm{Fe}_2\mathrm{O}_3$ (редкие точечные выделения окислов железа) и CaCO_3 (по количеству CO_2). Расчет дал следующую формулу 1 (см. таб., a):

a)
$$(K_{0,82}Na_{0,08}Ba_{0,03}Ca_{0,05})_{0,98} (Mg_{2,85}Fe_{0,03}^{2+}Ti_{0,03}Fe_{0,04}^{3+} \times Al_{0,07})_{3,02} [Al_{1,27}Si_{2,73}]_{4,00}O_{10} (O_{0,22}OH_{1,36}F_{0,20})$$

¹ Здесь и в последующих случаях расчет выполнен по 11 кислородам на сухое (без летучих) вещество (Сердюченко, 1951, 1954, 1960; Gatineau, 1964; Seifert, 1966).

Компо- ненты	Алдан						Ba-Ca-	Zn-Mn-	Казахстап			70.
	флогопит	Nа-флогопит	Nа-алюмо- флогопит	Nа-ферро- флогонит	флогопит	Са-биогит, Везувий е		флогопит (хендрик- сит), Франклин	Ва-V-мусковиты (V-эллахериты)		Эллахерит, Франклин	Са-мусковит Алдан
									ıı	n	л	м
SiO_2	38,04	40,05	40,27	35,20	39,20	36,77	29,84	31,58	43,91	42,98	41,37	42,12
TiO_2	0,56	0,10	0,21	1,32	0,38	0,11		0,32	0,24		_	Нет
Al_2O_3	15,81	18,50	22,85	14,33	14,75	18,46	18.43	13,72	27,92	19,37	32,64	37,67
$\mathrm{Fe_2O_3}$	1,39	0,91	2,08	2,63	2,61	1,92	2,41	2,25	0,45	0,34	Нет	0,05
Cr_2O_3		0,03	_	_	Her	_	_	_	0,61		_	_
V_2O_3	_	_	_	_	_			_	6,18	17,92	_	_
FeO	0,53	1,74	5,62	15,56	3,88		0,53	0,34	_	_	_	0,04
MnO	Сл.	0,02	0,03	0,08	0,37	0,34		12,28	0,05	_	0,62	0,02
MgO	_			_	_	_	. —	22,97	_	_	1,84	
MgO	26,72	23,06	13,87	15,39	22,55	10,93	25,02	3,69	2,10	2,08	1,55	0,31
BaO	0,86	Не опр.	0,04	0,05	_	Нет	5,11	0,65	7,15	5,27	9,89	
CaO	1,88	0,67	0,14	0,08	2,30	14,33	8,17	_	Нет	0,48	0,36	5,72
Li ₂ O	Нет	_		_	_	0,58	_	_	_	—		_
P_2O_5	_	Нет	0,25	0,12	_		_				_	_
Na_2O	0,59	3,74	2,76	3,18	2,08	3,67	0,29	0,24	0,47	0,13	1,51	0,30
K ₂ O	8,98	9,68	9,89	9,79	9,16	8,05	5,04	7,91	6,13	5,91	6,33	8,49
S	_	Не опр.	0,18	0,31	_	_		_	_	_		
SO_3				_	_	-	_		0,12	0,64		0,45
CO_2	1,01	Нет	Нет	_	0,12				_	_	_	0,12
F	0,80	_	_	_	3,04	4,00		0,45	_	_	_	_
Cl	He onp.	0,18	_	0,07	_	_	_	_	_	_	_	0,18
H ₂ O ⁺	2,84	1,00	1,64	1,56	0,96	2,52	4,50	3,65	4,64	5,31	4,05	4,90
Сумма	100,01 *	99,68	99,83	99,67	101,40**	101,68	99,34	100,05	99,94	100,43	100,16	100,56***
$O = F_2$	0,33		_		1,28	1,68	_	0,19	-	_	_	0,04

^{*} В том числе 0,02% SrO, 0,03% Rb₂O. ** NiO не обнаружен. *** В том числе 0,19% B₂O₃.

