МИНЕРАЛОГИЧЕСКИЙ МУЗЕЙ им. А. Е. ФЕРСМАНА

Труды, вып. 16

1965 г.

Редактор д-р геол.-мин. наук Г. П. Барсанов

ю. А. БАЛАШОВ, М. Д. ДОРФМАН, Н. В. ТУРАНСКАЯ ОТДЕЛЕНИЕ ЦЕРИЯ ОТ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ПРИ ВЫВЕТРИВАНИИ ЭВДИАЛИТА

Эвдиалит является типичным акцессорным минералом агпаитовых нефелиновых сиенитов и их пегматитов и иногда щелочных гранитов. Этот магматогенный минерал неустойчив в зоне гипергенеза, и при выветривании его возникает ряд минералов, одним из конечных продуктов которого является цирфесит (Дорфман М. Д., 1962).

Обычно при гипергенном изменении редкоземельных минералов отмечается преимущественный вынос тяжелых лантаноидов и соответственное накопление элементов цериевой группы (Семенов, 1963). При изучении состава р.з.э. эвдиалита и заместившего его цирфесита из пегматита Ловозерского щелочного массива в последнем, одним из авторов, было обнаружено резко пониженное содержание церия (табл. 1). Возникло предположение, что дефицит церия в цирфесите обусловлен избирательным отделением этого элемента в четырехвалентной форме при окислении. Аналогичные мнения были высказаны в отношении обедненных церием гипергенных рабдофанита и галлуазита (Семенов Е. И., 1963; Hildebrand F., 1957), однако процесс и условия выноса церия при гипергенном минералообразовании не рассматривались.

При выветривании хибинского эвдиалита последовательно образуется ряд вторичных минералов — калиевый цирсит (1-я стадия), цирсит (2-я стадия) и цирфесит (3-я стадия) (Дорфман М. Д., 1962). Из рассмотрения химического состава этих минералов видно, что отмеченная стадийность отражает этапы выщелачивания главным образом щелочных и щелочноземельных элементов из эвдиалита, которые сопровождаются гидратацией и соответствующим накоплением малоподвижных элементов — гидрализатов (Zr, Fe и др.) (Дорфман М. Д., 1962). В процессе выветривания эвдиалита (табл. 2) происходит постепенное накопление р.з.э. от 0,51 % TR_2O_3 (в эвдиалите) до 1,63% TR_2O_3 (в цирфесите). При детальном рассмотрении состава р.з.э. эвдиалита и продуктов его изменения видно, что на ранних стадиях процесса выветривания (в калиевом цирсите и пирсите) соотношение р.з.э. сохраняется постоянным, аналогичным исход-ΣCe = 0.85 - 1.1). ному в эвдиалите ΣΥ

Заметные отклонения в сторону относительного выноса элементов игтриевой группы, и особенно самого иттрия, наблюдаются только на стадии образования цирфесита, что хорошо видно из сравнения коэффициентов концентрирования 1 отдельных р.з.э. (см. табл. 2) в цирфесите

¹ Под коэффициентом концентрирования мы понимаем отношение содержания элемента конечного продукта к исходному.

Таблица 1 Содержание р.з.э. в эвдпалите и цирфесите из Ловозерского массива (%)

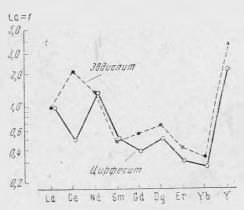
Минерал	La	Ce	Pr	Nd	Sm	Gd	Tb
Эвдиалит Цирфесит Отношение содержания р.з.э. в цирфесите к ис- ходному в эвдиалите	0,15 0,12 0,8	0,45 0,07 0,15	0,075 0,070 0,95	0,32 0,31 0,97	0,11 0,12 1,1	0,095 0,095 1,0	0,02 0,02 1,0

Таблица 1 (окончание)

