удк 551.7:551.763(571.66)

## СТРОЕНИЕ И ВОЗРАСТ ОСАДОЧНО-ВУЛКАНОГЕННЫХ МЕЗОЗОЙСКИХ ОТЛОЖЕНИЙ ПАЛАНСКОГО РАЗРЕЗА (ЗАПАДНАЯ КАМЧАТКА)

#### © 2003 г. Т. Н. Палечек\*, А. В. Соловьев\*, М. Н. Шапиро\*\*

\*Институт литосферы окраинных и внутренних морей РАН, Москва \*\*Институт физики Земли РАН, Москва Поступила в редакцию 28.05.2001 г., получена после доработки 17.10.2001 г.

На западной Камчатке мезозойские отложения обнажены весьма фрагментарно, что затрудняет расшифровку докайнозойской истории этого района. В статье приводится описание одного из наиболее полных разрезов мезозоя на западной Камчатке – паланского разреза, который удалось подразделить на вулканогенную и олистостромовую толщи. Возраст вулканогенной толщи обоснован определениями радиолярий как кампан-маастрихтский. Кремнистые олистолиты и олистоплаки формировались с концы юры до конца мела. Матрикс олистостромы, согласно определениям радиолярий, в позднем кампане – маастрихте, однако, присутствие обломков пород вулканогенной толщи в олистостроме позволяет считать, что основная ее часть сформирована в постраннемаастрихтское время. Таким образом, тектоническое скучивание и связаное с ним олистостромообразование, скорее всего, произошло после раннего маастрихта. Резкое несогласие в основании анадыркской свиты обусловлено общей деформацией паланского разреза, которая, согласно опубликованным данным, завершилась к середине дания.

# Ключевые слова. Кампан – маастрихт, радиолярни, верхнемаастрихтская олистостромовая толща, паланский разрез, западная Камчатка.

#### введение

Западная Камчатка – область преимущественного развития кайнозойских образований, и лишь отдельные поднятые блоки сложены здесь докайнозойскими, главным образом, верхнемеловыми толщами (Объяснительная записка..., 2000). Такая фрагментарность выходов при слабой обнаженности большинства из них препятствует расшифровке докайнозойской истории, как полуострова, так и смежных частей Охотского моря. В условиях фрагментарной обнаженности особую ценность имеют выходы верхнего мела в скалах морского берега. Самый северный из этих выходов расположен непосредственно к северу от устья р. Паланы (рисунок).

Первая публикация, специально посвященная этому участку, принадлежит М.Ф. Двали (1957), который описал на мысе Паланский паланский горизонт и туфо-сланцевую серию. В дальнейшем район изучался в ходе геологической съемки масштаба 1 : 200 000 (Демидов, Сулима, 1982). Были выделены кингивеемская, ирунейская, тальническая и усть-паланская свиты. На изданной геологической карте масштаба 1 : 1 000 000 (Геологическая карта..., 1989) меловые породы паланского района были разделены на три свиты: нижнемеловую – кингивеемскую (базальты, долериты, кремнистые породы), кампанскую - ирунейскую (долериты, базальты, туфы, яшмы) и маастрихтскую – усть-паланскую (туфы, туфобрекчии базальтов, трахибазальтов, песчаники, конгломераты). Последнее изучение строения паланского разреза было проведено А.Б. Цукерником и представлено в отчете по тематическим исследованиям ГНПП "Аэрогеология" (1991 г.). Им выделяется вулканогенно-осадочная кампанская ирунейская свита, слагающая большую, северную часть береговых обнажений к югу от реки Анадырки и олистостромовую усть-паланскую свиту. Строение кайнозойских образований, обнаженных в обрыве морского берега к северу от Паланы, подробно описано Ю.Б. Гладенковым и его соавторами (1997).

#### СТРОЕНИЕ РАЗРЕЗА

Докайнозойские породы паланского разреза разделяются нами на две толщи: вулканогенную и олистостромовую (рисунок). Присутствие обломков пород, характерных для вулканогенной толщи, в олистостромовой толще позволяет считать, что олистостромовая толща первично, по-видимому, перекрывала вулканогенную.



На врезке. Расположение меловых комплексов Олюторской зоны и северной Камчатки.

1 – кайнозойские отложения; 2 – мел-палеогеновые отложения Укэлаятско-Лесновского прогиба; 3 – меловые кремнисто-вулканогенные комплексы; 4 – Ватыно-Лесновский надвиг (а – установленный, б – предполагаемый).

А. Береговой разрез к северу от поселка Палана (в плане). 1 – осыпи; 2 – зоны меланжа; 3 – конгломераты, гравелиты, песчаники; 4 – кремни; 5 – кремни с обломками иноцерам; 6 – алевролиты, кремнистые алевролиты; 7 – базальты; 8 – линзы песчаников; 9 – агломератовые базальтовые брекчии, базальты и андезибазальты; 10 – крутопадающие разломы (а – установленные, б – предполагаемые); 11 – надвиги (а – установленные, б – предполагаемые); 12 – элементы залегания; 13 – номера образцов, отобранных на микрофауну; 14 – положение образцов, датированных Д.В. Куриловым (2000).

Б. Продолжение берегового разреза рис. 1 А.

Вулканогенная толща. Основание вулканогенной толщи в изученном районе не обнажено. Толша слагает северную часть береговых обнажений к югу от устья р. Анадырки и в основном представлена массивными агломератовыми брекчиями базальтов и андезибазальтов. Обломки брекчий представлены темно-серыми до черных порфировыми породами с крупными (до 3-4 мм) изометричными вкрапленниками клинопироксена. Некоторые разности андезибазальтов обогащены игольчатыми вкрапленниками черной роговой обманки. Угловатые обломки базальтов размером от первых сантиметров до первых метров, как правило, погружены в цемент близкого к ним состава. Некоторые породы с различающимися по текстуре и слегка окатанными обломками могут считаться туфобрекчиями. Никакой, даже самой грубой слоистости в этих породах не наблюдается, и определить их залегание в большинстве случаев невозможно, хотя в обнажениях часто видны протяженные разнонаправленные трещины и зоны дробления. Базальты и агломератовые брекчии содержат маломощные (10-30 м) пачки аргиллитов, туфогенных алевролитов и песчаников, кремнистых алевролитов, серых и черных кремней с примесью туфового материала. В некоторых туфопесчаниках и туфогенных алевролитах наблюдается нечеткая градационная слоистость. Контакты слоистых пачек с вмещающими брекчиями обычно сорваны, а сами слоистые породы сильно дислоцированы с формированием тектонических брекчий и разорванных мелких складок. Преобладают крутые залегания и субмеридиональные простирания с падением на востокюго-восток или запад-северо-запад (в самых северных выходах вулканогенной толщи). Эти простирания близки к простиранию береговой линии и, по-видимому, отражают залегание толщи в целом. Пачки слоистых пород лишены индивидуальности, и не исключено, что выходы некоторых из них повторяются, хотя самая нижняя заметно отличается и состоит почти из одних аргиллитов с редкими линзами кремней и обломками тонких призматических слоев раковин иноцерамид. Общая видимая мощность вулканогенной толщи не поддается точной оценке, но если считать, что она образует моноклиналь приблизительно параллельную берегу, то ее мощность превышает 1 километр.

Обоснование возраста вулканогенной толщи. Амфиболы из двух образцов андезибазальтов, отобранных из этой толщи в 3 км к югу от устья реки Анадырка, датированы К/Аг как 72.5 ± 3.5 млн. лет (обр. Ш88) и 72.0 ± 3.5 млн. лет (обр. Ш89) (определения М.М. Аракелянц).

Из 5 образцов кремнистых пород вулканогенной толщи получены радиолярии удовлетвори-

тельной сохранности (табл. 1). Наиболее представительные комплексы радиолярий, свидетельствуют о позднекампан-маастрихтском возрасте вмещающих отложений и встречены в (обр. 37, 79/b). Ранее по сборам А.Б.Цукерника (ГНПП "Аэрогеология") из образца (Ц17/1.2) кремнистых аргиллитов этой толщи В.С. Вишневская (устное сообщение) выделила кампанские радиолярии: Archaeospongoprunum nishiyamae Nakaseko et Nishimura, Orbiculiforma quadrata Pessagno, Pseudoaulophacus sp., Amphipyndax stocki (Campbell et Clark), Eucyrtis carnegiense Campbell et Clark, Lithostrobus sp.