Очевидно, что в структуре этого флогопита электростатическое уравновешивание происходит в катионах путем сопряженных замещений в соединительных (+8), октаэдрических (+17) и тетраэдрических (-27) слоях; одновременно здесь имеют место замещения $BaAl_{IV} \rightarrow KSi$ и Al_{VI} $Al_{IV} \rightarrow MgSi$. Последнее имеет обратное направление сравнительно с мусковитами, где часто (см. ниже) наблюдается $MgSi \rightarrow Al_{VI}Al_{IV}$.

Образование розовых флогопитовых слюд происходит в Алданском архее в условиях метаморфизма загрязненных кремнисто-глинистыми примесями магнезиально-известковых осадочных пород и при их дедоломитизации; эти примеси в материнских породах были распределены не

только неравномерно, но и послойно.

В описанной слюде имеется немного бария и кальция, входящих в соединительные слои; содержание бария во флогопитах Алданского архея довольно устойчиво, оно колеблется обычно в пределах нескольких десятых процента (вес.), достигая, но не превышая 1%. Очевидно, источником бария были здесь сами карбонатные породы, которые содержат барий (истронций) обычно в небольшом количестве.

Однако некоторые флогопиты и биотиты из архейских толщ Алдана и других районов отличаются повышенным или очень высоким количеством

BaO и CaO, а еще чаще Na₂O.

Натровый безжелезистый флогопит (см. табл., δ , обр. 199в/1952) в виде крупных светло-зеленых столбчатых кристаллов (Ng=1,580; Np=1,548) вместе с крупными призмами диопсида и сростками магнетита образует гнезда в мелкозернистой флогопит-диопсид-магнетитовой руде; его кристаллохимическая формула:

6)
$$(K_{0,85}Na_{0,15})_{1,00} (Na_{0,25}Ca_{0,04}Mg_{2,36}Fe_{0,08}^{2+}R_{0,29}^{3+})_{3,02} \times$$

 $\times [Al_{1,24}Si_{2,76}]_{400} O_{10} (C_{0,76}OH_{0,46}F_{0,02})$

В диопсид-роговообманковых мелкозернистых породах, местами инъецированных лейкократовым гранитом, имеются крупнозернистые участочки роговой обманки и магнетита, а также мелкие прожилки пирротина и халькопирита. Этим неравномерно перекристаллизованным и метасоматически измененным породам подчинены прослои почти мономинерального слюдита, который сложен светлым коричневато-зеленым мелкочешуйчатым натровым алюмобиотитом (см. табл., в, обр. 329/1952); вблизи расположены и автономные гнездовидные выделения темно-коричневого натрового феррофлогопита (см. табл., г, обр. 328/1952).

Их кристаллографические формулы следующие:

e)
$$(K_{0,88}Na_{0,12})_{1,00} (Na_{0,26}Mg_{1,44}Fe_{0,31}^{2+}Fe_{0,11}^{3+}Ti_{0,01}Al_{0,69})_{2,82} \rightarrow$$
 $\rightarrow [Al_{1,19}Si_{2,81}] O_{10} (O_{0,62}OH_{0,76})$
e) $(K_{0,95}Na_{0,05})_{1,00} (Na_{0,41}Mg_{1,71}Fe_{0,96}^{2+}Fe_{0,15}^{3+}Ti_{0,02})_{3,25} \times$
 $\times [Al_{1,27}Ti_{0,06}Si_{2,67}]_{4,00}O_{10} (O_{0,60}OH_{0,80})$

Содержание K+Nа здесь явно выходит за рамки (вообще возможного в природе) «смешанно-слоистого» (с парагонитом) состава слюд. Отмеченные выше богатые натрием флогопиты обнаружили избыточное его количество, которое не может уместиться в плоскости K-соединительных слоев и, как мы уже отмечали (Сердюченко, 1954,1960), должны быть изоморфно размещены в октаэдрах, как и избыточный (для K-слоев) кальций; такому изоморфизму $Na+Ca \to Mg+Fe^{2+}$ очень способствует повышенная температура минералообразования в Алданском архее, где инъецированные гранитами породы амфиболитовой фации местами представляют собой диафториты кристаллических сланцев гранулитовой фации.