Минерал	Dy	Но	Er	Yb	Lu	Y	TR2O3
Эвдиалит Цирфесит Отношение содержания р.з.э. в цирфесите к ис- ходному в эвдиалите	0,14 0,15 1,05	0,029 0,031 1,05	0,085 0,087 1,0	0,078 0,078 1,0	0,015	0,74 0,72 0,97	2,8 2,2

Таблица 2 Распределение р.з.э. в авдиалите и предуктах его стадийного выветривания из пегматита Хибинского щелочного массива (%)

0	Калиевый цирсит		Цирсит			К _{конц в}	
Элемент	Эвдиалит	1-я стадия	11	2-я стадия		3-я стадия	в пирфесите к эвдиалиту
	1	2	3	4	5	6	
La	0,037	0,020	0,054	0,051	0,043	0,175	4,7
Ce	0,080	0,100	0,140	0,135	0,095	0,087	1,1
Pr	0,012	0,016	0,021	0,020	0,015	0,055	4,6
Nd	0,053	0,081	0,090	0,093	0,060	0,250	4,7
Sm	0,018	0,029	0,023	0,030	0,21	0,093	5,2
$\mathbf{E}\mathbf{u}$		0,010	_		_	0,030	_
Gd	0,021	0,024	0,030	0,032	0,023	0,068	3,2
Tb	0,006	0,007	0,009	0,007	0,0065	0,017	2,8
Dy	0,025	0,035	0,050	0,043	0,0030	0,090	3,6
Ho	0,005	0,009	0,009	0,008	0,0075	0,017	3,4
Er	0,016	0,019	0,031	0,022	0,018	0,055	3,4
Tu	_	0,0016		_	_	0,005	
Yb	0,013	0,014	0,027	0,013	0,012	0,050	3,8
Lu-	_	0,0032	_	0,0024	_	0,0083	
Y.	0,140	0,180	0,250	0,180	0,18	0,375	2,7
$\mathrm{TR}_{2}\mathrm{O}_{3}$	0,51	0,65	0,90	0,77	0,62	1,63	
$\frac{\Sigma \text{Ce}}{\Sigma \mathbf{Y}}$	0,9	0,9	0,85	1,1	0,85	_	_


по сравнению с эвдиалитом: для La, Pr, Nd и Sm $K_{\text{конц}}=4,6-5,2$; для Gd, Tb, Dy, Ho, Er и Yb $K_{\text{конц}}=2,8-3,8$ и для Y наименьший $K_{\text{конц}}=2,7$ (см. рисунок). Следует отметить, что фракционирование р.з.э. при

постепенном изменении эвдиалита протекает при возрастании сумм, р.з.э. и, вероятно, поэтому оно в целом проявлено не столь отчетливо

как это наблюдалось при выветривании других минералов.

Сравнение состава р.з.э. в эвдиалите и продуктах его изменения позволило установить кроме того, что избирательное выщелачивание церия отсутствует на ранних стадиях выветривания и обнаруживается только в цирфесите. Как видно из табл. 2, церия в цирфесите сохранилось лишь 25% от его исходного относительного содержания в группе р.з.э. Это

свидетельствует о высокой подвижности церия в поверхностных условиях, при которых почти полностью выносятся щелочные, щелочноземельные элементы и частично тяжелые лантаноиды. Вынос церия совместно с тяжелыми лантаноидами позволяет уверенно утверждать, что отделение церия происходит в форме Се+4. Как известно (Goldschmidt V. M., 1954), при окислении Се+3 в Се+4 ионный радиус уменьшается на 10-13%, а химические свойства нерия резко изменяются. Четырехвалентный церий является, с одной стороны, более слабым основанием, чем все остальные р.з.э. (включая Lu), и поэтому легче других р.з.э.

Вынос церия и тяжелых лантаноидов из эвдиалита при его гипергенном превращении в цирфесит

гидролизуется в щелочных средах. С другой стороны, Ce^{+4} — более сильный комплексообразователь, чем остальные р.з.э., среди которых тяжелые лантаноиды отличаются большей устойчивостью комплексных соединений по сравнению с легк ими. Одновременное выщелачивание дерия и тяжелых лантаноидов из цирфесита свидетельствует поэтому о ком-

плексной форме переноса этих элементов.