Олистостромовая толща. К югу от выходов вулканогенной развита олистостромовая толща, которая слагает обрыв морского берега и приливную полосу непосредственно к северу от Усть-Паланы (рисунок). Олистостромовая толща отделена от вулканогенной крутым субмеридиональным разрывом. Толща выглядит как хаотическое или слабо упорядоченное (ориентированное) скопление глыб, коротких или протяженных (до 80 м) линз слоистых красных, серо-зеленых и почти черных кремней и кремнистых аргиллитов в песчано-брекчиевом матриксе. Значительно реже в составе крупных олистолитов и мелких глыб встречаются пироксеновые базальты с агломератовой текстурой, характерные для описанной выше вулканогенной толщи Паланского разреза. Кремни и кремнистые аргиллиты в олистолитах и олистоплаках, как правило, содержат обломки призматического слоя толстостворчатых крупнораковинных иноцерамид. Нередко эти обломки сгущаются в слои раковинных известняков со сравнительно небольшим количеством цементирующего кремня.

Матрикс олистостромовой толщи сложен обломочными породами: мелкообломочными брекчиями и конглобрекчиями, гравелитами и песчаниками с редкими маломощными линзовидными прослоями черных кремнистых аргиллитов и кремней. В составе обломков резко преобладают разнообразные кремнистые породы, в том числе и содержащие фрагменты призматических слоев раковин иноцерамид. В песчаниках обломки призматических слоев часто образуют самостоятельные зерна. В виде самостоятельных зерен встречаются и переотложенные радиолярии в мелких фрагментах материнской породы. Некоторые песчаники являются двухкомпонентной смесью обломков кремней и фрагментов базальтоидов: плагиоклазов, пироксенов и микролитовой основной массы. В сумме эти фрагменты аналогичны по минеральному составу пироксеновым базальтам вулканогенной толщи.

#### ПАЛЕЧЕК и др.

|                                                  | № образцов |     |     |          |     |  |  |  |  |  |  |
|--------------------------------------------------|------------|-----|-----|----------|-----|--|--|--|--|--|--|
| Виды                                             | 37         | 79b | 81a | 82a      | 87b |  |  |  |  |  |  |
|                                                  | 1          | 2   | 3   | 4        | 5   |  |  |  |  |  |  |
| Phaseliforma carinata Pessagno                   |            |     |     | <u> </u> |     |  |  |  |  |  |  |
| Phaseliforma subcarinata Pessagno                |            |     |     |          |     |  |  |  |  |  |  |
| Praestylosphaera pusilla (Campbell et Clark)     |            |     |     |          |     |  |  |  |  |  |  |
| Lithomespilus mendosa (Krasheninnikov)           | cf         |     |     |          |     |  |  |  |  |  |  |
| Lithomespilus sp.                                |            |     |     |          |     |  |  |  |  |  |  |
| Actinomma sp.                                    |            |     |     |          |     |  |  |  |  |  |  |
| Actinommidae gen. et sp. indet.                  |            |     |     |          |     |  |  |  |  |  |  |
| Orbiculiforma renillaeformis (Campbell et Clark) |            |     |     |          |     |  |  |  |  |  |  |
| Orbiculiforma quadrata Pessagno                  |            |     |     |          |     |  |  |  |  |  |  |
| Orbiculiforma sp.                                |            |     |     |          |     |  |  |  |  |  |  |
| Spongodiscus impressus Lipman                    |            |     |     |          |     |  |  |  |  |  |  |
| Spongodiscus rhabdostylus (Ehrenberg)            |            |     |     |          |     |  |  |  |  |  |  |
| Porodiscus cretaceus Campbell et Clark           |            |     |     |          |     |  |  |  |  |  |  |
| Spongurus sp.                                    |            |     |     |          |     |  |  |  |  |  |  |
| Spongopyle ? sp.                                 |            |     |     |          |     |  |  |  |  |  |  |
| Amphibrachium sansalvadorensis Pessagno          |            | aff |     |          |     |  |  |  |  |  |  |
| Pseudoaulophacus lenticulatus (White)            | cf         |     |     |          |     |  |  |  |  |  |  |
| Pseudoaulophacus sp.                             |            |     |     |          |     |  |  |  |  |  |  |
| Neosciadiocapsa sp.                              |            |     |     |          |     |  |  |  |  |  |  |
| Stichomitra livermorensis (Campbell et Clark)    |            |     |     | :        |     |  |  |  |  |  |  |
| Stichomitra sp.                                  |            |     |     |          |     |  |  |  |  |  |  |
| Amphipyndax stocki (Campbell et Clark)           |            |     |     |          |     |  |  |  |  |  |  |
| Xitus asymbatos (Foreman)                        |            |     |     |          |     |  |  |  |  |  |  |
| Lithostrobus rostovzevi Lipman                   |            |     |     |          |     |  |  |  |  |  |  |
| Cornutella californica Campbell et Clark         |            |     |     |          |     |  |  |  |  |  |  |
| Theocampe vanderhoofi Campbell et Clark          |            |     |     |          |     |  |  |  |  |  |  |
| Dictyomitra densicostata Pessagno                |            |     |     |          |     |  |  |  |  |  |  |
| Dictyomitra sp.                                  |            |     |     |          |     |  |  |  |  |  |  |
| Clathrocyclas tintinnaeformis Campbell et Clark  |            |     |     |          |     |  |  |  |  |  |  |
| Спикулы губок                                    |            |     |     |          |     |  |  |  |  |  |  |

Таблица 1. Радиолярии из прослоев кремнистых пород вулканогенной толщи. Заштрихованные поля обозначают присутствие вида в образце

Хаотический комплекс интенсивно дислоцирован, пронизан зонами милонитов, часто ограничивающих крупные глыбы и олистоплаки. В блоках кремнистых пород наблюдаются мелкие складки, в том числе с крутыми шарнирами. В некоторых случаях картируются резкие изгибы отдельных олистоплак. Тем не менее, мы не считаем этот хаотический комплекс тектоническим меланжем или тектонической мегабрекчией, а вслед за А.Б. Цукерником идентифицируем его как олистострому. Такая диагностика основана, прежде всего, на строении матрикса, который сложен, хотя и своеобразными, но типично осадочными породами: конглобрекчиями, гравелитами, песчаниками и алевролитами. Считать, что эти породы, так же как и кремни, являются результатом тектонической фрагментации исходного единого разреза – значит предполагать, что

Таблица 2. Радиолярии из олистолитов кремнистых пород олистостромовой толщи. Заштрихованные поля обозначают присутствие вида в образце

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ

TOM 11

**№** 3

2003

|                                                  | № образцов |    |    |     |    |    |    |    |    |        |        |        |        |       |
|--------------------------------------------------|------------|----|----|-----|----|----|----|----|----|--------|--------|--------|--------|-------|
| Виды                                             | 41         | 42 | 44 | 46  | 53 | 55 | 60 | 62 | 67 | 9918/1 | 9918/2 | 9918/6 | 9918/7 | 9918/ |
|                                                  | 1          | 2  | 3  | 4   | 5  | 6  | 7  | 8  | 9  | 10     | 11     | 12     | 13     | 14    |
| Phaseliforma carinata Pessagno                   |            | cf |    |     |    |    |    |    |    |        |        | 1      |        |       |
| Phaseliforma sp.                                 |            | Ĩ. |    |     |    |    | 1  |    |    |        | 1      |        |        |       |
| Praestylosphaera pusilla (Campbell et Clark)     |            |    |    |     |    | cf |    |    |    |        |        |        |        |       |
| Praestylosphaera hastata (Campbell et Clark)     |            |    |    |     |    |    |    |    | ľ  |        |        |        | cf     |       |
| Praestylosphaera sp.                             |            |    |    |     |    |    |    |    |    |        |        |        |        |       |
| Haliomma schucherti Campbell et Clark            |            |    |    |     |    |    |    |    |    | ſ      |        |        |        |       |
| Haliomma sp.                                     |            |    |    |     |    |    |    | 1  |    |        |        |        |        | 1     |
| Actinomma sp.                                    |            |    |    |     |    |    |    |    |    |        |        |        |        | 1     |
| Amphisphaera priva (Foreman)                     |            |    |    |     |    |    |    |    |    |        |        |        |        | 1     |
| Actinommidae gen. et sp. indet.                  |            |    |    |     |    |    |    |    |    |        |        |        |        |       |
| Lithomespilus mendosa (Krasheninnikov)           |            |    |    |     |    | cf |    | 1  | 1  |        |        |        |        |       |
| Cromyodruppa concentrica Lipman                  |            |    |    |     |    |    |    |    |    |        |        |        |        |       |
| Orbiculiforma renillaeformis (Campbell et Clark) |            |    |    |     |    |    |    |    |    |        |        |        |        |       |
| Orbiculiforma sp.                                |            |    |    |     |    |    |    |    |    |        |        |        |        |       |
| Spongodiscus impressus Lipman                    |            |    |    |     |    |    |    |    |    |        |        |        |        |       |
| Spongodiscus alveatus (Sanfilippo et Riedel)     |            |    |    |     |    |    |    |    |    |        |        |        |        |       |
| Spongodiscus rhabdostylus (Ehrenberg)            |            |    |    |     |    |    |    |    |    |        |        |        |        |       |
| Spongodiscus sp.                                 |            |    |    |     |    |    |    |    |    |        |        |        |        | 1     |
| Spongotripus morenoensis Campbell et Clark       |            |    |    |     |    |    |    |    |    |        |        |        |        | }     |
| Spongotripus sp.                                 |            | 1  |    |     |    |    |    | 1  |    |        |        |        |        | 1     |
| Spongurus sp.                                    |            |    |    |     |    |    |    |    |    |        |        |        |        | 1     |
| Spongosaturnalis spiniferus Campbell et Clark    |            |    |    |     |    |    |    | cf |    |        |        |        |        | 1     |
| Spongosaturnalis sp.                             |            |    |    |     |    |    |    |    |    |        |        |        |        | 1     |
| Archaeospongoprunum hueyi Pessagno               |            |    |    |     |    |    |    |    |    |        |        |        |        |       |
| Archaeospongoprunum sp.                          |            | 1  |    |     |    |    |    |    |    |        |        |        |        | 1     |
| Pseudoaulophacus lenticulatus (White)            |            | cf | cf |     |    |    |    |    |    |        |        |        |        |       |
| Pseudoaulophacus sp.                             |            |    |    |     |    |    |    |    |    | }      | ļ      |        | Í      |       |
| Histiastrum latum Lipman                         |            |    |    |     |    |    |    |    |    |        |        |        |        | 1     |
| Histiastrum sp.                                  |            |    |    |     |    |    |    | 1  |    |        | ŀ      |        |        | 1     |
| Amphibrachium spongiosum Lipman                  |            |    | cf |     |    |    |    |    |    |        |        |        |        |       |
| Prunobrachium sp.                                |            |    |    |     |    |    |    | 1  |    |        |        |        |        |       |
| Patulibracchium petroleumensis Pessagno          |            |    | cf |     |    |    |    |    |    |        |        |        |        |       |
| Patulibracchium sp.                              |            |    |    |     |    |    |    | ł  |    |        |        |        |        |       |
| Spummellaria Gen. et sp. indet.                  |            |    |    |     |    |    |    |    |    |        |        |        |        |       |
| Crucella sp.                                     |            |    |    |     |    |    |    |    |    |        |        |        |        |       |
| Praeconocaryomma sp.                             |            |    |    |     |    |    |    |    |    |        |        |        |        |       |
| Gongylothorax verbeeki (Tan Sin Hok)             |            | cf |    |     | 1  |    |    |    | 1  |        |        |        |        | 1     |
| Kuppelella caveuxi (Squinabol)                   |            | 1  | 1  | aff | 1  | 1  |    | ł  | 1  | 1      | 1      |        | 1      |       |