Недавно экспериментальными работами еще раз показано, что при высоких температурах вполне вероятно и реально наблюдается изоморфное вхождение в решетку минералов таких элементов-примесей, ионный радиус

которых отличается от Ri замещаемого элемента не до 15% (правило B. M. Гольдшмидта, которое хорошо «работает» при температурах земной поверхности), а на 20—40% и даже на 60% (Киркинский, 1966).

Вхождение Na в октаэдрические структурные слои слюд, обоснованное ранее фактическим их составом и общими кристаллохимическими соображениями (Болдырев, 1937; Гинзбург и др., 1953; Сердюченко, 1954), подтверждено в настоящее время и экспериментально. Методами инфракрасной спектроскопии и рентгенографии на природных и синтетических слюдах показано, что у тайниолита $\mathrm{KMg_2Li}\,[\mathrm{Si_4O_{10}}]\mathrm{F_2}$ имеется натровый аналог $\mathrm{KMg_2Na}\,[\mathrm{Si_4O_{10}}]\mathrm{F_2}$, в котором натрий занимает часть октаэдрических структурных позиций, т. е. здесь есть $\mathrm{Na_{VI}}$, а не $\mathrm{Na_{XII}}$, как это обычнодля большинства слюд (Архипенко и др., 1965).

Однако в одних случаях расчетная сумма октаэдрических катионов у натриевых флогопитов не превышает трех, в других она значительно выходит за эти крайние пределы (см. формулу г), и возникает «проблема пространства», которая, как нам представляется, может быть разрешена (подобно расположению части натрия в «цеолитовых» трубчатых пустотах беррилов) при дополнительном использовании гексагональных (дитригональных) полостей, как предполагал Н. В. Белов (1951); при этом Na (и Са)

будут иметь не 12-, а 6-координацию.

Исследованный нами флогопит (обр. С-8/51) из пироксено-амфиболовой скарнированной зоны на Алдане относится не к докембрийским толщам, а к экзоконтакту верхнеюрских сиенит-порфиров (голец Зверева, вблизи пос. Лебединого), прорывающих кембрийские почти горизонтальные слоистые песчано-глинистые — доломитовые породы. В доломитах почти всегда содержатся рассеянные микроскопические кристаллики бледно-фиолетового флюорита, которые в некоторых приконтактных участках пневматогидротермально концентрируются и входят в состав перекристаллизованных ярко-фиолетовых (от укрупненного флюорита) карбонатных пород. Очевидно, с флюоритоносностью (седиментационного происхождения) связано и высокое содержание фтора в описываемой слюде из контактметасоматической зоны (Сердюченко, 1958) (см. табл., д).

Формула этого флогопита (аналитик А.С. Трусова, 1951):

$$\begin{array}{l} \partial) \ (K_{0,83}Na_{0,27})_{1\bullet 10} \ (Ca_{0,17}Mg_{2,38}Mn_{0,02}Fe_{0,23}^{2+}Fe_{0,14}^{3+}Ti_{0,02}Al_{0,02})_{2,98} \times \\ \times [Al_{1,22}Si_{2,78}]_{4,00}O_{10} \ (\bigcirc_{0,43}OH_{0,46}F_{0,68}) \end{array}$$

Кальциобиотит с наиболее высоким из известных в литературе содержанием кальция был обнаружен Замбонини (Zambonini, 1919) в пневматолитически измененных известняковых блоках, включенных в вулканические туфы Везувия; новообразования этой слюды находятся в парагеневисе с флюоритом. Цвет ее варьирует от светло-бурого до светлого красноватобурого, иногда окраска имеет пятнистый характер; блеск слабый перламутровый. 2 E колеблется в пределах 15—33°; плеохроизм: по Ng и Nm — светлый красновато-бурый, по Np — почти бесцветный. Автор особо отмечает тщательность химического определения в слюде кальция, но барий и стронций при этом не обнаружены. Хотя прямых определений фтора (который указан по разнице до 100%) сделано не было, естественно, что в элюмосиликатной (вулканической, туфовой) среде, богатой кальцием и фтором, образовалась и богатая этими элементами слюда (см. табл., ϵ).