На ранних стадиях выветривания р.з.э. не разделяются. Объясняется это высокой щелочностью транзитных вод зон разломов или зон повышенной трещиноватости пород, содержащих нефелин, гакманит, а иногда и виллиомит. В этих условиях церий может окисляться (Щербина В. В., 1959) и гидролизоваться и поэтому не выщелачивается. Некоторые колебания в значениях рН (в сторону уменьшения рН) циркулирующих вод могут лишь привести к частичному выносу наиболее основного элемента из группы р.з.э. — лантана, что и имеет место в калиевом цирсите (см. табл. 2, обр. 2). В условиях дневной поверхности щелочность вод уменьшается до значения рН 6,2-7,1 (табл. 3), несколько изменяется их анионный состав (исчезает карбонатный ион) и падает минерализованность (табл. 4). Вероятно, уменьшение значения рН среды, а также особенности состава этих вод (воды типично хлоридно-гидрокарбонатные натровые) создают условия для избирательного выщелачивания окисленного церия и частично тяжелых лантаноидов, поскольку комплексные соединения этих р.з.э. с карбонатами щелочных металлов характеризуются большей растворимостью, чем легких лантаноидов (Скляренко Ю. С., 1953).

Таким образом, при исследовании продуктов выветривания эвдиалита была установлена определенная стадийность в подвижности р.з.э., отражающая возможные этапы их дифференциации: 1) преимущественный вынос легких лантаноидов (отделение La) — начальная стадия; 2) разделение р.з.э. в заметных количествах отсутствует — средняя стадия;

3) преимущественный вынос тяжелых лантаноидов (окисление Се и его вынос) - конечная стадия.

Все эти этапы процесса сопровождаются накоплением р.з.э. и элементов-гидрализаторов (Zr, Fe и др.) в коре выветривания щелочных массивов.

Спедует отметить, что стадия частичного выщелачивания La (или ΣСе) не является обязательной и может не быть в процессе при отсутствии значительных колебаний рН (см. табл. 2, ан. 5).

Таблица 3 Колебания величины рН в водах Ловозерского массива (по данным К. Интьевой и О. Подковырова)

Тип вод	Колебания рН	Среднее значение рН	
Напорные Грунтовые Поверхностные	7,0—9,3 и выше 6,1—9,0 6,2—7,1	7,6—7,7 6,7—6,9 6,5	

Таблица 4 Химический состав вод Ловозерского массива (мг/л) (по данным К. Питьевой и О. Подковырова)

Компонен-	Тип вод			Компонен-	дов ппТ		
	поверхност-	грун- товые	напор- ные	TIJ	поверхност- ные	грун- товые	напор- ные
Na	5,48	26,8	10,7	F	0,013	0,3	0,2
Mg	0,55	1,5	0,6	$SO_4^{''}$	0,47	7,4	6,13
Ca	0,738	2,2	0,8	HCO3	11,97	60,0	18,5
Cl	3,54	5,18	3,8	$CO_3^{''}$	Нет	3,6	1,1

ЛИТЕРАТУРА

- Дорфман М. Д. Минералогия негматитов и зон выветривания в ийолит-уртитах горы Юкспор Хибинского массива. М.— Л., Изд-во АН СССР, 1962. Семенов Е.И. Минералогия редких земель. М., Изд-во АН СССР, 1963.
- Скляренко Ю. С. Исследования в области разделения редкоземельных элементов. Диссерт. ГЕОХИ, М., 1953. Шербина В. В. вкн.: «Геология месторождений редких элементов», вып. 3.
- «Р.з.э. и их месторождения». М., Госгеолтехиздат, 1959.
- Goldschmidt V. M. Geochemistry. Oxford. Clarendon Ress, London, 1954. Hildebrand F., Carron M., Rose H. Re—examination of rhabdophane (seovillite) from Salisbury, Connecticut.—Bull. Geol. Soc. America, 1957, 68, N 12, pt. 2.