| Таблица 2. Окон | ачание |
|-----------------|--------|
|-----------------|--------|

СТРАТИГРАФИЯ. ГЕОЛОГИЧЕСКАЯ КОРРЕЛЯЦИЯ

TOM 11

**M** 3

2003

|                                                 | № образцов |    |     |    |    |    |    |    |    |        |        |        |        |        |
|-------------------------------------------------|------------|----|-----|----|----|----|----|----|----|--------|--------|--------|--------|--------|
| Виды                                            | 41         | 42 | 44  | 46 | 53 | 55 | 60 | 62 | 67 | 9918/1 | 9918/2 | 9918/6 | 9918/7 | 9918/9 |
|                                                 | 1          | 2  | 3   | 4  | 5  | 6  | 7  | 8  | 9  | 10     | 11     | 12     | 13     | 14     |
| Neosciadiocapsa diabloensis Pessagno            |            |    | cf  |    |    |    |    |    |    |        |        |        |        |        |
| Neosciadiocapsa sp.                             |            |    |     |    |    |    | ļ  |    |    |        |        |        |        |        |
| Tricolocapsa? sp.                               |            |    |     |    |    |    |    | ļ  |    |        |        |        |        |        |
| Theocapsomma erdnussa (Empson-Morin)            |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Theocapsomma amphora Campbell et Clark          |            |    | aff |    |    |    |    |    |    |        |        |        |        |        |
| Theocapsomma sp.                                |            |    |     |    |    |    |    |    |    |        |        | Ì      |        |        |
| Hemicryptocapsa conara Foreman                  |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Novodiacanthocapsa manifesta (Foreman)          |            | 1  |     | cf |    |    |    |    |    |        |        |        | ł      |        |
| Sciadiocapsa (?) campbelli Pessagno             |            |    |     |    |    | 1  |    |    |    |        |        |        |        |        |
| Holocryptocapsa sp.                             |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Myllocercion sp.                                |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Schadelfusslerus sp.                            |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Eucyrtidium carnegiense Campbell et Clark       |            |    |     |    | 1  |    |    |    |    |        |        |        |        |        |
| Stichopilium teslaense Campbell et Clark        |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Stichomitra livermorensis (Campbell et Clark)   |            |    |     |    | cf |    |    |    |    |        |        |        |        |        |
| Stichomitra shirshovica Vishnevskaya            |            | 1  |     |    |    |    |    |    |    | 1      |        |        |        |        |
| Stichomitra campi (Campbell et Clark)           |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Stichomitra sp.                                 |            |    |     |    |    |    |    |    |    |        |        | 1      |        |        |
| Amphipyndax stocki (Campbell et Clark)          |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Amphipyndax streckta (Empson-Morin)             |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Amphipyndax sp.                                 |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Xitus asymbatos (Foreman)                       |            |    |     |    |    |    |    |    |    |        | cf     |        |        |        |
| Xitus sp.                                       |            |    |     |    |    | 1  |    |    |    |        |        |        |        |        |
| Lithostrobus rostovzevi Lipman                  |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Lithostrobus sp.                                |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Cornutella californica Campbell et Clark        |            |    |     |    |    |    |    | cf |    |        |        |        |        |        |
| Theocampe altamontensis (Campbell et Clark)     |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Theocampe yaoi Taketani                         |            |    | cf  |    |    |    |    |    |    |        | ł      |        |        |        |
| Theocampe sp.                                   |            |    |     |    |    |    |    |    |    |        | İ.     |        |        |        |
| Archaeodictyomitra regina (Campbell et Clark)   |            |    |     |    |    |    |    | !  |    |        |        |        |        |        |
| Dictyomitra andersoni (Campbell et Clark)       |            |    |     |    |    | cf |    |    |    |        |        |        |        |        |
| Dictyomitra densicostata Pessagno               |            |    |     |    | cf |    | Ì  | cf |    |        |        |        |        |        |
| Dictyomitra multicostata Zittel                 |            |    |     |    |    |    |    |    |    |        |        |        |        |        |
| Dictyomitra sp.                                 |            |    |     |    | 1  |    |    |    |    |        |        |        |        |        |
| Clathrocyclas hyronia Foreman                   |            |    |     |    |    |    |    |    |    |        |        |        | cf     |        |
| Clathrocyclas tintinnaeformis Campbell et Clark |            |    |     |    | 1  |    |    |    |    |        |        |        | 1      |        |
| Clathrocyclas sp.                               |            |    |     |    | ]  |    |    |    |    |        |        | 1      |        |        |
| Спикулы губок                                   |            |    |     |    |    |    |    |    |    |        |        |        |        |        |