Из этого же района описана и другая (бесцветная и одноосная) слюда

с СаО около 6,5%.

Рассчитанная нами структурная формула кальциобиотита

$$e) \ (K_{0,75}Na_{0,48})_{1,23} (Ca_{1,13}Li_{0,18}Mg_{1,19}Mn_{0,02}Fe^{3+}_{0,10}Al_{0,30}Ti_{0,01})_{2,93} \times \\ \times [Al_{1,30}Si_{2,70}]_{4,00} O_{10} (OH_{1,08}F_{0,92})$$

показывает избыточность натрия, который частично в виде Na_{VI} входит, по-видимому, в октаэдрические слои, а частично — в дитригональные по-

лости; в октардрических слоях магний явно замещается кальцием (в от-

ношении 1:1).

Интерес представляют слюды из метаморфизованных известняков Шелингена в районе Кайзерштуля (в Германии) и из Эдвардза в штате Нью-Йорк (США): по трем анализам (из которых два — 1877—1889 гг., а один — 1912 г.) они содержат много ВаО (от 5 до 9%).

Первый анализ слюды из Kaiserstuhl (аналитик A. Knop; Z. Krystall.,

1887, Bd. 12, 588) укладывается в формулу

$$(K_{0,60}Na_{0,20}Sr_{0,02}Ba_{0,18})_{1,00}Mg_{3,00} [Al_{1,50}Si_{2,50}]_{4,00}O_{10} (O, OH, F)_{2}$$

Более поздний анализ слюды из этого же участка (аналитик M. Dittrich; Dissert. R. Daub, 1912, Freiberg; цит. по Heinrich, 1946) показал не только много бария, но и очень много CaO

$$(K_{0,48}Na_{0,05}Ba_{0,15}Ca_{0,48})_{1,16} (Ca_{0,18}Mg_{2,79}Fe_{0,03}^{2+})_{3,00} [Al_{1,75}Si_{2,25}]_{4,00}O_{10} \times (O, OH)_{2}$$

Новые исследования обнаружили сильно бариевые слюды в серии флогопит — биотит, но одновременно они содержат литий. Такой литиевобариевый флогопит (BaO > 4%; Li₂O > 0,5%) был недавно обнаружен Е. И. Семеновым (1959) на одном железорудном месторождении в Монголии, где имеются и другие бариевые минералы — барит, бафертисит, бариевый фторкарбонат. Структурная формула этой слюды немного округленная — ($K_{0,8}Ba_{0,2}$) (Li_{0,2} $Mg_{2,8}$) [AlSi₃O₁₀] (OH_{0,8} $F_{1,2}$); в соединительных и октаэдрических структурных слоях очевиден сопряженный изоморфизм $BaLi \to KMg$.

Вхождение бария (взамен калия; см. выше) в решетку биотитов возможно и при одновременном замещении $Al_{IV} \rightarrow Si$ в тетраэдрах, т. е.

 $BaAl_{IV} \to KSi$ (Сердюченко, 1966; Петров и др., 1965).