|                                                  | № образцов |     |     |     |     |     |     |     |     |     |
|--------------------------------------------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Виды                                             | 73         | 75b | 75v | 76b | 76d | 77a | 77v | 78a | 78v | 78d |
|                                                  | 1          | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
| Phaseliforma carinata Pessagno                   |            |     |     |     | cf  |     |     |     |     | cf  |
| Phaseliforma sp.                                 |            |     |     |     |     |     |     |     |     |     |
| Praestylosphaera pusilla (Campbell et Clark)     |            |     |     |     |     |     |     |     |     |     |
| Praestylosphaera hastata (Campbell et Clark)     |            |     |     |     |     |     |     |     |     |     |
| Praestylosphaera sp.                             |            |     |     |     |     |     |     |     |     |     |
| Actinomma sp.                                    |            |     |     |     |     |     |     |     |     |     |
| Cromyosphaera vivenkensis Lipman                 |            |     |     |     |     |     |     |     |     |     |
| Lithomespilus mendosa (Krasheninnikov)           |            | cf  |     |     |     |     |     |     | cf  | cf  |
| Lithomespilus sp.                                |            | ]   |     |     |     |     |     |     |     |     |
| ? Staurodictya fresnoensis Foreman               |            |     |     |     |     |     |     |     |     |     |
| Orbiculiforma renillaeformis (Campbell et Clark) |            |     |     |     |     |     |     |     |     |     |
| Orbiculiforma quadrata Pessagno                  |            |     |     |     |     |     |     |     |     | [   |
| Orbiculiforma sp.                                |            |     |     |     | ļ   |     |     |     |     | ]   |
| Spongodiscus impressus Lipman                    |            | ļ   |     |     |     |     |     |     |     |     |
| Spongodiscus alveatus (Sanfilippo et Riedel)     |            |     |     |     | ]   |     |     |     |     |     |
| Spongodiscus sp.                                 |            |     |     |     |     |     |     |     |     |     |
| Porodiscus cretaceus Campbell et Clark           |            |     |     |     |     |     |     |     |     |     |
| Spongurus sp.                                    |            |     |     |     |     |     |     |     |     |     |
| Spongotripus morenoensis Campbell et Clark       |            |     | cf  |     |     |     |     |     |     |     |
| Pseudoaulophacus lenticulatus (White)            |            |     |     |     |     |     |     |     | ļ   | cf  |
| Patulibracchium sp.                              |            |     | 1   |     |     |     |     |     |     | {   |
| Spummellaria. gen. et sp. indet.                 |            |     |     |     |     |     |     |     |     | ł   |
| Holocryptocapsa sp.                              |            |     |     |     | 1   |     |     |     |     | 1   |
| Novodiacanthocapsa manifesta (Foreman)           |            |     |     |     |     | 1   |     |     |     |     |
| Theocapsomma sp.                                 |            |     |     |     |     |     |     |     |     |     |
| Stichomitra livermorensis (Campbell et Clark)    |            |     |     |     | 1   |     |     | cf  |     |     |
| Stichomitra shirshovica Vishnevskaya             |            |     |     |     |     |     |     |     |     |     |
| Stichomitra campi (Campbell et Clark)            |            |     |     |     |     |     | cf  |     |     |     |
| Stichomitra sp.                                  |            |     |     |     |     |     |     |     |     |     |
| Amphipyndax stocki (Campbell et Clark)           |            |     |     |     |     |     |     |     |     |     |
| Amphipyndax streckta (Empson-Morin)              |            |     |     |     |     |     |     |     |     |     |
| Amphipyndax tylotus Foreman                      |            |     |     |     |     |     |     |     |     |     |
| Amphipyndax sp.                                  |            |     |     |     |     |     |     |     |     |     |
| Wildeus punctulatus (Pessagno)                   |            |     |     |     |     |     |     |     |     |     |
| Lithostrobus rostovzevi Lipman                   |            |     |     | cf  |     |     |     |     |     |     |
| Theocampe vanderhoofi Campbell et Clark          |            |     |     |     | cf  |     | cf  |     |     | cf  |
| Theocampe sp.                                    |            |     |     |     |     |     |     |     |     | 1   |
| Archaeodictyomitra squinaboli Pessagno           |            |     |     |     |     |     |     |     |     |     |
| Archaeodictyomitra regina (Campbell et Clark)    |            |     |     |     |     |     |     |     |     |     |
| Dictyomitra andersoni (Campbell et Clark)        |            |     |     |     |     |     |     |     |     |     |
| Dictyomitra densicostata Pessagno                |            |     |     |     |     | cf  |     |     |     | cf  |
| Dictyomitra multicostata Zittel                  |            |     |     |     |     |     | ļ   |     |     |     |
| Dictyomitra sp.                                  |            |     |     |     |     |     | ]   |     |     |     |
| Clathrocyclas hyronia Foreman                    |            |     |     |     |     |     |     |     |     |     |
| Clathrocyclas sp.                                |            |     |     |     |     | ļ   |     |     |     | 1   |
| Спикулы губок                                    |            |     | 1   |     |     |     |     |     |     |     |

# Таблица 3. Радиолярии из кремнеобломочных пород матрикса олистостромы. Заштрихованные поля обозначают присутствие вида в образце

|                                                  | № образцов |    |    |    |     |     |     |     |     |     |     |
|--------------------------------------------------|------------|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| Виды                                             | 47         | 56 | 57 | 64 | 75a | 76a | 76v | 76g | 77b | 78b | 78g |
|                                                  | 1          | 2  | 3  | 4  | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
| Phaseliforma carinata Pessagno                   |            |    |    |    |     |     |     |     |     |     |     |
| Phaseliforma laxa Pessagno                       |            |    |    |    |     |     |     |     |     |     |     |
| Phaseliforma sp.                                 |            |    |    |    |     |     |     |     |     |     |     |
| Praestylosphaera pusilla (Campbell et Clark)     |            |    |    |    |     |     |     |     |     |     |     |
| Praestylosphaera hastata (Campbell et Clark)     |            |    |    |    |     |     |     |     |     |     |     |
| Praestylosphaera sp.                             |            |    |    |    |     |     |     |     |     |     |     |
| Haliomma minor Campbell et Clark                 |            | cf | cf |    |     |     | cf  |     |     |     |     |
| Haliomma sp.                                     |            |    |    |    |     |     |     |     |     |     |     |
| Actinomma sp.                                    |            |    |    |    |     |     |     |     |     |     |     |
| Acanthosphaera sp.                               |            |    |    |    |     |     | •   |     |     |     |     |
| Amphishaera goruna (Sanfilippo et Riedel)        |            |    |    |    |     |     |     |     |     |     |     |
| Lithomespilus mendosa (Krasheninnikov)           |            |    |    |    |     |     |     |     |     |     |     |
| Actinommidae gen. et sp. indet.                  |            |    |    |    |     |     |     |     |     |     |     |
| Orbiculiforma renillaeformis (Campbell et Clark) |            |    | cf |    |     |     |     |     |     |     |     |
| Orbiculiforma sp.                                |            |    |    |    |     |     |     |     |     |     |     |
| Porodiscus cretaceus Campbell et Clark           |            | cf |    |    |     |     |     |     |     |     |     |
| Spongodiscus impressus Lipman                    |            |    |    |    |     |     |     |     |     |     |     |
| Spongodiscus alveatus (Sanfilinno et Riedel)     | cf         |    |    |    |     |     |     |     |     |     |     |
| Spongodiscus sp                                  |            |    |    |    |     |     |     |     |     |     |     |
| Spongotrochus polygonatus (Campbell et Clark)    |            |    |    |    |     |     |     |     |     |     |     |
| Stylotrochus sp                                  |            |    |    |    |     |     |     |     |     |     |     |
| Spongurus quadratus Campbell et Clark            |            |    |    |    |     |     |     |     |     |     |     |
| Spongurus quadratus Campoon of Clark             |            |    |    |    |     |     |     |     |     |     |     |
| Spongosaturnalis spiniferus Campbell et Clark    |            | ĺ  |    |    |     |     |     |     |     |     |     |
| Protovinhotractus perplexus Dessagno             |            |    |    |    |     |     |     |     |     |     |     |
| Protoxiphotractus perpiexus ressagno             |            |    |    |    |     |     |     |     |     |     |     |
| Patunoracchum sp.                                |            |    |    |    |     |     |     |     |     |     |     |
| Pseudoaulophacus sp.                             |            |    |    |    |     |     |     |     |     |     |     |
| Spummenaria gen. et sp. indet.                   |            |    |    |    |     |     |     |     |     |     |     |
| Neosciadiocapsa sp.                              |            |    |    |    |     |     |     |     |     |     |     |
| Eucyrtis sp.                                     |            |    |    |    |     |     |     |     |     |     |     |
| Eucyrtidium carnegiense Campbell et Clark        |            |    |    |    |     |     |     |     | ļ   |     |     |
| Stichomitra livermorensis (Campbell et Clark)    |            |    |    |    |     |     |     |     |     | ]   |     |
| Stichomitra shirshovica Vishnevskaya             |            |    |    |    |     |     |     |     | 1   |     |     |
| Stichomitra sp.                                  |            |    |    | 1  |     |     |     |     |     |     | ľ   |
| Novodiacanthocapsa manifesta (Foreman)           |            |    |    |    |     |     |     |     |     |     |     |
| Theocapsomma erdnussa (Empson-Morin)             |            |    |    |    |     |     |     |     |     |     | ļ   |
| Theocapsomma sp.                                 |            |    |    |    |     |     |     |     |     |     | ļ   |
| Amphipyndax stocki (Campbell et Clark)           |            |    |    |    |     |     |     |     |     |     |     |
| Amphipyndax stocki var. C Vishnevskaya           |            |    |    |    | 1   |     |     |     |     |     |     |
| Amphipyndax streckta (Empson-Morin)              |            |    |    |    |     |     |     |     |     |     |     |
| Amphipyndax tylotus Foreman                      | 1          |    |    |    |     |     |     |     |     |     |     |
| Amphipyndax sp.                                  |            |    |    |    |     | [   |     |     |     |     |     |

Таблица 4. Радиолярии из кремнистых прослоев в матриксе олистостромовой толщи. Заштрихованные поля обозначают присутствие вида в образце

#### Таблица 4. Окончание

|                                                 | № образцов |    |    |    |     |     |     |     |     |     |     |
|-------------------------------------------------|------------|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| Виды                                            | 47         | 56 | 57 | 64 | 75a | 76a | 76v | 76g | 77Ь | 78b | 78g |
|                                                 | 1          | 2  | 3  | 4  | 5   | 6   | 7   | 8   | 9   | 10  | 11  |
| Xitus asymbatos (Foreman)                       |            |    |    |    |     |     |     |     |     |     |     |
| Lithostrobus rostovzevi Lipman                  |            |    |    |    |     |     |     |     |     |     |     |
| Lithostrobus sp.                                |            |    |    |    |     |     |     |     |     |     |     |
| Cornutella californica Campbell et Clark        |            |    |    |    |     |     |     |     |     |     |     |
| Theocampe altamontensis (Campbell et Clark)     |            |    |    |    |     |     |     | l . |     |     |     |
| Theocampe vanderhoofi Campbell et Clark         |            |    |    |    |     |     |     |     |     |     |     |
| Theocampe sp.                                   |            |    |    |    |     |     |     | 1   |     |     |     |
| Archaeodictyomitra regina (Campbell et Clark)   |            |    |    |    |     |     |     |     |     |     |     |
| Archaeodictyomitra sp.                          |            |    |    |    |     |     |     |     |     |     |     |
| Dictyomitra andersoni (Campbell et Clark)       |            |    |    |    |     |     |     |     |     |     |     |
| Dictyomitra densicostata Pessagno               |            |    |    |    |     |     |     |     |     |     |     |
| Dictyomitra multicostata Zittel                 |            |    |    |    |     |     |     |     |     |     |     |
| Dictyomitra sp.                                 |            |    |    |    |     |     |     |     |     |     |     |
| Clathrocyclas hyronia Foreman                   |            |    | cf |    | [   |     |     |     |     |     |     |
| Clathrocyclas diceros Foreman                   |            |    |    |    |     |     |     |     |     |     |     |
| Clathrocyclas tintinnaeformis Campbell et Clark |            |    |    |    |     |     |     |     |     |     |     |
| Clathrocyclas sp.                               |            |    |    |    |     |     |     |     |     |     |     |
| Спикулы губок                                   |            |    |    |    |     |     |     |     |     |     |     |

этот разрез представлял собой чередование грубообломочных терригенных пород с кремнями, лишенными терригенной примеси и базальтами, типичными для островных дуг – сочетание крайне маловероятное. Но даже если такой разрез существовал, то состав обломков в его терригенных породах не мог быть полным подобием состава залегающих в этом же разрезе кремнистых пород, как это наблюдается в олистостромовой толще.

При всей сложности внутренней структуры олистостромовой толщи в ее матриксе и крупных олистолитах (олистоплаках) преобладают субмеридиональные простирания с крутым падением на восток-юго-восток. Если считать, что толща залегает в виде моноклинальной структуры, то ее мощность должна превышать 500 м.

Обоснование возраста олистостромовой толщи. Из олистолитов и матрикса олистостромы отобраны пробы кремней и кремнистых аргиллитов для определения возраста по радиоляриям.

Датирование олистолитов. В изученных нами кремнистых породах из олистолитов в основном встречены радиоляриевые ассоциации кампан-маастрихтского возраста: обр. 42, 55, 60, 9918/2 – поздний кампан-маастрихт, обр. 44 – кампан-маастрихт, обр. 46, 53 – кампан, обр. 62, 9918/1 – средний кампан-маастрихт, 9918/7 – поздний кампан – ранний маастрихт (табл. 2, 5; фототабл. III). Кроме того, известны более древние ассоциации радиолярий кимеридж – нижневаланжинского, альб-сеноманского и коньякмаастрихтского возраста, выделенные, по-видимому, из олистолитов паланского разреза и изученные Д.В. Куриловым (2000).

Датирование матрикса олистостромы. Из песчаников и гравелитов матрикса олистостромы также получены многочисленные радиолярии (в 10 образцах) (табл. 3, 5; фототабл. І–П), свидетельствующие о кампанском возрасте вмещающих отложений. Наиболее представительные образцы: 75v, 77v – ранний-средний кампан, 76b – кампан, 76d – средний-поздний кампан. Очевидно, что в своем большинстве радиолярии из песчаников и гравелитов матрикса являются переотложенными. Поэтому позднекампан-маастрихский возраст этого комплекса отражает возраст преобладающей (по мощности) части той кремнистой толщи, которая была источником большинства олистолитов и кремнеобломочной части ма-



трикса. Из кремнистых прослоев в матриксе олистостромы также получены радиолярии (в 11 образцах) (табл. 4; фототабл. I–II) позднекампан-маастрихтского возраста (наиболее представительные обр. 76а, 76v, 77b). Однако, несмотря на большое количество форм радиолярий, скорее всего свидетельствующих о позднекампан-маастрихтском возрасте матрикса олистостромы, остается вероятность, что формирование изучаемой толщи продолжалось и в начале палеоцена, на что указывают находки таких форм: Amphisphaera goruna (Sanfilippo et Riedel), Orbiculiforma renillaeformis (Campbell et Clark), Spongodiscus alveatus (Sanfilippo et Riedel), Spongotrochus polygonatus (Campbell et Clark) и др. (табл. 5).

#### СООТНОШЕНИЕ МЕЛОВЫХ И ПАЛЕОГЕНОВЫХ КОМПЛЕКСОВ

В 1.5 км к ЗЮЗ от устья р. Анадырки в обрыве морского берега виден контакт интенсивно деформированных туфогенно-осадочных пород вулканогенной толщи с конгломератами и песчаниками анадыркской (или хулгунской) свиты. По Ю.Б. Гладенкову с соавторами (1997) эта свита относится к палеоцену. Вместе с тем, согласно устному сообщению А.Е. Шанцера, появились новые биостратиграфические данные, указывающие на более молодой, эоценовый возраст анадыркской свиты. Контакт этой свиты с вулканогенной толщей осложнен почти перпендикулярным к берегу вертикальным разрывом. К западу от перекрытого осыпью интервала шириной около 2 м залегают дробленые вулканические брекчии и туфогенно-осадочные породы вулканогенной толщи. Только в 200 м западнее в них можно хорошо наблюдать слои, которые наклонены на запад-северо-запад 290-315 под углами 45-60 градусов (15 замеров на расстоянии около 100 м вдоль берега). Непосредственно к востоку от контакта двух свит залегают плохо обнаженные полурыхлые грубозернистые песчаники, которые примерно через 30 м перекрываются конгломератами, наклоненными на северо-восток под углами около 40 градусов. Далее на протяжении 200 м в

обрыве хорошо обнажена полого наклоненная на северо-восток толща линзовидного переслаивания косослоистых конгломератов, гравелитов и песчаников с отпечатками листовой флоры. Это основание анадыркской свиты подробно охарактеризовано в работе Гладенкова и др., (1997). Судя по этому описанию, залегание анадыркской свиты на протяжении 2 км к северо-востоку от устья Анадырки близко горизонтальному. В составе конгломератов основания анадыркской свиты резко преобладают базальты, в том числе пироксеновые и роговообманковые, типичные для вулканогенной толщи Паланского разреза. Таким образом, и литологические и структурные данные убедительно свидетельствуют о резком несогласии между анадыркской свитой и подстилающим мелом.

#### ОБСУЖДЕНИЕ

Комплексы радиолярий. Радиоляриевые комплексы исследованного объекта уникальны по своей полноте и сохранности. Из 60 образцов, отобранных на микрофаунистический анализ, практически во всех были выявлены радиолярии, причем в подавляющем большинстве хорошей сохранности.

Радиолярии были выделены как из кремнистых прослоев вулканогенной толщи, так и из олистолитов и матрикса олистостромовой толщи. Количество видов радиолярий в наиболее представительных пробах из паланского разреза составляет до 31 вида, относящихся к 25 родам. Сравнивая таксономический состав радиолярий, полученных из разных толщ паланского разреза (табл. 1-4), следует отметить большое сходство ассоциаций из прослоев кремней вулканогенной толщи, из матрикса олистостромовой толщи, из некоторых олистолитов, что, вероятно, свидетельствует о формировании толщ в непосредственной близости друг от друга. В изученных ассоциациях наряду с кампанскими и кампан-маастрихтскими формами радиолярий заметное место занимают виды, существовавшие в позднемаастрихт-палеоценовое время: Amphisphaera goruna

Фототаблица I. Радиолярни из олистостромовой толщи.