В линзовидных скарнах месторождения Франклин (США) недавно обнаружены и изучены богатые цинком и марганцем флогопиты — хендрикситы (Frondel, Ito, 1966). Среди господствующих андрадита, родонита и кальцита они в качестве второстепенных минералов встречаются здесь вместе с Ва-полевым шпатом, Zn- и Mn-разностями пироксенов из серий диопсида и эгирин-авгита, франклинитом, виллемитом, аксинитом, баритом, флюоритом и многими другими (Palache, 1937). Содержание в них R_{VI}^{2+} варьирует: 12—23% ZnO, 4,8—15,3% MnO, 13,6—1,8% MgO. Произведен также гидротермальный синтез крайних — цинкистого и марганцовистого членов этого изоморфного ряда, т. е. $KZn_3[AlSi_3O_{10}](OH)_2$ — $KMn_3[AlSi_3O_{10}](OH)_2$.

Структурная формула хендриксита следующая:

3) $(K_{0,85}Na_{0,04}Ba_{0,02})_{0,91}(Zn_{1,43}Mn_{0,88}Mg_{0,46}Fe_{0,02}^{2+}Fe_{0,14}^{3+}Ti_{0,04}Al_{0,02})_{2,99} \times \\ \times [Al_{1,34}Si_{2,66}]_{4,00}O_{10}(OH_{1,98}F_{0,02})$

Помимо характерного замещения $(Zn + Mn) \rightarrow Mg$ в этой слюде на блюдается и $Al_{VI}Al_{IV} \rightarrow MgSi; Ng = 1,686; 2V = - (2-5°); уд. вес. 3,43.$

Мусковиты несравненно чаще, чем флогопиты, бывают в природе бариевыми (эллахериты), в том числе ванадиево-бариевыми, так как в них легко происходят замещения типа $BaMg \to KAl_{VI}$ или $BaMgV^{3+} \to KAlAl$.

Описанные В. А. Соколовым (1946), С. В. Культиасовым и Р. П. Дубинкиной (1946) веленоватые ванадиевые эллахериты из Казахстана содержат V_2O_3 от 6 до 18% и ВаО от 5,20 до 7,20%. Образовались они в ванадиево-битуминозных кембрийских сландах; при их формировании и слабом метаморфизме, в восстановительной среде, в минералообразовании, очевидно, принимали участие подвижные ванадиево-органические комплексы, а барий в значительной степени был способен к местной миграции в виде $Ba(HCO_3)_2$. Здесь были определены для волокнистой (см. табл., u)

слюды: Ng = 1,634 и Nm = 1,625; $2V \approx (-)~40^\circ$; для пластинчатой (к) слюды: Ng = 1,676, Nm = 1,664, Np = 1,620, уд. вес 3,106.

Рассчитанные нами два анализа этих слюд соответствуют формулам:

- u) $(K_{0,55}Na_{0,07}Ba_{0,20})_{0,82} (Mg_{0,22}V_{0,35}Cr_{0,07}Fe_{0,02}^{3+}Al_{1,40})_{2,06} [Al_{0,91}Si_{3,09}]_{4,00} \times O_{10} (OH)_{2}$
- $\kappa)\left(\mathrm{K}_{0,55}\mathrm{Na}_{0,02}\mathrm{Ba}_{0,15}\right)_{0,72}(\mathrm{Mg}_{0,22}\mathrm{V}_{1,05}\mathrm{Al}_{0,80})_{2,07}[\mathrm{Al}_{0,87}\mathrm{Si}_{3,13}]_{4,00}\mathrm{O}_{10}(\mathrm{OH})_{2}\cdot0.3\mathrm{H}_{2}\mathrm{O}.$

Здесь очевидны замещения $BaMg \to KAl$ и одновременно $V^{3+} \to Al_{VI}$. Значительный интерес представляет и розовый бариевый мусковит (эллахерит) из Франклина (США), находящийся в срастании с микроклином, желтым гранатом, манганофиллитом и франклинитом (Bauer, Berman, 1933).