<sup>1, 2 –</sup> Cromyosphaera vivenkensis Lipman, 1 – 76/b, ×100; 2 – 75/v, ×100; 3 – Lithomespilus mendosa (Krasheninnikov), 76/v, ×120; 4 – Acanthosphaera sp., 76/v, ×100; 5 – Amphisphaera goruna (Sanfilippo et Riedel), 76/v, ×200; 6, 7 – Praestylosphaera pusilla (Campbell et Clark), 6 – 76/a, ×200; 7 – 76/v, ×150; 8 – Protoxiphotractus perplexus Pessagno, 76/a, ×200; 9 – ? Staurodictya fresnoensis Foreman, 76/d, ×110; 10 – Spongosaturnalis spiniferus Campbell et Clark, 76/v, ×150; 11 – Phaseliforma carinata Pessagno, 75/a, ×100; 12 – Phaseliforma subcarinata Pessagno, 77/b, ×85; 13 – Phaseliforma laxa Pessagno, 77/b, ×100; 14 – Spongurus quadratus Campbell et Clark, 75/a, ×200; 15 – Spongurus sp., 76/v, ×150; 16 – Orbiculiforma rennilaeformis Campbell et Clark, 76/a, ×85; 17, 18 – Porodiscus cretaceous Campbell et Clark, 17 – 76/b, ×100; 18 – 77/v, ×100; 19 – Spongodiscus cf. alveatus (Sanfilippo & Riedel), 47, ×80; 20 – Spongotrochus polygonatus (Campbell et Clark), 76/a, ×150; 21 – Orbiculiforma quadrata Pessagno, 77/v, ×100; 22 – Pseudoaulophacus lenticulatus (White), 76/b, ×120; 23 – Patulibracchium sp., 77/b, ×100; 24 – Spongotripus cf. morenoensis Campbell et Clark, 75/v, ×120.



(Campbell et Clark), Lithomespilus mendosa (Krasheninnikov), Orbiculiforma rennilaeformis (Campbell et Clark), Spongodiscus alveatus (Sanfilippo et Riedel), S. rhabdostylus (Ehrenberg), Spongotrochus polygonatus (Campbell et Clark) и присутствующие в матриксе олистостромовой толщи (табл. 5), поэтому формирование олистостромовой толщи продолжалось, скорее всего, и в начале палеоценового времени.

В позднекампан-маастрихтских ассоциациях рапиолярий паланского разреза выделен широкий спектр форм: из спуммеллярий – это встречаемые практически во всех разрезах Олюторской зоны и Камчатки представители сем. Phaseliformidae, Orbiculiformidae, родов – Praestylosphaera, Lithomespilus; кроме этого, многосферные - Cromyosphaera, Actinomma; многочисленные Spongodiscidae - Spongodiscus alveatus, S. impressus, Porodiscus cretaceus, Spongotrochus polygonatus и др., и Sponguridae. Здесь встречены и псевдоауллофакоидные формы типа - Pseudoaulophacus lenticulatus. Из насселярий это – различные амфилиндациды: Amphipyndax stocki, A. streckta, A. tylotus, A. pseudoconulus; многочисленные циртиды: Archaeodictyomitra, Dictyomitra, Stichomitra., теокампиды – Theocampe altamontensis, T. vanderhoofi, T. yaoi; клатроциклиды – Clathrocyclas hyronia, Cl. diceros, Cl. tintinnaeformis. Отличительной особенностью изученных ассоциаций паланского района являются многочисленные трехсегментные насселярии – Theocapsomma amphora, T. erdnussa, Hemicryptocapsa conara, Novodiacanthocapsa manifesta, Sciadiocapsa campbelli и др.

В морфологическом отношении в изученных ассоциациях присутствуют различные типы структур стенки раковины – мелко-среднепористая до 70%, пористо-губчатая – 24%, псевдоаулофакоидная – 2%, кситоидная – около 4%, что свидетельствует об относительной высокоширотности описываемых комплексов радиолярий. Наш вывод подтверждается исследованиями кампанских радиолярий из различных точек земного шара (Empson-Morin, 1984). В своей работе она отмечает, что, например, род Prunobrachium, присутствующий в нашем материале, всегда указывает на высокие широты. Кроме этого встречены формы рода Neosciadiocapsa, областью обитания которого по данным М.Г. Петрушевской (1981), были преимущественно высокие и умеренные широты.

Из образцов паланского разреза определено 62 вида радиолярий. Из них 23 вида известны из позднесенонских отложений Калифорнии (Сатрbell, Clark, 1944), 12 - описаны из верхней части формации Фобес (Forbes formation) позднего кампана Северной Калифорнии (Pessagno, 1976), среди них Phaseliforma carinata Pessagno, являющийся индекс-видом подзоны низов позднего кампана Северной Калифорнии (Pessagno, 1976). Восемь видов встречены из позднемаастрихтских отложений Калифорнии (Foreman, 1968), а два вида, такие как Amphipyndax streckta (Empson-Morin). Theocapsomma erdnussa (Empson-Morin), описаны из комплекса кампанских радиолярий скв. 313 DSDP, пробуренной в центральной части Тихого океана (Empson-Morin, 1984). Отдельные виды встречены в кампанских отложениях северо-восточной части о-ва Хоккайдо (Iwata, Tajika, 1986), например Theocampe yaoi Taketani. Большая часть видов характерна и для кампан-маастрихтских комплексов Олюторской зоны Корякии (Вишневская, 1985; Палечек, 1997; Соловьев и др., 1998; Соловьев и др., 2000); 13 общих видов отмечено с кампан-маастрихтскими ассоциациями Западного Сахалина (Казинцова, 2000). Также наблюдается некоторое сходство с позднемеловымипалеоценовыми радиоляриями Новой Зеландии (Hollis, 1997). Все вышеперечисленные виды характерны для Тихоокеанского обрамления. В то же время, в Паланском разрезе встречено 7 видов (Lithostrobus rostovzevi, Histiastrum latum, Amphibrachium spongiosum и др.), описанных из позднемеловых отложений Западно-Сибирской низменности (Липман, 1962), что, вероятно, свидетельствует о связи Арктического и Тихоокеанского бассейнов в это время.

Реконструкции геологических событий по отложениям паланского разреза. Разрез, наблюдаемый в обрыве морского берега между р. Паланой и р. Анадыркой, отражает ряд последовательных

Фототаблица II. Радиолярии из олистостромовой толщи.

<sup>1 –</sup> Amphipyndax stocki (Campbell et Clark), 76/a, ×150; 2 – Amphipyndax stocki var. C Vishnevskaya, 76/a, ×150; 3 – Amphipyndax streckta (Empson-Morin), 76/d, ×100; 4 – Amphipyndax tylotus Foreman, 75/a, ×150; 5 – Wildeus punctulatus (Pessagno), 75/v, ×120; 6 – Lithostrobus rostovzevi Lipman, 76/v, ×120; 7 – Xitus cf. asymbatos (Foreman); 76/v, ×100; 8 – Novodiacanthocapsa manifesta (Foreman), 76/b, ×150; 9, 10 – Stichomitra livermorensis (Campbell et Clark), 9 – 77/b, ×150; 10 – 76/a, ×200; 11 – Stichomitra cf. shirshovica Vishnevskaya, 76/v, ×120; 12, 13 – Theocapsomma erdnussa (Empson-Morin), 75/a, ×100; 14, 15 – Theocapsomma ? sp., 75/a, ×100; 16, 17 – Cornutella californica Campbell et Clark, 16 – 76/v, ×150; 17 – 76/v, ×180; 18 – Clathrocyclas hyronia Foreman, 76/v, ×150; 19 – Clathrocyclas diceros Foreman, 76/v, ×150; 20 – Clathrocyclas tintinnaeformis Campbell et Clark, 77/b, ×110; 21 – Clathrocyclas sp., 76/a, ×200; 22 – Cornutella californica Campbell et Clark, 77/b, ×100; 23, 24 – Archaeodictyomitra squinaboli Pessagno, 23 – 76/b, ×100; 24 – 76/d, ×190; 25, 26 – Dictyomitra densicostata Pessagno, 25 – 76/a, ×200; 26 – 77/v, ×100; 27, 28 – Theocampe vanderhoofi Campbell et Clark, 77/b, ×200.



геологических событий. Сюда включается накопление кремнистой толщи, реконструируемой по олистолитам и олистоплакам усть-паланской свиты, формирование вулканогенной толщи, образование олистостромовой усть-паланской свиты, отражающее совместную деформацию кремнистой и вулканогенной толщ и, наконец, совместная деформация усть-паланской свиты и вулканогенной толщи, приведшая к поднятию и размыву, завершившемуся накоплением континентальной молассы анадыркской свиты.

Накопление кремнистой толщи, послужившей источником большей части олистолитов и матрикса олистостромы, началось еще в конце юры и, по-видимому, продолжалось до конца мела (Курилов, 2000; Палечек и др., 2000). Тем не менее, подавляющая часть олистолитов относится к кампан-маастрихтскому интервалу. Это, скорее всего, означает, что мощность докампанских кремней была очень небольшой, а скорость осадконакопления в это время – очень низкой. Присутствие обломков иноцерам в коньяк-нижнекампанских олистолитах (Курилов, 2000) указывает на то, что, начиная с коньяка, на дне бассейна появляется много иноцерамовых банок, являвшихся источником обильного раковинного детрита, перемещавщегося течениями. В кампан-маастрихтское время кремнистая толща продолжала накапливаться в бассейне, где влияние источников туфогенного и терригенного материала было незначительным. По палеомагнитным данным кампан-маастрихтские кремнистые породы накапливались на 40-х широтах (среднее значение), то есть южнее современного места олистостромовой толщи в структуре Западной Камчатки (Чернов и др., 2000). Состав кремней, подтверждает этот вывод, поскольку такие породы могли осаждаться на значительном расстоянии от окраины северо-восточной Азии, поставлявшей огромное количество терригенного материала в смежные бассейны.

Во второй половине кампана начинается формирование вулканогенной толщи, в результате нескольких подводных извержений базальтов, разделенных короткими периодами накопления слоистых туфогенно-осадочных пачек. Состав базальтов вулканогенной толщи типичен для островных дуг. Ближайший их аналог в регионе – вулканиты кирганикской свиты в южной части Срединного хребта Камчатки (Флеров, Колосков, 1976).

Вопрос о возрастных соотношениях вулканогенной толщи и кампан-маастрихтской кремнистой толщи (Курилов, 2000), служившей источником большей части олистолитов не имеет прямого решения, так как их датировки в пределах точности анализа радиолярий совпадают. Поскольку никакой существенной примеси туфогенного материала в кремнях нет, области накопления этих толщ были разнесены либо в пространстве, либо во времени. Если это действительно одновозрастные толщи, то дуга находилась либо ближе к континенту, чем область накопления кремней, либо дальше от него. В первом случае трудно объяснить, как олистострома, сложенная кремнями, в современной структуре оказалась ближе к континенту, чем большая часть верхнемеловых островодужных толщ Камчатки, а во втором случае трудно согласовать палеомагнитные данные по кремням с палеомагнитными данными по Срединному хребту и о. Карагинскому, которые в кампан-маастрихское время находились на более высоких широтах (Коваленко, 1990; Левашова, Шапиро, 1999). Поэтому представляется более вероятным, что в пределах маастрихт-датского интервала толщи разновозрастны.

Формирование олистостромовой толщи указывает на кратковременные подвижки и, вероятно, надвигообразование, в ходе которого в подводных условиях происходило синхронное разрушение тектонических чешуй (блоков), сложенных вулканогенными и кремнистыми отложениями. Судя по возрасту матрикса олистостромы, этот процесс также происходил в интервале поздний кампан – маастрихт. Но поскольку в течение этого же интервала времени происходило накопление кремнистой, а затем и вулканогенной

Фототаблица III. Радиолярии из олистолитов олистостромовой толщи.

<sup>1-20, 25, 26 -</sup> обр. 9918/2; 21-24 - обр. 44.

<sup>1, 2 –</sup> Praestylosphaera pusilla (Campbell et Clark),  $1 - \times 120$ ;  $2 - \times 200$ ; 3 – Amphisphaera priva (Foreman),  $\times 200$ ; 4 – Lithomespilus mendosa (Krasheninnikov),  $\times 200$ ; 5 – Spongodiscus rhabdostylus (Ehrenberg),  $\times 100$ ; 6 – Cromyodruppa concentrica Lipman,  $\times 90$ ; 7 – Phaseliforma carinata Pessagno,  $\times 100$ ; 8 – Spongodiscus impressus Lipman,  $\times 100$ ; 9 – Spongosaturnalis spiniferus Campbell et Clark,  $\times 100$ ; 10 – Stichomitra livermorensis (Campbell et Clark),  $\times 100$ ; 11 – Stichomitra campi (Campbell et Clark),  $\times 120$ ; 12 – Eucyrtidium carnegiense Campbell et Clark,  $\times 100$ ; 13 – Stichopilium teslaense Campbell et Clark,  $\times 100$ ; 14 – Xitus cf. asymbatos (Foreman),  $\times 110$ ; 15 – Theocampe altamontensis (Campbell et Clark),  $\times 200$ ; 16 – Clathrocyclas hyronia Foreman,  $\times 200$ ; 17 – Clathrocyclas tintinnaeformis Campbell et Clark,  $\times 180$ ; 18 – Clathrocyclas sp.,  $\times 100$ ; 19 – Stichomitra ? sp.,  $\times 200$ ; 20 – Cornutella californica Campbell et Clark,  $\times 200$ ; 21 – Hemicryptocapsa aff. conara Foreman,  $\times 200$ ; 22 – Patulibrachium cf. petroleumensis Pessagno,  $\times 100$ ; 23 – Histiastrum sp.,  $\times 100$ ; 24 – Neosciadiocapsa cf. diabloensis Pessagno,  $\times 90$ ; 25 – Dictyomitra multicostata Zittel,  $\times 180$ ; 26 – Archaeodictyomitra regina (Campbell et Clark),  $\times 100$ .

#### ПАЛЕЧЕК и др.

### Таблица 5. Распространение встреченных видов по литературным данным

|                                               | ct |     | ср  |     | n  | d  |   |
|-----------------------------------------------|----|-----|-----|-----|----|----|---|
| Биды                                          | SL | cp1 | cp2 | cp3 | ml | m2 | u |
| Archaeodictyomitra squinaboli Pessagno        |    |     |     |     |    |    |   |
| Dictyomitra densicostata Pessagno             |    |     |     |     |    |    |   |
| Orbiculiforma quadrata Pessagno               |    |     |     |     |    |    |   |
| Novodiacanthocapsa manifesta (Foreman)        |    |     |     |     |    |    |   |
| Theocapsomma erdnussa (Empson-Morin)          |    |     |     |     |    |    |   |
| Lithostrobus rostovzevi Lipman                |    |     |     |     |    |    |   |
| Kuppelella cayeuxi (Squinabol)                |    |     |     |     |    |    |   |
| Wildeus punctulatus (Pessagno)                |    |     |     |     |    |    |   |
| Cromyodruppa concentrica Lipman               |    |     |     |     |    |    |   |
| Pseudoaulophacus lenticulatus (White)         |    |     |     |     |    |    | - |
| Patulibracchium petroleumensis Pessagno       |    |     |     |     |    |    |   |
| Amphibrachium spongiosum Lipman               |    |     |     |     | •  |    |   |
| Archaeospongoprunum hueyi Pessagno            |    |     |     |     |    |    |   |
| Histiastrum latum Lipman                      |    |     |     |     |    |    |   |
| Haliomma minor Campbell et Clark              |    |     |     |     |    |    |   |
| Praestylosphaera hastata (Campbell et Clark)  |    |     |     |     |    |    |   |
| P. pusilla (Campbell et Clark)                |    |     |     |     |    |    |   |
| Prothoxiphotractus perplexus Pessagno         |    |     |     |     |    |    |   |
| Spongosaturnalis spiniferus Campbell et Clark |    |     |     |     |    |    |   |
| Phaseliforma carinata Pessagno                |    |     |     |     |    |    |   |
| P. subcarinata Pessagno                       |    |     |     |     |    |    |   |
| P. laxa Pessagno                              |    |     |     |     |    |    |   |
| Spongurus quadratus Campbell et Clark         |    |     |     |     |    |    |   |
| Amphipyndax streckta (Empson-Morin)           |    |     |     |     |    |    |   |
| A. tylotus Foreman                            |    |     |     |     |    |    |   |
| Clathrocyclas hyronia Foreman                 |    |     |     | ļ   |    |    |   |
| C. diceros Foreman                            |    |     |     |     |    |    |   |
| C. tintinnaeformis Campbel et Clark           |    |     |     |     |    |    |   |
| Archaeodictyomitra regina (Campbell et Clark) |    |     |     |     |    |    |   |
| Dictyomitra andersoni (Campbell et Clark)     |    |     |     |     |    |    |   |
| Stichomitra livermorensis (Campbell et Clark) |    |     |     | 1   |    |    |   |
| S. shirshovica Vishnevskaya                   |    |     |     |     |    |    |   |
| S. campi (Campbell et Clark)                  |    |     |     |     |    |    |   |
| Cornutella californica Campbell et Clark      |    |     |     |     |    |    |   |
| Theocampe altamontensis (Campbell et Clark)   |    |     |     |     |    |    |   |
| T. yaoi Taketani                              |    |     |     |     | ļ  |    |   |
| T. vanderhoofi Campbell et Clark              |    |     |     |     | l  |    |   |
| Gongylothorax verbeeki (Tan Sin Hok)          |    |     |     |     |    |    |   |
| Staurodictya fresnoensis Foreman              |    |     |     |     | ļ  |    |   |
| Neosciadiocapsa diabloensis Pessagno          |    |     |     |     |    |    |   |
| Hemicryptocapsa conara Foreman                |    |     |     |     |    |    |   |
| Amphibrachium sansalvadorensis Pessagno       |    |     |     |     |    |    |   |
| Amphisphaera priva (Foreman)                  |    |     |     |     |    |    |   |
| A. goruna (Campbell et Clark)                 |    |     |     |     |    |    |   |
| - Ber ann (campori et chark)                  | L  |     |     | l   | L  | L  |   |