Сделанный нами расчет дал формулу

л) $(K_{0,57} Na_{0,20} Ca_{0,03} Ba_{0,27})_{1,07} (Mg_{0,17} Zn_{0,10} Mn_{0,04} Al_{1,69})_{2,00} [Al_{1,05} Si_{2,95}]_{4,00} \times O_{10} (OH)_{2},$

которая отчетливо показывает гетеровалентные сопряженные замещения в октаэдрических и соединительных слоях: BaMg \rightarrow KAl. При этом количество октаэдрических катионов остается равным двум, но эта гептафиллитовая слюда содержит в октаэдрическом слое, кроме R^{3+} (84%), уже значительное (16%) количество R^2 , из которого одна треть приходится на цинк. Отметим, что при гетеровалентных замещениях другого типа (SiMg \rightarrow A_{IV}Al_{VI}) в октаэдрических слоях мусковитовой решетки количество катионов сохраняется и равно двум, но меняется их состав: R^{2+} R^{3+} вместо R_2^{3+} , содержание двухвалентных катионов достигает уже 50%; в соединительных слоях, не участвующих в замещениях, все позиции заняты R^{1+} , а тетраэдры — все кремнекислородные, т. е. эти слюды — четырехкрем-

ниевые (Si₄) типа свитальскита (Сердюченко, 1965).

В составе свитальскитов — $\rm KMgFe^{3+} Si_4O_{10}~(OH)_2$ из трех октаэдрических пустот занято две; в связи с этим интересно отметить, что недавно в системе $\rm K_2O-MgO-SiO_2-H_2O$ искусственно получена новая минеральная фаза $\rm KMg_{2,5}~Si_4O_{10}~(OH)_2$. В этом синтетическом минерале из трех октаэдрических позиций двухвалентными катионами в среднем занято уже две с половиной, а трехвалентные катионы отсутствуют совсем; всего же катионов 7,5 (!), а не 7 или 8, т. е. эта слюда, как и биотиты, промежуточная между гепта- и октафиллитами. Мы считаем, что это результат эквивалентного замещения $\rm 1R^{3+}$ на 1,5 $\rm R^{2+}$, с чем и связано приближение мусковитовой структуры к биотитовой. Авторы-экспериментаторы (Seifert, Schreyer, 1965) отмечают, что благоприятны для образования этой новой фазы условия высокой температуры и давления, которые способствуют изоморфным замещениям и образованию твердых растворов; поэтому ожидать такую слюду в природе следует, например, в кимберлитовых породах, в сильно магнезиальных карбонатитах.

Исследованная нами бесцветная слюда (обр. 413/1953) из полных псевдоморфоз по богатому кальцием скаполиту (мейониту) в породах Алдана оказалась безжелезистым, но существенно кальциевым мусковитом; за вычетом незначительной примеси карбоната и сульфата кальция (по SO₃

и СО2) получаем формулу:

м) $(K_{0.73} \text{ Na}_{0.04} \text{ Ca}_{0.23})_{1,00} (\text{Ca}_{0.16} \text{Mg}_{0.03} \text{ Al}_{1,84})_{2,03} [\text{Al}_{1,15} \text{Si}_{2,85}]_{4,00} \text{O}_{10} (\text{OH})_{2,0} \times 0.12 \text{ H}_2\text{O}.$

Кальций, по-видимому, входит как в соединительные, так и в октаэдрические слои, где он становится на место алюминия: $CaCa \to KAl_{VI}$.

Как известно, многочисленные исследования природных и синтетических слюд ряда флогопит — биотит показывают частичные или далеко идущие гетеровалентные замещения типа R_3^{2+} — R_2^{3+} в октаэдрических структурных

слоях; AI (и Fe³⁺) могут входить в октаэдрические и тетраэдрические слои. К этому следует добавить и двоякое поведение крупных катионов Na и Ca, которые входят в соединительные («калиевые») слои и в октаэдры. В октаэдрах, таким образом, могут «сосуществовать» трех-, двух- и одновалентные катионы, в соединительных слоях — одно- и двухвалентные, в тетраэдрах — четырех-, трех- и даже двух(Ве)-валентные катионы. Разнообразию изоморфных замещений много способствует повышенная температура.

минералообразования.

Рассмотрение приведенных выше материалов, в частности, еще разпоказывает, что деление слюд только на ди- и триоктаэдрические не оправдывается, так как широко развиты биотиты с $2 < ({
m R}^{3+} + {
m R}^{2+}) > 3$ в октаэдрических слоях, а в ряду мусковит — свитальскит синтезирована слюда, имеющая 7,5 катионов. Поэтому и при расчете структурных формул слюд. с их кислородной упаковкой, необходимо исходить из числа ионов кислорода в элементарной ячейке, а не из заданного количества катионов (7 или 8), что насильственно и необоснованно предопределяет отнесение всех слюд только к гепта- или октофиллитам. Это заранее исключает обнаружение промежуточных природных и синтетических слюд, которые в действительности существуют, а искомое количество катионов принимается здесь за будто бы достоверно известное; полнота и правильность информации существенно при этом снижаются. Мы давно (Сердюченко, 1951, 1954, 1960) предложили способ расчета формул слюд на 11 кислородов [по «сухому» веществу: $O_{10}(OH)_2 = O_{11} + H_2O$], что соответствует сумме валентностей катионов, равной 22. К этому же результату пришел недавно и Зейферт (Seifert, 1966). Отмечая недостатки пересчета анализов слюд, связанные с отсутствием непосредственных определений в них кислорода, он исходит из двух предположений (O + OH + F = 12 и сумма валентностей катионов равна 22); для цифрового пересчета выбирает последнее.

При исследовании изоморфных замещений в мусковитовых решетках Гатино (Gatineu, 1964), рассчитывая количество грамм-атомов кислорода, связанного с каждым катионом в 100 г минерала, при выводе структурной формулы также исходит из 11 атомов кислорода в элементарной ячейке слюды, исключив предварительно всю конституционную воду

и фтор).

Образцы природных норвежских слюд — мусковита из Бертен и флогопита из Скатой обрабатывались в кварцевых трубках в течение 6 дней при 125° раствором LiCl и RbCl, содержащим в качестве радиоактивных индикаторов тритий. После удаления промывкой растворенных щелочей (К и др.) и повторного нагревания (100—1200°) было установлено, что флогопит никаких существенных изменений не претерпел, а мусковит в результате эксперимента оказался литиевым: Li внедрился в свободные (третьи) октаэдрические позиции слюды с одновременным удалением соответствующего количества К из соединительных слоев, а возникшие при этом межслоевые пустоты заполнились H_2O (со значительным содержанием трития). В итоге обработки мусковита LiCl получились смешанные кристаллы серии:

$${\rm KAl_{\,2}\; (AlSi_{\,3})O_{10}(OH)_{\,2} - H_{\,2}O \; (Al_{\,2}{\rm Li}) \; (AlSi_{\,3}) \; O_{10} \; (OH)_{\,2}.}$$

Очевидно, члены этого ряда могут образовываться в природе при воздействии хлористых литиеносных гидротерм на мусковиты ранней генерации (Rosenqvist, Jörgensen, 1963).

Крайний литиевый член этого ряда имеет состав (в % вес., по нашему расчету): $SiO_2 - 46,88$; $Al_2O_3 - 39,85$; $Li_2O - 3,89$; $+H_2O - 9,38$.

Сумма 100,00%.