#### Таблица 5. Окончание

| Виды                                             | st |     | ср           |                                       | r        | l d      |   |
|--------------------------------------------------|----|-----|--------------|---------------------------------------|----------|----------|---|
| Биды                                             |    | cpl | cp2          | cp3                                   | ml       | m2       | u |
| Orbiculiforma renillaeformis (Campbell et Clark) |    |     |              |                                       |          |          |   |
| Lithomespilus mendosa (Krasheninnikov)           |    |     |              |                                       |          |          |   |
| Spongodiscus alveatus (Sanfilippo et Riedel)     |    |     |              |                                       |          |          |   |
| S. rhabdostylus (Ehrenberg)                      |    |     |              |                                       |          |          |   |
| Spongotrochus polygonatus (Campbel et Clark)     |    |     |              |                                       |          |          |   |
| Cromyosphaera vivenkensis Lipman                 |    |     |              |                                       |          |          |   |
| Spongodiscus impressus Lipman                    |    |     |              |                                       |          |          |   |
| Porodiscus cretaceus Campbell et Clark           |    |     | <u></u>      |                                       |          |          |   |
| Spongotripus morenoensis Campbell et Clark       |    |     |              |                                       |          |          |   |
| Haliomma schucherti Campbell et Clark            |    |     |              |                                       |          |          | - |
| Theocapsomma amphora Campbell et Clark           |    |     |              |                                       |          | <u> </u> |   |
| Sciadiocapsa campbelli Pessagno                  |    |     |              |                                       |          |          | - |
| Stichopilidium teslaense Campbell et Clark       |    |     |              |                                       |          |          |   |
| Eucyrtidium carnegiense Campbell et Clark        |    |     |              |                                       |          | -        | - |
| Xitus asymbatos Foreman                          |    |     |              |                                       |          |          | - |
| Dictyomitra multicostata Zittel                  |    |     |              |                                       |          |          | 4 |
| Amphipyndax stocki (Campbell et Clark)           |    |     |              |                                       |          |          |   |
| Amphipyndax stocki var. C Vishnevskaya           |    |     | · <b> </b> . |                                       | <b>_</b> |          |   |
|                                                  | •  |     |              | · · · · · · · · · · · · · · · · · · · |          | •        | • |

толщ, формирование олистостромы, скорее всего, относится к концу этого интервала. Возраст вулканогенной толщи обоснован не только радиоляриями как позднекампан-маастрихтский, но К/Аг датировками амфибола из андезибазальтов  $(72.5 \pm 3.5$  и  $72.0 \pm 3.5$  млн. лет) как раннемаастрихтский. Присутствие обломков пород вулканогенной толщи в олистостромовой позволяет нам считать, что возраст олистостромовой толщи постраннемаастрихтский. Таким образом, тектоническое скучивание и связанное с ним олистостромообразование, скорее всего, произошло после раннего маастрихта. С другой стороны, резкое несогласие в основании анадыркской свиты обусловлено общей деформацией паланского разреза. Если опираться на опубликованную датировку анадыркской флоры (Гладенков и др., 1997), это событие произошло не позже середины дания.

Авторы выражают признательность ПГО "Камчатгеология" (Лесновская партия, начальник Ю.А. Бурмаков) за помощь в организации полевых работ, благодарны Н.А. Богданову, В.С. Вишневской за постоянный интерес к исследованиям и многочисленные консультации. Работа выполнена при финансовой поддержке РФФИ (проекты № 01-05-06205, № 00-05-64301, № 98-05-64525).

#### СПИСОК ЛИТЕРАТУРЫ

Вишневская В.С. Биостратиграфия вулканогеннокремнистых образований позднего мела Беринговоморского региона СССР по радиоляриям // Тихоокеанская геология. 1985. № 4. С. 189–217.

Геологическая карта СССР. Масштаб 1: 500 000 (новая серия). Лист О-57, (58) – Палана. Объяснительная записка. Л.: ВСЕГЕИ, 1989. 105 с.

Гладенков Ю.Б., Шанцер А.Е., Челебаева А.И. и др. Нижний палеоген Западной Камчатки (стратиграфия, палеогеография, геологические события) М.: ГЕОС, 1997. 367 с.

Двали М.Ф. Геологическое строение Паланского района (западное побережье п-ова Камчатка) // Тр. ВНИ-ГРИ, 1957. Вып. 102. 124 с.

Демидов Н.Т., Сулима Г.С. Государственная геологическая карта СССР. Масштаб 1:200 000. Западно-Камчатская серия. Лист О-57-Х, ХІ (Палана, Кинкиль). Л.: ВСЕГЕИ. 1982.

Казинцова Л.И. Радиолярии альба-маастрихта Западного Сахалина. В сб. XI семинара по радиоляриям "Радиоляриология на рубеже тысячелетий: итоги и перспективы", СПб.-М.: ВСЕГЕИ, 2000. С. 31-32. Коваленко Д.В. Палеомагнитные исследования островодужных комплексов о-ва Карагинский и хребта Малиновского (Олюторская зона): тектоническая интерпретация результатов // Геотектоника. 1990. № 4. С. 36–46

Курилов Д.В. Новые находки юрско-меловых радиолярий на Западной Камчатке // Исследования литосферы. М.: Ин-т литосферы окраинных и внутренних морей РАН, 2000. С. 40–42.

Левашова Н.М., Шапиро М.Н. Палеомагнетизм верхнемеловых островодужных комплексов Срединного хребта Камчатки // Тихоокеанская геология. 1999. Т. 18. № 2. С. 65–75.

Липман Р.Х. Позднемеловые радиолярии Западно-Сибирской низменности и Тургайского прогиба // Материалы по стратиграфии мезо-кайнозоя Тургайского прогиба, Северного Приаралья и Западно-Сибирской низменности. Тр. ВСЕГЕИ. 1962. Нов. сер. Т. 77. С. 271–323.

Объяснительная записка к тектонической карте Охотоморского региона масштаба 1 : 2 500 000 // Под ред. Н.А. Богданова, В.Е. Хаина. М.: Ин-т литосферы окраинных и внутренних морей РАН. 2000. 193 с.

Палечек Т.Н. Строение и условия формирования верхнемеловых вулканогенно-кремнистых отложений Олюторского района (на основе радиоляриевого анализа). Автореф. дис. ... канд. геол.-мин. наук. М.: Ин-т литосферы РАН, 1997. 25 с.

Палечек Т.Н., Соловьев А.В., Шапиро М.Н. Возраст докайнозойских комплексов района поселка Палана // Исследования литосферы. М.: Ин-т литосферы окраинных и внутренних морей РАН, 2000. С. 42–45.

Петрушевская М.Г. Радиолярии отряда Nassellaria Мирового океана. Л.: Наука, 1981. 405 с.

Соловьев А.В., Палечек Т.Н., Леднева Г.В. Кампан-маастрихтские отложения фронтальной части Олюторской зоны (юг Корякского нагорья) // Стратиграфия. Геол. корреляция. 2000. Т. 8. № 2. С. 88–96. Соловьев А.В., Палечек Т.Н., Палечек Р.М. Тектоностратиграфия северной части Олюторской зоны (Корякское нагорье, район бухты Анастасии) // Стратиграфия. Геол. корреляция. 1998. Т. 6. № 4. С. 92–105.

Флеров Г.Б., Колосков А.В. Щелочной базальтовый магматизм Центральной Камчатки. М.: Наука, 1976. 147 с.

Чернов Е.Е., Коваленко Д.В., Курилов Д.В. Палеомагнетизм верхнемеловых островодужных комплексов района устья реки Палана (Западная Камчатка) // Исследования литосферы. Ин-т литосферы окраинных и внутренних морей РАН, 2000. С. 39–40.

Campbell A., Clark B. Radiolaria from Upper Cretaceous of Middle California // Geol. Soc. Amer. Spec. Pap. 1944. № 57. P. 1–61.

Empson-Morin K. Depth and latitude distribution of Radiolaria in Campanian (Late Cretaceous) tropical and subtropical oceans // Micropaleontology. 1984. V. 30.  $\mathbb{N}$  1. P. 87–115.

Foreman H. Upper Maastrichtian Radiolaria of California // The paleontol. assoc. Spec. Papers Paleontologic. London. 1968. № 3. 82 p.

Pessagno E. Radiolarian zonation and stratigraphy of the Upper Cretaceous portion of the Great Valley Sequence, California Coast Ranges // Micropaleontology. Spec. Publ. 1976. № 2. P. 1–95.

Iwata K., Tajika J. Late Cretaceous radiolarians of the Yubetsu group, Tokoro Belt, Northeast Hokkaido // J. Fac. Sci. Hokkaido Univ. Ser. IV. 1986. V. 21. № 4. P. 619–644.

Hollis C.J. Cretaceous-Paleocene Radiolaria from Eastern Marlborough, New Zealand. Institute of Geological and Nuclear Sciences. Monograph 17, 1997. 152 p.

> Рецензенты Ю.Б. Гладенков, А.Е. Шанцер