ЛИТЕРАТУРА

- Архипенко Д. К., Бобр-Сергеев А. А., Григорьева Т. Н., Ковалева Л. Т. О возможности заполнения октаэдрических структурных позиций в слюдах одновалентными катионами натрия. — Докл. АН СССР, 1965, 160, No 2.
- Белов Н. В. Гемиэдрия слюд и особенности их спайности в свете тонкой структу-
- ры.— Минерал. сб. Львовск. геол. об-ва, 1951, № 5.
 Болды рев А. К. Химическая конституция и кристаллическая структура слюд.— Сб. «Слюды СССР», Изд-во АН СССР, 1937.
 Гинзбург А. И., Берхин С. И. О составе и химической конституции лити-
- евых слюд. Труды Минерал. музея АН СССР, 1953, вып. 5. К пркинский В. А. К вопросу о предельном различии ионных радиусов для изоморфных замещений. В кн. «Материалы по генетической и экспериментальной
- минералогии», т. 4. Изд-во «Наука», 1966. Культиасов С. В., Дубинкина Р. П. Новая разновидность эллахерита, со держащая ванадий.— Зап. Всес. минерал. об-ва, 1946, ч. 75, № 3.
- Петров В. А., Предовский А. А., Сергеев А. С., Галибин В. А. Некоторые особенности распределения элементов-примесей в биотитах кристаллических сланцев и гнейсов Северного Приладожья. — Вестник ЛГУ, 1965, № 24.
- Семенов Е. И. Литиевые и другие слюды и гидрослюды в щелочных пегматитах Кольского полуострова. — Труды Минерал. музея АН СССР, 1959, вып. 9.
- Сердюченко Полуострова. груды минерал. музея Ан СССР, 1959, вып. 9.
 Сердюченко Д. П. Магнезиально-железистые слюды из железорудных и слюдоносных пород Алданского архея. В кн. «Железные руды Южной Якутии». Изд-во АН СССР, 1960.
 Сердюченко Д. П. О некоторых типах изоморфных замещений в слюдах. Симпозиум по проблеме изоморфизма. Тезисы. Изд-во ЛГУ, 1966.
- Сердюченко Д. П. Магнезиоферриты и титан-шиннели из кембрийской толщи
- Сердюченко Д. П. Магнезиоферриты и титан-пипинели из кеморииской толщи Алдана.— Минерал. сб. Львовск. геол. об-ва, 1958, № 12. Сердюченко Д. П. О кристаллохимической роли натрия в магнезиально-железистых слюдах. Докл. АН СССР, 1954, 97, № 2. Сердюченко Д. П. Свитальскит и его положение в ряду четырехкремниевых слюд.— Зап. Всес. минерал. об-ва. 1965, № 2.
- Соколов В. А. Ванадиеносные кембрийские отложения в Казахстане. Вестник АН Каз.ССР, 1946, № 11 (20). Шубникова О. М. Новые минеральные виды и разновидности, открытые в 1945—1949 гг. Труды ИГН АН СССР, 1953, вып. 144.
- Bauer L. H. a. Berman H. Barium-muscovite from Franklin. N.-Y. Amer. Mineral., 1933. N. 1.
- Frondel C., I to J. Hendricksite, a new species of mica.— Amer. Mineral., 1966, 51, N 7.

 Gatineau L. Structure reelle de muscovite Répartition des substitutions isomorphes.— Bull. Soc. franc. miner. crist., 1964, 87.

- phes.—Bull. Soc. franc. miner. crist., 1964, 87.

 Palache C. The minerals of Franklin and Sterling Hill, Sussex Country, N. Y.—
 U. S. Geol. Survey Prof. Paper 180. 1937.

 Heinrich E. Wm. Studies in the mica groub; the biotite-phlogopite series.—Amer.
 Journ. Sci., 1946, 224, N 12.

 Zambonini F. Memorie per servize alla descrizione della carta geologica d'Italia,
 VIII, Tiel 2, 1919, Roma.

 Seifert F., Schreyer W. Ein synthetisches Zwischenglied zwischen dioktaedrischen und trioktaedrischen Climmern.—Naturwissenschaften, 1965, 52. N 8.
- Se i fert F. Ein Rechenprogramm zur Umrechnung von Glimmeranalysen in Strukturformeln.— Beitr. Mineral. und Petrolog., 1966, 13, N 1.

 Rosen qvist I. Th., Jörgen sen P. Replacement in the octahedral and interlayer positions in micas.— Nature, 1963, t. 197, N. 4866, p. 477—478.